ISSN 0105-8517

Parallel Product of Event Structures

Ilaria Castellani
Guo Qiang Zhang

DAIMI PB - 285
September 1989

AARHUS UNIVERSITY |
COMPUTER SCIENCE DEPARTMENT

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: +4586 12 71 88 Telex: 64767 aausci dk

TH]
—

PARALLEL PRODUCT OF EVENT STRUCTURES

PRODUIT PARALLELE DE STRUCTURES D’ EVENEMENTS

Ilaria Castellani
INRIA, Sophia-Antipolis, 06560 Valbonne, France

Guo Qiang Zhang
DAIMI, University of Aarhus, 8000 Aarhus C, Denmark

Abstract.

The parallel product operator may be defined very easily on flow event structures. We show
that, for flow event structures satisfying a particular constraint, which is preserved by usual
process operators, this product may be characterised as a categorical product.

Résumaé.

Il est trés facile de définir la composition paralléle sur les structures d’événements & flux. Nous
montrons que, pour les structures a flux satisfaisant une certaine contrainte, préservée par les
opérations usuelles, cette composition peut &tre caractérisée comme un produit catégorique.

PARALLEL PRODUCT OF EVENT STRUCTURES

Ilaria Castellani
INRIA, Sophia-Antipolis, 06560 Valbonne, France

Guo Qiang Zhang
DAIMI, Unsversity of Aarhus, 8000 Aarhus C, Denmark

1 Introduction

Event structures were introduced by Nielsen, Plotkin and Winskel in [NPW 81] as a model
for computational processes. These were first order structures, essentially sets of events with
relations expressing causal dependencies and conflicts between them. These structures, also
called prime event structures, were shown to be connected both with a class of acyclic Petri
nets — called by the authors occurrence nets — and with a class of domains — finitary prime
algebraic coherent domains. Though a very pleasant model of computation, prime event struc-
tures appeared to be too rigid for interpreting in a simple way process operators like the par-
allel product or data type constructions like exponentiation. In subsequent papers [Win 82,
Win 87] Winskel turned to a more general class of event structures, stable event structures, for
which such constructions are defined categorically. Indeed, category theory is a good framework
for dealing with constructions since these are determined by the properties they satisfy; it invites
us to consider the properties of a construction together with the construction itself.

However by stepping to more general structures one loses some of the suggestiveness of the
model. In stable event structures the causality relation on events is not explicitly given, but
is derived from a second order enabling relation for events. This makes such event structures
a little hard to visualize, and one may wonder whether a more manageable notion could be
devised. Also, unlike prime event structures, stable event structures have not been directly
related with a class of Petri nets.

Flow event structures were proposed in [BC 88] as an intermediate between prime event
structures and stable event structures, suitable both for a graphical representation and for an
easy definition of process operators. Among these operators the critical one is the parallel
product. This may be defined very easily on flow event structures but not, in general, give
the same result as Winskel’s categorical construction on stable event structures. The aim of
this note is to show that, for flow event structures satisfying a particular constraint — which is
preserved by usual process operators — the product is indeed categorical. We mention in passing
that flow event structures do have a direct connection with a class of Petri nets, as shown by
Boudol in [Bou 88]. These nets — called flow nets — are strictly more general than occurrence
nets: they may have cycles in the flow relation although they are still “semantically” acyclic.

Like stable event structures, flow event structures determine the same class of domains as
prime event structures (cf again [Bou 88]). Thus for any construction on flow (or stable) event
structures one may obtain a corresponding construction on prime event structures, by passing
through their domains of configurations. In fact, direct definitions of parallel product on prime
event structures — although rather complicated — have been given explicitly by Goltz and Loogen
in [GL 87] and by Degano, De Nicola and Montanari in [DDM 87]. More recently a simpler
definition was proposed by Vaandrager in [Vaa 89].

2 Flow event structures and product

Flow event structures are a direct generalisation of prime event structures (for which definition
we refer to [NPW 81]) where the conflict relation is not inherited and the partial ordering of
causality is replaced by a local flow relation on events. Intuitively, the flow relation represents
an immediate causality between two events. However, since events may occur in different ways
(as in stable event structures) any causal dependency is merely “possible”, and makes sense only
within computations. A simple way of understanding the flow relation is by analogy with Petri
nets: a flow between two events in an event structure corresponds to the presence of a condition
between the events in a net. This point is illustrated by the example below.

Definition 1 (Flow event structures) A flow event structure is a structure S = (E, # ,<)
where:

o E is a denumerable set of events
e # C(E X E) 1s a symmetric conflict relation

e < C(E X E) is an irreflexive flow relation

It should be clear that any prime event structure S = (E, # , <) is a flow event structure (with
< given by the strict ordering <). Note that the flow relation is not required to be transitive,
nor its closure <* to be acyclic. Also, the conflict relation is not assumed to be irreflexive.
This means that there may be self-conflicting or inconsistent events, and we will see that these
are essential for defining some constructions on flow event structures — namely restriction and
specialised parallel products like CCS parallel composition. Inconsistent events also play a
crucial role in Boudol’s constructions between flow event structures and flow nets [Bou 88].

The following is an example of flow event structure, together with a “corresponding” Petri
net. In drawings, we represent e < ¢’ by a directed arc e — € and # by a dotted line.
Self-conflicts will be represented by dotted circles around events.

€0

€1 €2

€3

This example (which typically arises when modelling CCS communication) exhibits both a
confluence after conflict, and a case where the flow < is essentially not transitive: the events eg
and e3 indeed causally related if ¢; occurs, but they are independent if ez occurs. In other words,
€o and e3 are in a different relation depending on the computation where they are considered.
For more examples of flow event structures we refer the reader to [BC 88].

We shall now formalise this notion of computation or configuration for flow event structures.
A configuration is a set of events having occurred at some stage of evolution of a process. Since
flow event structures are rather general, the definition of configuration is slightly more elaborated
than for prime event structures. Let Cong be the set of conflict-free (consistent) sets of events:

X € Cong iff Ve,e' € X, (e # ¢'). Obviously, an event e is inconsistent, i.e. e # e, if and only
if e ¢ X for any X € Cong. For a subset X of E let <x be the restriction of the flow relation
to X and <x=4.5 <x"* be the preordering generated by <x. Unlike [BC 88], we consider here
only finite configurations.

Definition 2 (Configurations) Let S = (E, # ,<) be a flow event structure. A (finite) config-
uration of S is a finite subset X of E such that:

1. X 1s conflict-free: X € Cong
2. X is left-closed up to conflicts: ¢ <ec X &g X = Fe"€X. #e <e.
3. X has no causality cycles: the relation <x is an ordering

The first two conditions are essentially the same as for prime event structures: condition 2) is
adapted to account for the more general — non-hereditary — conflict relation. It states that any
event appears in a configuration with a “complete” set of causes. Condition 3) ensures that
any event in a configuration is actually reachable at some stage of computation. Note that an
inconsistent event cannot appear in a configuration. So for example the structure:

has only the trivial configuration #. The set of (finite) configurations of a flow event structure
S will be denoted by 7(S§).

We have seen that prime event structures are a subclass of flow event structures. In
turn, any flow event structure S = (E, # ,<) may be described as a stable event structure
Gs = (E, #', - g) such that (Gs) = 7(S). This is explained in [BC 88, Bou 88]. We recall
here briefly the definition of Gg.

The enabling relation g C P(E) x E is defined as follows. Say that “e is a condition for

(3]

€¢"” when e < ¢'. Then FI ge holds whenever F is a maximal set of non-conflicting conditions
for e, that is:

el = € <e

F U {e} is consistent : Ve',e" € F U {e}: =(¢ # €")

F is closed under non-conflicting conditions for e :

€ <e&edF = Je'"cF st. e #¢

Fl—se <—>def

Note that since F U {e} must be consistent w.r.t. #, an event e which is inconsistent in S will
have no enabling set in Gg. Then the conflict #' is just the irreflexive restriction of #, that is
#' = # — Id, where Id is the identity relation on events. It is easy to see that the structure
Gs = (E, #', - 5) obtained in this way is a stable event structure in the sense of Winskel, I g
being the minimal enabling.

On the other hand a stable event structure cannot always be represented as a flow event
structure (cf again [Bou 88]). Hence flow event structures are strictly included between prime
and stable event structures.

We shall now define the parallel product on flow event structures. We use Winskel’s notation
* for undefined values of partial functions and write eWw e’ for the reflexive closure of #, that
is eWe' <=>4e5 (e # ¢ or e = ¢'). Here and in what follows, an assertion f(e) R f(¢') - where
f is a partial function on events and R € {<, # ,=} — will imply that both f(e) and f(¢') are
defined. We shall mostly write fe for f(e).

Definition 3 (Parallel product) Let Sy = (Eo, # o,~<0) and S1 = (E1, # 1,<1) be flow event
structures. Their parallel product (So X S1) is the event structure S = (E, # ,<) defined by:
z) E= (Eo X El) = {(60,*) | e € Eo} U {(*,61)] e; € EI} U {(60,81) l e € By & e € El}
i) ewWe <= (moeWmge') or (mieW mie')
wi) e#e <= (moe # moe) or (me # mie)

w)e<e <= (moe < moe!) or (wie < mie)

where the projections ;1 E —, E; are given by n;(z0,21) = zi, for i =0, 1.

Condition 1%) is here to deal with self-conflicts. It states that the product inherits self-conflicts
from its components, and never introduces any new ones.

This is a direct definition of product, on concrete structures. Following Winskel, we shall try to
characterise this operation in a more abstract way — as a categorical product. To this end we
need the notion of morphism. The intuition for morphisms is the same as Winskel’s [Wi 87].

Definition 4 (Morphisms) Let So = (Eo, # o,~<0) and S; = (Ey, # 1,<1) be flow event struc-
tures. A morphism from Sy to Sy s a partial function f : Eg — E; satisfying:
i) few fe' = ewe
i) fe# f = e#e
i) fe< fe = e<¢
w) X € 7(So) = f(X)e 7(S1)

Again condition 77) is needed because of self-conflicts. It ensures that morphisms do not create
new self-conflicts: if fe # fe this is always because e # e. It is now easy to establish the following:

Fact 1 Flow event structures with morphisms form a category with the composition of partial
functions as composition and the identity functions as tdentity morphisms.

We were looking for a categorical characterisation of our operator (Sp x S1). Unfortunately
(SoxS1) does not always give the categorical product, as shown by the following counterexample.

So S 1
€0 eg €1
PO
X
! !
o €1

We let the reader verify that in (So x Si) the set {(eo,e1)} is a complete set of causes for
(€p,€)) and that X = {(eo,e1), (ep,€})} is a configuration. However mo(X) = {eo,€h} is not a
configuration of Sp (and thus the projection 7o is not a morphism). Indeed, X should not be
allowed as a configuration here, since in Sy the event e cannot occur unless) has occurred,
and thus in (Sp x S1) the event (ep,€}) should not occur unless some event involving e} has
occurred.

The problem arises with the particular form of the structure on the left-hand side: such a
structure will be called a triangle in the following. Formally, a triangle is a structure with three
distinct events eg, €1, e such that eg # e; < ez and ¢g is not related to e;. We will show that in
structures generated by usual process constructors such triangles never occur in isolation, but
are always “saturated ” by other events. These additional events will precisely prevent sets like
X in the example above to be admitted as configurations.

For two distinct events e,e' we write e ~ ¢’ for (e # ¢ or e < € or ¢ < €). In drawings we
shall represent ~ by an undirected arc. The structures we shall consider are those satisfying the
following structural property:

Axiom A: ep#e1 <e3 & egteg = Jes.(e1#es<e) & (Vet#es: eqWen e).

In picture:

€2

We show that for structures satisfying A our definition yields the desired product construction.

Proposition 1 Let S, 51 be flow event structures satisfying aziom A. Then (So x Sy) is the
categorical product of Sy and Sy.

Proof: Notation: events of S will be denoted by e,e' etc. and events of S; by e;, e;. Also, we
shall write fe for f(e), and fe | to mean that fe is defined.

1) We first show that the projections m; are morphisms. Conditions 7),4¢) and 7i%) are obviously
satisfied. Thus we only have to prove that the x;’s preserve configurations. Consider for example
7o : B ——. Eg. Let X € 7(S); we want to show that mo(X) € 7(So).

It is obvious that mo(X) is conflict-free, since mpe # mge' would imply e # € in X. We show that
mo(X) is consistently left-closed. Let e € X, eq < moe & €y ¢ mo(X). Then (ep,*) < e and
(e0,*) ¢ X. Since X is a configuration there exists ¢ € X s.t. (eo,*) # ¢ < e. By #) it must
be moe' | and moe' W eg. Now moe' # e because ey & mo(X), thus moe' # eg.

Now suppose mge’ ~ mpe: then it must be mge' < mpe, since otherwise X would contain a conflict
(if moe' # moe) or a loop (if moe' = moe, recall that € < e). Thus we have eg # mge' < mge.
Otherwise, if mpe' £ mgpe, we have a triangle moe' # ey < mpoe and we can use axiom A to deduce:
Jep. (eo # ey < moe) & (Vep # € : €9 W € ~ moe). Then (eh,*) < e € X. Now if e} € m(X)
we have finished, since eg # e < mpe. Otherwise, if ef ¢ mo(X), we have (e}, *) ¢ X, hence
Je" € X st (eh,*) # " < e. Whence e W mpe" and thus e} # moe”. By axiom A again, we
have mpe" ~ moe and moe” W eg. Clearly moe” # e, since eg ¢ mo(X). Also, from e, ¢” € X and
e < e, it follows that mpe" < mge.

It is clear that there are no loops in mo(X), since these would be inherited in X. We have thus
proved that projections are morphisms.

2) Second, we must show that (Sp x S1) is canonical, i.e. that for any diagram:

SO X Sl
o 1

So S1

(&7} a1

S

there exists a unique 6 : £ —, (Ep X, E1) that makes the diagram commute. The only possible
candidate is (still using e, ¢' for events of E) 6 : e —, (age, a1e). We show that 6§ is a morphism.
We have, for any e, € € E:

fe < 0¢' <=>4.5 (aoe,a1e) < (cpe',are)
<= (aoe < age’) or (are < aze’) (by definition of product)

=> e<¢€ (because both &;'s are morphisms)
Similarly, for any e, e € E:

fe = O <=>4.5 (ane,a1€) = (ape',q€’)
<= (age = ape') and (aqe = aze')
= eWe' (because the o;’s are morphisms)
Suppose now fe # f¢'. We have:
fe # 0 <=>g4o5 (ane,are) # (ape',oqe’)
fe # Oe' & (cge W age’ or ajeW age
{ # () (by product definition)

fe =0¢' & (age # age’ or aje # aze')

Now, suppose e # fe¢': then we cannot have both (ape = age') and (e = a;e'). Thus it must
be (aoe # ape') or (oye # aje’). This implies e # € since both o;’s are morphisms.

Similarly, the case where fe = f¢’ immediately implies e # ¢'.

It remains to check that § preserves configurations. Let X € 7(S). We want to show that
0(X) =des {(aoe,a1e) | e € X} € F(So x S1). Again, it is obvious that §(X) is conflict-free.

We show that 6(X) is consistently left-closed. Let k = (ko, k1) < (age,aze) for some e € X
and k ¢ 6(X). By definition of product we have ko < age or k; < ae. Assume kg < age.

If 3¢ € X s.t. ape’ = ko, then (ape',oqe€') < (ape,a1€) because my is a morphism. More-
over (age',a1€’) € 0(X) and (age’, aze’) # k = (ko, k1) because mo(aoe,a1€') = ape = ko
and (aoe',a1€') # k. Otherwise for any ¢ € X we have ko # age'. In this case, since
ko < age € ao(X) € F(Eo) and ko ¢ ao(X), there must be e € X s.t. age” < age & ko # age".
Hence (aoe”, aze") < (age, az€), and k # (ape”, aze”) because ko # age”.

Finally it is clear that there are no loops in 6(X), since these would be reflected in X. O

We show now that the parallel product preserves axiom A. The idea is that for any triangle
€o # €1 < ez introduced by the product, the source e of the triangle is a compound event, which
inherits its causality relation to e; from some atomic component e3. This event es is precisely
the one which is required by axiom A.

Proposition 2 Let So,S1 be flow event structures satisfying aziom A. Then the structure
(So x S1) satisfies A.

Proof. Suppose there is a triangle ey # e; < ez, ey £ €3 in (So x S1). We want to prove
that axiom A is satisfied. Since e; < e it must be (mpe; < moez) or (mie; < mwiez). Assume
moe1 < moez. Since ep £ ez we have moeg £ mpes and thus mgey # mger. There are then three
‘cases left for eg # e;:

1. n1€eg = mM1€}
2. moeq # moeq
3. wieg # miey

Case 1: miep = mie;. We want to show that the triangle: ey # e; < es satisfies axiom A.
Take (moer, *) as a candidate for e3 in the axiom. Certainly (moe1, %) < ez and (moeq, *) # €.
Thus either (moey, *) fulfils axiom A or Je # (moer, *) for which (e £ ez) or ~(eWe;). Now it
cannot be —(e W e1) since e # (moea,) implies moe W mpe;. Then it must be e # ez, which implies
moe 7 moez. We have now a triangle mgpe # moe; < mgeg in Sp. By axiom A , there exists e3 € Ej
s.t. (e3 < moeg & e3 # moe1) & (Vs # ez : s ~ mpes & s Wmger). Then (e3,) € (Eg X, Ey) is
such that ((es,*) < €3 & (e3,%) # €1) & Vr # (e3, %) :

-ifmr=esthenr <ex & r # ¢;

- if mor # ez then r ~ eg & r # ;.
Case 2: moep # mpe;. Again we want to prove A for the triangle eg # e; < eg. This is
straightforward. We have a corresponding triangle in Sy : 7oeq # moey < wpez. By axiom A
there exists e3 € Ep. (es < moey & e3 # moe;) and (Vs # e3 : s ~ mpez & s W mgep). Now if we
take (es,*) in(Ey X« E4), this is such that ((e3,%) < ez & (es,*) # e1) & Ve # (e3, *):

- if mpe =eg thene < ey & e # ¢;

-ifmpe# esthene~es & e# ¢

Case 3: mie; # mie;. Take again (moe1,%) as a candidate for e3 in A. We have now
(moe1,*) < ey and (mpes,*) # e;. Now either (moe1, *) fulfils axiom A, or Je # (moey, %) for
which (e £ e3) or =(e W e1). From e # (mpey, %) it follows that mge W mpe; and thus e # e;. Then
it must be e £ ez, whence mge £ 7mge;. Again we have a triangle moe # mge; < mgez in Sy, and
by axiom A there exists es € Eg s.t. (e3 < mgez & e3 # moe1) & (Vs # e3. 5 ~ moea & s W mpey).
Then (e3,*) € (Ep X, Ey) is such that ({es,*) < e; & (e3,%) # e1) & Vr # (e3, %):

-ifmor =egthenr <e; & r # ¢

- if mor # ez then r ~ eg & r # ¢;.

Another important operation on flow event structures is restriction. The standard construction
for restriction, as it features in CCS and in Winskel treatment of event structures, operates by
removing all events of a given set. In fact, this construction may affect quite drastically the
structure of a process, and, not surprisingly, it does not preserve property A. The following
is an example of a triangle introduced by usual restriction (one may regard this structure as
representing the CCS term ((a + ¢) | 2b)\c).

The definition of restriction proposed in [BC 88] for flow event structures is actually a different
one, which makes use of self-conflicting — or inconsistent — events. More precisely, restriction of
a flow event structure to a set of events E' is modelled by rendering inconsistent all events not
belonging to E'.

Definition 5 (Restriction) Let S = (E, #,<) be a flow event structure and E' C E. The
restriction of S to E' is the structure S |\ E' = (E, #', <) where:

e#'d <= (e#e)or (e=e¢ &edE)

It is easy to see that this operator of restriction preserves A, since it preserves events as well as
their relations with other events. Applying restriction to the previous example gives now:

where the triangle is still saturated (like before the restriction) as required by axiom A.

3 Interpreting constructs with flow event structures

Flow event structures are well-suited to model languages like CCS. Moreover, all CCS operators
turn out to preserve property A, thus we are sure to obtain the categorical product construction.
A complete definition of CCS operators on flow event structures may be found in [BC 88]. Here
we shall just give a reformulation of CCS parallel composition as a restricted parallel product.

Languages like CCS are parameterized on a set of actions L. To model processes in these
languages one uses event structures labelled on this set of actions. The synchronization discipline
of the language ~ which actions may combine together into a synchronization action — is expressed
by a synchronization algebra on the labels [Win 82].

We use here a variant of Winskel’s definition of synchronisation algebra, which seems more
convenient for our purposes. We define a synchronization algebra on a set of labels L to be of
the form (L, e ,w) with just one special element w € L. Here e is a commutative and associative
operation on L, used to yield labels for pairs of events, namely: I(z,y) =4.s {(2) #/(y). The role
of w is twofold:

- The label w is used for pairs of events (z,y) which represent forbidden synchronisations.
Such events must not occur in the parallel composition, and we express this fact by the
axiom: I(z,y) =w == (z,y) is inconsistent.

- Also, w is used to label the component * of an asynchrony pair — where one of the
components is * — i.e. the labelling function [is extended by the convention ! (*) = w. We
recall that # is not a real event, but just a notational device (and thus will never occur in
the set of events E of an event structure). Then an asynchrony pair of the form (*,€) or
(e,*) is allowed in the product if and only if I(e) ew # w.

This motivates the following definition:

Definition 6 An L-labelled flow event structure is a structure S = (B, #,<,1) where
(E, #,<) 1s a flow event structure and | : E — L is a labelling function over a set L of
labels such that w € L and l(e) =w => e#e.

Note that while all w-labelled events are inconsistent, there may still be inconsistent events
whose label is different from w.

The operations of product and restriction are extended to labelled structures in the obvious
way. In the product (Sp x S1) the label of an event e is defined to be lo(mo(e)) oIy (1 (€)). In the
restriction S | L', where L' C L, all events carrying a label in (L — L') are made inconsistent.

In CCS events are labelled by a,b, ... or their complements @,5b, ... or by the label 7. Let A
denote this set of labels and L = AU {w}. If z ranges over L the synchronisation algebra for
CCS is given by:

ToeWw =2

r, if b=a
aob:
w, if b#£a

The first clause needs a little explanation. If the w is already the label of an inconsistent event
(e.g. a forbidden synchronisation within a component), it may seem puzzling that zew = z
rather then zew = w. However in this case the event labelled z e w is made inconsistent by the
definition of product, and thus its label does not really matter. We have now the following:

Definition 7 (CCS pTOdUCt} Let SO = (E(), # 0,'<Q,Io) and SI = (El, # 1,<1,11) be labelled
flow event structures. Their parallel composition in CCS, noted (So || S1), is the labelled event
structure (So X S1) M (L — {w}).

It should be clear that the parallel composition operator || preserves axiom A, since it is defined
in terms of general product and restriction. Also, one may easily convince oneself that property
A is preserved by CCS operators like prefixing and nondeterministic sum (for which definition
we refer to [BC 88]). Hence the flow event structure semantics for CCS is compatible with a
categorical one.

We conclude with a short discussion about function space construction — or ezponentiation — on
flow event structures. In [Win 80, Win 87] Winskel explains how event structures may be used
to model programming languages with higher types. He uses to this purpose the category of
stable event structures with stable continuous functions as morphisms.

We would like to suggest here a simple definition of exponentiation on flow event structures,
which is a straight generalisation of the definition that was given in [Win 80] for prime event
structures. In fact for the purpose of defining exponentiation one would not need the full
generality of flow event structures: one could do with “prime” event structures having a partial
ordering of causality but not the properties of conflict heredity and finite causes: our construction
preserves the global nature of causality. However to build configurations one would still need
the general definition given here for flow event structures.

Definition 8 (Ezponentiation) Let Sy = (Eo, # 0,=<0) and S; = (Ey, # 1,<1) be flow event
structures. Their stable function space or exponentiation (Sy — S1) 1s the flow event structure
(E, #,<) with events consisting of pairs (X,e) where X is a finite configuration of Sg and
e € By, and with relations # and < given by:

X1 X' &e#e or
X1 X&X4£X &e=¢

o (X,e) < (X)) <= X' CX&e<¢

o (X,e) # (X',¢) <— {

Exponentiation does not preserve property A, as shown by the following example. Consider the
two event structures:

So S1
H
€0 €y €1
L -
i
€1

({eo},e1) ({eb},e1)

({60}163)

which does not satisfy axiom A since the only possible candidate for es in the axiom is
({0, €0}, €1), but then the requirement “for all e ...” is not fulfilled by ¢ = ({eo},€1)-

However we are now in a new category of flow event structures (different from that used to
interpret process constructors), hence property A is not as meaningful here.

10

4 Conclusions

It is worth noting that the triangle configuration which makes the product fail to be cate-
gorical is a rather particular one, where the conflict # does not coincide with the semantical
conflict #7 given by: e#ze' <= 7 configuration X s.t. {e, e’} C X. This problem obviously
does not arise with prime event structures. Structures where # = #7 are called faithful in
[Bou 88]. To be sure, one way to avoid the problem with A would be to restrict attention to
faithful event structures. Any flow event structure may be transformed — or normalised — into a
faithful one, having equal events and configurations. However restriction typically creates non
faithful structures, as it may be seen from the simple example (a.b)\a:

3

-

/

!
'
R4

o' R

Here the restriction introduces a self-conflict a #a while the semantical conflicts a#b and b#b
are left implicit.

An interesting point left to investigate is the exact relationship between the category of flow
event structures presented here and Winskel’s category of stable event structures.

Acknowledgements

The question of the compatibility of a flow event structure semantics with a categorical one was
raised during a discussion at Aarhus with Gérard Boudol, Mogens Nielsen and Glynn Winskel.
We would like to thank them for their interest and suggestions.

11

"
Y

P

5

References

[BC 88]

[Bou 88]

[DDM 88]

[GL 87]

[NPW 81]
[Vaa 89]
[Win 80]
[Win 82]

[Win 87]

G. BOUDOL, I. CASTELLANI. Permutation of transitions: an event structure
semantics for CCS and SCCS, in Proc. REX workshop on Linear Time, Branching
Time and Partial Orders in Logics and Models for Concurrency, LNCS 354, 1988.

G. BOUDOL. Computations of distributed systems. Part 1: Flow event structures
and flow nets, Draft, December 1988. To appear as an INRIA report.

P. DEGANO, R. DE NICOLA, U. MONTANARI. On the consistency of “truly
concurrent” operational and denotational semantics, in Proc. LICS 88, Edinburgh
1988.

U. GOLTZ, R. LOOGEN. A non-interleaving semantic model for nondeterministic
concurrent processes, Aachener Informatik-Berichte 87-15, RWTH Aachen, 1987.
To appear in Fundamenta Informaticae with the title Modelling nondeterministic
concurrent processes with event structures.

M. NIELSEN, G. PLOTKIN, G. WINSKEL. Petri nets, event structures and do-
mains, Part 1, Theoretical Computer Science 13, 1981.

F. VAANDRAGER. A4 simple definition for parallel composition of prime event struc-
tures, CWI Report CS-R89XX, 1989.

G. WINSKEL. Events in computation, PhD thesis, Comp. Sci. Dept., University of
Edinburgh, 1980.

G. WINSKEL. Event Structure Semantics for CCS and Related Languages, in Proc.
ICALP 82, LNCS 140, 1982.

G. WINSKEL. Event Structures, in Advances in Petri nets 1986, LNCS 255, 1987.

12

