ISSN 0105-8517

DI-Domains as Information Systems*

Guo Qiang Zhang

DAIMI PB - 282
August 1989

AARHUS UNIVERSITY | T—Iﬂl f T
COMPUTER SCIENCE DEPARTMENT ”‘“: q: :ﬂ
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK =|___1_ =T
Telephone: + 4586 1271 88 Telex: 64767 aausci dk J(—l I |]T T

* An extended abstract of the paper appeared in the proceedings of ICALP 89.

Abstract

This paper introduces stable information systems. Stable in-
formation systems determine dI-domains and stable approx-
imable mappings give stable functions, and vice versa. The
notion of rigid embedding is captured by a subsystem rela-
tion. Under this relation, stable information systems form
a cpo. Constructions like lifting, sum, product and function
space are proposed which induce continuous functions on the
cpo. In this way recursive stable information systems can bhe

defined using fixed point theory.

1. Introduction

Stable information systems arve a representation of dI-domains which
are particular kinds of Scott domains discovered by Berry (Berry, 1978)
from the study of the full-abstraction problem for typed A-calculi. Sta-
ble information systems are logical structures with special kinds of en-
tailment, and can be seen as a framework parallel to the stable event
structures of Winskel (Winskel, 1988). Stable event structures cast light
on the computational intuition of dI-domains while stable information

systems cast light on the logical aspects of dI-domains.

The logical approach to domain theory uses some topological idea
about computation. A topological space X can be taken as a ‘data
type’, with the open sets as ‘properties’ and functions between topolog-
ical spaces as ‘computations’ (Smyth, 1983). Such a topological idea is
supported mathematically by a formal notion of Stone duality (see John-
stone, 1982). Complete Heyting algebras are complete lattices satisfying

the infinite distributive law
aANVS=\{aAs|seS}

The category of frames has objects complete Heyting algebras, and mor-
phisms functions which preserve finite meets and arbitrary joins. As a
special kind of frames one has the set of open sets (D) of a topologi-

cal space D ordered by inclusion; in this case the frame morphisms are

3

precisely those functions
1 Q(E) - QD)

for which f: D — E is continuous. The category of locales is the oppo-
site of the category of frames where the morphism direction is reversed.
Stone dualities are contravariant equivalences between certain categories
of topological spaces and corresponding categories of locales (Johnstone,
1982). They have been proposed as providing the right framework for
understanding the relationship between denotational semantics and pro-
gram logic. Information systems can be seen as description of locales
where the relevant topological spaces consist of the Scott open sets of do-
mains. The duality between the category of information systems and the
category of Scott topologies of domains is just the equivalence between

the category of information systems and the category of domains.

Intuitively, an information system is a structure describing the logical
relations among propositions that can be made about computations. It
consists of a set of propositions, a consistency predicate and an entail-
ment relation specified as follows (For convenience of getting a cpo of
mformation systems we use a definition slightly different from the origi-
nal one given in (Scott, 1982), without using a distinguished A standing
for the proposition that is always true. The definition given below is the

same as the one used in (Larsen and Winskel, 1984)).

Definition 1.1 An information system 1is a triple

A= (A, Con,)

4

where

o A is a set of propositions
e Con C Fin (A), the consistent sets

o HC Con x A, the entailment relation

which satisfy

LXCY &Y € Con = X € Con
2.a€ A= {a} € Con

3. XFa= XU{a} e Con
daeX&XelCn= Xta

5. (VWeY. XFb&YFe)= XFec

Notation. We write Fin(A) for the set of finite subsets of A. Write
X FY tomean Vb € Y. X - b; X 4+ X' to mean X + X' and X'+ X;

X CJi" ¢ to mean X is a finite subset of Y.

Propositions are basic facts that can be affirmed about computations.
They can be seen as units of information. Con contains all finite subsets
of propositions that are non-contradictory, in a sense related to the com-
putation under consideration. X F a can be roughly interpreted as: If

the propositions in X are true of a computation, then « is also true of

the computation.

An information system determines a family of subsets of propositions
called its elements. Intuitively, an element consists of a set of proposi-
tions that can be truly made about a possible computation. Thus it is

expected that the propositions should be in consistency with each other

5

and, if a finite set of propositions is valid for a computation all the logical

consequences should also be valid for it.

Definition 1.2 The elements Pt(A), of an information system

A= (A, Con,) consists of subsets z of propositions which are

1. finitely consistent: X C/" 2 = X € Con,

2. closed under entailment: X Cz & X Fa = a € 2.

For an information system A , (PtA, C) is a Scott domain (Scott,
1982). More generally, information systems form a category with the
approximable mappings as morphisms, which is equivalent [Mac71] to
the category of Scott domains. Constructions such as product, sum and
function space have been proposed on information systems (Scott, 1982;
Larsen and Winskel, 1984), corresponding to those on domains. Using
information systems one can solve recursive equations concretely (Larsen

and Winskel, 1984) with the resulting isomorphism being an equality.

Scott domains form a foundational framework for the denotational
semantics of programming languages. There is another ‘non-standard’
framework of domains called dI-domains which were discovered by Berry
(Berry, 1978) from the study of the full-abstraction problem for typed
A-calculi. They are special kinds of Scott domains which have a more
operational nature. The functions between dI-domains are stable func-
tions under an order which takes into account the manner in which they

compute.

A dI-domain is a consistently complete cpo D which satisfies

e axiom d: Vaz, Yy,2€D. yTz=zN(yUz)=(zNy)U(zNz)

e axiom:Vde D |{z|2Cd}|< o
where D? is the set of finite elements of D. Axiom d expresses the dis-
tributive property and axiom I says that D is finitary. A function f from

a dI-domain D to a dI-domain E is stable if it is Scott-continuous and

preserves meets of pairs of compatible elements, i.e.,
Ve, yeD. xTy= f(aNy) = f(z)N f(y).

Let f, g be in [D —; F], the set of stable functions from D to E. f

stably less than g, written f C; g, if

Ve, y€ D. x Cy= f(z)= f(y) Ng(z).

DI-domains with stable functions form a cartesian closed category
DI (Berry, 1978). The products are the cartesian product ordered co-
ordinatewise and the function space consists of stable functions ordered
under the stable order. These properties make dI-domains a nice alter-

native framework in which to do denotational semantics.

DI-domains can be represented as stable event structures, which are
models for processes of concurrent computation. An event structure is a
description of a set of events in terms of consistency and enabling rela-
tions. The consistency relation indicates whether some events can occur
together or not, and the enabling relation specifies the condition when a

particular event may occur with regards to the occurrence of other events.

7

A configuration of an event structure is a set of events which is consistent
and each of its event is enabled by a set of events of the configuration
occurred previously. Therefore, a configuration is a set of events which

have occurred by certain stage in a process. More formally,

Definition 1.3 An event structure is a triple E = (E, Con,)
where
¢ I/ is a countable set of events,

e Con is a non-empty subset of Fin (E), the finite subsets of £
called the consistency predicate, which satisfies
XCY &Y € Con = X € Con,
o - C Con x E is the enabling relation which satisfies

(XFe& XCY &Y €eCon)=YFe.

When X F e, we say e is enabled by X. Although an event structure
looks similar to an information system, it is based on a different intuition
and they are regarded in totally different ways. Typically, for an infor-
mation system if X F ¢ and X + o' then o and & must be consistent
propositions while for an event structure, we cannot say anything about
the consistency of two events e, ¢ enabled by the same set of events.
This reflects the fact that for information systems F stands for logical
entailment between propositions whereas in the case of event structures
it expresses when an event is enabled due to the previous occurrences of
other events. Information systems capture the logical relations between

facts about a computation while event structures capture their temporal

8

relationship. Accordingly there is a different definition of configurations,

Definition 1.4 The configurations F(E), of an event structure F =
(E, Con,) counsists of subsets © C F which are

e consistent: VX C/™ 2. X € Con,
¢ secured: Ve€x Jeg, e, -+, e, Ex. e, =¢ &

Vi<n {e|0<k<i-1}Fe,.

There is a special class of event structures for which each configuration
determines a partial order of causal dependency on the events; intuitively,
an event ey causally depends on an event e if the occurrence of the event

ey 1s mecessary in order for ey to occur. Event structures of this kind are

called stable.

Definition 1.5 An event structure E is stable if it satisfies the

following axiom

(XFe&YlFe& XUYU{e}€Cm)= XNYFe.

When E is stable, (F(E), C)is a dl-domain. Stable event structures
with stable function on the set of configurations form a category which

is equivalent to the category of dI-domains (Winskel, 1988).

2. Stable Information Systems

In this section we introduce stable information systems, which de-
termine dl-domains. We also introduce approximable mappings as mor-

phisms between stable information systems which give stable functions.

9

Definition 2.1 An information system A = (A4, Con, F) is called

stable if it satisfies two extra axioms:
6. XFa =3beX.{b}}Fa

7.Va€ A {b] {a}Fb}is finite

Axiom 6 indicates that the entailment F is determined by a pre-order
on A by letting a < b iff {b} F a. Thus stable information systems are
similar to prime event structures (Nielsen, Plotkin and Winskel, 1981).
Note, however, the entailment relation here determines a pre-order while
for prime event structures the causal dependency relation is a partial
order. Axiom 6 requires, in particular, that when X F a in a stable

information system, X must be non-empty.

Axiom 7 corresponds to the axiom of finite cause for event structures.
There is a strong computational intuition behind the axiom there[Wi86].
Another justification for axiom 7 is to get a cartesian closed category
with A countable. Consider the stable functions from (wU {1}, C) to
itself, where ¢ C j iff ¢ is bigger than j. It can be shown that there are
uncountably many finite elements in this function space (Zhang, 1989b).
Therefore, dropping axiom 7 means we have to go beyond the countable,
which is intuitively unwelcome as far as computation is concerned. Note
that a choice is made here: we could have used an axiom which requires
that there are only finitely many equivalent classes (under =) in {b |

{a} b} rather than the whole set {b| {a} F b} be finite.

Theorem 2.1 Let A = (A, Con, |) be a stable information system.

(Pt(A), C)is a dl-domain.

10

It is convenient to work with another characterisation of dI-domains.
Recall that a complete prime of a consistently complete partial order D

i1s an element p € D such that
pE||X =Tz eX.pCx
for all compatible X. D is prime algebraic if
z=|{p|pCa&pisa complete prime }

for all x € D. Suppose D is a consistently complete partial order which
satisfies axiom I for dI-domains. It is a fact that D is prime algebraic iff

it is a dI-domain (see Winskel, 1988 for a proof).

Proof of Theorem 2.1: Axiom 7 implies that (Pt (A), C) is finitary.
For axiom d it is enough to show that { b€ A|{a }Fab} witha e A
are the complete primes of (Pt(A), C), and (Pt(A), C) is prime

algebraic. But these follow from axiom 6. K

Definition 2.2 Let f: D — E be a stable function, where D, E are

dI-domains. Define 1 f to be a set of pairs such that (a, p) € pf if
flo)dp&Vd Ca. fld)dp=a=d,

where a € DY, the set of finite elements of D and p € EP, the set of

complete primes of E.

The full abstraction problem for typed lambda-calculi lead Berry to
consider the problem of capturing a notion of ‘sequential functions’. As
one of the possible candidates for ‘sequential’ functions Berry introduced

11

stable functions so that non-sequential functions like ‘parallel-or’ are ex-
cluded. Stable functions have a property that their values are totaly
determined by those at some minimal points. One can then understand
a pair (a, p) € pf as saying a is a minimal point for f to assume value

P

The following two lemmas are useful. From the first lemma we know

that the set uf fully determines a stable function f.

Lemma 2.1 Suppose f: D — E is a stable function. Then for any

x €D,
fz)=|Hp|IaCz (a, p) € pnf }

Proof Let f: D — E be a stable function. We have f(a) 3 p for
any (a, p) € pf. Therefore if # 1 @ and (a, p) € pf, then f(z) I p.

Hence

fl@)d {p|IaCx (a, p)€uf}

On the other hand, it is easy to see that for any complete prime ¢ in
E such that ¢ £ f(z), there is an element b C z for which (b, ¢) € uf.

This means
¢l H{plFaC e (a, p)epnf}

But £ is a dI-domain, hence prime algebraic. Therefore

flo)=Hqlge E"&qC f(2)} E [{plIaCTa (a, p)€nf}

12

The second lemma implies that compatible stable functions have the

same minimal point related to a given value that they can both assume.

Lemma 2.2 Let f,g : D — E be stable functions. If f C, ¢ then

alad & (a, p)euf&(d, ppep=a=4d.

Proof Suppose f,g : D — E are stable functions, and suppose
alad, (a, p) € puf, and (d/, p) € pg. Together with f C, ¢ it follows
that

g9(a) 2 f(a) d p.
Therefore
g(ana) = g(a) M g(a') 2 p.

But (¢, p) € pg. We must have a Ma' = o', and hence a 2 a'. Now

flena)=glanad)n f(a) 2 p,

which implies a Ma' = a since (a, p) € pf. Thus we also have o' J a.

Hence ¢ = o', R

Stable information systems can be equipped with approximable map-
pings similar to information systems. But that does not lead to a charac-
terisation of stable order. To get some guidance, we present the following
fact about stable functions, which is a generalisation of Proposition 8.2.3

in (Zhang, 1989b).

Theorem 2.2 Let f,g € [D —; E|. f C, g iff uf C pg. For
{(a;, b;)]|iel}CD’xEP,

{(ai b)) iel}=pnf
13

for some f € [D —, E] iff
oV I I {a;|ieJ} = {bi|ie J}T,
°a;Ta;& (b =0b;) = (a; =ay),

oVbe EP. b; Jb = Ej.ijb&ai;aj.

Proof Suppose f, g: D — E are stable functions such that fCsg.

For any (a, p) € uf, p C f(a) E g(a). Let
b=[]{z|2Ca&g(z)dp}.

Clearly (b, p) € pg and b C a. By Lemma 2.2, a = b. Hence (a, p) € ng

and puf C pg.

Suppose, on the other hand, that uf C pg. It follows from Lemma
2.1 that Vo € D. f(x) C g(z). To prove f C, g we have to show that for
xCyin D,

f(@) = f(y) Ng(x).
To this end let p € E? and p C f(y)Mg(z). Clearly there exist a T 2 and
b C y such that (b, p) € uf and (a, p) € ug. However puf C pug; we have
(b, p) € ug. By Lemma 2.2, a = b, This implies that f(z) 3 f(b) 3 p.

By the prime algebraicness of F we get

flz) 2 fly) Ngl),
enough for the equation

fz) = f(y) ng(z)

to hold.

14

Now we prove the second part of Theorem 2.2.

Suppose {(a;, b;) | 4 € I} = puf for some stable function f. It is

rountine to check that the three properties mentioned in Theorem 2.2

hold.

Let {(a;, b;) | i € I} C D% x EP be a set with the three properties.
We show that the stable function f for which (Lemma 2.1 concludes that

such a function is unique)

{(ai,bi)iel}=pf
can be obtained as pointwise lubs | |[a;, b;] where
il

b ifzda,

0,8]() = { |

otherwise.

Obviously [|[a;,b;] is continuous. To check stability let z,4 € D and
il
x Ty. Suppose

pC Ulaibi](=) 1 [[ai, bi)(y)

il iel
where p € E' is a complete prime. We have, for some 4, j, p T b;, a; C z
and p E b;, a; £ y. By the third property, there exist s, ¢ such that
bs = p, as C a; and by = p, a; a;. Therefore a; = a; as a; 1 a; and
bs = b;. We now have a; = a; C z My and
pC Ulabi)(z My).
i€l
Since E is prime algebraic,
Ulai b]z y) 3 Ulan bi(z) 1 [as, bi](y).
icl i€l i€l

15

This implies that | |[a;,b;] is stable. It remains to show that
i€l

{(a;, bi) |1 €1} =pnf

where we abbreviate | |[a;, b;] as f. We have
el

Flag) =1H{bila; Ea;}
_1b;.
Let y C a; and f(y) 2 by, ie. | {b;i]|a; Ty} J0b;. Since b; is a complete
prime, b; J b; for some 4 with a; C y. The third condition mentioned in
Theorem 2.2 implies the existence of some k such that b, = b and ay, C a;.

But ay = a; since a; T a;. Hence y = a;. This means (a;, b;) € uf.

For any (a, p) € puf, we have f(a) 3 p. Therefore

L H{bi|a; Tal} Op.

Since p is a complete prime, there is some b; such that b; I p. By the
third condition mentioned in Theorem 2.2 again, b; = p form some j
such that a; £ a;. By the result from the previous paragraph we have

(aj, bj) € pf. Therefore a; = a by Lemma 2.2 (taking f = ¢). B

When { (a;, b;) | i € I } C D® x EP satisfies the three conditions

above, we call
{(az,bz>|ZEI}

stable joinable. Functions of the form | | a;, b;] with I finite and { (a;, b;) |
icl
i € I } stable joinable are called step functions.

Now we come naturally to

16

Definition 2.3 Let A = (A, Cony, F4), B = (B, Cong, Fp) be
stable information systems. A stable approximable mapping R: A — B
is a relation R C Cony x B which satisfies, with I finite,

L(XUX €Conpg & XRc& X'R & {c}Hrp{d}) = X 4, X’
2.(Viel . X;Rb) & | UX; € Cong = {b;|icI}eCong

3. XRb&{b} Fpe=3X'. X+, X"& X'Rec

4. XRb& X 44 X' = X' Rb

These conditions are similar to those used in Theorem 2.9.

The first condition expresses the minimal property. X Rb can be read
as: X in A entails b in B, and, moreover, X is a weakest one in A. For
example, for any stable approximable mapping R, we cannot have §) Rb
and X R for some non-empty X at the same time. Assume there were
such a b. Then we must have () = X, contradicting axiom 6 for stable

information systems.

The second condition means consistency. The third condition insists
on completeness, in the sense that when X is a weakest proposition for
b, all the propositions weaker than b must also have their weakest propo-
sitions specified. The last condition requires R to be mazimal, which

brings some technical advantages.

It is clear that because of the minimal property, axioms like
XFpgY&YRb&{b}Fpc= X Rec

from approximable mappings of information systems should be aban-

17

doned for stable information systems.

Proposition 2.1 Suppose R : A — B is a stable approximable

mapping. Then the function Pt (R): PHA) — Pt(B) specified by
Pt(R)(z)={b|3X Cz. X Rb}

is stable.

Proof First we check Pt (R) is well defined.

For any element » € XA, Pt (R)(z) is finitely consistent. Suppose

{0, bi,+-, by} C PE(R)(w).
There exist Xy, X1, -+, X,, such that
Vi.(X;Ca& X;Rb;).

By axiom 2 of Definition 2.3 we have

{bg, by, -, b, } € Con.

Pt(R)(x) is also closed under entailment. Assume Y C Pt(R)(2)
and ¥ = ¢. We know that 3b € Y. {b} F c. Since b € Pt(R)(x), there
exists an X C z such that X Rb. By axiom 3 of Definition 2.3, X'Rc
for some non-empty X' such that X + X', which implies ¢ € Pt(R)()
as X' C @; or X = § and () Rc which also implies ¢ € Pt(R)(x). So
Pt(R)(z) is an element of PtB.

It is routine to check that Pt(R) is continuous. To check stability
assume = | y with =, y € PLA. Assume also that d € Pt R(x) N Pt R(y).

18

Thus 3X C 2,X' C y such that X Rd and X' Rd. Since z and Yy
are compatible, X U X' must be consistent. Therefore, by axiom 1 of
Definition 2.3, X -+ X', implying d € Pt R(z Ny). We have proved that
PtR(z) N PtR(y) C PtR(z Ny). The other direction of the inclusion

follows from the monotonicity of Pt R. B

To get strict functions we can simply restrict the relation X Ra by

requiring X to be non-empty.

The following proposition says that set inclusion on the stable ap-

proximable mappings determines the stable order.

Proposition 2.2 Let 4 and B be stable information systems, and
R, S : A — DB stable approximable mappings. R C S iff Pi(R) C,

Pt(S), where C, is the stable order.

Proof Ouly if: Assume R C Q and let z, y € Pt(A), z C y and
b€ fr(y)Nfs(z). There must be X C z and Y C y such that X Rb and
Y §b. By a similar argument used in the previous proposition we know

that

PeR(2z) D PER(y)NPES(2).
The other direction of the inclusion follows from monotonicity.
If: Suppose PX(R) C, Pt(S). For any X and a, if X Ra then X €
Pt(A), where X =% {0 | X F b }. We have
PtR(X) C P S(X).

a € PtS(X)since a € Pt R(X). Therefore Y SaforsomeY C X. Clearly
19

Y C X. By the stable order we get
PR(Y)=PR(X) N PS(Y).

It is easy to deduce a € PER(X) N PtS(Y) since X Ra and Y S a. This
implies a € PtR(Y). For some Z C Y, therefore, Z Ra. By the first
axiom of Definition 2.3 we have Z 4+ X, which implies X 4- Y. And by

the fourth axiom we have X Sa. Hence R CcS. K

It is intended that stable approximable mappings are morphisms on
stable information systems so that one gets a category. But this is far
from clear at this stage: the identity Id should be given by X Idb iff
X A {b}. How can we compose Id, the identity stable approximable

mapping with other R?

Let R: A — B be a stable approximable mapping. Define R to be a
relation on Cony x Con 5 such that X RY iff there exist X;, b; such that
XiRb,1<i<n, X = Ui<icn Xi € Cong, and Y = {; | 1 < i< n }.
It is not difficult to check that IR has similar properties to that of stable

approximable mappings, including
L(XUX' €Cong & XRY & X'RY' &Y 45 V') = X 4, X'
2.(VieI.X;RY;) & |JX; € Cony = |JY; € Cony
3. XRY &Y bpY' = 3X'. X+, X' & X' RY'
Now we can compose stable approximable mappings R : A — B and

S B — (. Define Ro S to be a relation on Conyg x C by letting

X(RoS)c<=3Y € Cong. XRY &Y Se.
20

From the property of R one can see that RoS : A — C is a stable approx-
imable mapping and further, by inspecting the axioms for a category, we

have

Theorem 2.3 Stable information systems with stable approximable

mappings form a category SIS.

So far this is only one side of the story: We can get dI-domains from
stable information systems. It is also possible to get stable information

systems from dI-domains.
Definition 2.4 TLet D be a dl-domain. Define
SID = (A, Con,),

by taking
« A=1{pt|peD’)

e X cCon+=NX#
e XFa<=(XCa
with pT={deD|pCd}.

Following standard convention, let N X = D when X is empty. Note

L is not a complete prime.

Proposition 2.3 If D is a dI-domain then ST (D) is a stable infor-

mation system.

Proof By inspecting all the axioms for stable information systems.

We can also get stable approximable mappings from stable functions.

21

Definition 2.5 Let D, E be dl-domains, and f : D — E a stable

function, Define a relation ST (f)C Congr(py X Asr gy by taking
X SI(f) a <= (x, p) € uf

provided N X = 21 and a = pT.

Note (z, p) € uf requires, by Definition 2.2, that = is a finite element

of D and p is a complete prime of E.

Proposition 2.4 Let D, E be dl-domains, and f : D — E a stable

function. Then SI(f) is a stable approximable mapping from S7 (D) to
SI(E).

Proof We check that axioms 1, 2, 3 and 4 of Definition 2.3 hold for

SIf.
Axiom 1 follows from Lemma 2.2 by taking f = g.
Axiom 2 and 4 are easy.

Axiom 3 follows from the third property mentioned in Theorem 2.2

about the set uf.

Note that for the stable information system SI D determined by a

dI-domain D,

{a}4+{b} = a=0.
We conclude this section by

Theorem 2.4 F¢: SIS — DI and ST : DI — SIS are functors which

determine an equivalence of SIS and DI.

22

Proof That Pt and SI are functors is routine.

We use one of MacLane’s results in (Maclane, 1971). It is enough to
show that /% is full and faithful, and each dI-domain D is isomorphic to
Pt (A) for some stable information system A. The latter is straightfor-

ward. It remains to show that Pt is full and faithful.

First we show that Pt is full. Suppose A and B are stable information

systems and

f:+P(A) — Pt(B)

a stable function. Define a relation R C Cbny x B by letting X Rb
if (X, b) € uf. It follows from Proposition 2.4 that this relation is an
approximable mapping form A to B. By Theorem 2.2, the stable function

Pt R determined by R is actually equal to f.

Suppose i, S: A — B are approximable mappings such that Pt R =
PLS. It follows from Proposition 2.2 that R C S and S C R, and hence
R = S. Therefore Pt is faithful. H

3. A Cpo of Stable Information Systems

In this section we introduce a subsystem relation on stable information
systems. The subsystem relation captures the notion of rigid embedding
(Kahn and Plotkin, 1978). We get a cpo with the subsystem relation,
which enables us to give meaning to recursively defined stable informa-

tion systems through the construction of least fixed points for continuous

23

functions.

ong, Fa)and B = (B, Cong, Fp) be

Definition 3.1 Let A= (A, C
d4Bif

stable information systems. A

1.ACB
2. X € Cony <= XCA&X € Cong
3. XFga <= XCA&Xtpa

When A 4 B we call A a subsystem of B. Note condition 3 above

implies that

XFpa&k X CA= ac A
Hence our definition of subsystem is different from (Larsen and Winskel,
1984), where the relation captures the notion of embedding between do-

mains. We have a stronger notion of subsystems (This is not surprising

at all because rigid embeddings are embeddings but not vice versa).

Let A= (A, Conyg, F4) and B = (B, Cong, Fp) be stable informa-
tion systems. If A = B and A< B, then A = B.

Definition 3.2 Let D, E be dI-domains. A stable function f: D —
E is a rigid embedding if there is a stable function ¢ : £ — D called a

projection such that

e VdeD.gf(d)=d
e Vec E. fgle)Ce
eVde D, ecE.eC f(d) = fgle) =¢
Proposition 3.1 Let A = (A4, Cony, b4) and B be stable informa-

tion systems. If A < B then the inclusion map 4 : PPA — PtB is a rigid

24

embedding with projection j : PtB — PtA given by j(y) = y N A for
y e PtB.
Proof We have
Ve € PA. ji(z) =N A=z,
Vy e PtB. ij(y) =yNACuy, and
Vy € PIB.y C A= ij(y) =v.
Hence it is enough to show that i , j are well defined functions, which is

trivial. K

The relation < is almost a complete partial order on stable informa-
tion systems. Clearly there is a least stable information system, with the
empty set as propositions. The limit of an w-increasing chain is a stable
information system with the proposition set, consistency and entailment

relations the union of those in the chain. We have
Theorem 3.1 The relation < is a partial order with the least element
L=(0, {0}, 0).

IfA QA D<A, 4. is an increasing chain of stable information

systems where 4; = (A;, Con;, b;), then their least upper bound is

LZJ (UAZ,U}—Z,UCon).

Proof As our notion of subsystem is stronger than the one in (Larsen

and Winskel, 1984) we know that

25

is the least upper bound of the chain as information systems. We check
that axiom 6 and axiom 7 of Definition 2.1 hold for Ui A;. Suppose X F a
in U; A;. Since the entailment is the union of those of Ay’s and X is finite,
there must be some k such that X Fj, a. But Ap is stable. Therefore
db € X.{b} k. a which implies {b} F @ in U; 4;. To see axiom 7 holds
consider {b | {a}F b} in U; A;. Obviously a € A, for some k. We show
that
10l{a} b} C{b|{a} b},

which implies the finiteness of {b | {a} F b}. Assume {a} F; t for
te A If j < Ethen {a} by tas A; 9 A, It j > k then Ay 9 A;. By
axiom 3 of Definition 3.1 {a } b ¢ since a € A;. Therefore axiom 7 holds

for U; A4;.

That for each j A; < U; A; is trivial. B

Write CP Oy for the ‘cpo’ of stable information systems under <.
CPOyg;s is not a cpo in the usual sense simply because they are not a set

but a class. However, this ‘large’ cpo still suits our purpose.

The subsystem relation < can be easily extended to n—tuples coor-

dinatewisely. More precisely we require

<_{ﬁ) A_Q_)"'An,)ﬂ (@_]_) _‘6_27"'Bn>

iff foreach 1 < ¢ < n, A4;< B;. For convenience write A for (A1, Ag,--- A,).

The least upper bound of an w—chain of n—tuples of stable infor-

mation systems is then just the n—tuple of stable information systems

26

consisting of the least upper bounds on each component, i.e. if
AiQ 4, da-
then for the j-th component

W(Q@>=Q%(A>~

An operation I form n—tuples of stable information systems to m—tuples
of stable information systems is said to be continuous iff it is monotonic,
. —* g . . - = .] .
le. A< B implies F'(A) <4 F (B) and preserves w—increasing chains of

stable information systems, i.e.
A4, adq..

implies

JF () =F(UL).
2 z
It is well known that for functions on (finite) tuples of cpos they are

continuous iff by changing (any) one argument while fixing others the

induced function is continuous.

Proposition 3.2 An unary operation F is continuous iff it is mono-
tonic with respect to < and continuous on proposition sets, i.e. for any
w~—chain

AlﬂAQﬂAzﬁ

9

each proposition of F'(U; A;) is a proposition of U; F (A4,).

Proof The ‘only if” part is trivial.

27

If: Let

A dAy---QA4 Q-

be an w—chain of stable information systems. Since F' is monotonic, we

clearly have

2

LZ_JF(-A_U S F(UA).

Thus the propositions of F' (U; A;) are the same as proposition of U; F' (4;).

<=7

Therefore they are the same stable information systems by the remark

given just before Definition 3.2. R

Now given any continuous function F' on CP Oy, we can get the least

fixed point of F', which is the limit of the increasing w—chain

LJdF(L)IF(L)gQ...9F (L) 4.

—— —)

ie. Ui F*(L). Note since we are working with a partial order, we get an

equality

F(UF (L) =UF' (L)

4. Constructions

In this section we introduce constructions of lifting ()1, sum 4+, prod-
uct x and function space — on stable information systems. These con-
structions have their counterparts in dI-domains as the constructions of
lifting, sum, product and stable function space. They induce continuous
functions on CPOyg;. In this way we can produce solutions to recursive

equations for stable information system written in these constructions.

28

Lifting, sum and product are more or less the same as those on infor-
mation systems (Larsen and Winskel, 1984). There is a minor technical
advantage because axiom 6 for stable information system rules out the

possibility) F a. What is totally novel is the construction of function

space.
Definition 4.1 (Lifting) Let A = (A, Con,) be a stable infor-
mation system. Define the lift of A to be Ap = (A, Con/, F') where
o A'=({0}x4)u{o0}
e X ecCon'<={a|(0,a)e X} e Con
s XFae=[X#£0ka=0o0r a=(0,0)&{c|(0,¢)eX}Fb]

Lifting is an operation which given a stable information system pro-

duces a new one by joining a new proposition weaker than all the old

ones.

Definition 4.2 (Sum) Let

A= (A, Conyg, y)

and

B = (B, C’O?’L_[i, I_Q)

be stable information systems. Define their sum, A + B, to be C =

29

(C, Con, k) where
e C={0}xAU{1}x B

oW elon<=dXecCony W={(0,a)|ac X} or
AY € Cong. W={(1,b)|beY}
eWheesW={(0,a)]aeX}&c=(0,r)&Xuror
W={(1,0)]beY}&e=(1,t)&Y Fpt

The effect of sum is to juxtaposing disjoint copies of two stable infor-
mation systems. We can obtain the separated sum & by letting A B =9

f_}_,[\ 4 —B-T'

Definition 4.3 (Product) Let A = (A, Cong, t4) and B =
(B, Conp, Fp) be stable information systems. Define their product,

A x B, tobe C = (C, Con, I) where
e C={0}xAU{1} xB

eWelom<={a| (0,a)eW}eCong&{b] (1,b)e W} e Conp
eWhrcesc=(0,r)&{a] (0,a)eW }rsror
c=(1,t)&{b] (1, b)eW }Fpt

The proposition set of the product is the disjoint union of propositions
of the components. A finite set of propositions is consistent if its projec-
tions to the components are. And a consistent set entails a proposition

if it does so when projected into the appropriate component.

Notations. my and m are projections which give the first and the

second argument respectively when applied to a pair. When they are

30

applied to a set S of pairs, we write 7S and 7S for the set of first

argument and second argument of element in S, respectively.

Definition 4.4 TLet A = (A, Cony, Fu) and B = (B, Cong, tp)
be stable information systems. A subset m C/™ Cony x B is said to be

a molecule if m is a stable approximable mapping and

Jaem. [VBeEm. {ma}bkpmp&{ma}rsmB]

Molecules capture complete primes in the function space.

Definition 4.5 (Function Space) Let A = (A, Conyg, F4)and B =
(B, Cong, Fp) be stable information systems. Define their function
space, [A— B], tobe C = (C, Con, I-) where

o C'={m|mis amolecule of Cong x B }

VS CUX. UmS € Conyg = UmS € Cong
° X € Cone= Vo, e UX.[{ma} kg {mi 8} & moa U mpS € Con 4]
= Mo _“_A 71'0,8

e XFcee= e X (VaecdBed {ma} g {mp}&mra -4 m0)

Theorem 4.1 Lifting is a continuous function (); : CPOgs —
CPOygj. Sum, product and function space +, x, — : CPO% —

CPOy;, are also continuous functions.

Proof We take the construction of function space as an example.

Other cases are much simplier, hence omitted.

First we check that — preserves stable information systems. Let 4, B
be stable information systems as in definition 4.5. It is easy to see that

31

[A — B] is an information system. Suppose X F ¢ in the function space.
By definition 4.5 3b € X. {b} F ¢. Thus axiom 6 holds. Suppose a is
a molecule. We want to show that {b | {a} F b & b is a molecule } is

finite. By definition, {a } F b implies
Vo € bEﬁ € a. {7(10{} _“—_]i {Wl/@} & moor "ﬂ"AWO/B.
But because A and B are stable, we know that for any 8 € a the sets

{seB|{mB}Fps}
and
{XC_:Alﬂoﬁl_AX}
are finite. Hence {0 | {a } F b & b is a molecule } is finite.

— 1s monotonic in its first argument. Suppose A < A’. Write

C=(C, Con,+)=|A— B

and

C'=(C" Con/,H)=[A"— B].
We check 1, 2 and 3 in definition 3.1, to show that C < C/. Axiom 1
is trivial. Axiom 2. Suppose {¢; | 1 < ¢ < n} € Con. Then clearly
{eill1<i<n}CCand{¢|1<i<n}eCon'. On the other hand,
suppose {¢; |1 <i<n}CCand {¢;|1<i<n} e Con’. We have

VS C U;¢. UW()S - C;'O’I’I,Azi> UmS € C'onﬁ&
\‘/af,ﬁ & UiCi. {71'1(1’} “”‘Q{’ﬂ'lﬁ}& FgaUWoﬁ € C’Onﬂ

== moa 4w

32

However,
UTI‘()S € C'onA — U?TQS € C’On_jﬂ

and

o U C A & moor -4 w8 = moar b4 w5,

as A Al So we have {¢; |1 <i<n} e Con.

Axiom 3 follows from a similar argument used in 2. Let

be a chain of stable information systems. Let m be amolecule of [(U; A;) —
B]. Then Umgm C™ U; A;. Hence Umgm C A; for some 7, which means
m is a molecule of [A; — B]. Thus m is a molecule of U;[4; — B]. By
Proposition 3.2 we deduce that — is continuous in its first argument.
Similarly but easier we can proof that — is continuous in its second ar-

gument hence it is continuous. &

Therorem 4.1 provides a tool for solving equations of stable informa-
tion systems by fixed point theory, since all the constructions introduced

give rise to continuous functions and hence the existence of fixed points.

The reader may wonder why the construction of function space is so
different from the one on information systems; Why can’t we use propo-

sitions of the form (X, ¥) or even (X, b) for the function space?

Information systems describe the consistency and the entailment re-
lation on propositions. The entailment is global: Once X F «, it holds for

the information system irrespective of the particular computation of the

33

type. Asthe stable approximable mapping suggests, a pair (X, b) should
read as: The set of propositions X entails the proposition b, and X is a
weakest such set. If we take (X, b) as the basic unit of information for
the function space, it may lack the global property. Consider the func-
tion space on the simple information system ({1, 2 }, Con, F), where
Con is generated by requiring 1, 2 to be consistent and - by {21} + 1.
If we know that = is a computation which produces 2 with the minimal
information 2, written as ({2}, 2) € x, we know that 1 is somehow also
produced, since we have {2} F 1. We can then ask what is the mini-
mal information needed for « to produce 1. There are three possibilities:
({2h 1) €, {1}, 1) € 2 and (0, 1) € 2. Therefore ({2}, 2) en-
tails ({2}, 1), or ({1}, 1), or (#, 1), but not all of them at the same
time (it depends on the computation z). This illustrates why we cannot
get a global entailment by using propositions of the form (X, b) for the

function space.

Our construction of function space works for the example in the fol-
lowing way. There are altogether nine molecules, four containing (0, 1),
three containing ({1}, 1), two containing ({1, 2}, 1) and ({2}, 1). For
example, { (), 1) } is one of the molecule. Clearly, these nine molecules
corresponding to the nine complete primes in Pt (A4) —; Pt (4), where A

is the stable information system under consideration.

There is a special class of stable information systems for which one
can indeed use (X, b) as propositions for the function space. They are

the stable information systems with a trivial entailment relation: X F

34

a iff @ € X. It can be shown that these stable information systems
are closed under all the constructions proposed in section 4. In fact
if we further require Con to be binary, in the sense that X € Con iff
Va, b € X. {a,b} € Con, and {a} - {b} implies ¢ = b, then they
are just Girard’s coherent spaces (Girard, 1987). The reason for this is
very simple: The domains Pt (A) for such stable information systems are
binary complete (coherent) and the complete primes of Pt(A) are of the
form {a} with a € A. More detailed treatments of coherent spaces are

given in (Zhang, 1989D).

5. Conclusion

We have presented here a representation of dI-domains as information
systems. The representation is formulated in terms of an equivalence be-
tween the category of dI-domains and the category of stable information
systems. Through this representation as well as the related constructions,

a more clear picture of the structure of stable functions is exposed.

In stable information systems the propositions correspond to some
kind of Scott open sets. This fact promised them to be an important link
in the development of logic of dI-domains. The logic of dI-domains should
include the stable information systems as its backbone, but with certain
kind of logical operations like conjunction and disjunction explicitly put
on the propositions. The smooth formulation of such a logic requires a
characterisation of stable functions in terms of some kind of Scott open

sets. These open sets turn out to be disjoint in nature, in the sense that

35

the union of two open sets makes sense in general only if their intersection
1s empty. It is reasonable, therefore, to expect that the logic of dI-domains
is a kind of disjunctive logic. In (Zhang 1989b), progress along this

direction is reported.

Acknowledgements

I was introduced to the semantics world by Glynn Winskel and I am
grateful for his guidance. I’d like to thank Martin Hyland for helpful

suggestions at the early stage of the work.

This work was partially done at the Computer Laboratory of Cam-
bridge University, where [was supported by a studentship from Trinity
College. Many thanks to the Department of Computer Science of Aarhus

University for their hospitality.
References
Berry, G. (1978), Stable models of typed A—calculi, LNCS 62

Girard, Jean-Yves (1987), Linear logic, Theoretical Computer Science

Johnstone, P.T. (1977), A syntactic approach to Diers’ localizable

categories, Lecture Notes in Mathematics 753
Johnstone, P.T. (1982), Stone spaces, Cambridge University Press

Kahn, G., Plotkin, G. (1978), Domaines concretes, Rapport INRIA
Laboria No. 336

36

Larsen, K., Winskel, G. (1984), Using information systems to solve re-

cursive domain equations effectively, Lecture Notes in Computer Science

173

Maclane, S. (1971), Categories for the working mathematician, Springer-

Verlag

Nielsen, M., Plotkin, G., Winskel, G. (1981), Petri nets, event struc-

tures and domains, pert 1, Theoretical Computer Science 13
Scott, D. S. (1982), Domains for denotational semantics, LNCS 140

Smyth, M.B. (1983), Power domains and predicate transformers: a

topological view. Lecture Notes in Computer Science 154

Winskel, G. (1988), Event structures, Lecture Notes in Computer

Science 354

Zhang, G. Q. (1989a), DI-domains as Informations systems, Lecture

Notes in Computer Science 372

Zhang, G. Q. (1989b), Logics of Domains, PhD thesis, University of

Cambridge

37

