ISSN 0105-8517

Hypertext in an Object-Oriented
Programming Environment

Elmer Sandvad

DAIMI PB - 280
May 1989

AARHUS UNIVERSITY I |
COMPUTER SCIENCE DEPARTMENT .
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK

Telephone: + 4586 1271 88 Telex: 64767 aausci dk E [—}'T

Hypertext in an Object-Oriented
Programming Environment *

Elmer Sandvad
Computer Science Department,
Aarhus University, Ny Munkegade 116,
DK-8000 Aarhus C, Denmark

e-mail: ess@daimi.dk

May 1989

Abstract

This paper describes how hypertext concepts are sup-
ported in an object-oriented programming environment.
Program fragments and documentation fragments are
modelled as objects in an object-oriented programming
language and several kinds of links are provided between
these objects. Therefore the term hyperobject system is
used. The links support document organizational rela-
tionships, abstract presentation, annotations, program

semantical relationships, and program-documentation re-
lationships.

Keywords:

Hypertext, Documentation, Grammar Based,
Object-Oriented, Programming Environment

*To be presented at WOODMAN’89: Workshop on Object-Oriented Document Manipula-
tion, Rennes, France, May 29-31 1989.

1 Introduction

Hypertext systems [Conklin 87] have received much attention in recent
years. A lot of hypertext systems have demonstrated the usefulness of
organizing documents in collections of nodes connected by directed links.
Besides the organizational aspects, links can support the variety of re-
lationships between pieces of information. A hyperdocument can be ac-
cessed in a non-linear way by following the links, and the reader can make
annotations and define new links.

The message of this paper is to demonstrate how the ideas and concepts
of hypertext systems can be applied to a programming environment and
thereby getting the same advantages as in hypertext systems. Because
the starting point is a grammar based programming environment it is
possible to go a step further with respect to finer grained relationships
and automatical definition of certain link types.

The programming environment is the Mjglner BETA System !. The
part of the Mjglner BETA System that supports hypertext is called the
hyperobject system because nodes in the hypertext network are modelled
as objects in an object-oriented programming language. The language is
BETA 2. In this paper the focus will be on the hyperobject system.

The purpose of the hyperobject system is to support documentation and
navigation in large programs and their corresponding documentation.
The hyperobject system offers the following:

Document types

Two basic document types exist: program documents and documenta-
tion documents. The term documentation covers any description in the
range between informal prose to formal specifications. In the software
life cycle several kinds of documentation documents are produced e.g.
specifications, design documentation, program documentation and user

!The Mjglner BETA system [Mjglner BETA 89] is one of several results of the Mjglner
project [Mjglner 87] which is a Nordic project developing programming environments, that are
primarily aimed at supporting the object-oriented style. In this paper only the Mjglner BETA
system will be described.

?BETA [BETA 87] is a modern object-oriented programming language in the Simula tradi-
tion.

documentation but also more unstructured pieces of information are used.

Document structure

Program documents and documentation documents can be plain text ob-
jects or structured objects. Most programming languages and some doc-
umentation languages have a formal structure that can be described by a
context free grammar. An integrated text and structure editor supports
the creation and modification of documents in these languages. Text ob-
jects are edited by means of the text editor. Structured objects are also
called document fragments or just fragments.

documentation <—» program

$ t

documentation -<«— program

structured object -— text object

i 1

structured object -+— text object

Fig. 1: Full link symmetry

Links

Links are provided between any combination of document type and doc-
ument structure, see Fig. 1. Links can go within as well as between
documents. The upper diagram illustrates support for links between pro-
gram objects, between documentation objects, from program objects to
documentation objects and vice versa. The lower diagram illustrates one
of the most important contributions of the hyperobject system: support
for links within as well as between structured objects. The structure of
these objects is grammar based. Text objects can be connected to struc-
tured objects and vice versa. Annotations are examples of a link from a

3

structured object to a text object.

Hierarchy and Network

The documents can be organized hierarchically supplemented by a net-
work of relationships. In [Conklin 87] the terms organizational and ref-
erential links are used. Organizational links implement hierarchical in-
formation; they connect a parent node with its children and thus form
a strict tree subgraph within the hypertext network graph. Referential
links are the kind of links that most clearly distinguishes hypertext. This
reference technique is non-hierarchical. The hyperobject system supports
organizational as well as referential links. Five different link types are
provided by the hyperobject system. These are document organizational
links, abstract presentation links, annotation links, program semantical
links, and documentation links. The first two are organizational and the
last three are referential.

Abstract Presentation

At the fragment level abstract presentation is used as an organizing mech-
anism. Abstract presentation presentation corresponds very much to out-
lining known from some word processing systems. Abstract presentation
is provided on structured objects, it is based on the formal structure of
programs as well as documentation.

Program Semantical Links

Program semantical links are examples of links between structured ob-
jects. Structured objects are represented as abstract syntax trees, that
are very suitable for providing program structural and program seman-
tical information. An example of a program semantical relationship is a
definition-use relationship. Links are automatically generated from uses
of an identifier to its definition. This finer grained automatically gener-
ated link type is unique in the hyperobject system.

Program View and Documentation View

The hyperobject system can be used from different view points. In the
program view the main emphasis is on programming. A collection of pro-
gram fragments are browsed either hierarchically or by following different
referential links. The main focus is on the structure of the program and
on the semantic relationships between pieces of code. Sometimes links to
documentation objects are followed in order to understand the program.

In the documentation view the emphasis is on producing or reading the
documentation of a software system. A collection of documentation frag-

ments are browsed. Sometimes links to program fragments are defined
or followed.

The structure of the paper is as follows: The rest of this section discusses
hypertext systems for software engineering and syntax-directed document
editing. Sections 2-6 present the five link types in detail with focus on
functionality. Section 7 presents the basis of the hyperobject system.
Section 8 discusses related work.

1.1 Hypertext Systems for Software Engineering

Hypertext systems have been developed for various application areas.
NoteCards [Halasz 88] and Neptune [Delisle & Schwartz 86] are examples
of general hypertext systems. Neptune however was designed with a spe-
cific application area in mind: software engineering. Another example of
a hypertext system for software engineering is DIF [Garg & Scacchi 88],
but the number of hypertext systems for this application area is very
small. Many papers on hypertext systems mention the capability of sup-
porting documentation of software systems either by means of annota-
tions on programs or by means of linking various documentation docu-
ments together mutually or together with the program code. But all these
examples are at a rather coarse level. Whole text documents are linked
together with other text documents. The structure and semantics of the
program are either not considered or only supported manually. This is
because the starting point of most hypertext systems is a database of
text documents, that are linked together.

In the hyperobject system the starting point is a grammar based pro-
gramming environment with tools that operate on the formal structure

5

of programs. Program fragments and documentation fragments can be
linked together in terms of their structure instead of in terms of positions
in a text. In [Delisle & Schwartz 86] automatic support for finer grained
relationships like definition-use relationships was advertised for. In the
hyperobject system such program semantical links are created automati-
cally and inserted in the structural representation of programs. In section
8 the hyperobject system is compared to NoteCards, Neptune and DIF.

1.2 Syntax-Directed Document Editing

In the software life cycle several kinds of documents are used e.g. specifi-
cations, design documentation, program documentation, user documen-
tation in addition to the source code. The languages used in these docu-
ments are more or less formal, but even pure prose documents may have
a certain structure that can be described formally. There is put a lot of
effort currently in developing document standards.

The ODA standard (ISO/DIS 8613) separates the definition of a docu-
ment into a logical structure and a layout structure. The logical structure
of a document (like chapters, sections and paragraphs) can be described
by a context free grammar, and thereby be supported by a syntax-directed
editor. In order to handle the layout structure additional effort is re-
quired, essentially word processing facilities like style and format. In
[Hansen & Hestbeek 89] 3 it is described how the ODA standard can be
supported in the Mjglner BETA System.

GRIF [André 86] is an example of a structure directed editor for editing
and formatting. A special problem with syntax-directed document edit-
ing is support for graphics, ranging from graphical notations like math-
ematical formula and tables to graphical description languages. Edi-
math [Quint 83] is an example of how graphical notations can be sup-
ported. Another example is reported in [Holdam & Ngrgaard 86]. In
[Sandvad 88] general syntax-directed graphical editing is discussed. In
the current prototype of the hyperobject system word processing facili-
ties are very primitive, only the logical structure is supported. Syntax-
directed document editing will not be further discussed in this paper.

3Is also presented at this workshop.

2 Document Organizational Links

The Mjglner BETA System is aimed at supporting design, implementa-
tion and maintenance of large production programs. In order to cope
with large systems, it must be possible to break down a program into
(or more realistic: build up a program from) smaller components that
are tied together in a well-defined way. The fragment system which is
based on [Kristensen et al. 83] provides this facility. In the following a
simplified version the fragment system will be briefly described with spe-
cial focus on the hypertext facilities. The focus is on fragmentation of
programs but the same principles can be applied to structured documen-
tation documents.

In the BETA programming language there is no special constructs for
dividing a program into separate pieces (files). This aspect is handled by
the environment. The basic idea is to define a fragment according to the
grammar. A fragment is a sentential form i.e. any legal sequence of ter-
minal and nonterminal symbols. A nonterminal symbol is normally used
in a syntax-directed editor as a placeholder for empty program templates
of the same syntactic category. In the fragment system a nonterminal
symbol can act as a slot where an existing fragment with a certain iden-
tification and of the same syntactic category can be plugged in. This is
illustrated in Fig 2.

origin S— include

AN A

Fig. 2: The fragment system

7

If the entire program was contained in one program fragment, there would
only be one abstract syntax tree (AST). In the figure however subtrees
of the AST, have been cut out into isolated program fragments. The
program fragments have links to the fragment where they where cut out.
A BETA program is a collection of such program fragments.

There are two ways of organizing the variety of fragments. Besides the
UNIX file directory there is a group construct that is used to aggregate
program fragments. A group * is simply a collection of program frag-
ments. Two kinds of links connect groups together. An organizational
link (called ’origin’) that specifies the group whose slots are going to be
filled. And a referential link (called ’include’) that is used to refer to a
library.

A group browser provides, besides navigational access to groups, the fol-
lowing functionality on a group:

¢ a survey of the local fragments in the group and links to other
groups.

e creation and modification of links to other groups
e addition or deletion of local fragments
¢ activation of the editor on a local fragment

e activation of the compiler starting with this group. The compiler
automatically follows the links to get a complete program. Consis-
tency of versions is checked.

o execution of this group, if possible

The group browser exists in two versions: a graphical one that presents
a group as a window with different icons representing links and local
fragments and a textual one that presents a group in a menu with entries
for each link and local fragment. The interface to the database of groups
and fragments is through the group browser. The editor operates on
the fragment level. A typical situation in a working session is having a
collection of editor windows on the display, one for each fragment.

“In this paper the terminology of the fragment system has been adapted slightly. The correct
terminology is fragment group, fragment form, fragment link instead of group, fragment and
link.

3 Abstract presentation

The fragment system is used to divide large documents into smaller frag-
ments. Most non-trivial fragments, however are normally too big to fit
into a window on the screen, even if the window occupies the whole
screen space. Inside the editor there is another way of organizing large
fragments, or at least the presentation of them. Abstract presentation
can be considered as supporting intrafragment organizational links. The
user has the possibility manually to substitute any structure in the doc-
ument by a so-called abstraction, which acts as a link to the suppressed
details. In Fig. 3 there are 3 abstractions.

relations:

(#
min: <<... ObjectDescriptor ...>>;
max: <<... ObjectDescriptor ...>>

#) /
4

(# x,y: @ integer
enter (x,y)
do <<... Imperatives ...>>
exit y
) \
(if x>y)
//true then x->y
if)

Fig. 3: Abstract presentation of a program fragment

At the highest abstraction level class relations has two operations: min
and max. The details of these two functions are suppressed and instead
abstractions are presented. The syntax <<... ObjectDescriptor ...>>
is not part of the BETA language, but it indicates that a construct of

9

the syntactic category objectDescriptor has been suppressed. When an
abstraction is activated (the link is followed) the underlying structure
replaces the abstraction (this is sometimes referred to as replacement
links). If the abstraction of the maximum function is activated (e.g. by
double clicking with the mouse) the next level of abstraction appears, in
this case the body of the maximum function. But this level contains also
an abstraction: <<... Imperatives ...>> .

Any construct in the program fragment can be abstracted. The opera-
tions ’abstract’ and ’detail’ give the user the possibility to consider the
document at any abstraction level. Abstractions can also be inserted au-
tomatically when a document is opened. Note that the candidates for
abstraction are language specific. For programming languages the candi-
dates might be modules and procedures and for documentation languages
it might be chapters and sections. Abstract presentation of a program
fragment or a documentation fragment has several advantages:

Overview

It provides an overview of the document. The whole document can be
surveyed at once in one window without scrolling through pages of text.
This facility is also known in some word processing systems as outlining.

Browsing

Browsing is done by interactively detailing parts of an abstract presen-
tation. If the document is a technical report with chapters and sections
and the like, the highest abstraction level can actually be an interactive
table of contents. See Fig. 4. In this example the sections of chapter 2
and 3 are suppressed whereas the chapters the chapters 1 and 4, and the
author and date are unexpanded nonterminals.

Documentation

Snapshots of a program at different abstraction levels can be very useful
for documentation purposes. One example is a so-called functional spec-
ification: a survey of modules and procedure headings with comments
describing parameters and the purpose of the procedures. The user can
select an appropriate abstraction level by detailing or abstracting the rel-

10

evant constructs of the document and save the actual abstraction level
including comments on textual form. An abstraction level can also be
generated automatically.

Users and Programmers Guide for Sif
DK-SYS-29.2
<<Author>>
<<Date>>

1. Introduction
<<chapterContents>>

2. Users Manual for Sif
<<... sections ...>>

3. Generating an Editor for a Language
<<... sections ...>>

4. Tailoring Sif
<<chapterContents>>

Fig. 4: Abstract presentation of a documentation fragment

4 Annotations

Another way of compressing information on the screen is the way tra-
ditional comments are handled in the editor. This is an example of in-
trafragment referential links. See Fig. 5.

11

This pattern contains
some useful operations

7/

relations: (*)

min: (*) <<... ObjectDescriptor ...>>;

max: f (*) <<... ObjectDescriptor ...>>

#)
returns the minimum returns the maximum
of two integers of two integers

Fig. 5: Annotations

Comments in a program are handled by means of links to simple text
objects, so-called annotations. Any point in the program can be linked
to a text object. If a construct in a program fragment is selected, a text
window can be opened and the annotation can be entered. After finishing
the annotation a special annotation mark (*) is inserted in the construct
to indicate a link from the construct to a text object. Whenever the user
selects a program construct with a annotation link, a text window can
be activated (e.g. by double clicking with the mouse) and the annotation
can be read or modified.

When the normal textual form of the program is requested, the annota-
tion is inserted instead of the annotation mark as a conventional com-
ment. In addition this link type is automatically set up if the program is
parsed from textual form.

Annotations can be copied or moved around in the program fragment by
means of usual cut, copy, paste operations.

A simple text object can also be on a separate file, but in this case it
is not considered as a conventional comment, but rather as an isolated
piece of documentation.

12

5 Program Semantical Links

The program semantical links are used to reflect the static semantic in-
formation of a program. For example definition-use relationships and
superclass relationships. Such relationships are automatically deducible
from the program and should be supported by an automated tool. In
the Mjglner BETA System program semantical links are set up by the
checker. These links are used in the checking and coding processes, but
are also provided to the user in the editor. Fig. 6 shows an example of a
link from a use of the putInt procedure to its definition.

record: (¥)

Key: @ integer;
Display :< (*)
(#

do 'Key: ' -> screen.putText;
(Key, 1) -> screen.putlnt;
inner
#)
#)

betaEnv:

..
putlnt: <<... ObjectDescriptor ...>>;
putText: <<... ObjectDescriptor ...>>;

-

Fig. 6: Program semantical links

When a construct is selected in a program fragment (in the editor) a
menu presents the available links from that construct (if any). If the
program fragment has been parsed from textual form and the checker
has not been activated, no semantical links are inserted.

Note that program semantical relationships go across the fragment struc-
ture.

13

Interactive program analysis is normally not considered being part of
program documentation, but language specific inspection of a program is
often useful when trying to understand it. This kind of program traversal
can be considered as non-hierarchical browsing.

6 Documentation Links

Documentation links are used to support all other kinds of relationships
between documentation fragments mutually and between documentation
fragments and program fragments. This link type is manually created
by the user in the editor. The documentation link type is the basic
mechanism for supporting integration of program and documentation.

Any point in a program or fragment can be linked to another point in the
same or another fragment. When a construct in a fragment is selected in
the editor, the construct can be marked as a link source. The link des-
tination is chosen by selecting another construct in the same or another
fragment (possibly after activating an editor instance on the destination
fragment using the group browser) and issuing the 'make link destination’
command. A link mark is inserted in the source construct as well as the

destination construct. A descriptive text can be associated with each end
of the link. See Fig. 7.

14

4, Tailoring Sif

4.1 Binding the Level of the AST Interface
<<... subSections ...>>

4.2 Adding Functionality to The Editor
In order to add functionality to the editor its interface
must be available. The editor is provided as a BETA
pattern (class) and can be extended by subclassing.
The following very abstract presentation shows the
basic structure of the editor:

<<Link to: editEnv>>

AN

AN
X

editor: <<Link from: sifDoc >>
#

sdeC: @ sdeController;
sdeController:< <<... ObjectDescriptor ...>>

sde: @ sdeModel;
sdeModel:< <<... ObjectDescriptor ...>>
#)

Fig. 7: Documentation links

One example of the usefulness of this kind of link, is the relationships
between the technical program documentation describing an implemen-
tation and the corresponding source code. In the documentation there
will often be references to the source code or pieces of source code at
different abstraction levels might have been inserted. Conversely there
might be references to the documentation in the source code or documen-
tation pieces are inserted (often as comments). A major documentation
problem in existing development environments is the lack of support for
such relationships. In the hyperobject system links are created instead of
inserting (copying) the related piece of program or documentation. The
abstraction level of the link points can also be specified.

A special problem is maintenance of consistency between various docu-
mentation fragments mutually and consistency between documentation
fragments and program fragments. Documentation links are visual in the
editor both at the link source and at the link destination, and the user is
notified if modified fragments contain links to other fragments.

15

7 The Basis

7.1 Nodes

The node types of the hyperobject system are groups, fragments and
text objects. Because the starting point of the hyperobject system is a
grammar based programming environment, the focus is on the structural
representation of documents. The basic node type is the fragment.

Each fragment contains the internal representation of the document.
The internal representation of program fragments, and the integration
medium of the tools in the environment (editor, checker, coder, debugger
etc.), is abstract syntax trees - ASTs. The editor [Borup & Sandvad 88|
creates and manipulates AST’s through the metaprogramming system
that provides a programming interface to ASTs. The metaprogramming
system models ASTs as objects i.e. the grammar hierarchy is mod-

elled by means of an inheritance and aggregation hierarchy of objects
[Madsen & Ngrgaard 88).

7.2 Links

Links are characterized by type, direction, source and destination. De-
pending on the concrete hypertext system the link source and link desti-
nation can either be the entire node or a point or a region in the node.
A link point normally refers to a position in a text, whereas a link re-
gion refers to a set of contiguous characters. If graphical node types are
supported link points and link regions can refer to points or areas in a
picture, respectively.

The link types in the hyperobject system are program organizational
links, abstract presentation links, annotation links, program semantical
links and documentation links. Documentation links can be further typed
by labelling them in a systematic way.

Most links in the hyperobject system are bi-directional.

In the hyperobject system, link sources and link destinations of a frag-
ment are expressed by mainly two references: a reference to a fragment
and a reference to an AST-node in the fragment. Because the internal
representation of a fragment is an AST there is no distinction between

16

link points and link regions. Any point in an AST is the root of a subtree
that in turn corresponds to a region. A third reference is used in the
cases where the link point is at a finer level than an AST-node. This is
often the case in documentation fragments. A documentation fragment
has a certain logical structure that is reflected in the underlying AST,
but a great part of a documentation fragment consists of free text, for
example a paragraph. In these cases a point or an area is specified inside
the text object, as known from other hypertext systems.

Link sources and link destinations of a text object are expressed by two
references: a reference to a text object (either internal or a file), and a
point or an area inside the text object.

7.3 Persistency and Presentation

Fragments are persistent objects. Persistence and presentation are im-
portant qualities in a hypertext system. Conklin describes hypertext
as follows: ”"Windows on the screen are associated with objects in a
database, and links are provided between these objects, both graphically
(as labelled tokens) and in the database (as pointers)”. Hypertext nodes
must have a visual presentation and they must be able to survive between
working sessions. In the Mjglner BETA system program fragments and
documentation fragments have these qualities. The presentation is pro-
vided by the integrated text and structure editor.

Currently only abstract syntax trees are persistent objects, but it is
planned that some kind of persistence will be supported in BETA in
the future. This opens for further experiments with the hyperobject
system. In the current system, links are not modelled as objects, but
merely as references between objects. Links are ”inserted” in the ob-
jects, they are not separate objects. If links were modelled as separate
objects with attributes like identification and references to source and
destination nodes, and link types were organized in inheritance hierar-
chies, it would be possible to express any kind of links between any kind
of objects, thus providing a more general hyperobject system. Modelling
links as separate objects would furthermore give the possibility of having
multiple views (links) on the same network of objects.

17

7.4 Browsing

The nodes of a hypertext system can be browsed in three ways: (1)
by navigational access: the links are followed and windows are opened
successively, (2) by querying access: a hypertext network is searched for
a string, keyword or an attribute value (of a node or a link), (3) by direct
access: a hypertext network is presented in a two-dimensional graph and
nodes are accessed by selecting nodes in the graph. The term browser is
often used for this interactive graph.

In the hyperobject system browsing is done by navigational and direct
access.

8 Related Work

8.1 NoteCards

NoteCards [Halasz 88] is a general purpose hypermedia system, but it
was originally designed to be a tool for idea processing and authoring in
research environment. The system provides the user with a network of
electronic note cards interconnected by typed links. The basic node type
is a note card. A note card can be a piece of text, a structured drawing
or a bitmap image. New card types can be added. Links are typed by
means of a user-chosen label. Link sources are points but link destinations
are whole cards. Collections of note cards can be organized or catego-
rized into specialized cards called fileboxes, that corresponds very much
to UNIX file directories. Another specialized card is the browser that
contains a structural diagram of a network of note cards. The browser
provides direct access to nodes in a hypertext network. NoteCards has
a high degree of extensibility and tailorability [Trigg et al. 87]. It is in-
tegrated with the Xerox Lisp programming environment, it provides a
programming interface that allows the user to create new card types, and
the user is provided with a set of parameters that can be used to adapt
the system. In addition cards and links can be processed under program
control.

The basic difference between NoteCards and the hyperobject system is
the emphasis on text and graphics versus program or documentation
structure.

18

The point to point links of the hyperobject system are more general,
because the destination points can be inside documents. The abstract
syntax trees define a hierarchical organization of hypertext nodes. In
fact an AST can be considered as a tree of note cards, where the text
leaves of the AST corresponds to a note card.

Concerning tailorability in the hyperobject system, new node types are
created by specifying a grammar for the particular language used in the
new document type.

The hyperobject system, or more generally the Mjglner BETA System
provides a programming interface and a set of notifications (events) that
are called when important events occur in the system. Examples are link
creation, link deletion and link following. These events can be caught
in extensions of the system °. In fact, part of the hyperobject system
has been developed by extending the original programming environment
using this kind of tailorability. Tailorability in the Mjslner BETA System
is discussed further in [Ngrgaard & Sandvad 89]. Such notifications can
also be used to support executable links.

8.2 DIF

DIF (Documents Integration Facility) [Garg & Scacchi 88] is a hyper-
text system which helps integrate and manage the documents produced
throughout the life cycle of software projects. It was designed for use
in the System Factory, an experimental laboratory created to study the
development, use and maintenance of software systems. A hypertext of
software information is built by the software engineers over eight life cycle
activities. Each activity culminates in producing a document: require-
ments specification, functional specification, architecturial specification,
detail design specification, source code document, user manual and sys-
tem maintenance guide.

Organizational structure is provided by describing the structure of each
document. All projects in the System Factory have the same structure
of documents. Each document is described by a form, which is a tree

®The programming interface to the editor for example, is a BETA class. The editor can be
extended and tailored by constructing a subclass that catches the events. Events are modelled
by means of virtual procedures.

19

structured organization of basic templates (BTs) to be filled in with in-
formation. A form corresponds very well to a table of contents of sections
and subsections. The task of the software engineer when documenting is
to fill out these predefined forms. A BT is a file that can contain differ-
ent kinds of information: informal text, formal specifications, graphical
descriptions, C code or executable code. At the BT level, DIF has an
interface to tools in the UNIX environment e.g. C compiler, Emacs-like
language-directed editors and nroff/troff. Revision control is supported
at the form level by means of the RCS system.

BTs constitute the nodes of the hypertext system. The user can define
links between BTs across projects. Links define semantic relationships
between existing nodes, but annotation links create new nodes. Links
can be operational which means that if a link to an executable BT is
followed the BT is executed. A set of keywords can be defined for each
BT and attributes can be associated to links. The structural information
(forms) and the semantical information (links) are stored in a relational
database. This gives the user comprehensive querying facilities for re-
trieval of documents.

In the hyperobject system there is no predefined document types, but
any of the forms in the System Factory could be supported by describing
them in a context free grammar and generating a syntax-directed editor
for the particular language used. The forms mainly describe the logical
structure of documents using sections and subsections. All document
types with this structure can be expressed in the same grammar.

Abstract presentation provides the same overview as a form. The indi-
vidual sections could be in the same document at lower abstraction levels
or they could be in separate documents connected by links.

DIF has advanced querying capabilities on nodes and links, in contrast
to the hyperobject system . But the links in DIF are at a rather coarse
level. In NoteCards terminology the links between BTs are global links.

In [Garg & Scacchi 88] it is not described how a form can organize a C
program. It seems difficult to do that in a predefined way.

The main difference between DIF and the hyperobject system can be
summarized in: In DIF the emphasis is on production of standardized
documents that can be linked together and in the hyperobject system
the emphasis is on finer grained organization and linking of program

20

fragments and documentation fragments. The preferences of DIF is the
multiproject management, revision management and querying facilities.

8.3 Neptune

Neptune [Delisle & Schwartz 86] is also a general hypertext system but it
was designed with special attention to computer aided software engineer-
ing (CASE). Neptune is a layered architecture. At the bottom level is a
transaction-based server named the Hypertext Abstract Machine (HAM).
The HAM provides storage and access mechanisms for nodes and links.
The HAM provides distributed access over a computer network, synchro-
nization for multi-user access and a transaction-based crash recovery.
Neptune is a layer of functionality on top of the HAM. The HAM pro-
vides operations for creating, modifying and accessing nodes and links.
It maintains a complete version history of the so-called hypergraph. Any
version of the hypergraph can be accessed.

There are no restrictions on the node type. The contents of a node is just
binary data. A link source as well as a link destination is expressed by an
offset within the contents of a node. A link can be attached to a specific
version of a node or the ”current” version of the node. Attribute/value
pairs can be attached to nodes and links. Navigational and querying
access are based on these attribute/value pairs. There are three kinds
of browsers: a graph browser provides a pictorial view of a sub-graph of
nodes, a document browser provides a hierarchical view of nodes (much
like the Smalltalk browser) and a node browser that is a text editor,
where links can be created and followed. One specialized browser is a
node difference browser. Neptune also generates events, i.e. calls user
defined procedures written in Smalltalk, C or Modula-2.

When using Neptune for CASE applications two aspects have gained
special attention: organizational relationships and program semantical
relationships.

The hierarchical structure of documents (sections and sub-sections) is
expressed using a node to represent each section or sub-section with
links connecting each node to its immediate descendant sections or sub-
sections. The hierarchical structure of program source code is expressed
in a similar way. For example a Pascal program can be represented as

21

a tree with a node for each procedure or function. In a language like
Modula-2 the program requires a directed graph of modules.

The attribute/value pairs are used to organize /categorize nodes and links.
An example of a node attribute could be *projectComponent’ with the val-
ues possible values: requirement, specification, design, comment, source
code, object code, symbol table and documentation. An example of a
link attribute could be: leadsTo, comments, refersTo, callsProcedure,
implements and isDefined By.

The preferences of Neptune are distributed multi-user access, version
management of the hypergraph and querying facilities based on attribute /
value pairs of nodes and links. Neptune has better support for finer
grained relationships than DIF, because link points are defined as a node
plus an offset within it. However when it comes to support for program
semantical relationships the basis of text documents and links in a re-
lational database does not suffice. The variety of program semantical
relationships that are expressed by means of link attributes like callsPro-
cedure and isDefined must be stored in the database. Work is currently
going on for automating this process, but the database approach seems
not to be appropriate for this kind of finer grained relationships. The
structural representation of program fragments in the hyperobject Sys-

tem is better suited for that purpose, because links are inserted in the
abstract syntax trees.

Neptune organizes documentation as well as programs in trees or graphs
of nodes. In the hyperobject system the fragment system and abstract
presentation are used to organize the structure of documents. The gram-
mar based approach has several advantages over the Neptune solution.
Abstract presentation can be generated automatically. Violations to a
documentation standard or to the grammar of a programming language
are prevented because documents are edited structurally.

22

9 Conclusion

It has been demonstrated how ideas and concepts from hypertext systems
can be applied to a programming environment. The qualities of hypertext
systems have shown to be useful for programming environments too, but
if the programming environment is grammar based it is possible to go
a step further. The emphasis on structure, based on the grammar of
documentation languages as well as programming languages is one of the
most important contributions of the hyperobject system.

Finer grained relationships between program fragments are very useful in
programming. Due to the grammar basis it is possible to automate the
definition of such links and to represent them in a convenient way.

The uniform treatment of documentation and programs means that the
same facilities are available for both kinds of documents: syntax-directed
editing, abstract presentation and (hyper)linking facilities. The hyperob-
ject system provides good support for navigation in large programs and
their corresponding documentation.

The object-oriented approach, of modelling the abstract syntax trees of
fragments as object hierarchies and modelling links as object references,
has been very suitable for expressing relationships between documents.

Status and Future

The Mjglner BETA System is currently an industrial prototype & | i.e.
it can be used for practical purposes by motivated users. It needs some
finishing to become a robust product.

Some of the qualities of the hyperobject system described in this paper
are provided by the current Mjglner BETA System and others only exist
in an experimental version of the system. The support for documentation
links is very experimental and only the logical structure of documenta-
tion fragments is fully supported. The support for linking text objects
together has had low priority. Instead the focus has been on the struc-
tured objects. Finally only navigational access is currently supported.

Future work will focus on improving the support for documentation links,
querying facilities, and graphical presentation of the hyperobject network.

6The Mjglner BETA System is implemented on SUN, APOLLO and will be ported to the
Macintosh this year.

23

To get a complete documentation tool the facilities for syntax-directed
document editing must be improved, essentially word processing facilities
like format and style.

Acknowledgement

I wish to thank Kaj Grgnbaek, Ole Lehrmann Madsen, Claus Ngrgaard,
Lars Bak Petersen and the anonymous referees for many helpful com-
ments on this paper. This work has been supported by The Danish
Natural Science Research Council, FTU grant no. 5.17.5.1.25 and the
Mjglner project, that has been partly funded by a grant from The Nordic
fund for Technology and Industrial Development.

References

[André 86| J. André: GRIF plus MINT or how to abide by
a layout-sheet. In: J. Miller (ed.): PROTEXT
III Conference Proceedings, Boole Press, 1986.

[BETA 87] B.B. Kristensen, O.L. Madsen, B. Mgller-
Pedersen, K. Nygaard: The BETA Program-
ming Language. In: B.D. Shriver, P. Wegner
(ed.): Research Directions in Object Oriented
Programming, MIT Press, 1987.

[Conklin 87] J. Conklin: Hypertext: An Introduction and
Survey. IEEE Computer, December 1987.

[Borup & Sandvad 88] K. Borup, E. Sandvad: Users and Program-
mers Guide for Sif - A Syntax-Directed Editor.
Project Mjglner Working Note DK-SYS-29.2,
December 1988.

[Delisle & Schwartz 86] N. Delisle, M. Schwartz: Neptune: A Hyper-
text System for CAD Applications. SIGMOD
Record, vol. 15, no. 2, 1986.

24

[Halasz 88]

[Hansen & Hestbak 89)

[Holdam & Ngrgaard 86]

[Kristensen et al. 83]

[(Garg & Scacchi 88]

[Madsen & Ngrgaard 88|

[Mjglner 87]

[Mjglner BETA 89]

F.G. Halasz: Reflections on NoteCards: Seven
Issues for the Next Generation of Hypermedia
Systems. Communications of the ACM, vol. 31,
no. 7, July 1988.

P.B. Hansen, B. Hestbazk: Trud - an In-
teractive Syntax Directed Document Editor.
In: WOODMAN’89 Proceedings, BIGRE, May
1989 (These proceedings).

J. Holdam, C. Ngrgaard: Gipsy - a Grammar
Based Interactive Document Processing Sys-
tem. In: J. Miller (ed.): PROTEXT III Con-
ference Proceedings, Boole Press, 1986.

B.B. Kristensen, O.L. Madsen, B. Mgller-
Pedersen, K. Nygaard: Syntax Directed Pro-
gram Modularization. In: P. Degano, E. Sande-

wall (eds.): Interactive Computing Systems,
North-Holland, 1983.

P.K. Garg, W. Scacchi: A Hypertext System
to Manage Software Life Cycle Documents. In:
B.D. Shriver (ed.): Hawaii International Con-

ference on System Sciences - 21, IEEE, January
1988.

O.L. Madsen, C. Ngrgaard: An Object-
Oriented Metaprogramming System. In: B.D.
Shriver (ed.): Hawaii International Conference
on System Sciences - 21, IEEE, January 1988.

H.P. Dahle, M. Lgfgren, O.L. Madsen, B. Mag-
nusson (eds): The Mjglner Project, In: Pro-
ceedings of EUROSOFT ’87, London, June
1987.

O.L. Madsen, C. Ngrgaard, L.B. Petersen,
E. Sandvad: An Overview of the Mjglner
BETA System. Mjglner Informatics, Science
Park Aarhus and Computer Science Depart-
ment, Aarhus University, March 1989.

25

[Ngrgaard & Sandvad 89] C. Ngrgaard, E. Sandvad: Reusability and

[Quint 83]

[Sandvad 88]

[Trigg et al. 87]

Tailorability in the Mjglner BETA System.
Mjglner Informatics, Science Park Aarhus and

Computer Science Department, Aarhus Uni-
versity, March 1989.

V. Quint: An interactive system for mathemat-
ical text processing. Technology and Science of
Informatics (TSI), vol. 2, no. 3, 1983.

E. Sandvad: Syntax-Directed Graphical Edit-
ing. Computer Science Department, Aarhus
University, June 1988.

R.H. Trigg, T.P. Moran, F.G. Halasz: Adapt-
ability and Tailorability in NoteCards. In:
Proceedings of INTERACT 87, Stuttgart,
Septemper 1987.

26

