ISSN 0105-8517

BETA LANGUAGE PROPOSAL

as of April 1979

by

Bent Bruun Kristensen
Ole Lehrmann Madsen
Birger Mgller-Pedersen
Kristen Nygaard

DAIM!I PB-98
June 1979
Computer Science Department — — | h—rl [

AARHUS UNIVERSITY

|
Ny Munkegade — DK 8000 Aarhus C ~ DENMARK | || =
Telephone: 06 — 12 83 55 r -HV [| l

ISSN 0105-8517
Joint Language Project
Working Note No. b

BETA LANGUAGE PROPOSAL

as of April 1979

by

Bent Bruun Kristensen
Oie Lehrmann Madsen =«
Birger Mgller-Pedersen #xx
Kristen Nygaard ##+

DAIMI PB-98
June 1979

Also available from the Norwegian Computing Center, Oslo, as report NCC
Publication No. 635.

* Aalborg University Center, Aalborg, Denmark
«» Aarhus University, Aarhus, Denmark
=+x Norwegian Computing Center, Oslo, Norway

Preface

The BETA language is being developed as a part of the Joint Language Project
(JLP). The JLP is described in JLP Working Note No. 2 ref. [1] {the Regional
Computing Center at Aarhus University has also participated in the JLP in
addition to the institutions of the authors). The Norwegian Computing Center
(NCC) has decided to implement BETA as an integral part of a large project
aimed at developing improved tools for software production. This project is
named SCALA (System Construction and Application LAnguages).

The development of BETA has been a joint research effort by the authors,
assisted and stimulated by colleagues at the institutions mentioned above, as
well as many others. The implementation of BETA will be a major project
component in NCC’s SCALA software tool project, which in its turn will contain
additional research efforts.

The implementation of a language necessitates that it is given a firm, exact and
complete definition. The carrying out of this process for BETA is intended to
follow approximately the same procedures as those which were used for
SIMULA 67, (see ref. [4]).

This Working Note contains the authors’ proposal for the definition of the
BETA language. It is building upon earlier JLP Working Notes (ref. [1]) as well
as the concepts of the DELTA system description language (ref. [2]), which in
its turn is related to SIMULA (ref. [3]). It will be apparent to the reader that we
are influenced by a large number of other research workers within informatics
{some names will be obvious), even if our basic "systems approach” — with its
emphasis on the substance of program executions — differs from the
“algorithmic and data structuring approach” which has been dominating
programming language research.

We find it unnecessary in this Working Note to refer in detail to all influences
we are aware of. This will instead be done in the report containing the BETA
Common Base Definition, being written after the BETA Common Base
Conference later this year.

Up to the Common Base Conference this Working Note and additional written
material by the authors and others will be the basis for discussions on the BETA
language definition.

2

The Working Note may be regarded as definitive in its proposal of basic
language layout and concepts: The use of singular or category-defined
descriptors combined with constructional modes to generate entities. The
entities will be of three autonomous kinds: objects, instances and contexts,
these possibly containing three constituent kinds of entities as building blocks:
prefixes, infixes and insertions. Also, the approach to sequencing, in particular
to concurrency of action sequences each associated with an object, is not
going to be modified in its essential structure, whereas details may be modified
as the outcome of further discussions.

Another important feature is settled: the control of the transition and branching
of action sequences between entities through ENTRY- and EXIT-parts. This
feature allows us to see in a common light a number of apparently different
situations usually referred to as: parameter transmission, assignment of
composite data types, interrupts.

This last-mentioned feature has been developed since the beginning of February
this year. It has led to a drastic simplification and, we feel, still an important
increase in the power of the language. The present Working Note contains our
current version of this feature. We are convinced, however, that its semantics
(and perhaps its syntax) may be improved upon.

As a result of these basic design properties, BETA should give its users the
capability of a very detailed specification of the structural properties of the
substance of the joint execution of a program collection by a collection of
varied hardware — still remaining within the scope of a high-level programming
language. This capability may be exploited in many ways, e.g. in terms of
simplified storage management when this is desirable.

Another result should be the capability of a very direct specification of the
action sequences. The mode of specification is oriented towards the actual
computing processes, at the expense of {in our opinion misleading) similarity to
mathematical notation. It is our belief that this mode of specification may turn
out to be an equally powerful (hopefully even better) platform for the
application of mathematics to the analysis of properties of programming
languages and the executions of programs.

3

Finally, the association of a compiler-generator with the BETA language is
intended to make it very easy to use BETA as a tool for the implementation of
other languages which are either

— already defined (as e.g. SIMULA), or

— designed for specific jobs, crafts or professions, to make it possible for
information system users to program their own working procedures, and
thus their use of the system, or

— reflecting alternative views upon programs and program development
(as e.g. interactive program proving, or extracting an electronic
information system subset from a general system description comprising
both people, machines and information storage, processing and
communication equipment).

According to current plans, this compiler-generator will be based upon a design
to be developed at DAIMI.

As stated above, this Working Note gives proposals for the main parts of the
BETA language. It also contains sections which indicate possible alternatives
to the proposals described.

In addition the Working Note presents briefly our current views upon the
concepts as yet undefined: the autonomous entity kind named context, the
descriptor being an executable program in some language (or language version)
or a possible part of such a program, and the /ayer of a program execution, a
program in a given layer regarding those at earlier layers as its system
generator.

The semantic definition given is mainly informal, using English. However, the
static semantics is, as an experiment, defined by a semi-formal notation based
on attribute grammars. The notation used is described in ref. [5].

The Working Note describes what may be termed “basic BETA". Any
implementation will be supplemented, e.g. by the standard types and their
associated operators. This version which may be named “standard BETA” is
briefly discussed in section 5.

4

References

(1]

JLP Working Notes:
WN 1 The BETA Project. Norwegian Computing Center, Oslo, 1976.

WN 2 BETA Language Development. Survey Report, November 1,
1976 {revised version, September 1977). Norwegian Computing
Center, Oslo, publ. no. 553, 1977. {Also available as DAIMI
PB-65).

WN 3 DRAFT PROPOSAL for Introduction to the BETA Programming
Language as of August 1, 1978. Norwegian Computing Center,
Oslo, publ. no. 620, 1978.

WN 4 A Definition of the BETA Language. DAIMI TR-8, February
1979.

E. Holbaek-Hanssen, P. Handlykken, K. Nygaard: System Description
and the Delta Language. Norwegian Computing Center, Osio, 1975.

0.-J. Dahl, B. Myhrhaug, K. Nygaard: Simula 67. Common Base
Language. Norwegian Computing Center, Oslo, 1970.

K. Nygaard, O.-J. Dahl: The Developments of the Simula Languages.
ACM SIGPLAN, History of Programming Languages Conference.
SIGPLAN Notices vol. 13, no. 8, August 1978,

O. L. Madsen: An introduction to Attribute Grammars, by Examples.
DAIMI, 1979.

Contents

1. INTRODUCTION

2. BETA SYSTEMS

3. LANGUAGE DEFINITION

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
3.10
3.1
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4, THE NOTIONS OF BETA SYSTEM GENERATOR, DESCRIPTOR

Entities and patterns
Prefixing
Attributes
Infix-declarations
References
Patterns
Value-part
Action-part
Imperatives
Repetition
Selection
Break-imperatives
Inner-imperatives

Entity-imperative, -assignment and -expression

Action-entity

Reference-imperative, -assignment and -expression
Communication-imperative
Infix- and reference-denotation

Application of Names
Predefined patterns

AND CONTEXT

5. COMMENTS ON THE PROPOSAL

5.1
5.2

Appendix

General comments
Specific comments

Examples

10

13

17
18
19
20
21
22
24
24
26
27
28
30
30
31

33
34
36
39
41
42

43

50

51
54

6

1. INTRODUCTION

BETA is a general block-structured language in the style of Algol, Simula and
Pascal. It is intended to be used for programming computer systems like
operating systems, data base systems, etc. It is also intended to be used for
defining and implementing application oriented languages. BETA contains a
few general concepts which may be used to define more aggregated concepts.
Most of the possibilities of Algol-like sequential languages are present. In
addition it contains facilities for nondeterminism and concurrent execution of
actions. BETA may be used to organize the operating system, file system,
program libraries etc. of a computer system into an integrated system all
programmed in BETA.

Abstraction

An important aspect is the abstraction mechanism of BETA (called a pattern).
A pattern is no specific kind of abstraction but may be used to model
abstractions like the procedure, function, type and class concept of the above
mentioned languages. Concepts like process, monitor, class, module, cluster,
etc. of languages like Concurrent Pascal, Modula, CLU, etc. may also be
modelled by patterns. In addition a pattern may be used to define e.g. control
structures and what is often called abstract data types.

By block-structured we mean that the language is based on units similar to an
Algol block: BEGIN declarations; statements END. In this connection the
important aspects of block-structuring are the possibility of using nested blocks
and thus localizing the use of names, the static name binding and the stack
organization. Furthermore the use of blocks to define the data part and the
possibility of organizing actions as several stacks (coroutines) as in Simula are
considered important. In BETA the unit corresponding to a block instance is an
example of an entity. From a BETA point of view some of the differences
between Algo! like languages may be understood as different ways of
describing, generating and manipulating entities.

A pattern defines a category of entities (with a common structure). Entities in
such a category may then be generated by referring to the pattern.

7

in Algol a procedure declaration is a pattern declaration which describes a
category of structurally identical procedure activations. In Pascal a type
declaration is a pattern which describes a category of structurally identical
variables. A class in Simula describes a category of objects with a common
structure.

Action Structure

Pascal and Algol are sequential languages using one {run time) stack to
describe the stage of execution of the program. Simula is a multistack
language where a number of objects {stacks) may operate as coroutines. In
addition to these modes of operation, BETA contains possibilities for truly
concurrent execution of objects. Objects may communicate by means of
various synchronization primitives, e.g. by exchange of information and by
interrupts. A few basic control structures are defined for sequential
programming. However, by using patterns, more advanced control structures
may be defined (normally associated with a specific class of data structures).

BETA Systems

A BETA program execution (called a BETA system) is a (possibly varying)
collection of entities that exists during a (possibly indefinite} period of time.
Some of the entities in a BETA system may execute actions that influence the
state of the BETA system and the state of a possible environment of the BETA
system.

An environment is a collection of contexts. Besides influencing the states of its
contexts, a BETA system may use concepts defined in its contexts.

A collection of BETA systems may exist within a set of computer components.
One of these BETA systems will be identified with the computer components.

Some BETA systems may contain BETA system descriptors and generate and
control BETA systems according to these descriptors. Such a BETA system is
called a BETA system generator. A BETA system generator may dynamically
be extended with new BETA system descriptions. Similarly it may dynamically
remove BETA system descriptions.

Consequently a BETA program execution is not viewed as a function evaluation
which on the basis of some input values delivers some output values.

8

A traditional program is then a BETA system description that is “given’ to a
BETA system generator and used to generate a BETA system which has an
effect upon some input/output context. The reason for considering systems
instead of usual function-like program executions is because of the need to
cover operating systems, file systems, data base systems, program libraries,
etc. We want to view all information (including programs being executed) on a
computer as an integrated system where dynamic exchange of information may
be described in the BETA language.

Hardware Control

A collection of BETA systems existing within a set of computer components is
hierarchically organized. The system at the lowest layer will be identified with
the computer components. The task of describing the computer components
using BETA and of bootstrapping the corresponding BETA system is the job of
implementing an initial BETA system on a set of computer components. The
initial BETA system contains descriptions of the different physical units in the
configuration. These descriptions determine the ways that the hardware can be
controlled and used by the collection of BETA systems.

A BETA system existing on some layer will only have partial information about
BETA systems at lower layers. Consequently BETA systems at a higher layer
have less and less information about the hardware.

If BETA is to be run as part of an existing operating system the initial BETA
system must contain a description of the part of the operating system with
which it can communicate. As a minimum /O must be described.

On Defining New Languages

BETA is also a tool for implementing new languages. The idea is that the
semantics of a language is defined using BETA. The syntax of the language
will be defined using a meta language like BNF. A syntax transformation from
the syntax of the language into BETA then connects the syntax with the
semantics. Associated with BETA there will be a compiler generator that, given
such a language specification, is able to generate a compiler for the language.

An example of this is the class "Simulation” of Simula. “Simulation” may be
viewed as a class that defines the semantics of a simulation language.
However, Simula syntax has to be used in order to express simulation programs

9

(the syntax of Simula has been slightly extended in order to ease this). Using
BETA it will be possible to invent and use a special syntax for such a simulation
language.

In many applications the user of a computer system will need a special language
for his kind of application. Such languages should contain constructs that are
based on concepts from the given application. We think that there is {or will
be) a great need for such application oriented languages. It is in this
connection important that such languages are easy to implement.

On Subsets of BETA

A language like Simula is often inconvenient for systems programming as it
contains too much dynamics in its storage allocation. Algol, Pascal and Fortran
are gradually less dynamic. Fortran has a completely static (compile time
known) storage structure. In BETA it is possible to use exactly the kind of
dynamics which are needed.

An important aspect is that it is possible to define a static subset of BETA
where no dynamic storage allocation is available. Instead of Algol-like
procedure calls one may use Fortran-like subroutines, or inline procedure calls.
Instead of having dynamically created Simula like objects one may specify a
fixed number of (inline) variables and (offline) objects at compile time. The
objects may still operate as coroutines or in concurrency.

it is likely that for many purposes this static subset is sufficient, e.g. when
programming dedicated processors, like [/O controllers etc.

10

2. BETA SYSTEMS

Entities and Patterns

A BETA system is a (possibly varying) collection of entities. The properties of
an entity are described by an fentity) descriptor. Entities are generated
according to constructional modes which in turn generate entities of different
kinds. A kind determines the possible ways an entity may be manipulated.
Each entity consists of an attribute part and an action part. In the descriptor
the attributes are described by a set of declarations and the action part by a
sequence of imperatives.

The attribute part consists of a set of data items and a set of patterns. A data
item may be either the association of a name and an entity (of kind infix) or a
reference which is an association of a name and a system element capable of
denoting an entity (of kind object).

The action part represents actions associated with the entity. The execution of
an action may imply state changes, generation of new entities and transfer of
control inside the action part or to the action part of another entity. The action
part is composed of some basic actions and entities, the latter being of kind
insertion.

The pattern attributes are a set of possibilities associated with the entity. A
pattern is the association of a name {(the title of the pattern) and an
entity-descriptor. A pattern describes a category of entities having a common
structure.

A constructional mode must be supplied with a specification of the entity to be
generated. A specification may be either
— the descriptor of a pattern, in which case the entity is said to be
category defined, or
— an entity descriptor, in which case the entity is said to be singular.

The lifetime of an entity is restricted to that of the entity containing its
descriptor (the origin of the entity). If an entity is category defined, its origin is
the entity containing the pattern according to which it is generated. If an entity
is singular, its origin is the entity containing the constructional mode that
generated it. A BETA system starts with one entity, thus a BETA system is
organized as a nested structure.

11

The state of an entity is the states of its attributes and the state of execution of
its action part. The state of a pattern is a descriptor, and the state of a
reference is the substance of the entity being denoted.

The substance of an entity is the entity itself. If two entities have the same
substance, then they are the same entity.

An entity may be a subentity of a pattern. If PP is a subentity of P, then PP will
have all the attributes and actions of entities generated according to P. These
attributes and actions are collected within PP in an entity of kind prefix.

Entities of kind prefix, infix and insertion are called constituent entities. A
constituent entity is a fixed part of another entity. The lifetime of a constituent
entity is the same as that of the entity of which it is a part. Entities which are
not constituent are called autonomous.

Value and Assignment

An entity may have an associated value which is represented by parts of its
state. The value of an entity may be observed and assigned to another entity.
Observation/assignment of the value of an entity implies that clauses within its
action part will be executed.

Objects, Instances and Stacks

A BETA system may be regarded as a nested system of entities of kind object.
To each object there may be associated a stack of entities of kinds infix,
insertion or instance. The object is the bottom member of the stack.

An object in BETA may be passive, operate concurrently with other objects,
(i.e. in so-called "physical parallel” or “true parallel’), or organized to operate in
so-called "quasi-parallel” with a group of other objects {as in e.g. Simula).

The object stack will have the object itself as its bottom member, its infixes and
insertions as possible members. The dynamic generation of an instance makes
this entity the top member of the stack of the object to which the instance’s
descriptor belongs. The instance’s infixes and insertions become new possible
members of this object’s stack. No entity may be represented more than at
most once at any time in its object stack. (No entity may have multiple
membership in an object stack at any time.)

12

The stacks organize actions in action sequences, each sequence thus
associated with an object. At a given moment, the "object’s action” will be the
action currently being executed by the top member of its stack, all other stack
members being passive. The action (execution of an imperative) of the top
member of a stack may imply that another entity is “pushed on the stack” and
the execution shifts to this entity.

If the top entity finishes the execution of its action part, it is "popped off the
stack” and execution shifts to the entity which then is the top member - whose
actions thus are being resumed.

An object which finishes its action part can never again execute actions and is
said to be terminated. Objects are generated either as the result of executing
an imperative or together with the generation of a reference data item.

Concurrent Execution and Communication between Objects

Objects in a BETA system may execute their actions independently, which
means that they may possibly execute actions in concurrency. Whether or not
this is the case depends on the actual linking of the BETA-system to a BETA
system generator. Initially a fixed number of objects are connected with
objects in the BETA system generator corresponding to {physical) processors.
The BETA system may then itself share the processors between its objects.
How to do this is not treated in this report (see also section 4).

Objects may communicate by means of signals. As part of an action, an object
may generate a signal requiring another object to execute a specific entity.
Similarly, as part of an action, an object may be willing to accept a signal. If an
object is generating a signal at the same time as another object is willing to
accept it, then the signal is communicated which implies that the receiver of the
signal executes the entity specified by the signal. An object may, while it is
executing an entity, generate one or more signals to different objects and be
willing to accept more than one signal from different objects. If a signal may be
communicated then the execution of the entity is interrupted and the signal is
communicated whereafter the execution of the interrupted entity is resumed.

13

3. LANGUAGE DEFINITION

The BETA language is a set of symbol sequences. A symbol sequence will be
called a BETA system description and describes a BETA system. The BETA
language definition defines:

(1) The set of symbols that may be used in a BETA system description.
(2) The set of symbol sequences that are valid BETA system descriptions,
and

(3) The meaning of a BETA system description.

{1) defines the lexical level of the BETA language. The symbols are only
defined implicitly as those appearing in the syntax rules. Lexical conventions
such as possible external representations of the symbols are not treated in this
report.

(2) defines the syntax of the BETA language. The context-free part of the
syntax is defined using an extended BNF (see below). The context-sensitive
part of the syntax (hereafter called static semantics) is defined in a semi-formal
way using a mixture of attribute grammars and English (see below).

{3) defines the semantics of the BETA language. The semantics of a BETA
system description defines the BETA system it describes and the way it
behaves. Among other things the semantic definition focuses upon what is
generated during the execution of a BETA system description.

A BETA system consists of a dynamic varying nested structure of entities each
having an associated descriptor. A BETA system description defines a static
nested structure of prototype descriptors. Each descriptor in a BETA system
corresponds to a unique prototype descriptor. The differences between a
descriptor and its corresponding prototype descriptor are minor. The prototype
description contains a description of all the properties according to which the
entities may operate or be operated. The additional properties contained in the
descriptor have to do with the actual format of the entities, such as virtual
bindings and the range of repetitions {(cf. sections 3.4-3.6). The BETA system
description is isomorphic to the nested structure of prototype descriptors and
we shall not distinguish between these. In the rules which define the static
semantics the word descriptor is used instead of the more correct prototype
descriptor.

14
The extended BNF-notation

Besides the usual BNF-notation we use
— [list{A}sep{B} which stands for A or ABA or ABABA, etc. If B is the
empty string then sep{B} will be deleted,
— list;{A}sep{B} which stands for the empty string or /ist{Alsep{B}, and
— opt{A} which stands for the empty string or A.

The semiformal notation for defining static semantics
To describe the static semantics we use the following concepts more or less
informally:

Declaration and application of names

A major part of the static semantics comes from the rules for declaring a name
and in applying a name declared elsewhere (as mentioned earlier the names of
patterns are called titles but will here be referred to as names).

Certain BETA systemn elements may have names. In the corresponding BETA
system description these names are associated with the elements in the
declaration of the elements, and they are applied in order to indicate the
elements. System elements which may have names are: infix entities,
references, infix repetitions, reference repetitions, patterns, virtual patterns and
imperatives. When declaring a system element of this kind and associating a
name with it, we will say that a meaning is associated with the name. The
possible meanings will be denoted: infix, ref, infixrep, refrep, pattern, virtual
and label, respectively. In addition the system element description {(of the
declaration) is associated with the name.

— Environments
An environment is a set of pairs {(name, meaning). If two or more
different pairs have the same name part then only one of the pairs will
be visible. In fact an environment is a partial function from the set of
visible names into meaning.

— Inherited environments
Each nonterminal of the grammar is defined relatively to an inherited
environment. This environment will contain all declared names that are
directly applicable in the system description part that may be generated
from the nonterminal. The actual set of names in this environment is
determined by the set of declarations in the part of the system
description surrounding the nonterminal.

15

— Synthesized environments
Some nonterminals may have an associated synthesized environment
whose set of names is determined by the system description part that is
generated from the nonterminal {in the given inherited environment).
Nonterminals having synthesized environments will typically be some
that generate declarations, the synthesized environment will then be the
set of declared names (and their meaning).

— Naming of environments
From now on inherited environment {synthesized environment) will be
abbreviated IE (SE). Let <block> be a nonterminal, then <block { G> is
the nonterminal <block> and the IE of block is referred to by the name
G. If <block> in addition has an SE, then <block ¥ G 1 D> will be used
as a name for <block> with its |IE called G and its SE called D.

— Productions and environments
Each production is defined relatively to the IE of the nonterminal of the
leftside and the possible SEs of nonterminals on the rightside. Rules will
then be given for defining the [Es of the rightside and the possible SE on
the leftside.

Consider the production

<block ¥ Gt D> ::=
BEGIN
<dcl ¥ DE t DS>;
<stmt { SE>
END

This corresponds to the BNF-production

<block> ::=
BEGIN
<dcl>;
<stmt>
END

G and DS are treated as the (variable) environments at which the static
semantics is relatively defined, and the values of DE, SE and D will then
be defined.

16

“A production with environments may informally be viewed as a
procedure declaration. The leftside is the procedure heading and the
rightside the procedure body. Nonterminals on the rightside will then
correspond to (recursive) procedure calls. IEs may then be viewed as
input parameters and SEs as output parameters.”

— Manipulation of environments

If the same name is used for more environments in a production, then
these two environments are identical.

Let E, D be two environments, then E U D is a new environment
consisting of all pairs from E and D. The same name may not be visible
in both E and D. U is called disjoint union.

E\D is a new environment consisting of all pairs from E and D. If a
name is visible in both E and D, then only the one from D will be visible
in E\D. \ is called overriding of E by D.

— Partitions of inherited environments

An inherited environment is partitioned into three distinct parts, the
global IE (GEJ, the prefix IE (PE), and the focal /E (LE). Thus in general

IE = GE\PE\LE

if Eis an IE, then E.GE is the global IE of E, etc.

— Declared names and applied names

An instance of a name in a production will be either a declaration or an
application referring to a corresponding declaration. We use different
nonterminals to generate a name depending on whether it is a
declaration or an application and depending on the meaning of the
declaration or application.

Nonterminals of the form <d-M-name> where M is a meaning are used
in declarations, and similarly we use <a-M-name> in applications. If
e.g. <d-infix-name> appears, it means that the name will be declared
with meaning infix and the name will be added to the SE of the leftside
of the production containing <d-infix-name>. Similarly <a-infix-name>
means that the name refers to a declaration. The name must be in the
IE of <a-infix-name> and with the meaning infix {see also 3.19).

17

3.1 Entities and patterns

Syntax
B <BET A-system-descriptor> :: =
<entity-descriptor ¥ G>

E <entity-descriptor ¥ G> 1=
opt{ <prefix $ G * P>}
BEGIN
opt {<attribute-part ¥ E 1 L>}
opt {<value-part ¥ E t V>}
opt {<action-part ¥ E>}
END

P <pattern-declaration G * > ::=
PATTERN <d-title § G> : <entity-descriptor ¥ E>

S <entity-specification ¥ G> ;=
S1 <entity-descriptor ¥ G>
S2 | <pattern-denotation ¢ G>

| <pattern-denotation ¥ G> ::=

" <a-title ¥ G>
12 | <a-virtual ¥ G>
Examples

BEGIN ... END

PATTERN A : BEGIN ... END

Static Semantics
Rule B: G consists of all predeclared names. The actual set of names in G
depends on the context concept (see section 4).

Rule E: E = G\P\(L U V), i.e. E.GE = G, E.PE = P, and E.LE = LU V. P\L
is called the attribute environment of the descriptor. Rule P is included here
and is defined in section 3.6.

Semantics
Rule B: A BETA system is initiated by generating an entity (a system entity} as
described by <entity-descriptor> and starting the execution of the actions of
this entity.

18

Rule E defines an (entity-)descriptor. An entity generated according to a
descriptor will have properties as described by the descriptor. These properties
are an attribute corresponding to each declaration described by
<attribute-part>, a value-part described by <value-part>, and an action-part
described by <action-part>. These properties constitute the main-part of the
entity. The possible <prefix> of the descriptor describes additional properties
of the entity to those of the main-part. A prefixed entity will have a prefix-part
containing properties which it has in common with a set of other entities. The
origin of a descriptor and an entity generated according to the descriptor is the
entity containing the descriptor.

Rule P declares a pattern-attribute. A pattern is the association of a title (a
name described by <title>>) and a descriptor {described by <entity-descriptor>).
A pattern may be used to generate entities which will have the properties
described by the descriptor associated with the title of the pattern.

Rule S defines an entity-specification which is used in constructional modes to
specify the properties of an entity to be generated. Rule S1 implies the
generation of a singular entity as described by <entity-descriptor>. Rule S2
implies the generation of a category defined entity as specified by
<pattern-denotation>.

Rule I: A pattern is denoted by its title.

3.2 Prefixing

Syntax

P <prefix V Gt P> i =

P1 <pattern-denotation ¥ G>

P2 | (<d-prefix-name ¥ G> : <pattern-denotation ¥ G>)
Examples

PATTERN B : A BEGIN ... END
(X: A) BEGIN ... END

Static Semantics

P = A U V where A is the attribute environment and V the value-list (see 3.7)
of the descriptor of the pattern referred to by <pattern-denotation>. Using P2,
P will be overridden by the declared name with meaning prefix.

19

Semantics

The properties of an entity consist of

a} properties belonging to the main part,

b) properties described by the <prefix> of the descriptor associated with
the entity.

A prefixed entity will have a prefix-part which is a constituent entity (of kind

prefix) with properties described by <pattern-denotation>. The attributes, the

value, and the actions of the main-part will be prefixed with the corresponding

parts of the prefix:

— Prefixing the attributes. The attributes will be the union of the prefix and
main part attributes.

— Prefixing the value-part. This is described in section 3.7.

— Prefixing the actions. This is described in section 3.8.

An entity prefixed by a pattern P is a sub-entity of P. If the <entity-descriptor>
is part of a pattern-declaration, then this pattern is a sub-pattern of P.

3.3 Attributes

Syntax
<attribute-part V E* L> :: =
flist {<data-item-declaration { E ¥ D>
| <pattern-declaration ¥ E * P>

} sep {;}

<data-item-declaration + E1 D> ::=
<infix-declaration ¥ E t D>
| <reference-declaration ¥ E t D>

Static Semantics

Each declaration declares a set of names. The same name may only be
declared once in an attribute-part. Thus L is the disjoint union of all D's and P’s
in the list.

Semantics
The attributes of the main part are specified by a sequence of declarations.

20
3.4 Infix-declarations

Syntax
| <infix-declaration } Et L> ::=
<simple-infix ¥ E 1 L>
| <infix-repetition | E t L>

S <simple-infix EML> 1=
fist{<d-infix-name ¥ E>}sep{,} : <entity-specification { E>

R <infix-repetition $ E1 L> 1=
list{<d-infixrep-name ¥ E>}sep{,} : [<integer-expression ¥ E.GE>]
<entity-specification ¥ ES>

Example
X,Y : REAL; N : [10] INTEGER; Z : B BEGIN ... END;

Static Semantics
L is the disjoint union of all name pairs being declared in the lists {rules S and
R). Rule R: ES is E overridden by two integer attributes RANGE and INDEX.

Semantics
An infix-declaration specifies a number of infix-attributes.

Rule' S: An infix is the association of a name and an entity of kind infix. Each
name in the list implies an infix with that name. The associated entities have
properties as described by <entity-specification>.

Rule R: An infix-repetition is the association of a name, a range, and a
sequence of entities of kind /nfix, each having an associated index. Range is an
integer value which is the number of entities in the sequence.
<integer-expression> is evaluated when the origin of the descriptor containing
the declaration is generated and range will have this value. The index of an
entity in the sequence is an integer value in the interval [1,range]. No two
different entities in the sequence have the same index.

In each entity in the sequence, the values of RANGE and INDEX are the value
of range and the entity index respectively. If x is an infix-repetition then the
entity with index | may be denoted by x[e] if e is an integer expression which
evaluates to I.

21
3.5 References

Syntax
<reference-declaration V E4 > 1=
<simple-reference { £ 1 L>
| <reference-repetition ¥ E4 L>

<simple-reference E* L> 1=
REF /ist {<d-reference-name ¥ E>}sep{,} :
<entity-specification ¥ E>

<reference-repetition + E* 1> ::=
REF /ist {<d-refrep-name V E>}sep!,} :
[<integer-expression ¥ E.GE>] <entity-specification ¥ E>

Examples
REFR,S : A; REF T : B BEGIN ... END;
REF U : [M] B;

Semantics

A reference declaration declares a number of references. A reference is the
association of a name and a system element capable of denoting an entity of
kind object. A reference is declared for each name in the list. The state of a
reference is said to be the substance of the entity being denoted.

The set of objects that may be denoted are determined by
<entity-specification> that may be

— a pattern, say PT. Each reference may denote any PT-entity, any sub-entity
of PT and no entity (NONE}. The reference is variable and its state may be
changed by reference assignment. Initially it has the state NONE.

— an entity descriptor. Each reference will constantly denote an entity
generated according to the descriptor. Each such (singular} entity is
generated when the entity containing the declaration is generated.

22

3.6 Patterns

Syntax

P <pattern-declaration ¢ G 1 L> 1=

P1 PATTERN <d-title ¥ G> : <entity-descriptor ¥ E>
P2 PATTERN <d-virtual } G> : VIRTUAL <a-title G>
P3 BIND <a-virtual ¥ G.PE> : <entity-specification { E>
P4 BIND <a-virtual ¥ G.PE> : VIRTUAL <a-title § G>
Examples

PATTERN Q: BEGIN PATTERN C: VIRTUAL A; ... END;
PATTERN Q1: Q BEGIN BIND C: A BEGIN ... END; ... END;
X: Q BEGIN BIND C: B; ... END;

PATTERN Q2: Q BEGIN BIND C: VIRTUAL B; ... END;

REF R: Q2 BEGIN BIND C: B BEGIN ... END; ... END;

Static Semantics

Note: In rules P1 and P2, the names are declared. In P3 and P4 the names refer
to names declared in the prefix environment of G. Rules P3 and P4 are not
allowed if the descriptor containing the declaration is prefixed by a virtual
pattern.

in rule P1/P2 L consists of the title/virtual being declared. In P3 and P4 the
applied virtual names are redeclared. In P3 the meaning of the name is
changed to title. In P4 the meaning of the name is still virtual. In both cases L
contains the name pair.

in P1/P3 E is identical to G except that some names with meaning title or virtual
have a marking indicating a restricted usage of the corresponding patterns.
These patterns must not be used to specify constituent entities in the descriptor
associated with the pattern defined in P1/P3. A pattern, P, may be recursively
defined by using P (either directly or indirectly) to define its associated
descriptor. However P must not be used to specify constituent entities in this
descriptor as this will lead to infinite entities. Consequently P and patterns
using P to define constituent entities in their associated descriptors have this
marking in E.

23

Semantics
A pattern is the association of a titfe {a name) and a descriptor. A pattern
specifies the common properties of a category of entities. The title of a pattern
may be used in constructional modes and will then imply the generation of an
entity according to the descriptor associated with the title.
A descriptor and entities generated y:':lc(é‘ording to the descriptor are gualified by
a pattern P, if

— the descriptor is the one associated with P, or

— the prefix of the descriptor is qualified by P.

A pattern S is qualified by P if the descriptor associated with S is qualified by P.
There are four kinds of pattern-declarations:

P1 declares a pattern with a title described by <title> and a descriptor described
by <entity-descriptor>.

P2 declares a virtual pattern. The title of the pattern is described by <virtual>.
The descriptor of the pattern is only partially described. It will be one that is
qualified by <title>. <titie> is called the qualifying-title of the virtual pattern.
Consequently the declared virtual pattern describes entities which have all the
properties of the pattern referred to by <title>.

BIND (P3,P4) extends the descriptor of a virtual pattern declared in the
prefix-entity of the entity containing the declaration. <virtual> specifies the
title of the pattern. <entity-specification> (P3) and <title> (P4} must be
qualified by the qualifying title of the virtual pattern referred to by <virtual>.

- P3: The descriptor of the virtual pattern will be the one described by
<entity-specification>. The pattern i§ no longer virtual.

P4: The descriptor of the virtual pattern will be one that is qualified by <title>
The pattern is still virtual, and <title> is now its qualifying-title.

When an entity is generated then all of its virtual pattern attributes will be
associated with the descriptor of their qualifying title.

24
3.7 Value-part

Syntax
<value-part ¥ E * L> ::= VALUE /ist,{<infix-declaration { E * D>;}

Example
VALUE LIINTEGER; X,Y:REAL;

Static Semantics

L is the disjoint union (U} of all Ds in the list. The value-/ist of the descriptor is
the list of declarations following VALUE prefixed by a possible value-list of the
prefix. Prefixing means concatenating the value-list of the prefix with the
declared list. If X is an infix in the value-list then X must be
assignment-compatible with X (see 3.14) and X must be value-compatible with
X {see 3.11).

Semantics
The values of the data-items in the value-list represent the parts of the value of
the entity that is transferred between two entities as a part of an assignment.

The value-list of an entity is the expression-list {see 3.14) <D1, D2, ... Dn>
where each D/ (i € [1,n]) is the denotation of the corresponding infix declared in
the value-list of the descriptor.

3.8 Action-part

Syntax
<action-part E> :: =
opt{<entry-part ¥ E>}
opt{DO <imperative-list E>}
opt{<exit-part | E>}

n <entry-part ¢ E> 1=
ENTRY opt{< <expression-list ¥ E> >} <imperative-list E,>

X <exit-part ¥ E> 11 =
EXIT <imperative-list ¥ E,> opt{< <expression-list ¥ E> >}

25

Examples
BEGIN ... DO ... END;
BEGIN |,J : INTEGER; X : REAL;

ENTRY <1,J> ...
EXIT ... <X>
END

Static Semantics
E, in rule n is E extended with the name PRED. PRED denotes the predecessor
(see 3.14) of the entity containing the ENTRY-part.

E, in rule x is E extended with the name SUC which similarly denotes the
successor (see 3.14). PRED and SUC may be used as remote-names (see 3.18),
{(i.e. as PRED’ and SUC’) and in qualification-expressions (see 3.11}.

Semantics

The EXIT(ENTRY)-list of the entity is the <expression-list> following
EXIT(ENTRY) prefixed by a possible EXIT(ENTRY)-list of the prefix. The
EXIT(ENTRY or DO)-action of the entity is the <imperative-list> following
EXIT(ENTRY or DO) prefixed by a possible EXIT(ENTRY or DO)-action of the
prefix respectively. Prefixing EXIT(ENTRY)-lists means concatenation as with
value-lists {3.7). Prefixing <imperative-list>s means that the execution of an
INNER imperative that is textually contained in the <imperative-list> of the
prefix implies an execution of the corresponding <imperative-list> in the
main-part.

The action-part of an entity describes the actions associated with the entity.
An execution of the entity implies an execution of its DO-action. If the entity is
assigned a new value then its ENTRY-action is executed prior to its DO-action.
Similarly if the entity is assigned to another entity then its EXIT-action is
executed after the DO-action (see entity assignment section 3.14).

26
3.9 imperatives

Syntax
<imperative-list V E> ;1=
fist {<imperative ¥ E>} sep {;}

<imperative ¥ E> ::=
<empty>
| <repetition-imperative { E>
| <selection-imperative ¥ E>
| <break-imperative { E>
| <inner-imperative ¢ E>
| <entity-imperative ¥ E>
| <reference-imperative | E>
| <communication-imperative ¢ E>
| <d-label-name { E> : <imperative ¥ E,>

Static Semantics
E, is E overridden by the declared label. This means that a label is only visible
inside the <imperative> being labelled.

Semantics
An <imperative> specifies an action. An <imperative-list> specifies a sequence
of actions to be executed in the order of appearance.

27

3.10 Repetition

Syntax
R <repetition-imperative ¥ B> 1=
|<integer-expression ¥ E>| <imperative { E,>
Example
[100] ...;

Static Semantics
E. is E overridden by two integer attributes RANGE and INDEX.

Semantics

The <imperative> will be executed a number of times {possibly zero). The
execution starts by evaluating the expression and the value of the expression
determines the number of times to execute the <imperative>. The repetition
may be stopped if the <imperative> contains a break-imperative (see 3.12).

The value of the attribute RANGE is the number of times the <imperative> will
be executed. The value of INDEX is the number of the current repetition.

28

3.11 Selection

Syntax

S

<selection-imperative ¥ E> ;1=

S1 IF <entity-expression ¥ E>
list {<entity-selection | B>}
ENDIF
S2 | IF <reference-expression E>
list {<reference-selection ¥ E>}
ENDIF
S3 | IF <qualification-expression ¥ E>
fist {<qualification-selection ¥ E>}
ENDIF
| <entity-selection ¥ B> ::=
= Jist {<entity-expression ¥ E>} sep {OR}
THEN <imperative-list { E>
R <reference-selection, ¢ E> ::=
= = [ist {<reference-expression ¥ E>} sep {OR}
THEN <imperative-list ¥ E>
Q <qualification-selection ¥ E> :: =
{IS <pattern-denotation + E> | IN <pattern-denotation ¥ E>}
THEN <imperative-list V E>
X <qualification-expression> 1=
X1 <pattern-denotation>
X2 | <reference-denotation>
X3 | <infix-denotation>
X4 | <prefix-denotation>
Examples
IF X
= E1 THEN ...
= E2 OR E3 THEN ...
ENDIF;
IF R
IS P1 THEN ...
IN P2 THEN ...

ENDIF

29

Static Semantics
Below we use concepts defined in 3.14.

Let EE1 and EE2 be two <entity-expression>s. EE1 and EE2 are
value-compatible if (1) EE1 and EE2 have both an EX|T-part, (2) the EXIT-lists of
EE1 and EE2 have the same length and corresponding elements in these lists are
value-compatible, and (3) if EE1 and EE2 have value-lists then they have the
same length and the descriptors of their associated action-entities have a
common prefix containing the value-lists. All the <entity-expression>s in rules
S1 and | must be value-compatible.

Semantics

A <selection-imperative> selects between a set of <imperative-list>s for
execution. The selection is based upon the state of an expression. The state
of the expression following IF is evaluated. Next the states of the expressions
in the selection-clauses are evaluated in some nondeterministic order. (Not all
of the expressions are necessarily evaluated.) If the state of one of the
expressions in a selection-clause is equal to the state of the expression
following IF, then the <imperative-list> following THEN may be selected for
execution. Exactly one of the <imperative-list>s that may be selected will be
selected. At least one must exist.

The selection may be based upon three kinds of state concepts:

— entity values (rule 81, I).
An <entity-expression> EE, is evaluated by executing EE, and then
executing its EXIT-action, and then evaluating the expressions in its
EXIT-list. The value of EE is the values of the elements in its value-list
and EXIT-list. If EE1 and EE2 are value-compatible, then the values of
EET and EE2 are equal if values of corresponding elements in their
value-lists and EXIT-lists are equal.

— reference states (rule S2, R).
The state of a reference is the substance of an (autonomous) entity.
Two reference states are equal if they are the substance of the same
entity.

— qualifications (rule S3, Q, X).
The state of a qualification-expression is a descriptor which is: The
descriptor associated with the pattern (X1), or the descriptor associated
with the entity being denoted (X2, X3, X4). A (qualification) state is
equal to IS P if the state is the descriptor of the pattern P. A state is
equal to IN P if the descriptor is qualified by P. Two descriptors are
equal if they have the same origin and are defined by the same
<entity-descriptor> (3.1).

30
3.12 Break-imperatives

Syntax
<break-imperative ¥ E> :: =
RESTART <a-label-name { E>
| LEAVE <a-label-name ¢ E>

Examples
L1: BEGIN ... L2:BEGIN ... LEAVE L2;
... RESTART L1; ...
END; ...
END

Semantics

Both imperatives have the effect that the execution of the imperative labelled by
the label will be stopped. RESTART means that this labelled imperative will be
executed again. LEAVE means that the imperative following the labelled
imperative will be executed.

3.13 Inner-imperative
Syntax
<inner-imperative> 1=

INNER

Semantics
See the description of action-part.

31
3.14 Entity-imperative, -assignment, and -expression

Syntax
i <entity-imperative | E> ::=
<action-entity ¢ E>
| <entity-assignment ¥ E>

a <entity-assignment ¥ E> ;1=
<entity-expression ¥ E> — <compound-entity { E>

e <entity-expression $ B> 1=
<compound-entity + E>
| <entity-assignment ¥ B>

c <compound-entity ¥ E> 1=
cl <action-entity ¥ E> opt{< <expression-list ¢ E> >}
c2 | < <expression-list { E> >

] <expression-list E> 1=
list{<entity-expression ¥ E> | <reference-expression ¥ E>} sep{,}

Examples
X=>Y —~Z <AB>—C;
D —~ <X)Y,Z>; E<A,B> = F<X,Y,Z>;

Static Semantics

The action-entity (-descriptor), EXIT/ENTRY-actions, EXIT/ENTRY-Iists, value-
list and expression-list of an <entity-assignment> are the ones of the
<compound-entity> on the rightside of rule a. The same notions are defined
for <entity-expression> and are the ones defined by <compound-entity> or
<entity-assignment> on the rightsides of rule e. The action-entity (-descriptor)
of a <compound-entity> is the one described by <action-entity> (rule c1) or
empty (rule c2). The EXIT/ENTRY-actions, EXIT/ENTRY-lists and the
value-list of a <compound-entity> are the ones of its action-entity. The
expression-list is defined by <expressin-list>.

Rule a: We abbreviate <entity-expression> to EE and <compound-entity> to
CE. The action-entities of EE/CE are denoted EE.A/CE.A respectively.

EE.A is called the predecessor of CE.A and CE.A is called the successor of
EE.A. EE.A is assignment compatible with CE.A if EE.A has an EXIT-part and
CE.A has an ENTRY-part and if CE.A has a value-part then the descriptors of

32

EE.A and CE.A must have a common prefix, P, such that the value-part of
CE.A is contained in P.

Let L1 and L2 be two lists, either expression-lists, EXIT/ENTRY-list, or
value-lists. L1 is assignment-compatible with L2 if the length of L1 is grearer
than or equal to the length of L2 and corresponding elements in the lists are
assignment-compatible.

EE is assignment-compatible with CE if
— EE.A and CE.A are assignment-compatible,
— the EXIT-list of EE is assignment-compatible with the expression-list of

CE, and
— the expression-list of EE is assignment-compatible with the ENTRY-list
of CE.
Semantics
The execution of an <entity-imperative> (i) consists of executing the

<action-entity> or <entity-assighment> on the rightside.

The execution of an <entity-expression> (e) consists of executing the
<compound-entity> or <entity-assignment> on the rightside.

The execution of a <compound-entity> (c) consists of executing the
<action-entity> (c1) or is an empty action (c2).

Rule a:
Let <el,e2,...,.em> and <f1,f2,...,fn> be assignment-compatible lists (m > n).

Assigning <el,e2,....em> to <f1,12.,,fn> takes place by executing the
following sequence of assignment-imperatives: el to f1; e2 to f2; ...; en to fn;
where ei to fi {i € [1,n]) means ei = fi or ei = => fi if ei,fi are entity-expressions
or reference-expressions respectively.

A value-transfer from EE to CE takes place by:
— executing the EXIT-action of EE and then assigning the EXIT-list of EE to
the expression-list of CE,
— assigning the value-list of EE to the one of CE, and
— assigning the expression-list of EE to the ENTRY-list of CE and then
executing the ENTRY-action of CE.

An execution of an assignment-imperative consists of executing EE, executing a
value-transfer from EE to CE, and then executing the action-entity of CE.

33

3.15 Action-entity

Syntax
<action-entity ¥ E> ::=
<infix-denotation ¢ E>
| <insertion ¥ B>
| <instance ¥ E>

F <insertion ¥ E> ::=
opt{<remote-name | E 1 E,>} <entity-specification E,>

C <instance ¥ B> i =
INSTANCE opt{<remote-name ¥ E t E;>}
<entity-specification ¥ E,>

Example
X; P; PBEGIN ... END; INSTANCE R'Q;

Static Semantics
For the definition of E, see 3.16, rule o.

Semantics

The execution of an <action-entity> consists of executing the DO-action of

some entity. There are three kinds of action-entities:

— infix (rule E).
The action entity is the one denoted by <infix-denotation>.

— insertion (rule F).
An entity specified by <entity-specification> will be a constituent entity
(of kind insertion) of the entity containing the imperative. This
constituent entity is the action-entity.

— instance (rule C).
Each execution of an <instance> will result in the generation of a new
entity (of kind instance) as specified by <entity-specification>. This
new entity is the action-entity.

The execution of an action-entity may imply the execution of an action-entity
belonging to an “enclosing” object. Let M be such an action-entity belonging to
enclosing object R. The execution of M will then take place by executing R.M
(see 3.17).

34
3.16 Reference-imperative, -assignment and -expression
Syntax

i <reference-imperative § > 1=
<reference-assignment + E>

a <reference-assignment | E> :: =
<reference-expression ¥ E> = => <reference-denotation ¥ E>

e <reference-expression + E> ::=

el <reference | E>

e2 | <reference ¥ E> AS <pattern-indication V E>

r <reference ¥ B> :: =

r1 <reference-denotation ¢ E>

r2 | <reference-value ¢ E>

r3 | <reference-assignment | E>

v <reference-value § B> ;1=

v1 NONE

v2 | THIS OBJECT

v3 | <object-generation ¢ E>

) <object-generation ¢ B> 1=

OBJECT opt{<remote-name ¢ E 1 E,>}
<entity-specification ¥ E,>

Example
NONE ==>R ==>S; OBJECTP ==>R;

Static Semantics

The elements on the leftside of rules i, a, e, r and o have an associated
descriptor defined as follows: Rule o: described by <entity-specification>; rule
vl: 'NONE’; rule v2: 'THIS OBJECT; rule e2: described by
<pattern-indication>; rule a: the one associated with <reference-denotation>>;
for all other rules the one associated with the element on the rightside.

Rule a: The descriptor associated with <reference-denotation> must be part of
a (possible virtual) pattern, say P. The descriptor associated with
<reference-expression> must be qualified by P or the descriptor 'NONE’; the
<reference-expression> is then assignment-compatible with the
<reference-denotation>.

35

Rule o: If no <remote-name> is present then E, = E. If a <remote-name> is
present then the use of E, is informal:

— if <entity-specification> is <pattern-denotation> then E, = E,.
— if <entity-specification> is <entity-descriptor> then E, = E, but a
possible prefix-pattern of the entity-descriptor must be defined in E;.

Semantics

Rule i: The execution of a <reference-imperative> consists of executing the
<reference-assignment>. Rule a: The <reference-expression> is evaluated
yielding a reference-state which is transferred to the reference denoted by
<reference-denotation>, and this reference state is the state of the
<reference-assignment>.

Rule e: The state of a <reference-expression> is the substance of an entity and
is the one of <reference>. Rule e2: The state of <reference> must be the
substance of an entity which is qualified by <pattern-indication>. Rule r: The
state of a <reference> is the one of the element on the rightside. The state of a
<reference-denotation> is the substance of the entity denoted by the reference.

Rule v: Case v1: The state is NONE which is the substance of no-entity. Case
v2: the imperative referring to THIS OBJECT is part of the action part of some
autonomous entity {possibly indirectly through some constituent entities). This
autonomous entity will be the member of a stack at the time that THIS
OBJECT is referred. The substance of the object-entity (bottom) of this stack
will be the state of THIS OBJECT. Case v3: the execution of an
<object-generation> will yield a state.

Rule o: The execution of an <object-generation> implies the generation of a
new entity of kind object. The substance of this new entity is the state yielded
by the <object-generation>.

The predefined name SENDER is a reference-denotation denoting a reference
to the object from which the latest signal has been accepted.

36

3.177 Communication-imperative

Syntax

C
cl

c2

ol
02

st
s2

el
e2

m1
m2
m3

<communication-imperative ¥ E> ::=
WHILE <entity-denotation ¥ E>
fist{ON <communication ¥ E> THEN <imperative-list ¥ E> }
ENDWHILE

] <communication V E>

<communication ¥ E> 1=
<input-communication { E>
| <output-communication ¥ E>

<input-communication ¥ E> 1=
<sender + E> ? <input-message ¥ E>
opt{— <entity-expression ¥ E>}

<output-communication ¥ E> 1=
opt{<entity-expression ¢ E> —} <receiver ¥ E t A> | <message ¥ A>
| opt{<entity-expression ¥ E> —}<receiver $ E* A>. <message v A>
opt{— <entity-expression { E>}

<sender { E> 1=
<object-denotation | E>
| SENDER opt{AS <pattern-indication { E>}

<input-message { E> 1=
<message | E>
| MESSAGE opt{AS <pattern-indication ¥ E>}

<message V B> 1=
<empty>
<infix-denotation ¥ E>
| INSTANCE <pattern-indication ¥ E>

<receiver + Et A> 1=
<object-denotation ¥ E> 1=

<object-denotation | B> 1=
<reference-denotation ¥ E>
lists{ . <simple-reference-denotation ¥ E> }

37

Examples
Z —> RIM; S?N = X;

WHILE A
ON Z - RIM THEN ...
ON S?N — X THEN ...
ON T.INSTANCE P THEN ...
ON SENDER AS Q?N THEN ...
ENDWHILE

Static Semantics

Rule b: Consider an <object-denotation> RD.R1.R2, then R1 must be a
reference attribute of the object denoted by RD and R2 must be a reference
attribute of the object denoted by R1. This is quite similar to <remote-name>
{see 3.18). Rule r: A is the attribute environment of the object denoted.

Semantics

Rule c1: The entity described by <entity-denotation> (ED} is executed. During
this execution an attempt is made to establish a communication with one or
more objects. If such a communication is estabiished then the execution of ED
will be interrupted and a communication will take place (see below). The
execution of the whole <communication-imperative> is finished when the
execution of ED is finished.

Each ON-clause describes an attempt to establish a communication.
Communication between objects take place by means of signals. A signal is a
triple {sender, receiver, message) where sender and receiver are references and
message is an entity “belonging to” the receiver object.

There are two kinds of ON-clauses:
— input-communication (i): the object is wiling to accept a signal
described by (<sender>, THIS OBJECT, <message>).
— output-communication (0): the object generates a signal described by
(THIS OBJECT, <receiver>, <message>).

<sender> (s) will match either a particular object {s1) or any reference to an
object qualified by <pattern-indication> (s2).

<input-message> (e) will match either a particular message (e1) or any message
{entity) which is qualified by <pattern-indication> (e2). <message> (m} will
match either the empty message (m1) or a particular infix (m2) or an instance
(m3).

38

<receiver> (r) is always a particular object. An <object-denotation> (b}
RD.R1.R2...RN is a reference to the object denoted by RN.

A signal (S,R,M) is communicated if
— object S is executing a communication imperative (CS) that generates
(S,R,M),
— object R is executing a communication imperative (CR} that will accept
(S,R,M).

Let OS and OR be the ON-clauses in CS and CR that generated/accepted the
signal, and let OS be defined by rule o1.

The communication takes place as follows:
(1) The EDs of CS and CR are interrupted, (see below).
(2) The possible <entity-expression> (EE) of OS is executed and a value
transfer between EE and M is carried out.
{3) S and R will then independently (and possibly concurrently) continue
with:
S: The <imperative-list> of OS is executed and then the execution of
EDs is resumed (see below).
R: (a} M — <entity-expression> (of OR) is executed, then
{b) <imperative-list> of OR is executed, and then the execution of
EDR is resumed (see below).

When an ED is interrupted it will terminate at the next semicolon in the
imperative-list of its DO-action and then execute its EXIT-action. When it later
is resumed it will start by executing its ENTRY-action.

Let OS be defined by rule 02 and have the form ON EE - R.M — EE, THEN
The semantics is as above except that (3) is changed to:

(3} R will execute M; then a (possible) value-transfer between M and
<entity-expression> (of OR) is executed; then a (possible) value-transfer
between M and EE, is executed. S and R will then independently
continue with:

S: EE, is executed; then S continues as in (3).
R: <entity-expression> of OR is executed; then R continues as in (3b).

Rule c2: An execution of a single <communication> is considered as a special
instance of rule ¢1. If com is a <communication> then the execution of com
means

L: WHILE WAIT ON com THEN LEAVE L ENDWHILE
where WAIT is an entity that loops infinitely.

39
3.18 Infix- and reference-denotation

Syntax
g <infix-denotation ¥ E> :: =
opt{<remote-name ¥ E 1 E,>}
<simple-infix-denotation ¥ E,>

i <simple-infix-denotation ¢ E> ::=
<a-infix-name ¥ B>
| <a-infixrep-name ¢ E> [<integer-expression ¢ E>]

r <reference-denotation ¥ E> :: =
opt{<remote-name ¥ E 1 E,.>}
<simple-reference-denotation ¥ E,>

f <simple-reference-denotation ¥ E> :: =
<a-ref-name ¢ E>
| <a-refrep-name { E> [<integer-expression ¥ E> |

p <prefix-denotation ¢ E> ::=
<a-prefix-name ¥ E>

d <remote-name ¥ E 1 B> 1=
opt{<remote-name ¥ E * E,>}
{<simple-infix-denotation ¢ E,> ’
| <prefix-denotation ¥ E;> '}

Examples
X; Z[I]; H'A; U[3]; L'M'Y

Static Semantics

Rule g, r, p: Each denotation refers to a name visible in E or E;. Besides its
meaning, this name has an associated descriptor appearing in the declaration of
the name. This descriptor (which may be empty (see below)) is associated with
<infix-denotation>, <reference-denotation>, or <prefix-denotation>
respectively.

Rule g, r, d: If no <remote-name> is present then E; = E. If a <remote-name>
is present, then E, is a modified version (see below) of the attribute
environment of the descriptor associated with the name denoted by
<remote-name> on the rightside.

40

Rule d: E, is a modified version of the attribute-environment of the descriptor
accessed through the denotation.

Rule i, f, p: The descriptor accessible through the denotation is the one
associated with the respective applied name.

Modified attribute environment
A descriptor is remote-visible if it has a prefix, P, and
— P is not defined in the attribute-environment of the origin of the
descriptor, or
— P is remote-visible.

A descriptor is remote-hidden if it is not remote-visibie.
An attribute is remote-accessible if its associated descriptor is remote-visible.
An attribute is partially-remote-accessible if its descriptor is remote-hidden.

let D be a descriptor with attribute-environment A. The modified
attribute-environment of D is identical to A except that for all
partially-remote-accessible attributes in A, the descriptor will be empty.

Semantics

Rule g, r: A denotation refers to a data-item in some entity. This data-item has
an associated descriptor, defined by an <entity-specification>>. This descriptor
specifies the properties that are known about the data-item, i.e. an additional
piece of information about the meaning of the data-item. If the data-item is
accessed through a <remote-name> then its descriptor may be unknown (see
below).

Rule d: A <remote-name> will be the name of a constituent-entity, either infix
or prefix. The purpose of the <remote-name> is to access an attribute in that

entity.

Rule i, f: The applied name refers to a data-item.

41

3.19 Application of Names

Syntax
For each M in {infix, ref, prefix, infixrep, refrep, pattern, virtual, label} there is a
syntax rule: <a-M-name ¢ E> 1= <pame>.

The actual representation of names is not considered here. Let A be the name
generated by <name>.

Static Semantics
A must be visible in E. The meaning of A must be M. Let D be the descriptor
for the entity containing the construct <a-M-name>> that generates A.

As mentioned, E is partitioned into three parts, the local environment (LE), the
prefix environment (PE)} and the global environment (GE). A is said to be a

— local attribute, if A is visible in E.LE,
— prefix attribute, if A is visible in E.PE and not visible in E.LE,
— global attribute, if A is visible in E.GE and A is not visible in E.PE\E.LE.

Semantics
All entities generated according to the descriptor D can refer to an attribute
with the name A and meaning M.

Let T be an entity generated according to D. Let TP be the prefix part of T.
Let the entity containing the descriptor for T (i.e. D) be Tn, and for i. =
1,2,...,n-1 let Ti-1 be the entity containing the descriptor for T/. TP may be
empty and T may be the BETA system entity in which case Tn does not exist.

A will be either
— an attribute of T, or
— an attribute of some T/, i in [1,n].

ifAisa
— local attribute, then A refers to the main-part attribute in T with the
name A and meaning M,
— prefix attribute, then A refers to the attribute in the TP-part of T with the
name A and meaning M,
— global attribute, then there exists a T/, T < i € n, such that A is an
attribute of T/ and no attribute in T/+ 7,...,Tn has the name A. A refers
to the attribute in T/ with the name A and meaning M.

42
3.20 Predefined Patterns

Some entities within a BETA system will not have a description in the BETA
language. Among these are entities generated according to predefined
patterns. There are predefined patterns for the specification of bit- and
integer-entities.

Bit-entities are defined by the bit-patterns BITVALUE, ZERO, ONE, and BIT.
Bit-entities have the following properties:

— Bit-entities are assignable to BIT-entities,

~— ZERO, ONE, and BIT are subpatterns of BITVALUE,

— bit-entities are value-compatible with bit-entities,

— the values of two ZERO-entities are always equal,

— the values of two ONE-entities are always equal,

— the value of a ZERO-entity is not equal 1o the value of a ONE-entity,

— the state of a bit-entity can only be changed by assigning a new value to
it. Thus the states of BITVALUE-, ZERO- and ONE-entities are
constant,

— if a BIT-entity, A, is assigned the value of a bit-entity, B, then the value
of A is equal to the value of B until either A or B is assigned a new
value.

Following the same lines as above, integer-entities are defined by the
integer-patterns INTEGERVALUE, INTEGER and one for each integer-value (0,
1, -1, 2, -2, etc.).

An <integer-expression> is an <entity-expression> consisting of
integer-entities.

43

4. THE NOTIONS OF BETA SYSTEM GENERATOR, DESCRIPTOR AND
CONTEXT

The introduction gives an outline of the concepts BETA system, BETA system
generator, descriptor and context, and of the relations between them. This
section treats these concepts in more detail and gives an indication of how they
may be included in the BETA language. Arguments for inclusion of the
concepts and desirable properties of the concepts are also given.

A BETA system is a system which is being or has been generated by the
execution of a BETA system description. A BETA system consists of a
collection of entities. During the lifetime of a BETA system the states of the
entities may be changed, new entities may be generated and entities may be
removed from the system. Other terms for BETA system and BETA system
descriptions are "BETA program execution” and "BETA program’, respectively.

A collection of computer components organized (and programmed) so that it
may execute BETA system descriptions and thus generate BETA systems is
called a BETA system generator. A system generator may be regarded as a
system and we want to be able to describe BETA systems which act as system
generators. The initial BETA system generator on a set of computer
components must of course be implemented in an underlying language, e.g.
the machine language and/or an assembly language, but it may still be
regarded as consisting of BETA system elements.

The wish to be able to describe system generators as BETA systems is
essential, e.g. in order to be able to program operating systems entirely in
BETA. It has the implication that the BETA language shall contain a descriptor
concept and mechanisms for handling these, e.g. for translating and executing
them. BETA system descriptions are descriptors giving rise to BETA systems.

In order to organize the possibilities of a system generator, e.g. descriptors
which are provided for the users of the system generator, it is the intention to
introduce a new kind of entities, the context entities. Contexts should also
provide /inks between system generators and systems.

14
Descriptors

By a descriptor we will understand a sequence of symbols describing an entity.
In the present version of BETA there is a descriptor concept with the following
characteristics:

— A descriptor may describe a singular entity (with a name) or if it is
associated with a pattern (with a title) it may describe a category of
entities.

— On descriptors there are operations which generate entities according to
the descriptor. Given e.g. a pattern P, OBJECT P specifies the
generation of an object entity. The generated object entity will have the
descriptor of the pattern associated with it and use it in its behaviour as
an object.

— It is possible to give a partial specification of a descriptor of a pattern
(virtual patterns) and to bind a partially specified descriptor to a
descriptor which is either partially or completely specified.

— There are some possibilities for aggregation of a descriptor by using
other descriptors (infixing, prefixing and insertion}, but more
editing-oriented operations will be needed: addition/removal of
descriptors to/from the system generator and modifications of
descriptors, e.g. substitution of symbol sequences.

In addition to the already provided operations on descriptors it should be
possible to specify transformations on descriptors, e.g. translation from one
language to another or from one language level to another

TRANSLATE <descriptor>

It should also be possible to specify execution of a descriptor, e.g.

EXECUTE <descriptor>

System Generators

The initial BETA system generator has been mentioned. It is the intention that
it should not be necessary to go below the language of this generator; the set
of computer components should be regarded as a "BETA machine”.

45

A system generated by the initial BETA system generator may in turn act as a
system generator, and a system generated by this may in its turn act as a
system generator. In this way it should be possible for a set of computer
components to contain a hierarchy of systems. In general we will say that the
systems generated by a system generator constitute a /ayer of systems. Some
of the systems of a layer may generate new systems, constituting a new layer,
while other systems "are just systems’. Note that we will consider this
hierarchy of layers of systems as being of another kind than that of nesting.
Consider a system SG acting as the system generator for a system S in the next
layer. In order for SG to carry out the specified state transformations in S, by
executing the descriptors of the entities of S, SG must have access to all
entities of S, independently of their nesting within S. A nesting within the
system only affects the ways in which entities of the system may involve each
other.

The purpose of introducing a new layer is normally to provide sets of concepts
which are aggregated from the concepts below. It may be pure aggregations,
or a syntax for using the new concepts and a compiler may be provided so that
a system generator for a new language is obtained. Some of the physical units
of the configuration may have their descriptions in the initial BETA system
exchanged with descriptions in terms of aggregated concepts. The purpose
will be to provide new ways of operating the units (from the system). As
examples we may take:

— In system descriptions for the initial BETA system generator the
association of a processor to an object may be explicitly specified. The
present language definition states that objects may have their actions
executed independently and possibly concurrently. One of the first
layers may then provide a time-sharing system generator so that objects
which may be executed concurrently share the available processors.

— A device may be characterized by its ability to read and write characters.
A next layer may provide concepts for reading and writing lines.

Addition of a new layer often implies loss of information about the hardware. A
typical high level system generator is a generator for a high level language,
where almost no information about the hardware is present and where system
descriptions are submitted to the generator without caring about how the
specific computer components are involved in their execution.

46
Contexts

We have now given a description of how a set of computer components may
contain a hierarchy of layers of systems. Some of these may be system
generators.

When submitting a system description to such a set of system generators it
should be specified by which system generator it shall be generated A system
description that assumes some particular specified properties of its system
generator, can only be submitted to system generators having these properties.

In addition to {or as part of) this linking up to the system generator, a system
should be linked up to its context(s). The approach for the introduction of
contexts in BETA discussed in the following is:

Context entities are autonomous entities of a special kind (different from
the kinds object and instance). When they are components of a system
generator, a system generated by this generator may have some of
these as context entities. This will probably be obtained by references.
A system with a context will get the attributes of the context entity
available.

As contexts are regarded as entities of a special kind, the specification of a
context entity could have the form

C: CONTEXT <entity specification>

Contexts may be regarded according to any descriptor, and may thus have data
items and patterns as attributes and may have action parts.

The possibilities for a system to use and/or influence its system generator will
be provided by the contexts. When using the pattern attributes of a context for
the specification and generation of entities within the system, the context entity
is used as a library component. When using the data items of a context it is
used as a data base component. Context entities survive the single systems
and modifications made by one system may be observed by another. It should
also be possible for more than one system to have context references to the
same context entity (at the same time). On the other hand it should also be
possible to obtain individual copies of contexts for each system. This is
especially important in concurrency situations where a concurrent system
should not have to wait for other systems in order to use important or
frequently used concepts. An example of a context which will always be

47

present is the context containing definitions of integer, real, etc. Even if they
may be considered defined in a common context, a “copy” will be associated
with each processor of the generator. A context entity with an action part
which e.g. contains specifications of translation and/or execution of descriptors
will play the role of an operating system component.

The context concept is to cover many desirable properties of the interface
between system generator and the systems generated by it. In addition to the
language of a system generator it is desirable to be able to provide it with sets
of related concepts, described in the language and available to the users of the
generator. As examples may be mentioned a set of standard mathematical
functions, a set of additional |/O operations etc. This use of context focuses
on the pattern attributes of contexts, but data items may also be useful in this
connection, e.g. for holding statistics on the use of the context. Another
example on context of this kind will be the contexts used for definition of
“Standard BETA” (see section 5). There will e.g. be a context containing
definitions of the standard types. Together with a syntax for expressions
involving these types and a compiler, this provides a Standard BETA system
generator. Note that although we will regard the standard types as defined by
patterns, described in the present version of BETA, the arithemtic capabilities of
the hardware will of course be used in an actual implementation of an initial
system generator on that hardware. Non-standard types as e.g. DATE,
COMPLEX, etc. should also be defined within contexts.

We believe that associated with the introduction of a context concept there will
be an introduction of new and/or additional scope rules. We see the context
entity as a natural means for obtaining a protection concept with other
properties than the one obtained by nesting. Contexts will be the units which
are designed for use in programs not yet written or even conceived, often
defining sets of concepts which should only be used in a specified manner. We
believe that the virtual concept also may be useful in connection with contexts,
but we give an indication of a possible kind of protection for contexts:

Consider a context C with a definition of a type T (by a pattern), with
the functional operators defined by patterns not defined locally to T.
This is desirable, because then the functional form, e.g. <A,B> —
TPLUS = <C> may be used instead of the form — A'TPLUS —
<C>. In the present version of BETA the value part is not remotely
accessible, so in order to operate on the value part within the context, it
should be {and is) accessible from main parts of entities prefixed by T.
When using the context, however, prefixing with T should perhaps not
give access to the T-value part, in order to protect the type. This calls

43

for a specification of different scope rules for prefixing inside and
outside a context. Alternatively it would be a solution to open up for
remote access to the value part and then provide the possibility of
specifying auxiliary attributes within a context, that is attributes which
are only known within the context. A drastic alternative is to open up
for access into nested entities within a system and then only have the
present scope rules for access from system to context.

As mentioned it is convenient to be able to collect related concepts and define
them within one unit. If e.g. one of several related concepts is used it is likely
that some of the others also are used. In any case there may be concepts which
are used to define the one used, so that these will be used implicitly.

On the other hand it should also be possible to separate independent sets of
concepts, and a system should only need to refer to concepts which are
actually needed. It is therefore the intention that a system should be able to
obtain references to more than one context. The syntax for
context-specification is of course not settled, but for the time being we may
assume that an entity has a context part consisting of a set of context
declarations. A context declaration of the form

C: CONTEXT <entity specification>

has been mentioned. This should declare a “local” context, generated
according to the descriptor of the entity specification. The specification of a
context reference denoting a context entity of the system generator could be

M: CONTEXT = = MATLIB
It should also be possible to declare anonymous contexts:

CONTEXT <entity specification>
CONTEXT == MATLIB

The effect should be that the attributes of the contexts are available without
any remote denotation. In the first example the pattern SIN has to be denoted
by M.SIN.

When using more than one context there may be name conflicts between the
attributes of the contexts. This may be solved by requiring a remote denotation
of the attributes. We would however like to provide a kind of renaming
mechanism so that it should suffice with declaration of anonymous contexts.

49

A context for a system should give possibilities which are provided for all
entities in the system, independently of their places in the nested structure.
Given a MATLIB context for a system it should e.g. be possible for more than
one entity to generate instances of a pattern SIN of the context. Infixes of a
context should be executable by any entity, but of course still only by one at a
time.

50

5. COMMENTS TO THE PROPOSAL

The development of a comprehensive programming language proposal will at
some time enter a stage where the language is exposed to comments and
criticism. It may be possible to postpone that time, in order to polish the
proposal and guard against errors in e.g. language details and examples. The
risk is that usefu! discussion which should influence the design details may
appear too late, either delaying the implementation or simply being neglected.
On the other hand early publication aimed at a wider audience may result in
criticism for using peoples’ time on unfinished presentation of ideas whose
values have not yet been proved, etc.

The authors have followed a kind of intermediate approach: We have published
three Working Notes describing the state of the development:

— WN-2, September 1977, contained our initial set of ideas,

— WN-3, August 1978, presented the development in the setting of a short
tutorial,

— WN-4, February 1979, presented a definition of those language aspects
which were well developed at that time.

These Working Notes were circulated to a group of people which had an active
interest in commenting upon the language development. The next Working
Note was planned to appear in April and should contain minor revisions of
WN-4, but extended with contexts and those parts of BETA which relate to
concurrency.

Immediately after the publication of WN-4, the extended usee of thee ENTRY-
and EXIT-clauses were invented. This required a complete re-working of the
language, now also taking concurrent action sequences into account as the
normal case. As a result, this Working Note is less definite and less polished
than planned.

51

5.1 General Comments

As stated in the preface, the main features of BETA are fixed. What remains

are:

el A

Correction of errors and inconsistencies.

improvement of proposals.

Extensions of the language by “contexts” and the “layer” concept.

The definition of a "standard BETA”, consisting of BETA augmented by
a standard context containing normally used features as e.g. the
patterns REAL, INTEGER, and their associated operators.

With regard to pt. 1, hopefully all major errors and inconsistencies are removed
in the course of the language "freezing” process. (It is well known that minor
faults are often discovered during implementation, and that some faults stay
with a language even after it is commonly used. We hope of course to avoid
this, and the development of formalized BETA definitions should be helpful also
for this purpose.)

Improvements of the proposal

The semantics related to sequencing is based upon the stack principle
described in section 2. There are two main points which need further
study:

— The transition from concurrency into quasi-parallel (coroutine)

sequencing. Our approach is to make the initial assumption that all
objects may act concurrently, and to arrive at rules for
quasi-parallelism by “collapsing” concurrency, instead of trying to
“generalize” from single-stack sequencing through quasi-parallel to
concurrency. This approach has resulted in departures from e.g.
Simula’s sequencing principles. The main structure of BETA's
parallelism is clear, but there are still details to be considered for
extension and revision. ‘

— The details of the stack discipline relating to prefix entities. The

point in question is the possibility of, within an entity, to assign a
value to its constituent prefix entity. Assignment to individual items
on the prefix’s value-list is possible, but it is desirable to make direct
assignment to the “total value” as defined by the category of the
prefix. (E.g. we want to handle an entity of category "SINUS" as

52

2.

having an associated REAL value, not only producing a REAL value
through its EXIT-list.) Proposals for achieving this exist, but need
further evaluation.

— The transfer of action and branching of action sequences between
objects may be specified in detail by EXIT- and ENTRY-clauses. |If
this kind of transfer or branching is initiated by an object S and
involves another object R, then the execution of the EXIT-clause of
S is carried out with the stack of R operating as a sfave stack in
relation to the stack of S which operates as a master stack. When
the EXIT-clause of S is finished, the ENTRY-clause of R is executed,
now with R’s stack as the master and S’s stack as the slave. When
the EXIT-ENTRY-clauses are finished the stacks of S and R operate
as normal stacks.

A master stack may cause the expansion of its slave stack by
additional stack member entities. These entities will have return
points within corresponding entities in the master stack in addition to
the return points referring to the local stack organization.

Both the syntax and semantics of the ENTRY- and EXIT-clauses are
very recent, and we have not yet succeeded in giving them a form which
is satisfying. The problems relate to the syntactical status of the
<al,a2,...,an> list notation and to the proper way of concatenating lists
and defining correspondence between lists in more compiex situations
(as well as in some very simple ones, e.g. <afl,...an> — <b7,...,br>).

The "arrow operator”, "=, is in the present proposal being used in a
large variety of cases. |t has been discussed whether it would be
advisable to introduce the operator "=>" for those situations where X —
Y (present notation) imply a transmission of values from X's value part
to Y's value part.

The notion of concurrency has in some respects been modified from our
earlier ideas (WN-2), whereas certain basic views remain constant.
Simula’s "remote procedure calls” have several counterparts in BETA.
They are now handled by a common syntax which generalizes (a
modified version of) the corresponding Simula notion. The new format
of the clauses specifying conditions for acceptance of interrupts are of
course influenced by the recent discussion of “message passing”.

53

The notation we now propose and its possibilities are new to us, and we
are exploring their use. This may result in modifications.

4, The BETA syntax is now being examined in an attempt to obtain an
improved and more systematically constructed version. In a number of
frequent special cases the present syntax is somewhat cumbersome. It
will be considered to introduce standard abbreviations for these cases.
A more systematic syntax relates in particular to the declarations and
notations for binding of category, substance and/or value of entities. A
by-product seems to be increased power of the virtual concept.

By extending the virtual and reference concepts it is possible to arrive at
a large variety of binding and referencing situations — analogous to e.g.
ALGOLS8, or PASCAL, or other languages. Our approach has been to
restrict the use of explicit references to object and context entities, and
also to restrict aliasing relating to constituent entities (even if there exist
some possibilities, e.g. through SUC and PRED). We hope that the
discussion of BETA will bring comments on these issues.

Extensions of the language

The most important extensions of BETA are being discussed in section 4 of the
Working Note. It should be observed that the design of the context concept to
a large extent becomes a deduction to arrive at properties which are needed but
not naturally offered by the other structuring tools (as e.g. nesting).

Similarly, the descriptor concept has to be further developed together with a
careful study of a proper decomposition and restructuring of those pieces of
software which today is referred to as “compilers’, “runtime systems’,
“operating systems”, “linkers”, "loaders”, “file systems”, etc.

It should also be observed that a descriptor at one system level may be
regarded as an entity (probably an object) with a piece of program text as a
(possibly structural) attribute, plus attributes indicating the language of the
program text etc. The same descriptor may at later system layers function in its
capacity of program text only, as descriptor attribute of entities.

Initialization of values are not discussed in this report. Some solutions have
been evaluated, but they must now be reevaluated together with the final
settling of binding rules in general. (If special language tools are given for
initialization of values, then it may be argued that the values assigned to data

54

items (e.g. variables) should not be dependant upon the declaration sequence
within an entity’s attribute part.)

Standard BETA

The BETA of this report is a "basic BETA” in terms of which other standard
concepts may be aggregated. We will of course provide, as stated above, the
standard types with a “standard BETA", implemented by efficient use of the
available hardware. In the examples of the next section we have assumed the
availability of obvious parts of a “standard BETA".

5.2 Specific Comments

In this subsection we enumerate a list of either alternative language constructs
to be considered or extensions to one of the proposed constructs. The purpose
is to indicate more specifically where there are alternatives to the present
proposal. It should be obvious that such a list cannot be exhaustive.

INNER (3.13)
The INNER concept needs to be reconsidered as the proposed generalization is
problematic when INNER is applied in the action part of an entity being
inserted. [n this case it will be possible to obtain multiple membership in an
object stack.

Repetition and selection imperatives (3.10, 3.11)

In the present semantics of a selection-imperative it is required that at least one
<imperative-list> may be selected for execution. It is considered to drop this
requirement. Variants of the repetition and selection imperatives may be
included, i.e. an ELSE-part of the selection imperative, an unlimited repetition,
etc. It is however not intended to include special purpose variants of these
imperatives, e.g. for repetition to include WHILE-DO, REPEAT-UNTIL,
FOR-TO-DO, FOR-DOWNTO-DO imperatives as known from Pascal.

Naming of INDEX and RANGE (3.4, 3.5, 3.11}
The possibility of associating names with INDEX and RANGE in repetitions may
be included. The problems may arise when nesting of repetitions is involved.

55

Repetition-assignment (3.14)

An extension of assignment to be defined between infix/reference repetitions
may be considered. An assignment of this kind is presently only possible by
assigning the sequence, data-item by data-item.

Signal-specification (3.17)

The specification possibilities of the communication imperative may be
extended or reduced (i.e. conditions on sender, receiver, message etc.),
implying respectively a stronger or weaker communication control.

Nesting of WHILE-imperatives (3.17)

The entity, executed as part of the execution of a WHILE-imperative, may itself
execute a WHILE-imperative. In the present semantics all such nested
WHILE-imperatives are effective in the sense that an interrupt may take place
at each level. It is being considered that only the innermost (latest)
WHILE-imperative should be effective in the sense that only signals specified
by this WHILE-imperative may be communicated.

Interruption of entities (3.17)

The entity which is executed as part of a WHILE-imperative may be interrupted
at semicolon of that entity (not a semicolon of entities above it in the object
stack). The current semantics may be reconsidered and the introduction of e.g.
a STATE-imperative discussed. The purpose of STATE would be to indicate
the points at which the entity could be interrupted.

The possible points of interruption of an entity (either at semicolon or STATE)
applies when the signal is coming from another object in the same system. In
the situation with layers of systems (see section 4) it may be considered that a
signal from a lower system level may cause an interrupt at any stage of the
execution of the entity.

Another possibility is that only objects and not entities may be interrupted: Let
object S execute an imperative
WHILE X ON R?M THEN ... ENDWHILE

it is considered to change the WHILE-imperative such that X has to be a
reference. The semantics should then be: If a processor is connected to S
then the execution of WHILE X ... implies that this processor is now connected
to X; the object denoted by X will then be interrupted if a signal may be
communicated to S. Among others this has the advantage that the execution
of M cannot interfere with X (except through signals).

56

Internal objects (3.17)

Internal objects to a given object can be involved in a communication using the
signal concept. An interpretation of this situation may be that the object has a
number of devices which independently may registrate, execute or emit signals.
The implications of this possible configuration must be carefully investigated.

Nondeterministic processing (3.11, 3.17)

Presently nondeterminism is achievable through three kinds of specifications
based on internal conditions — and a single specification based on conditions
external to the object. It may be desirable to combine all kinds of conditions,
possibly by an integration of the existing possibilities. A further generalization
of this idea will be an imperative supporting general nondeterministic
processing.

Initial values (3.4, 3.5)

The problem concerning initial values of the data items has not yet got a proper
solution. One possibility is to introduce a special initialization-clause in the
entity-descriptor. Alternatively an initialization-part may be added to each data
item declaration. In both of these cases it may be admissible to omit initial
values.

Another possibility is to exclude special initialization possibilities entirely. Then
it must be decided upon whether the data items will have standard default
values/states or will be undefined.

Initial values to objects (3.16)
The EXIT/ENTRY-parts have no meaning in objects. [t should however cause
no problems to allow a construction of the form

E— OBJECTP ==>R
where after generation of a P-object it is initialized (via ENTRY) by the
expression E.

Prefixing, infixing and insertion by a pattern referred to by an infix- or
reference-denotation (3.2, 3.4, 3.8, 3.16)

The specification of constituent entities by means of a pattern title referred to
through an infix-denotation implies only minor problems and is a likely language
improvement. More doubtful is the similar specification through a
reference-denotation because of the dynamic aspect of references.

Prefixing by references (3.2)
The possibility of using a reference as prefix-part of an entity may be
considered. A consequence of this may be that a reference itself has to be

57

regarded as an entity. One way of obtaining this situation is to introduce
special reference values to be included in the value list and then to define
references as entities with such occurrences in their value list.

Default binding of virtual patterns (3.6)

As proposed virtual patterns are bound by default to the currently valid virtual
specification. [t is possible to extend the pattern declaration to involve the
existing virtual specification as well as a supplying default possibility.

Generalization of the virtual concept to infixes and references (3.4, 3.5, 3.6)

It may be considered to have virtual infixes and references with respect to state,
substance (or better: name) and qualification. As for state this possibility is
related to the initial value problem and the specification of constant infixes and
references. Concerning substance this possibility may correspond to language
concepts as indirect references and variable parameters for respectively
references and infixes. Extension with respect to qualification seems doubtful.

Reference assignment (3.16}

Involvement of attributes of objects is obtained by communication. Messages
may only be infixes and instances which implies that reference attributes may
not be involved directly {(but they may indirectly by infixes and instances). Thus
a remote reference R.S cannot be assigned to directly and its value cannot be
obtained directly. This has to be reconsidered. Solutions may be to allow
references as messages or to allow remote reference involvement as a special
feature.

Existence

The problems related to “existence” or “lifespan” of entities are not discussed in
this report. They are strongly related to the set of storage management
procedures made available. They have, however, also implications on language
design. The possibility of prefixing with a pattern at levels different from the
level where it is declared open up for references denoting internal objects. This
calls for a careful definition of when entities may disappear (or may be
removed) from a BETA system and of reference qualification.

APPENDIX — Examples

The purpose of this appendix is to give a set of examples demonstrating most
of the constructs in BETA. As mentioned in section 5 we use obvious parts of
a “standard BETA" such as commonly used data types and their operations.
The use of “standard BETA" is however limited as much as possible as the
purpose of the examples is to demonstrate BETA as it is and we do e.g. not use
other control structures than those in BETA.

Example A is the BETA version of Hoare’s smallintset. The properties common
to the operations HAS, INSERT and REMOVE are collected in the pattern
OPERATION. The BETA version is extended with a pattern ERROR and an
operation FORALL. If an insertion is tried when there is no more place an
ERROR instance is generated. ERROR is a virtual pattern which means that the
user of SMALLINTSET may provide the actual set with a specific ERROR
pattern. The operation FORALL may be used to scan the set and perform
some actions for each set member.

PATTERN OPERATION:
BEGIN E: INTEGER
ENTRY <BE>
END;

PATTERN SMALLINTSET:
BEGIN
REP: BEGIN S: [100] INTEGER; SIZE: INTEGER END;
PATTERN ERROR : VIRTUAL EXCEPTION;
PATTERN HAS:
OPERATION
BEGIN B: BOOLEAN;
DO FALSE - B;
L: [REP'SIZE]
IE (E = REP'S [INDEX])
= TRUE THEN TRUE — B; LEAVE L
= FALSE THEN ENDIF
EXIT
END (+HAS+);

PATTERN INSERT:
OPERATION
BEGIN C: BOOLEAN;
DO <E> — HAS — <C>;
IFC = FALSE THEN
IF (REP'SIZE < 100)
= TRUE THEN REP'SIZE + 1 - REP'SIZE;
E — REP'S [REP'SIZE]
= FALSE THEN INSTANCE ERROR ENDIF
= TRUE THEN ENDIF
END (xINSERT*);

PATTERN REMOVE:
OPERATION
BEGIN DO
L: [REP'SIZE]
IF (REP'S[INDEX] = E)
= TRUE THEN
BEGIN J: INTEGER;
DO INDEX — J;
[REP’SIZE-INDEX]
BEGIN DO
REP'S[J+1] = REP'S[J];
J+1-=>J
END;
REP‘SIZE-1 = REP'SIZE;
LEAVE L
END
= FALSE THEN ENDIF
END (xREMOVEx*);

PATTERN FORALL:
OPERATION
BEGIN DO
[REP’SIZE]
BEGIN DO
REP'S[INDEX] — E;
INNER
END
END («FORALLx)
END (xSMALLINTSET+)

Examples on use:

S1: SMALLINTSET;
<5> - STINSERT;
ST FORALL
BEGIN DO

<E> — PRINT
END;

S2: SMALLINTSET
BEGIN

BIND ERROR: ERRORROUTINE
END

Example B is a generalization of the SMALLINTSET of example A. The types
of the members are not settled (but required to be subtypes of TYPE) and the
maximum size of the set is open. The operations will have the same
specifications as in SMALLINTSET.

PATTERN OP: BEGIN END;

PATTERN SET:
BEGIN
PATTERN SETTYPE: VIRTUAL TYPE;
PATTERN MAX: VIRTUAL INTEGERVALUE;
PATTERN OPERATION: OP BEGIN E: SETTYPE; ENTRY <E> END;
REP: BEGIN S: [MAX] SETTYPE; SIZE: INTEGER END;

END (+SET+)

Examples on use:

PATTERN INTSET: SET BEGIN BIND SETTYPE: INTEGER END
PATTERN SMALLSET: SET BEGIN BIND MAX:100 END
PATTERN SMALLINTSET:

SET

BEGIN BIND SETTYPE: INTEGER;

BIND MAX:100
END

A-4

Examples C, D, E are examples on the use of the value part to represent the
part of the state which is to be transferred in an assignment.

Example C defines an enumeration and demonstrates how to define constants
(literals) which may not be assigned to {(no ENTRY) and variables which may be
assigned to:

PATTERN COLOUR:
BEGIN
PATTERN VP: VIRTUAL INTEGERVALUE;
VALUE V: VP
EXIT
END;

PATTERN RED: COLOUR BEGIN BIND VP: 1 END;
PATTERN BLUE: COLOUR BEGIN BIND VP: 2 END;
PATTERN WHITE: COLOUR BEGIN BIND VP: 3 END;

PATTERN COLOURVAR: COLOUR BEGIN ENTRY END

Examples on use:
C1, C2: COLOURVAR;
RED — C1; C1 = C2;
IF C1 =RED THEN ...
BLUE THEN ...
= WHITE THEN ... ENDIF

Example D demonstrates how to obtain a datatype with different concrete and
abstract representations. The operations CONVERT, CHECK CONSISTENCY
and NEWYEAR are not specified here. CONVERT converts a date of the form
(DAY, MONTH, YEAR) to a Julian date and CHECK CONSISTENCY checks
whether a date is consistent or not. NEWYEAR replaces the year part of a date
with a new one.

PATTERN DATE:
BEGIN
VALUE R: INTEGER; (* JULIAN date *)
ENTRY EXIT
END

PATTERN NEWDATE:
BEGIN DAY, MONTH, YEAR: INTEGER;
D: DATE

BEGIN
DO <DAY,MONTH,YEAR> — CONVERT — R
END

ENTRY <DAY,MONTH,YEAR>; CHECK CONSISTENCY

EXIT <D>

END;

PATTERN THIS-DAY-YEAR-N:
DATE
BEGIN N: INTEGER; (» YEAR *}
ENTRY <N>
EXIT <N> — NEWYEAR — <R>
END

Examples on use:
D1, D2: DATE;
<17,5,1814> - NEWDATE — <D1>;
D1 — D2;
D2 <1918> — THIS-DAY-YEAR-N — D1

Example E defines a bounded real and a widest real. In every assignment to a
bounded real the nearest real value within an interval is obtained. A widest real
will have an associated interval which is the widest of all the bounded reals
which have been assigned to it.

PATTERN BOUNDED:
BEGIN LOWER, UPPER: REAL;
SETINT:
BEGIN
ENTRY <LOWER,UPPER>
END;
BOUND:
BEGIN DO
IF TRUE
= (R < LOWER) THEN LOWER — R
= (R > UPPER) THEN UPPER — R
= (LOWER < R AND R < UPPER) THEN ENDIF
END;

A-6

INREAL: BEGIN ENTRY <R>; BOUND END;
OUTREAL: BEGIN EXIT <R> END;
VALUE R: REAL
ENTRY INNER BOUND
EXIT
END (» BOUNDED)

PATTERN WIDEST:
BOUNDED
BEGIN
ENTRY
IF (PRED'LOWER < LOWER)
= TRUE THEN PRED'LOWER — LOWER
= FALSE THEN ENDIF;
IF (PRED'UPPER > UPPER)
= TRUE THEN PRED'UPPER — UPPER
= FALSE THEN ENDIF
END (* WIDEST *)

Examples on use:
B1, B2: BOUNDED; W1: WIDEST;
<5,15> — B1'SETINT; <1,9> — B2'SETINT;
<7,12> — WT'SETINT;
<4> — BTINREAL; B1 - B2; B1 = W1; B2 > WT1;
W1'OUTREAL — <S>

Example F is an example on objects acting as coroutines, activating each other
by sending messages. It is the BETA version of the well-known example
problem of transferring a stream of characters read from cards (of 80
characters) to lines of 125 characters, replacing double occurrences of =" by 1",
The disassembler (DA) reads a card from INCARD (not specified} and sends the
characters individually to the squasher (SQ} which replaces "«*" by 't and sends
the characters to the assembler {AS}). The assembler assembles the characters
in lines of 125 characters. A line is printed by activating LINEOUT. STOP will
have the effect of stopping the assembler. Note that the imperative INCARD?C
is not presently allowed in BETA.

REF DA:
BEGIN C: [80] CHAR;
DO
L: BEGIN DO INCARD?C;
[80] C[INDEX] — SQ!ICH;
' ' > SQICH; RESTART L
END
END (+ DA *);

REF SQ:
BEGIN CH: CHAR;
DO
L: BEGIN DO DA?CH;
IF (CH = %)
= TRUE THEN DA?CH;
IF (CH = "+)
= TRUE THEN ¥ = ASICH
= FALSE THEN '+’ = ASICH; CH = ASICH ENDIF
= FALSE THEN CH — AS!CH ENDIF;
RESTART L
END (« L)
END (» SQ #);

REF AS:
BEGIN CH: CHAR; L: [125] CHAR;
DO
A: BEGIN DO
[125]
BEGIN DO SQ?CH — L[INDEX];
IF (CH = ‘end’)
= TRUE THEN
BEGIN I: INTEGER;
DO INDEX > |;
[RANGE-I] * " = L[INDEX];
LINEOUT!; STOP
END
= FALSE THEN ENDIF
END;
LINEOUT!; RESTART A
END
END

A-7

A-8

Example G is a simple clock. A clock object will repeatedly perform the action
of adding a unit to time. At any time it may be interrupted in order to deliver
the current value of time. The time used for interruption (T1) is for each reentry
into the interrupted action added to TIME. Similarly the time used for reading
TIME (TR) is added to TIME.

PATTERN CLOCK:
BEGIN
TIME, UNIT, TI, TR: REAL;
NR: INTEGER;
SETCLOCK:
BEGIN
ENTRY <TIME>
END
DO 0 -~ NR;
SENDER?SETCLOCK;
WHILE
BEGIN
ENTRY TIME + Tl — TIME
DO TIME + UNIT - TIME
END
ON SENDER?TIME THEN NR+1 — NR; TIME+ TR — TIME
ENDWHILE
END (¢ CLOCK =)

Example on use:
REF CL: CLOCK;
<0> - CLISETCLOCK;
CLTIME—>T

A-9

Example H specified a bounded buffer object. A buffer object has two
operations which always may be applied. It has two internal objects which will
add/remove an element in the buffer provided that the buffer is not full/empty.

PATTERN BUFFER:
BEGIN
S: [N] CHAR;
IN,OUT: INTEGER;
PATTERN COND: BEGIN B: BOOLEAN EXIT END;
PATTERN FULL: COND BEGIN DO (OUT = IN @ 1) — B END;
PATTERN EMPTY: COND BEGIN DO (OUT = IN) - B END;

REF PUT: _
BEGIN NEW: CHAR; B: BOOLEAN;
DO
L: BEGIN DO FULL — ;
IFB = FALSE THEN SENDER?NEW — S[INJ; IN @® 1~ IN
TRUE THEN ENDIF; RESTART L

If

END
END

REF GET:
BEGIN B: BOOLEAN;
NEXT: BEGIN EXIT <S[OUT]> END
DO
L: BEGIN DO EMPTY — ;
IF B = FALSE THEN SENDER?NEXT; OUT @ 11— 0UT
TRUE THEN ENDIF; RESTART L

END
END

DO
L: BEGIN DO
SENDER?MESSAGE AS COND;
RESTART L
END
END (+ BUFFER *)

Examples on use:
REF B: BUFFER;
‘A" - B.PUTINEW, B.GET.NEXT — <CH>;

A-10

Example | demonstrates how to define suitable control structures using the
prefix/inner mechanism.

PATTERN for:
BEGIN

X: [N] INTEGER;

PATTERN N: VIRTUAL INTEGERVALUE;

INX: INTEGER

ENTRY <>

DO [N]

BEGIN DO
X[INDEX] = INX;
INNER

END

END

Example on use:
<1,27,5,33,11,13> —
(F: FOR)
BEGIN
BIND N:6
DO FINX — INSTANCE Q
END

A-11

Example J demonstrates the use of the virtual concept in obtaining procedures
as procedure parameters’. A pattern SUM is defined. It computes the sum
F(A[1]) + FA[2]) + ... + F(A[A’'RANGE]) where A is a repetition of REALs
and F is a REALFUNCTION:

A: [N] REAL;
PATTERN REALFUNCTION:
BEGIN R: REAL
ENTRY <R> EXIT <R>
END;

PATTERN SUM:
BEGIN
S,R: REAL:
PATTERN F: VIRTUAL REALFUNCTION;
DO0—S;
[A'RANGE]
BEGIN DO
<A[INDEX]> — F = <R>;
S+R—>S
END
EXIT <S>
END

DO INSTANCE SUM
BEGIN
BIND F: SIN
END — <S1>; ...

A-12

Example K describes a resource object. At any time at most one object owns
the resource and may operate the resource. However any object may at any
time request the resource and a reference to that object will then be put into a
queue. When the current owner releases the resource, a new owner will be
selected and acknowledged. The objects that may use the resource have to be
prefixed by PROCESS which is not specified here.

PATTERN RESOURCE:
BEGIN AGENDA: QUEUE; (* waiting requests *)
REF OWNER: PROCESS; (+ current owner of the resource *)
REQUEST: BEGIN DO <SENDER> — AGENDA'ENTER END;
RELEASE: BEGIN END;
PATTERN OPERATION: (* to prefix all other RESOURCE operations)
BEGIN
DO WHILE INNER
ON SENDER AS PROCESS?REQUEST THEN
ENDWHILE
END;
NEWOWNER:
BEGIN DO AGENDA'NEXT — <OWNER>;
IF (OWNER = = NONE) = FALSE THEN OWNER!
= TRUE THEN ENDIF
END
DO NONE = => OWNER;
WHILE WAIT
ON SENDER AS PROCESS?REQUEST THEN NEWOWNER
ON OWNER?RELEASE THEN NEWOWNER
ON OWNER?MESSAGE AS OPERATION THEN
ENDWHILE
END (x RESOURCE +#);

Examples on use:
REF PRINTER:
RESOURCE
BEGIN
WRITECH: OPERATION BEGIN
NEWLINE: OPERATION BEGIN

END
REF A:
PROCESS
BEGIN DO
PRINTER!REQUEST;
l.: WHILE X

ON PRINTER? THEN LEAVE L
ENDWHILE

... END;
... END;

<'#"> — PRINTER!WRITECH; PRINTERINEWLINE;

PRINTER!RELEASE;
END {« Q =);

TRYK: DAIMI/RECAU

	PB-098_Page_01_Image_0001.tiff
	PB-098_Page_02_Image_0001.tiff
	PB-098_Page_03_Image_0001.tiff
	PB-098_Page_04_Image_0001.tiff
	PB-098_Page_05_Image_0001.tiff
	PB-098_Page_06_Image_0001.tiff
	PB-098_Page_07_Image_0001.tiff
	PB-098_Page_08_Image_0001.tiff
	PB-098_Page_09_Image_0001.tiff
	PB-098_Page_10_Image_0001.tiff
	PB-098_Page_11_Image_0001.tiff
	PB-098_Page_12_Image_0001.tiff
	PB-098_Page_13_Image_0001.tiff
	PB-098_Page_14_Image_0001.tiff
	PB-098_Page_15_Image_0001.tiff
	PB-098_Page_16_Image_0001.tiff
	PB-098_Page_17_Image_0001.tiff
	PB-098_Page_18_Image_0001.tiff
	PB-098_Page_19_Image_0001.tiff
	PB-098_Page_20_Image_0001.tiff
	PB-098_Page_21_Image_0001.tiff
	PB-098_Page_22_Image_0001.tiff
	PB-098_Page_23_Image_0001.tiff
	PB-098_Page_24_Image_0001.tiff
	PB-098_Page_25_Image_0001.tiff
	PB-098_Page_26_Image_0001.tiff
	PB-098_Page_27_Image_0001.tiff
	PB-098_Page_28_Image_0001.tiff
	PB-098_Page_29_Image_0001.tiff
	PB-098_Page_30_Image_0001.tiff
	PB-098_Page_31_Image_0001.tiff
	PB-098_Page_32_Image_0001.tiff
	PB-098_Page_33_Image_0001.tiff
	PB-098_Page_34_Image_0001.tiff
	PB-098_Page_35_Image_0001.tiff
	PB-098_Page_36_Image_0001.tiff
	PB-098_Page_37_Image_0001.tiff
	PB-098_Page_38_Image_0001.tiff
	PB-098_Page_39_Image_0001.tiff
	PB-098_Page_40_Image_0001.tiff
	PB-098_Page_41_Image_0001.tiff
	PB-098_Page_42_Image_0001.tiff
	PB-098_Page_43_Image_0001.tiff
	PB-098_Page_44_Image_0001.tiff
	PB-098_Page_45_Image_0001.tiff
	PB-098_Page_46_Image_0001.tiff
	PB-098_Page_47_Image_0001.tiff
	PB-098_Page_48_Image_0001.tiff
	PB-098_Page_49_Image_0001.tiff
	PB-098_Page_50_Image_0001.tiff
	PB-098_Page_51_Image_0001.tiff
	PB-098_Page_52_Image_0001.tiff
	PB-098_Page_53_Image_0001.tiff
	PB-098_Page_54_Image_0001.tiff
	PB-098_Page_55_Image_0001.tiff
	PB-098_Page_56_Image_0001.tiff
	PB-098_Page_57_Image_0001.tiff
	PB-098_Page_58_Image_0001.tiff
	PB-098_Page_59_Image_0001.tiff
	PB-098_Page_60_Image_0001.tiff
	PB-098_Page_61_Image_0001.tiff
	PB-098_Page_62_Image_0001.tiff
	PB-098_Page_63_Image_0001.tiff
	PB-098_Page_64_Image_0001.tiff
	PB-098_Page_65_Image_0001.tiff
	PB-098_Page_66_Image_0001.tiff
	PB-098_Page_67_Image_0001.tiff
	PB-098_Page_68_Image_0001.tiff
	PB-098_Page_69_Image_0001.tiff
	PB-098_Page_70_Image_0001.tiff
	PB-098_Page_71_Image_0001.tiff
	PB-098_Page_72_Image_0001.tiff
	PB-098_Page_73_Image_0001.tiff

