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1 Introduction

Inheritance is one of the central concepts in object-oriented programming.
Despite its importance, there seems to be a lack of consensus on the
proper way to describe inheritance. This is evident from the following
review of various formalizations of inheritance that have been proposed.

The concept of prefizing in Simula [5], which evolved into the modern
concept of inheritance, was defined in terms of textual concatenation of
program blocks. However, this definition was informal, and only partially
accounted for more sophisticated aspects of prefixing like the pseudo-
variable this and virtual operations.

The most precise and widely used definition of inheritance is given by
the operational semantics of object-oriented languages. The canonical
operational semantics is the “method lookup” algorithm of Smalltalk:

When a message is sent, the methods in the receiver’s
class are searched for one with a matching selector. If none
is found, the methods in that class’s superclass are searched
next. The search continues up the superclass chain until a
matching method is found. ...

When a method contains a message whose receiver is self,
the search for the method for that message begins in the in-
stance’s class, regardless of which class contains the method
containing self. ...

When a message is sent to super, the search for a method
... begins in the superclass of the class containing the method.
The use of super allows a method to access methods defined
in a superclass even if the methods have been overridden in
the subclasses. [6, pp. 61-64]

Unfortunately, such operational definitions do not necessarily foster intu-
itive understanding. As a result, insight into the proper use and purpose
of inheritance is often gained only through an “Ahal” experience [1].
Cardelli [2] identifies inheritance with the subtype relation on record
types: “a record type T is a subtype (written <) of a record type 7’ if
7 has all the fields of 7/, and possibly more, and the common fields of 7
and 7' are in the < relation.” His work shows that a sound type-checking
algorithm exists for strongly-typed, statically-scoped languages with in-
heritance, but it doesn’t give their dynamic semantics. More recently,
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McAllister and Zabih [9] suggested a system of “boolean classes” similar
to inheritance as used in knowledge representation. Stein [16] focused on
shared attributes and methods. Minsky and Rozenshtein [10] character-
ized inheritance by “laws” regulating message sending. Although they
express various aspects of inheritance, none of these presentations are
convincing because they provide no verifiable evidence that the formal
model corresponds to the form of inheritance actually used in object-
oriented programming.

This paper presents a denotational model of inheritance. The model
is based upon an intuitive explanation of the proper use and purpose of
inheritance. It is well-known that inheritance is a mechanism for “differ-
ential programming” by allowing a new class to be defined by incremental
modification of an existing class. We show that self-reference complicates
the mechanism of incremental programming. In order for derivation to
have the same conceptual effect as direct modification, self-reference in
the original definition must be changed to refer to the modified definition.
This conceptual argument is useful for explaining the complex function-
ality of the pseudovariables self and super in Smalltalk.

Although the model was originally developed to describe inheritance
in object-oriented languages, it shows that inheritance is a general mech-
anism that is applicable to any kind of recursive definition.

Essentially the same technical interpretation of inheritance was discov-
ered independently by Reddy [12]. A closely related model was presented
by Kamin [8]. However, Kamin describes inheritance as a global opera-
tion on programs, a formulation that blurs scope issues and inheritance.

These duplications, by themselves, are evidence for the validity of the
model. This paper provides, in addition, a formal proof that the in-
heritance model is equivalent to the operational definition of inheritance
quoted above.

In Section 2 we develop an intuitive motivation of inheritance. In Sec-
tion 3 this intuition is formalized as a denotational model of inheritance.
In Section 4 we demonstrate the correctness of the model by proving
equivalence of two semantics of object-oriented systems, one based on
the operational model and the other based upon the denotational model.
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2 Motivating Inheritance

Inheritance is a mechanism for differential, or incremental, programming.
Incremental programming is the construction of new program compo-
nents by specifying how they differ from existing components. Incremen-
tal programming may be achieved by text editing, but this approach has
a number of obvious disadvantages. A more disciplined approach to in-
cremental programming is based upon using a form of “filter” to modify
the external behavior of the original component. For example, to define
a modified version of a function one simply defines a new function that
performs some special computations and possibly calls the original func-
tion. This simple form of derivation is illustrated in Figure 1, where P

is the original function, M is the modification, and the arrows represent
invocation.

client— M +— P

Figure 1: Derivation.

Incremental programming by explicit derivation is obviously more re-
strictive than text-editing; changes can be made either to the input passed
to the original module or the output it returns, but the way in which the
original works cannot be changed. Thus this form of derivation does not
violate encapsulation [15]: the original structure can be replaced with an
equivalent implementation and the derivation will have the same effect
(text-editing is inherently unencapsulated).

However, there is one way in which this naive interpretation of deriva-
tion is radically different from text-editing: in the treatment of self-
reference or recursion in the original structure. Figure 2 illustrates a
naive derivation from a self-referential component.

client — M b

Figure 2: Naive derivation from a recursive structure.




cient— M — P :

Figure 3: Inheritance.

Notice that the modification only affects external clients of the function
— it does not modify the function’s recursive calls. This naive derivation
does not represent a true modification of the original component. To
achieve the effect of a true modification of the original component, self-
reference in the original class must be changed to refer to the modification,
as illustrated in figure 3.

This construction represents the essence of inheritance: it is a mecha-
nism for deriving modified versions of recursive structures.

3 A Model of Inheritance

This section develops the informal account of inheritance into a formal
model of inheritance in object-oriented languages. Since manipulation of
self-reference was identified as a central feature of inheritance, inheritance
is explained within a traditional semantics of self-reference or recursion.

3.1 Fixed-Point Semantics

The fixed-point semantics of recursive programs, developed by Scott, [14],
provides the mathematical setting for the inheritance model. The tech-
nique of fixed point semantics is merely illustrated here; thorough intro-
ductory explanations are given by Stoy [17], Gordon [7], Scott [14], and
Schmidt [13].

To illustrate the use of fixed points for the analysis of recursive pro-
grams, consider the following definition of the factorial function:

fact = An.if n =1 then 1 else n x fact(n — 1)

From a mathematical point of view, this definition is not very satisfactory
because fact appears on both sides of the equation: the definition is
merely an equation that fact must satisfy. There is no guarantee that
any function satisfying this equation exists, and even less that there is a
unique one.



This problem is solved by fixed-point analysis, which indicates how to
construct the denotation of such self-referential definitions by “solving”
the equation given above. To use fixed-point techniques, the recursive
definition is transformed into a non-recursive form. First, the body of the
function is converted into an explicit abstraction, or function, in which
the parameter f is substituted for fact:

FACT =XAf.An.if n=1 then 1 else n x f(n — 1)

Functions derived in this way will be called generators. FACT is a func-
tional, or mapping from functions to functions. Its definition is not recur-
sive, because ‘FACT’ does not appear in its body. The formal parameter
f represents the function to call in order to compute the factorial of num-

bers less than n, if needed. The original definition of fact is then given
in terms of FACT:

fact = FACT (fact)

But now fact is defined as a value that is unchanged when FACT is
applied. Such a value is called a fized point, of FACT. Under certain
conditions, it is possible to define a particular fized point, the least fized
point, of any function by using the fized-point function, fix. The fixed-
point function has the property that if f = fix(F), then F(f) = f.
Another way to express the least fixed point, which is utilized later in
the paper, is as the limit of the series L, F(Ll), F(F(L)),.... For fix
to work the function F' must be continuous (our domains are cpos), a
condition that is satisfied by our definitions in the rest of the paper.

3.2 Self-referential Objects

The following example illustrates how fixed-point semantics is used to
describe the behavior of objects with mutually recursive methods. This
is essentially the standard interpretation of mutually recursive proce-
dures [18, 19]. The example involves a simple class of ‘points’ given
in Figure 4. Points have x and y components to specify their loca-
tion. The distFromOrig method computes their distance from the ori-
gin. closerToOrg is a method that takes another point object and returns
“true” if the point is closer to the origin than the other point, and “false”
otherwise.

Objects are modeled as record values whose fields represent methods
[12, 3]. The notation {l; +— vy, ..., I, + v, } represents a record




class Point(a, b)
method x = a

method y = b
method distFromOrig = sqrt(self.x? + self.y?)
method closerToOrg(p) = (self.distFromOrig < p.distFromOrig)

Figure 4: The class Point.

associating the value v; with label /;. Records may in turn be viewed
as finite functions from a domain of labels to a heterogeneous domain of
values. Selection of the field I from a record m is achieved by applying
the record to the label: m.l or m(l).

By using this model, the class Point is represented as a function that
creates objects. References to self in Point are explained using fixed
points. A function MakeGenPoint is defined to construct points and sup-
ply them with appropriate methods. Since points are self-referential,
they are explained as the fixed point of the “generator” of the methods.
MakeGenPoint, defined in Figure 5, is a function that takes the coordi-
nates of the new point and returns a generator, whose fixed point is a
point.

MakeGenPoint(a, b) = A self.
{ xm+ a,
y — b,
distFromOrig — sqrt(self.x? + self.y?),
closerToOrg +— Ap. (self.distFromOrig < p.distFromOrig) }

Figure 5: The generator associated with Point.

A point (3, 4) is created as shown in Figure 6. The closerToOrg function
takes a single argument which is assumed to be a point. Actually, all that
is required is that it be a record with a distFromOrig component, whose
value is a number.



p = fix(MakeGenPoint(3,4))
{ x+ 3,
y = 4,
distFromOrig +— 5,
closerToOrg — Ap. (5 < p.distFromOrig) }

Figure 6: A point at location (3,4).

3.3 Class Inheritance

Inheritance allows a new class to be defined by adding or replacing meth-
ods in an existing class. In the following example, the Point class is
inherited to define a class of circles. Circles have a radius and thus a
different notion of distance from the origin. The definition in Figure 7
gives only the differences between circles and points.

This form of inheritance is modeled as an operation on generators.
There are three aspects to this process: (1) the addition or replacement
of methods, (2) the redirection of self-reference in the original generator
to refer to the modified methods, and (3) the binding of super in the
modification to refer to the original methods.

The modifications effected during class inheritance are naturally ex-
pressed as a record of methods to be combined with the inherited meth-
ods. The new methods M and the original methods O are combined into
a new record M @ O such that any method defined in M replaces the
corresponding method in O.

The modifications, however, are also defined in terms of the original
methods (via super). In addition, the modifications refer to the resulting
structure (via self). Thus a modification is naturally expressed as a func-
tion of two arguments, one representing self and the other representing
super, that returns a record of locally defined methods. Such functions
will be called wrappers. A wrapper contains just the information in the
subclass definition. The wrapper for the subclass Circle is given in Fig-
ure 8.

The other aspect of inheritance that must be formalized is the change
of self-reference in inherited methods. The methods to be inherited are
contained in a generator, a function whose argument is used for self-
reference in the methods. The result of inheritance should be a new class
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class Circle(a, b, r) inherit Point(a, b)
method radius = r

method distFromOrig = max(super.distFromOrig — self.radius, 0)

Figure 7: The class Circle.

CircleWrapper = Aa,b, 7. Aself. Asuper.
{ radius — 7,
distFromOrig — max(super.distFromOrig — self.radius, 0) }

Figure 8: The wrapper associated with Circle.

definition, that is, a new generator.

This mechanism is provided by wrapper application. A wrapper is
applied to a generator to produce a new generator by first distributing self
to both the wrapper and the original generator. Then the modifications
defined by the wrapper are applied to the original record definition to
produce a modification record. This is then combined with the original
record using ®. The mechanism of wrapper application is defined by the
infixed written inheritance operator [I>] as follows:

W [>] P = Aself. (W(self)(P(self)) & P(self)

Note that two occurrences of P refer to the same behavioral denotation,
and do not indicate that the parent is instantiated twice. The mechanism
of wrapper application is illustrated in Figure 9.

The generator which represents the class Circle can now be defined
by wrapper application of CircleWrapper to MakeGenPoint, as shown in
Figure 10. The figure also shows the partial expansion of the expression
into a form that represents what one might write if circles had been
defined without using inheritance. Note that distFromOrig has changed
in such a way that closerToOrg will use the notion of distance for circles,
instead of the original one for points. Thus inheritance has achieved a
consistent modification of the point class.
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Figure 9: Wrapper application.

MakeGenCircle
= Aa,b,r. CircleWrapper(a,b,r) MakeGenPoint(a, b)
= Aa,b,r. Aself.
{ x— q,

y — b,
radius — 7,
distFromOrig — max(0, sqrt(self.x* + self.y?) — self.radius),
closerToOrg — Ap.(self.distFromOrig < p.distFromOrig) }

Figure 10: The generator associated with Circle.

4 Correctness of the Model

To show the correctness of the inheritance model, we prove that it is
equivalent to the definition of inheritance provided by the operational se-
mantics of an object-oriented language. We introduce method systems as
a useful framework in which to prove correctness. Two different seman-
tics for method systems are then defined, based on the operational and
denotational definitions of inheritance. Finally we prove the equivalence
of the two semantics.

4.1 Method Systems

Method systems are a simple formalization of object-oriented program-
ming which support semantics based upon both the operational and the
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Method System Domains
Instances p € Instance
Classes k € Class
Messages m € Key
Primitives f € Primitive
Methods e € Exp:= self | super | arg
legrmey| fler, ..., e

Method System Operations
class : Instance — Class
parent : Class — (Class + 7)
methods : Class — Key — (Exp + ?)

Figure 11: Syntactic domains and interconnections.

denotational models of inheritance. Method systems encompass only
those aspects of object-oriented programming that are directly related
to inheritance, or method determination. As such, many important as-
pects are omitted, including instance variables, assignment, and object
creation.

A method system may be understood as part of a snap-shot of an
object-oriented system. It consists of all the objects and relationships
which exist at a given point during execution of an object-oriented pro-
gram. The basic ontology for method systems includes instances, classes,
and method descriptions, which are mappings from message keys to
method expressions. Each object is an instance of a class. Classes have
an associated method description and may inherit methods from other
classes. These (flat) domains and their interconnections are defined in
Figure 11. An illustration of a method system is provided in Figure 12.

The syntax of method expressions is defined by the Exp domain. This
domain defines a restricted language used to implement the behavior of
objects. For simplicity, methods all have exactly one argument, which
is referenced by the symbol arg within the body of the method. Self-
reference is denoted by the symbol self, which may be returned as the
value of a method, passed as an actual argument, or sent additional mes-
sages. A subclass method may invoke the previous definition of a rede-
fined method with the expression super. Message-passing is represented
by the expression e; m ey, in which the message consisting of the key m
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O Class

I Instance ] — ----E
— parent g

"""" ethods
— class

Figure 12: A method system.

and the argument ey is sent to the object e;. Finally, primitive values and
computations are represented by the expression f(e1, ..., €;). If ¢ = 0,
then the primitive represents a constant.

class gives the class of an instance. Every instance has exactly one
class, although a class may have many instances.

parent defines the inheritance hierarchy which is required to be a tree.
For any class x, the value of parent(x) is the parent class of , or else L,
if k is the root. ? is a 1-point domain, consisting of only L. The use of
(Class + 7) allows us to test monotonically whether a class is the root.
Note that + denotes “separated” sum, so that the elements of (Class+?)
are (distinguished copies of) the elements of Class, the element L, and
a new bottom element. We will omit the injections into sum domains; the
meaning of expressions, in particular L¢, will always be unambiguously
implied by the context.

methods specifies the local method expressions defined by a class. For
any class xk and any message key m, the value of methods(x)m is either an
expression or L» if K doesn’t define an expression for m. Let us assume
that the root of the inheritance hierarchy doesn’t define any methods.
Note that inheritance allows instances of a class to respond to more than
the locally defined methods.

In the following two sections we give the method system both a con-
ventional method lookup semantics and a denotational semantics. Both
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define the result of sending a message to an instance.

4.2 Method Lookup Semantics

The method lookup semantics given in Figure 14 closely resembles
the implementation of method lookup in object-oriented languages like
Smalltalk [6]. It is given in a denotational style due to the abstract na-
ture of method systems. A more traditional operational semantics is not
needed because of the absence of updatable storage.

The domains used to represent the behavior an of instance are defined
in Figure 13. A behavior is a mapping from message keys to functions or
L. This is clearly contrasted with the methods of a class, which are given
by a mapping from message keys to ezpressions or L,. Thus a behavior
is a semantic entity, while methods are syntactic. Another difference
between the behavior of an instance and its class’ methods is that the
behavior contains a function for every message the class handles, while
methods associate an expression only with messages that are different
from the class’ parent. In the rest of this paper, L (without subscript)
denotes the bottom element of Behavior.

Semantic Domains

Number
a € Value = Behavior + Number
o,m € Behavior = Key — (Fun + 7?)
¢ € Fun = Value — Value

root : Class — Boolean

root(x) = [A k' € Class. false,
Av € 7. true
\(parent(x))

Figure 13: Semantic domains and root.

The semantics also uses an auxiliary function root which determines
whether a class is the root of the inheritance hierarchy, defined in Fig-
ure 13. Boolean is the flat 3-point domain of truth values. [f,g] denotes
the case analysis of two functions f € Dy — t and g € D, — t with result
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send : Instance — Behavior
send(p) = lookup(class(p))p

lookup : Class — Instance — Behavior
lookup(r)p = Am € Key.[\e € Exp. do[e]pr,
Av € 7.if root(k)
then L,
else lookup(parent(x))pm
|(methods(x)m)

do : Exp — Instance — Class — Fun

do[self]px = Ao send(p)

do[ superJpx = X . lookup(parent(x))p

do[arg]pr = da.

do[e1 m es]pr = Aav. (do[ e1 | prcr)m(do] ey | prcr)

do[ f(e1, ..., eg)]pk = Ao f(do[ e ]pray, ..., do[e,]pra)

Figure 14: The method lookup semantics.

n type t, mapping z € Dy + D, to f(x) if € Dy or to g(z) if z € D,.

Sending a message m to an instance p is performed by looking up the
message in the instance’s class. The lookup process results in a function
that takes a message key and an actual argument and computes the value
of the message send.

Performing message m in a class k on behalf of an instance p involves
searching the sequence of class parents until a method is found to handle
the message. This method is then evaluated. In lookup, the instance and
message remain constant, while the class argument is recursively bound to
each of the parents in sequence. At each stage there are two possibilities:
(1) the message key has an associated method expression in class x, in
which case it is evaluated, and (2) the method is not defined, in which
case a recursive call is made to lookup after computing the parent of the
class. The tail-recursion in lookup would be replaced by iteration in a
real interpreter.

Evaluation of methods is complicated by the necessity to interpret oc-
currences of self and super. The do function has three extra arguments,
besides the expression being evaluated: the original instance p which re-
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ceived the message whose method is being evaluated, the class  in which
the method was found, and an actual argument o.. The expression self
evaluates to the behavior of the original instance. The expression super
requires a continuation of the method search starting from the superclass
of the class in which the method occurs. The expression arg evaluates to
«. The expression e; m ey evaluates to the result of applying the behavior
of the object denoted by e; to m and the meaning of the argument es.
One important aspect of the method lookup semantics is that the func-
tions are mutually recursive, because do contains calls to send and lookup.

4.3 Denotational Semantics

The denotational semantics based on generator modification given in Fig-
ure 16 uses two additional domains representing behavior generators and
wrappers, defined in Figure 15. A formal definition of @ is also given in
Figure 15.

The behavior of an instance is defined as the fixed-point of the gen-
erator associated with its class. The generator specifies a self-referential
behavior, and its fixed-point is that behavior. The generator of the root
class produces a behavior in which all messages are undefined.

Generator Semantics Domains
Generator = Behavior — Behavior
Wrapper = Behavior — Generator

@ : (Behavior x Behavior) — Behavior
r1@ry=Am e Key.[A¢ € Fun. ¢,
Av € 7.r9(m)
Jri(m)

Figure 15: Semantic Domains and @.

The generator of a class which isn’t the root is created by modifying the
generator of the class’ parent. The modifications to be made are found in
the wrapper of the class, which is a semantic entity derived from the block
of syntactic method expressions defined by the class. These modifications
are effected by the inheritance operator [I>].
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behave : Instance — Behavior
behave(p) = fix(gen(class(p)))

gen : Class — Generator

gen(k) = if root(x)
then Ao € Behavior.\m € Key . 1,
else wrap(x) [ >] gen(parent(x))

wrap : Class — Wrapper

wrap(k) = Ao.A7m.Am € Key.[\e € Exp.eval[e]on
AveET. Lo
|methods(k)m

eval : Exp — Behavior — Behavior — Fun

eval[self Jor = Aa. o

eval[superor = Aa. 7

eval[argJomr = Ao .«

eval[e; m ez Jom = Ao (eval[e; Jora)m(eval] ez Jora)

eval[ f(e1, ..., e)Jor = Xa. f(eval[ei Jora, ..., eval[e,]oma)

Figure 16: The denotational semantics.

The function wrap computes the wrapper of a class as a mapping from
messages to the evaluation of the corresponding method, or to L,. A
wrapper has two behavioral arguments, one used for self-reference, and
the other for reference to the parent behavior (i.e. the behavior being
‘wrapped’). These arguments may be understood as representing the
behavior of self and the behavior of super. In the definitions, the behavior
for self is named ¢ and the one for super is named 7.

The evaluation of a method is always performed in the context of a
behavior for self (represented by o) and super (represented by m). The
evaluation of the corresponding expressions, self and super, is therefore
simple. The evaluation of the other expressions is essentially the same as
in the method lookup semantics.

Note that each of the functions in the denotational semantics are re-
cursive only within themselves: there is no mutual recursion among the
functions, except that which is achieved by the explicit fixed-point.
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4.4 Equivalence

"The method lookup semantics and the denotational semantics are equiv-
alent because they assign the same behavior to an instance. This propo-
sition is captured by theorem 1.

Theorem 1 send = behave

In the proof of the theorem we use an “intermediate semantics”, defined
in Figure 17, that is inspired by the one used by Mosses and Plotkin [11]
in their proof of limiting completeness. The semantics uses n € Nat, the
flat domain of natural numbers.

The intermediate semantics resembles the method lookup semantics
but differs in that each of the syntactic domains of instances, classes,
and expressions has a whole family of semantic equations, indexed by
natural numbers. The intuition behind the definition is that send’,p allows
(n—1) occurrences of self on its way before it stops and gives L. In fact,
we define send, p in terms of send,_,p via lookup], and do!, because the
self expression evaluates to the result of send],_,p which allows one less
occurrence of self. (Noticing that the values of Iookup! kp and do![e]pra
are irrelevant, we let them be L.)

The following four lemmas state useful properties of the intermediate
semantics. Here we only outline their proofs, leaving the full proofs to
the appendix.

Lemma 1 Ifn > 0 then
doy[e]pr = eval[e](send,_, p)(lookup!,(parent(x))p)

PROOF: By induction in the structure of e, using the definitions of do’
and eval.

Lemma 2 Ifn > 0 then lookup)kp = gen(x)(send],_, p)

PROOF: By induction in the number of ancestors of k, using the definitions
of gen, , @, and wrap, Lemma 1, and the definition of Iookup'.

Lemma 3 send,,p = (gen(class(p)))"(L)

PROOF: By induction in n, using Lemma 2 and the definition of send’.
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send’ : Nat — Instance — Behavior
send, (p) = L
send, (p) = lookup|,(class(p))p n> 0

lookup’ : Nat — Class — Instance — Behavior
lookuplrkp = L
if n > 0 then
lIookup,kp = Am € Key .[Ae € Exp.do,[e]px,
Av € 7. if root(k)
then 1,

else lookup],(parent(x))pm
|(methods(k)m)

do’ : Nat — Exp — Instance — Class — Fun
doj[e]prk = Aa. L
if n > 0 then
do,[self]px = Na. send’,_ p
doy, [super]pk = X . lookup), (parent(k))p
do,[arg]pk = Ao .«
dop[er m e ]pr = Ao (doj[ e1 ] prar)m(dol,[ e3 ] prcy)
do,[f(e1, ..., e))Jpr = Na.f(do}[e1]pra, ..., do.[e,]prc)

Figure 17: The intermediate semantics.

Lemma 4 send', lookup’, and do’ are monotone functions of the natural
numbers with the usual ordering.

PROOF: Immediate from Lemma 1-3.

Lemma 4 expresses that the family of send)’s is an increasing sequence
of functions.

Definition 1
interpret : Instance — Behavior; interpret = ||,(send!,)

The following three propositions express the relations among the method
lookup semantics, the intermediate semantics, and the denotational se-
mantics.
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Proposition 1 interpret = behave

PROOF: The following proof uses the definition of interpret, Lemma 3,
the fixed-point theorem, and the definition of behave.

interpret(p) = L, (send,(p))
= Un(gen(class(p)))"(L)

= fix(gen(class(p)))
= behave(p)

QED
Proposition 2 send J behave

PROOF: The following facts have proofs that are analogous to those of
Lemma 1-2 (we omit the proofs).

1. do[e]pr = eval[e](send(p))(lookup(parent(x))p)

2. lookup(k)p = gen(x)(send(p))

From the definition of send and the second fact we get send(p) =
lookup(class(p))p = gen(class(p))(send(p)). Hence send(p) is a fixed-
point of gen(class(p)). The definition of behave expresses that behave(p)
is the least fixed-point of gen(class(p)), thus send(p) 3 behave(p). QED

Proposition 3 send C interpret

PROOF: The functions defined in the method lookup semantics are mu-
tually recursive. Their meaning is the least fixed-point of the generator
g which is defined in the obvious way as outlined below.

D = (Instance — Behavior)
X (Class — Instance — Behavior)
X (Exp — Instance — Class — Fun)

Let g : D — D be defined by
g(s,1,d) = (Xi € Instance. (class(p))p,...,...)

Now we can prove by induction in n that g"(_Lp) C (send,,, lookup’,, do’).
In the base case, where n = 0, the inequality trivially holds. Then assume
that the inequality holds for (n—1), where n > 0. The following proof
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of the induction step uses the associativity of function composition, the
induction hypothesis, and Lemma 4.

9"(Lp) 9(9"*(Lp))
C g(send,_,,lookup! ., do,_,)
C

(send,,, lookup),, do,)

Now (send, lookup, do) = fix(g) = I, ¢"(Lp) C U (send,, lookup),, do’)
and in particular send C |l,(send!) = interpret. QED

PROOF of theorem 1: Combine propositions 1-3. QED

5 Conclusion

A denotational semantics of inheritance was presented, using a general
notation that is applicable to the analysis of different object-oriented
languages [4]. The semantics was supported by an intuitive explanation
of inheritance as a mechanism for incremental programming that simu-
late destructive modification. An explanation of the binding of self- and
super-reference was given at this conceptual level. To provide evidence
for the correctness of the model, it was proven equivalent to the most
widely accepted definition of inheritance, the 0perat10na1 method-lookup
semantics used in object-oriented languages.

In comparing the denotational semantics with the operational seman-
tics, the denotational one does not seem to be much simpler. It may even
be argued that it is a great deal more complex, because it requires an un-
derstanding of fixed-points. The primary advantage of the denotational
semantics is the intuitive explanation it provides. It suggests that inher-
itance may be useful for other kinds of recursive structures, like types
and functions, in addition to classes. Another important advantage of
the denotational semantics is a demonstration that inheritance, while a
natural extension of existing mechanisms, does provide expressive power
not found in conventional languages by allowing more flexible use of the
fixed-point function.

Acknowledgement. The authors would like to thank Peter Mosses for
helpful comments on the second part of the paper, and John Mitchell for
comments on an earlier draft.
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Appendix: Proofs of Lemmas

In this appendix we give the full proofs of Lemma 1-4.

PROOF of Lemma 1: Recall that we want to prove, for n > 0, that

do[e]pr = eval] e](send,,_,p)(Iookup,,(parent(x))p)

by induction in the structure of e. The base case is proved as follows.

do, [ self | pra

send)_,p
eval[ self | (send, _, p)(lookup;,(parent(x))p)x

do),[ super ] pra

lookup|,(parent(x))p
21



= eval[super](send,_, p)(lookup/,(parent(x))p)c
4o} [arg]ora
= «

= eval[arg](send,_, p)(lookup,(parent(x))p)c

n—

The induction step is proven below using the abbreviation 7 =
lookupy,(parent(x))p.

do,[e1 m ex]pra
= do, [ e1 |pram(do,[ ey ]pra)
= eval[e;[(send,_,p)ram(eval]e;](send,_,p)ra)

= eval[e; m ey ](send, ,p)ra

do,[ f(e1, ..., e;)]pra
= f(doy[ei]pre, ..., do)[e,]pra)
= f(eval[e;](send,_,p)ra, ..., eval[e,](send, ,p)ra)
= eval| f(e1, ..., e;)](send,_,p)rc

QED

PROOF of Lemma 2: Recall that we want to prove lookup.kp =
gen(k)(send,_, p), where n > 0, by induction in the number of ances-
tors of k. In the base case, where x is the root, both sides evaluate to
(Am € Key. 1s) because x doesn’t define any methods. Then assume
that the lemma holds for parent(x). The proof of the induction step given
below uses the definition of gen (x isn’t the root), the definition of [>],
the induction hypothesis, the definitions of @ and wrap, the properties of
case analysis, Lemma 1, and the definition of Iookup' (x isn’t the root).
Note that we use the abbreviation m = lookup),(parent(x))p.

gen(r)(send,_, p)
= (wrap(x) [ >] gen(parent(x)))(send.,_. p)
— (wrap(x)(send;,_,p)(gen(parent(x))(send’,_,p))

®(gen(parent(r))(send, _, p))
= (wrap(x)(send,_,p)7)® 7
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= Am € Key.[A¢ € Fun. ¢,
AvET.TM
(wrap(x)(send,,_, p)7m)
= Am € Key.[A¢ € Fun. ¢,
Av ET.tm
J([Ae € Exp. eval[ e](send,_,p),
Ave?. L,
|(methods(k)m))

= Am € Key.[\e € Exp.eval[e](send,,_,p)r,

Av ET.mm
|(methods(k)m)

= Am € Key.[Ae € Exp.do,[e]p~,
AvET.Tm
|(methods(k)m)

= lookup],(k)p
QED

PROOF of Lemma 3: Recall that we want to prove send.p =
(gen(class(p)))"(L) by induction in n. In the base case, where n = 0,
both sides evaluate to L. Then assume that the lemma holds for (n—1),
where n > 0. The following proof of the induction step uses the associa-
tivity of function composition, the induction hypothesis, Lemma 2, and
the definition of send’.

(gen(class(s)))"(L)

— gen(class(p))((gen(class(0)))"~*(L))
= gen(class(p))(send,_, p)

= lookup, (class(p))p

= send p

QED

PROOF of Lemma 4: We must prove that send’, lookup’, and do’ are
monotone functions of the natural numbers with the usual ordering. From
Lemma 3 it follows that send’ is monotone. Then, if n < m we have
lookup! kp = gen(x)(send),_,p) C gen(x)(send], ,p) = lookup! rkp using
Lemma 2, that send’ is monotone, and Lemma 2 again. Finally, we can
in the same way prove that do’ is monotone using Lemma 1, that send’
and lookup’ are monotone, and Lemma 1 again.

QED
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