Virtual Classes
— a powerful mechanism in
object-oriented programming

Ole Lehrmann Madsen
Birger Mgller-Pedersen

DAIMI PB - 283
August 1989

ISSN 0105-8517

AARHUS UNIVERSITY | h—ﬁ
COMPUTER SCIENCE DEPARTMENT]

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK

Telephone: + 4586 1271 88 Telex: 64767 aausci dk |

Virtual Classes
A powerful mechanism in
object-oriented programming*

Ole Lehrmann Madsen
Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark
TIf.: +45 6 12 71 88 - E-mail: olmadsen@daimi.dk

Birger Mgller-Pedersen
Norwegian Computing Center
P.O. Box 114, Blindern, N-0314 Oslo 3, Norway
TIf.: 447 2 45 35 00 - E-mail: birger@nr.uninett.no

August 7, 1989

*To be presented at 1989 ACM SIGPLAN Fourth Annual Conference On Object Oriented
Programming, Systems, Languages, and Applications, 2-6 October 1989, Hyatt Regency, New
Orleans, Louisiana, USA

Abstract

The notions of class, subclass and virtual procedure are fairly well un-
derstood and recognized as some of the key concepts in object-oriented
programming. The possibility of modifying a virtual procedure in a sub-
class is a powerful technique for specializing the general properties of the
superclass.

In most object-oriented languages, the attributes of an object may be
references to objects and (virtual) procedures. In Simula and BETA it is
also possible to have class attributes. The power of class attributes has not
yet been widely recognized. In BETA a class may also have virtual class
attributes. This makes it possible to defer part of the specification of a
class attribute to a subclass. In this sense virtual classes are analogous to
virtual procedures. Virtual classes are mainly interesting within strongly
typed languages where they provide a mechanism for defining general pa-
rameterized classes such as set, vector and list. In this sense they provide
an alternative to generics.

Although the notion of virtual class originates from BETA, it is pre-
sented as a general language mechanism.

Keywords: languages, virtual procedure, virtual class, strong typing, pa-

rameterized class, generics, BETA, Simula, Eiffel, C4+, Smalltalk

1 Introduction

The notions of class and subclass are some of the key language concepts
associated with object-oriented programming. Classes support the classi-
fication of objects with the same properties, and subclassing supports the
specialization of the general properties. A class defines a set of attributes
associated with each instance of the class. An attribute may be either an
object reference (or just reference for short) or a procedure.

In a subclass it is possible to specialize the general properties defined
in the superclass. This can be done by adding references and /or proce-
dures. However, it is also possible to modify the procedures defined in
the superclass. Modification can take place in different ways. In Simula
67 [4] a procedure attribute may be declared virtual. A virtual procedure
may then be redefined in a subclass. A non-virtual procedure cannot be
redefined’. This is essentially the same scheme adapted by C++ [16] and
Eiffel [13]. In Smalltalk [6] any procedure is virtual in the sense that it
can be redefined in a subclass, and even the parameters of a procedure
may be redefined.

In BETA [8] a virtual procedure cannot be redefined in a subclass,
but it may be further defined by an eztended definition. The extended
procedure is a “subprocedure” (in the same way as for subclass) of the
procedure defined in the superclass. This implies that the actions of a
virtual procedure definition are automatically combined with the actions
of the extended procedure in a subclass. This is the case for all levels of
subclasses that further defines a virtual procedure. In Smalltalk and C++
it is the responsibility of the programmer to combine a redefined virtual
procedure with the corresponding virtual procedure of the superclass.
This is of course more flexible, since the programmer can ignore the
procedure in the superclass. However, it is also a potential source of
error since the programmer may forget to execute the virtual procedure
from the superclass.

Using the terminology from [18] a class in BETA is structural com-
patible with its superclass whereas a Smalltalk class is name compatible
with its superclass. Behavioral compatibility can only be obtained by
proving that the further definitions do not not violate the invariants of
the superclass. For a more detailed discussion of virtual procedures in

'In Simula a subclass may declare a new procedure with the same name as a procedure
defined in a superclass. This does not have the effect of a redefinition as in Smalltalk.

3

BETA see [9].

Simula and BETA are block-structured languages. This implies that
classes and procedures can be arbitrarily nested. I.e. in Simula and
BETA an object may have class attributes in addition to references and
procedures. In [10] the usefulness of class attributes is discussed.

The subject of this paper is the introduction of the notion of wirtual
class®. A virtual class is similar to a virtual procedure in the sense that it
may be extended in a subclass. Virtual classes are useful for defining ”pa-
rameterized” general classes within a strongly typed language. Examples
of such classes are sets, vectors and lists. Decisions about the element
type of such classes should be deferred to the subclasses of the general
class. The notion of virtual procedure makes it possible to defer part of
the definition of a procedure to a subclass. In the same way a virtual
class makes it possible to defer part of the definition of the type of refer-
ences (instance variables). Virtual classes may be seen as an alternative
to ”"generic” types as found in Ada and Eiffel.

The notion of virtual class is introduced in the context of strongly
typed languages. The modification of a virtual class in a subclass should
then be structurally compatible with the definition of the virtual class
in the superclass. As for virtual procedures, a virtual class cannot be
redefined in a subclass, but its definition may be extended.

The notion of virtual class has been developed as part of the BETA
language. It is a consequence of the unification of classes, procedures,
functions and types into one general abstraction mechanism, the pattern.
The implications of this have been discussed elsewhere [8, 9]. As there
is only one language mechanism for classes and procedures, the notion
of subpattern applies equally well to classes and procedures. The notion
of virtual pattern was developed as a generalization of the Simula notion
of virtual procedure. Since a pattern may also be used as a class, this
generalization was designed to include the notion of virtual class.

The notion of virtual class is, in this paper, introduced as a general
language mechanism. It is attempted to present the idea as independent
of BETA as possible. The language used in this paper is a modified
version of BETA with two kinds of patterns: classes and procedures. In
addition a certain amount of syntactic sugar has been added. The very
terse syntax of BETA can often be a hindrance for readers unfamiliar

?The notion of virtual class introduced here has nothing to do with the notion of virtual class
defined in [17]

CC: class C (# Decli; Decl2; ...; Decln #)

Figure 1: Class declaration

with BETA. All the examples in the paper can be expressed in BETA by
a simple replacement of keywords.

The notion of virtual class will be compared with generics as found
in Ada and with the type system of Eiffel including the simple generics.

Certain language aspects of object-oriented languages will be ignored
since they are irrelevant for this paper. This includes the notion of infor-
mation hiding. Another aspect is the discussion of code sharing versus
types. Subclassing is very often used for code sharing; the term inher-
itance underlines this. As pointed out in [2], this usage of subclassing
may be conflicting with defining types. We tend to agree with this. How-
ever, in BETA subclassing is intended for modelling types (or concepts).
The Mjglner BETA System [5] includes facilities for separating a class
definition from its implementation.

2 Classes and virtual procedures

In this section the notation for classes, procedures and virtual procedures
will be presented.

2.1 Class and subclasses

A class definition has the form described in Figure 1. It is a declaration of
a class cc with superclass ¢. (If no superclass is specified, the superclass
is Object.) Decli; Decl2; ... Decln are declarations of attributes. An
instance of cc will have these attributes in addition to those inherited
from c. An attribute may be either a reference (to an object), a (virtual)
procedure or a (virtual) class.

In Figure 2 an example of a class is given. Class Window is described
as a subclass of class Stream. In addition to the attributes inherited from
Stream, it contains two static references UpperLeft and LowerRight, one dy-
namic reference Label, a procedure attribute Move and a virtual procedure
attribute Display.

Window: class Stream
(# UpperLeft,LowerRight: @ Point;
Label: = Text;
Move: proc (# ... #);
Display: virtual proc (# ... #);
#)

Figure 2: Example of class declaration

The dynamic reference Label may denote instances of class Text and
its subclasses. A dynamic reference may denote different objects during
its life-time. In this way they are similar to qualified references in Simula,
instance variables in Smalltalk, and non simple variables in Eiffel.

A static reference denote part-objects. A static reference will con-
stantly denote the same object during the life-time of the enclosing object.
Part objects are generated together with the generation of the enclosing
object. A window object will thus have two part-objects of class Point.

References have an associated “type” in the form of a class name.
This class name will be referred to as the qualification of the reference.
The reference Label is e.g. qualified by Text.

A reference assignment has the form

aTextObject[] -> aWindow.Labell[]

which has the effect that the object denoted by aTextObject is also de-
noted by the Label reference attribute of the object denoted by awindow.
The source denotation is an example of a remote identifier used to iden-
tify attributes of objects. Remote identifiers are also used for denoting
procedure and class attributes.

As thoroughly discussed in [13], the difference between “reference”
and “value” semantics of assignment and equality is important. BETA
has both forms. A value assignment has the form:

aTextObject -> aWindow.Label

which describes that a “copy”® of the object aTextObject is assigned to
aWindow.Label. As it may be seen, the syntax clearly distinguishes between
reference and value assignment. The box [] indicates that the reference
is assigned. In this paper value assignment is used for simple classes like
Integer. Otherwise reference assignment is used.

3In [8] it is described what is actually meant by “copy”

6

PP: proc P
(# Decli; Decl?2; ...; Decln
enter In
do Imp
exit Out
#)

Figure 3: Procedure Declaration

OpenRecord: proc
(# ID: "Text; R: “Record
enter ID[]
do ID[] -> theDataBase.Open -> R[];
INNER;
R.Close
#);
OpenWritableRecord: proc OpenRecord
(# do R.Lock; INNER; R.Free #);
Foo: proc OpenWritableRecord
(#
do someDatal[] -> R.put
#)

Figure 4: Example of prefixed procedure

2.2 Procedures and subprocedures

A procedure declaration has the form described in Figure 3. The
procedure PP is a subprocedure of the procedure p. As for classes, Declt,
Decl2,... Decln describe a set of attributes associated with a procedure
object in addition to those inherited from the superprocedure. The enter-
part (enter In) describes the input parameters, the do-part (do Imp) de-
scribes the actions to be executed and the exit-part (exit out) describes
the output parameters. A subprocedure will have enter/exit lists that
are the concatenations of the lists from the superprocedure and the lists
specified for the subprocedure.

In Figure 4 three procedure declarations are shown. OpenWritableRecord
is a subprocedure of openRecord and Foo is a subprocedure of OpenWiritableRecord

The INNER construct enables the actions of the superprocedure to be
combined with the actions of the main part of the procedure. Consider
the following procedure call:

someId[] -> Foo
An execution of Foo proceeds as follows:

1. An instance of Foo (a procedure-object) is created.
2. The actual input parameter (someId) is assigned to the reference 1.
3. Foo is executed:

(a) Execution starts with the actions of the topmost superclass,
l.e. OpenRecord.

(b) Execution of INNER in OpenRecord will imply execution of the
actions in the subprocedure, i.e. OpenWritableRecord.

(c) Execution of INNER in OpenWritableRecord will imply execution
of the actions in Foo.

(d) After execution of the actions in Foo, the actions following
INNER in OpenWritableRecord and OpenRecord will be executed
in that order.

Execution of Foo implies thus that the following sequence of actions is
executed:

ID[] -> theDataBase.Open -> R[];
R.lock;
someDatal[] -> R.put;
R.Free;
R.Close

2.3 Virtual procedures

A procedure attribute may be specified to be virtual. This implies that
its definition may be extended in a subclass of the class in which it is
virtual. The extended virtual procedure will have the virtual procedure
from the superclass as a superprocedure. A virtual procedure that has
been extended is still virtual in the sense that it can be further extended
in subclasses.

Consider the classes defined in Figure 5. The Display-procedure of a
Person-object will be a subprocedure of the pisplay-procedure defined in
class Record. Execution of P.Display will imply execution of Key.Display,
Name.Display, Sex.Display, and possibly more since P is known to denote
at least Person-objects.

Record: class
(# Key: “KeyType;
Display: virtual proc
(#
do Key.Display; INNER;
#)
#);
Person: class Record
(# Name: "Text; Sex: “SexType;
Display: extended proc
(#
do Name.Display; Sex.Display; INNER
#)
#);
P: “Person

Figure 5: Classes with virtual procedures

2.4 Classes as attributes

As mentioned above an object may have class-attributes. As an exam-
ple of class attributes consider Figure 6 which is the grammar example
from [10]. Class Grammar describes the structure of grammar objects.
Part of the description of a grammar is the notion of symbol associated
with a grammar. The class attribute symbol describes the structure of
symbols associated with a particular Grammar-instance. In the example
two Grammar instances are declared: AdaGram and PascalGram. Each of these
Grammar objects has an associated symbol class as an attribute. It is possi-
ble to declare instances of the class AdaGram.Symbol. In the example the
references s1 and s2 denote such objects. Similarly it is possible to declare
instances of class PascalGram.Symbol, in the example x1 and x2. By declar-
ing Symbol local to Grammar it is possible to distinguish between symbols
from different grammars. s1, s2 and X1, X2 are not instances of the same
class. Also a symbol class has no existence without a grammar object.
From a modelling point of view this seems intuitively correct. From a
technical point of view, a symbol object may refer to (global) attributes
in the enclosing Grammar object.

Grammar: class
(#
Symbol: class Object
(# isTerminal: proc (# ...#);
isNonTerminal: proc (# ... #);
#);

#);
AdaGram: @ Grammar; 51,52: @ AdaGram.Symbol;
PascalGram: Q@ Grammar; X1,X2: @ PascalGram.Symbol

Figure 6: Class Grammar

3 Virtual classes

The notion of virtual procedure introduced above resembles similar mech-
anisms in other languages, the difference being that a redefinition of a
virtual procedure is an extension of the definition of the virtual procedure
in the superclass.

In this section the property of being virtual is applied to class at-
tributes, and a more comprehensive treatment of virtuals in general is
given.

3.1 Locally qualified virtual classes

The specification of a virtual class is completely analogous to the spec-
ification of a virtual procedure. Consider Figure 7. The class Graph has
class attributes Node and Link which define the elements of a graph. Node
and Link are specified as virtual classes. Subclasses of Graph may ex-
tend the definitions of Node and Link corresponding to specific different
kinds of graphs. Instances of Node will therefore always have the attribute
Connected, and instances of Link will have the attributes Source and Dest.
As it may be seen, the virtual procedure Connect makes use of these at-
tributes.

Notice that the classes Node in two different instance of Graph are differ-
ent classes, as they have different context. A Node object from one Graph
object cannot become part of another Graph.

In the subclass DisplayableGraph, the definitions of Node and Link have
been extended. This is reflected in the extended definition of Connect

10

Graph: class
(# Node: virtual class
(# Connected: @boolean #);
Link: virtual class
(# Source, Dest: ~ Node #);
Root: ~ Node;
Connect: virtual proc
(# S,D: " Node; L: " Link
enter(S[1,D[1)
do new Link[] -> L[];
S[] -> L.source[]; D[]-> L.Dest[];
True -> S5.Connected -> D.Connected;
INNER
#);
#);
DisplayableGraph: class Graph
(# Node: extended class
(# DispSymb: ~DisplaySymbol #);
Link: extended class
(# DispLine: "DisplayLine #);
Connect: extended proc
(# DL: ~DisplayLine

enter DL[]
do DL[] -> L.DispLine[]; INNER
#);

Display: virtual proc (# #)

#);
TravellingSalesmanGraph: class Graph
(# Node: extended class (# Name: "Text #);
Link: extended class
(# Distance: Q@ Integer #);
Connect: extended proc
(# D: Q@Integer

enter D
do D -> L.Distance; INNER
#);

#);
DG: "~ DisplayableGraph;
TG: "~ TravellingSalesmanGraph

Figure 7: Locally qualified virtual classes

which has an additional parameter dL. The execution of Connect implies

11

Set: class
(# SetType: virtual class Record;
A: [100] ~ SetType; Top :@ Integer;
{A is an array of 100 references}
Insert:...;
Remove: ...;
Display: proc
(# do (for Inx:Top repeat
A[Inx] .Display
for) #);
#);
PersonSet: class Set
(# SetType: extended class Person #)

Figure 8: General Set class

the generation of a Link object (new Link). This Link object will be an
instance of the extended Link class and the reference L will denote this
instance. l.e. L.DispLine is a valid expression. The reference Dg.Root is
known to denote an instance of the extended Node class. I.e. an expression
like DG.Root.DispSymb 1s valid.

The definition of TravellingSalesman is similar, but with different ex-
tensions of Node, Link and Connect.

3.2 Globally qualified virtual classes

There is a more general form for declaring virtual classes (and procedures)
than that presented so far. This is explained for classes in this paper,
but it also applies to virtual procedures.

Consider the general class set in Figure 8. The virtual class attribute
SetType defines the type (or class) of the objects that can be members
of the set. SetType is a virtual class with the qualification Record. (See
Figure 5.) This means that in subclasses of set the virtual setType may be
redefined, but now as extensions of Record and not just as an immediate
extension of the virtual definition itself.

In a set object, the members may being instances of Record and its
subclasses. The procedure Display displays the whole set. As the elements
of the set are known to be at least Record-objects, they are known to have
a Display attribute.

12

A reference like Alinx] is qualified by the virtual class SetType. The
fact that setType will be Record or further extensions of Record is used in
accessing the Display attribute. Since instances of Record have a Display
attribute, instances of setType will also have this attribute.

In the class Personset the members are restricted to being instances
of class Person. This is expressed by extending the virtual class setType
to be a subclass of class Record. This implies that a reference like A[inx]
will correspondingly have its qualification extended to Person. This means
that in the Personset subclass of set the following expressions will be valid:
AlInx] .Name and A[Inx].Sex.

The members of a set are restricted to being instances of Record and
its subclasses. In practice a set class should be able to include any object.
This may be obtained by replacing Record by 0Object in the definition of
SetType. The Display procedure must then be removed, since object does
not (in BETA) have a Display attribute.

3.3 Virtual classes (and procedures) revisited

The examples of virtual procedures shown so far have all been defined
using the syntactic form corresponding to locally defined classes. This
is like Simula, C++ and Eiffel. As shown in Figure 9, a virtual proce-
dure may also be defined using a form corresponding to globally defined
virtual classes. The procedure Init has a virtual procedure attribute
qualified by openRecord. In the subprocedure Initw, Open is extended to be
OpenWritableRecord. This implies that execution of open will be an execu-
tion of OpenWritableRecord. A virtual procedure used this way corresponds
to a formal procedure parameter. The constraint on the actual parameter
is that it must be a subprocedure of openRecord. It is, of course, awkward
to have to declare a subprocedure like Initw in order to make a procedure
call. In BETA it is possible to describe a single object directly. In Bar, a
call of a singular procedure object is described directly. This corresponds
to a prefixed block in Simula, which again is a generalization of an Algol
inner block.

As can be seen, classes and procedures are completely analogous
with respect to virtual attributes. In Figure 10, the different forms
for declaring and extending virtual attributes are shown. The super-
class/procedure A of P is optional. In this case super will be object. The
extension of @ may be specified as either a globally defined class or a

13

Init: proc

(# Open: virtual proc OpenRecord

do...; someId[] -> Open;

#);
InitW: proc Init

(# Open: extended proc OpenWritableRecord #);
Bar:

(#...

do...

Init(# Open: extended proc OpenWritableRecord #);

#)...

Figure 9: Virtual procedures as formal procedure parameter

T: <proc/class> TO
(# P: virtual <proc/class> A(# ... #);
Q: virtual <proc/class> B;

#);
TT: <proc/class> T
(# P: <extended/fixed> <proc/class> (# ... #);
Q: <extended/fixed> <proc/class> Bi;
{alternative:}
Q: <extended/fixed> <proc/class> (# ... #)
#)

Figure 10: Scheme for declaration of virtual attributes

locally defined class. The meaning of fixed will be explained later.

4 Virtual classes and generics/packages

The simple example above on a general set of objects or Record objects
indicates the use of virtual classes as "type parameters” of the enclosing
class.

In [12] an interesting comparison between genericity and inheritance
is given. It is shown that, in general, inheritance cannot be simulated
by genericity. On the other hand it is shown that genericity can be
simulated by inheritance. However, it is concluded that the techniques
for simulating so-called unconstrained genericity becomes rather heavy.

14

For this reason unconstrained genericity has been included in Eiffel.

In this section it will be shown to what extent virtual classes can
replace genericity. This will be done by giving definitions of a general class
Ring [13] with attributes Zero, One, Plus and Mult. The class Ring is then
used to define subclasses Complex and a general class Vector parameterized
by Ring. The Vector class may in turn be used for defining a ComplexVector
class.

The first version of class Ring is defined in a pure object-oriented style.
By this is meant that operations like a + b are asymmetrical. Using
Smalltalk terminology: the message + b is sent to the object a. The
second version of class Ring is defined in a functional style. Here the + is
defined as a function of two arguments.

4.1 Pure object-oriented definition of class Ring

The general class Ring defines the virtual procedure attributes Zero,
Unity, Plus, and Mult. In addition a virtual class attribute ThisClass (will
be explained below) is included. The class Complex is one example of a
subclass of Ring.

A more interesting subclass of Ring is the class Vector. This class
includes a virtual class attribute ElementType qualified by Ring. ElementType
defines the class of the elements of the vector, i.e. the elements of the
vector have all the properties of a ring. Class ComplexVector is a subclass of
Vector where the virtual class ElementType is extended to be class Complex.
(In this example a vector consists of 100 elements. By using a virtual
procedure, yielding an integer value, it is straightforward to parameterize
the size of the vector.)

The virtual class ThisClass is used to ensure that the argument of,
say Plus, is always of the same type as the current class. In Complex it is
therefore extended to be a Complex, and in Vector it is extended to Vector.
If the reference A in the definition of Pius in class Ring was defined as 4: -
Ring, then in the extension of Plus in Complex the reference A might refer to
any Ring object. An explicit check will be needed to ensure that a refers
to a Complex object. In addition an operation like v41[1 -> ¢2.Plus would be
valid. Instead of explicitly defining a virtual class like ThisClass, it would
be more convenient to have a predefined name for this. In [7] the name
this Ring is used. In the Smalltalk proposal in [3] the name <self> is
used and in Eiffel this would correspond to like current.

15

Ring: class
(# ThisClass: virtual class Ring;
Plus: virtual proc
(# A: "ThisClass enter A[] do INNER #);
Mult: virtual proc
(# A: ~ThisClass enter A[] do INNER #);
Zero: virtual proc (# do INNER #);
Unity: virtual proc (# do INNER #)
#);
Complex: class Ring
(# ThisClass: extended class Complex;
I,R: @ Real;
Plus: extended proc
(# do A.I->I.Plus; A.R->R.Plus #);

Mult: extended proc (# ... #);
Zero: extended proc (# do 0 -> I -> R #);
Unity: extended proc (# ... #)

#);
Vector: class Ring
(# ThisClass: extended class Vector;
ElementType: virtual class Ring;
R: [100] - ElementType;
Plus: extended proc
(#do (for i: 100 repeat
A.R[i] -> R[i].Plus
for)#);
Mult: ... Zero: ... Unity:
#);
ComplexVector: class Vector
(# ThisClass: extended class ComplexVector;
ElementType: extended class Complex
#)
C1,C2: @ Complex;
V1,V2: @ ComplexVector

C1.Unity; C2.Zero; Ci[] -> C2.Plus;
V1.Unity; V2.Unity; V1[] -> V2.Plus;

Figure 11: Object oriented definition of class Ring

4.2 Functional definition of class Ring

Even though alanguage is object-oriented there is no reason that it should
not support the functional style of programming. Object-oriented lan-

16

Ring: class
(# Type: virtual class (# #);
Plus: virtual proc
(# X, Y, Z: "Type
enter (X[1,Y[1)
do new Typel[l -> z[];
INNER
exit Z[]
#);
Mult: ... Zero: ... Unity: ...
#)
ComplexRing: class Ring
(# Type: extended class (# I,R: @ Real #);
Plus: extended proc
(#do X.I + Y.I -> Z.I; X.R + Y.R -> Z.R #);
Mult: ... Zero: ... Unity: ...
#);
CR: @ ComplexRing;
€1,C2,C3: “CR.Type

CR.Unity -> C1i[]; CR.Zero -> C2[];
(c1[1,c2[1) -> CR.Plus -> C3[]

Figure 12: Functional definition of Ring

guages are often criticized because even simple expressions like addition
of two numbers i,j have to have the asymmetrical form j -> i.plus.

In languages with a package concept it is possible to define packages
that collect the definition of a type and the operations on this type. A
package is not a class, but rather a definition of a single object. A generic
package on the other hand resembles a class. This is very limited however.
In object-oriented terminology, a generic package can only be used for
creating a single instance (a package). It is actually just templates that
are elaborated at compile time. It is not possible to add properties like
in subclasses.

It is possible to model a generic package by a class with virtual class
and virtual procedure attributes representing the formal types and formal
operations of the package.

In Figure 12 a functional definition of class Ring is given together with
a subclass ComplexRing that defines the type complex and operations on
complex objects. The virtual class attribute plays the role of the type.

17

VectorRing: class Ring
(# ElementRing: virtual class Ring;
actualElementRing: “ElementRing;
Type: extended class
(# v: [100] ~actualElementRing.Type #);
Init: virtual proc
(# aRing: “ElementRing
enter aRingl]
do aRingl[] -> actualElementRingl[]
#);
Plus: extended proc
(#
do (for i: 100 repeat
X.v[il01,y.v@E1 [
-> actualElementRing.Plus
-> Z.V[i]
for)
#);
Mult: ... Zero: ... Unity:
#);
ComplexVectorRing: class VectorRing
(# ElementRing: extended class ComplexRing #);
CVR: @ ComplexVectorRing;
A,B,C: @ CVR.Type

CR[]1 -> CVR.Init

Figure 13: Functional definition of class Vector

The operations on the type are defined in a functional (symmetrical) way
on instances of class Type. Class Type is extended in subclasses of class
Ring. To use a ComplexRing it is necessary to create an instance of it. In
the example CRr is such an instance. All complex references and operation
calls are referred to as attributes of crR. Class Ring and ComplexRing may
be compared to generic packages in Ada and ¢k may be compared to a
generic instantiation. The next example further illustrates this.

In Figure 13 a vector is defined using a functional class. The impor-
tant thing to notice is that the element type of a vector ring is not a vir-
tual class. Instead it is described by the reference actualElementRing. The
reason is that a VectorRing instance must be parameterized by a specific
ring, i.e. an instance of ElementRing. Otherwise the elements of a vector

18

ComplexRing: class Ring
(# Type: extended class
(# I,R:@ Real;
Incr: proc (# do I+1->I; R+1->R #)
#);

#);

Figure 14: Complex with local Incr operation

may include say complex numbers from different complex rings. This
does not seem right in this example. (However, it is possible to model
this if desired.) In the example the reference actualflementRing is given a
value when init is executed. (CR is the ComplexRing from Figure 12.) This
is, however, not satisfactory, since actualElementRing should not change
value after the initialization. It should denote the same ComplexRing dur-
ing the life time of the vectorRing. This can be obtained by making
actualElementRing a “call-by-const”* parameter of class VectorRing. It may
then be bound when instantiating a VectorRing (or one of its subclasses)
and not modified afterwards. Since such parameter mechanisms are well
known it will not be further elaborated.

4.3 Class attributes versus type attributes

It could be argued that the definition of complexRing does not demonstrate
the need for or usefulness of class attributes. The Type attribute could also
be defined using a pure (record) type, as in Pascal. Such record objects
could e.g. only be assignable and comparable, but not have procedure
and class attributes as classes have.

However, by using a class attribute it is possible to combine the object-
oriented style and the functional style. The Type class of ComplexRing may
have a procedure attribute Incr that increments a complex number by 1,
see Figure 14. It seems more natural to express such an operation in an
object-oriented style than in a functional style.

With the addition of the Incr it is possible, in addition to functional
expressions to specify evaluations like

..: Cl.Incr; ...

4«Call-by-const” was used in the first version of Pascal.

19

VectorOfVector: class Vector
(# ElementType: fixed class Vector
(# ElementType: fixed class Elm #)
Elm: virtual class Ring;
ThisClass: extended class VectorOfVector
#) ;
VectorOfVectorOfComplex: class VectorOfVector
(# Elm: extended class Complex #)

Figure 15: Class VectorOfVector

4.4 More on extending virtual classes

In this section, the Vector class of Figure 11 will be further elaborated.
As shown in Figure 15 a class Vector0fVector parameterized by Vector is
defined. A new virtual class Elm has been introduced to stand for the
parameter of class VectorOfVector. The use of fixed instead of extend (cf.
Figure 10) specifies that this is the final extension of ElementType, i.e. it
is no longer virtual. In general it is useful to be able to specify that a
virtual attribute can no longer be extended.

A note on syntax may seem appropriate here. The syntax for defining
and extending virtuals in examples like the Ring may be found too heavy.
Instead a usual positional notation for definition and extension of virtuals
might be introduced.

5 Virtual superclasses

It is often desirable to add a set of attributes to all classes in a subclass
hierarchy. Consider the hierarchy in Figure 16. Suppose that we want
to implement a library of publications. For this purpose we want to add
an attribute ArcNo to all publications. This may be obtained by adding
this attribute to class Publication. Another alternative is to create new
subclasses of Publication, Book and Article. Often none of these alterna-
tives are attractive. It may not be feasible to modify an existing class.
Likewise, creating several new subclasses is clumsy.

By using a virtual class as a superclass it is possible to describe an
extension of all Publication classes. Consider Figure 17. The class PubGen
acts as a generator for instances of Publication and its subclasses. The

20

Publication: class Record

(# Author:...; Title:...; Date:...#);
Book: class Publication (# ... #);
Article: class Publication

(# KeyWords: ...#);

Figure 16: Subclass hierarchy of publications

procedure New generates these instances. The actual instances generated
are of class ArcPub which is a subclass of GenType. GenType is a virtual class
qualified by Publication.

The subclass BookGen extends the definition of GenType to Book. The
class ArcPub of an object denoted by Be will then have Book as its superclass.
This means that the instances of arcPub created by Be.New will have all
attributes of a Book in addition to the attribute Arclo.

Objects created by a PubGen object can be used as ordinary Publication
objects without knowledge of arclo. In the context of a PubGen ob ject, they
may be used as ArcPub objects, i.e. the attribute Arclo may be accessed.

6 Conclusion

The notion of virtual class has been introduced as a generalization of the
corresponding notion for procedures. In addition the qualification of a vir-
tual and the mechanism for extension of a virtual have been introduced.
For both kinds of virtual attributes two different syntactic forms have
been introduced: locally and globally qualified virtual classes /procedures.
The qualification and extension of a virtual ensures that the attributes of
a virtual are maintained in any subclasses where the virtual is extended.

The global form of specifying a virtual class makes it possible to bind
a virtual class to a non-local class. This makes it possible to use virtual
classes as formal type parameters.

Classes and procedures are completely analogous with respect to declar-
ing virtual attributes, recall Figure 10. In BETA class and procedure are
unified into one abstraction mechanism: the pattern. In all examples the
keywords class and proc may be dropped. By replacing virtual, extended
and fixed by <, :<, and : respectively the results are BETA programs.
The common template for patterns has the form shown in Figure 3 with-

21

PubGen: class
(# GenType: virtual class Publication;
ArcPub: class GenType
(# ArcNo: Qinteger #);
New: proc
(# RN: Qinteger; R: ~ ArcPub
enter RN
do new ArcPub[] -> R[];
RN -> R.Arclo
exit R[]
#);
#);
BookGen: class PubGen
(# GenType: extended class Book #);
ArticleGen: class PubGen
(# GenType: extended class Article #);
BG: ~ BookGen; B: ~ Book; S: ~ Set

111 -> BG.New -> B[]; ’...’-> B.Author;
. B[] -> S.Insert

Figure 17: Example of virtual superclass

out the keyword proc. From this it follows, that classes in BETA also have
an action-part (enter In do Imp exit Out) like procedures. For a further
discussion of this the reader is referred to [8].

As it may be seen, the notion of virtual pattern (class and procedure)
captures the concept of virtual procedure as known from Simula, C++
and Eiffel. In addition it extends the possibilities for simulating genericity
by means of subclassing. Also the global form of virtual patterns may
be used to simulate higher order procedures and classes. I.e. procedures
and classes parameterized by procedures and classes. Finally the notion
of virtual class, in addition, gives a number of new possibilities.

The usefulness of virtual procedures are well known. Class attributes
and especially virtual class attributes are less well know. These concepts
have been used for several years by BETA programmers and they have
clearly demonstrated their usefulness in practice. For other examples see
[11] and [15].

Acknowledgement. The notion of virtual class was developed as
part of the BETA project, in which Bent Bruun Kristensen, Kristen Ny-

22

gaard and the authors were involved. Part of this work has been sup-
ported by the Danish Natural Science Research Council, FTU Grant No.
5.17.5.1.25.

References

[1]

2]

[10]

[11]

[12]

Ada Reference Manual: Proposed Standard Document. United States Depart-
ment of Defense, July 1980.

P. America: Inheritance and Subtyping in a Parallel Object-Oriented Language.
ECOOP’87, European Conference on Object-Oriented Programming, Lecture
Notes in Computer Science, Vol. 276, Springer Verlag, 1987.

A H. Borning, D.H. Ingalls: A Type Declaration and Inference System for
Smalltalk. University of Washington, August 1981.

O.J. Dahl, B. Myrhaug, K. Nygaard: SIMULA 67 Common Base. Norwegian
Computing Center, Oslo, 1968.

H.P. Dahle, M. Lgfgren, B. Magnusson, O.L. Madsen: The Mjglner Project.
Software Tools 1987, Wembley, June 1987.

A. Goldberg, D. Robson: Smalltalk-80: The Language and its Implementation.
Addison Wesley, 1984.

B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard: Abstraction
Mechanisms in the BETA Programming Language. Proceedings of the Tenth
ACM Symposium on Principles of Programming Languages, January 24-26 1983,
Austin, Tezas.

B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard: The BETA
Programming Language. In: B.D. Shriver, P. Wegner (ed.), Research Directions
in Object Oriented Programming, MIT Press, 1987.

B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard: Classification
of Actions or Inheritance also for Methods. ECOOP’87, European Conference
on Object-Oriented Programming, Lecture Notes in Computer Science, Vol. 276,
Springer Verlag, 1987.

O.L. Madsen: Block Structure and Object Oriented Languages. In: B.D.
Shriver, P. Wegner (ed.): Research Directions in Object Oriented Program-
ming, MIT Press, 1987).

O.L. Madsen, C. Ngrgaard: An Object-Oriented Metaprogramming System.
Hawa International Conference on System Sciences - 21, January 5-8, 1988.

B. Meyer: Genericity versus Inheritance. Languages and Applications, Sigplan
Notices, September 1986.

23

[13]
[14]

[15]

[16]
[17]

18]

B. Meyer: Object-oriented Software Construction. Prentice Hall, 1988.

P. Naur (ed.): Revised Report on The Algoritmic Language ALGOL 60. Regne-
centralen. Copenhagen, 1962.

C. Ngrgaard, E. Sandvad: Reusability and Tailorability in the Mjglner BETA
System. Computer Science Department, Aarhus University, Draft March 1989.

B. Stroustrup: The C++ Programming Language. Addison-Wesley, 1986.

B. Stroustrup: Possible Directions for C++. Proc. USENIX C++ Workshop
Nov 1987.

P. Wegner, S. Zdonik: Inheritance as an Incremental Modification Mechanism
or What Like Is and Isn’t Like. ECOOP’88, European Conference on Object-
Oriented Programming, Lecture Notes in Computer Science, Vol. 322, Springer
Verlag, 1988.

24

