ISSN 0105-8517

A Note on Model Checking the Modal

v-calculust

Glynn Winskel

DAIMI PB - 279
June 1990
Revised Version

COMPUTER SCIENCE DEPARTMENT == Bissiill
AARHUS UNIVERSITY] :_!:fl
Ny Munkegade, Building 540 o i El _I'
DK-8000 Aarhus C, Denmark - I T

T Revised version to appear in Theoretical Computer Science.

A note on
model checking the modal v-calculus

(Revised)

Glynn Winskel
Department of Computer Science
Aarhus University
Ny Munkegade, Bldg. 540
DK-8000 Aarhus, Denmark

This note presents a straightforward algorithm for checking whether or not
a state of a labelled transition system satisfies an assertion in the modal
v-calculus and p-calculus. The algorithm improves on those of Larsen, and
Stirling and Walker in that its presentation lays bare the mechanism behind
“local model checking”, and leads to a streamlined proof of the correctness
and termination of the model-checking algorithm.

Introduction

Labelled transition systems are used in modelling parallel processes. In
the work on Milner’s CCS a small modal logic called Hennessy-Milner
logic has proved important in theoretical studies (see ch.10 of [6]). The
expressiveness of Hennessy-Milner logic is too weak from a practical point
of view however, and extending its assertions by recursive definitions is
a simple way to increase its expressiveness dramatically [2]. This is one
reason for a renewed interest in the modal p-calculus of Pratt and Kozen,
with minimum fixed points [7], [5] and its dual the modal v-calculus, with
maximum fixed points.

This work arose through trying to understand the work of Larsen [4],
Stirling and Walker [8] on methods for deciding whether or not a state
in a finite labelled transition system satisfies an assertion in the modal
p-calculus and v-calculus. This enterprise has been described as “local
model checking” by Stirling and Walker because their algorithm, and
those of Larsen, take advantage of the fact that the goal is to establish

1

whether or not a particular state satisfies an assertion. This is in con-
trast to the work of Emerson and Lei [2]. Emerson and Lei’s treatment
of recursive assertions is based on the observation that in a finite model
the repeated unfoldings of a recursive definition must denote a stationary
value from some finite stage onwards; the process of finding this station-
ary value is insensitive to the particular state of concern.

In his paper [4], Larsen showed how, in a sense, running his proof systems
backwards provides a method to confirm a process satisfies a recursive
modal assertion. His restrictions are quite severe however. There are no
negations in his language of assertions and his method works only when
assertions use purely minimum fixed points or purely maximum fixed
points and nesting of them is certainly disallowed. This restricts the ap-
plicability of Larsen’s work. The recent work of Walker and Stirling put
this to rights. By including negation, one kind of fixed point operator,
minimum or maximum, is definable in terms of the other. Their asser-
tions include Hennessy-Milner logic with negations and maximum fixed
points. Although equivalent to the modal p-calculus, they really work
with a modal v-calculus. With respect to a finite model, they have a
tableau method to decide whether or not a particular process satisfies
an assertion. They have no restrictions on the kind of assertions they
can check. A variant of the tableau method has been implemented by
Cleaveland as part of the Edinburgh-Sussex Concurrency Workbench [3]

.

This note presents a very straightforward model-checking algorithm. The
algorithm simplifies those of Larsen in [4], and Stirling and Walker in [8]
and is accompanied by new proofs of soundness and completeness. A key
improvement is that the effect of the assumption lists in the proof systems
of Larsen, and Stirling and Walker is achieved by labelling recursions in
assertions by sets of states. The model-checking algorithm can then be
presented more simply as a reduction relation on correctness assertions;
the reduction can be coded directly as a recursive function to decide the
truth of an assertion at a process. This presentation lays bare the mecha-
nism which guarantees termination of the algorithm and streamlines the
proof of its correctness.

1 Maximum fixed points

We start with a special case of Tarski’s theorem [9].

Theorem 1 (Tarski)
Let E be a set. Let ¢ : P(E) — P(E) be a monotonic function i.e.
S C 8 = () C (S

for all §,S' € P(E). Then ¢ has a minimum fized point uS.¢(S) and a
mazimum fized point vS.¢(S) given by

uS.B(S) = N{S' C B | &(S') C 5'}
vS.8(S) = U{S' C B | §' C ¢(S)}.
Say a subset S' C E is a prefized point of ¢ if
¢(S") C S
and a postfized point of ¢ if
S C (9.
Then pS.¢(S) is the least prefized point and vS.¢(S) is the greatest post-
fized point.

Thinking of E as a set of states the extension of an assertion on states
will be a subset of E. The importance of Tarski’s theorem is that it
shows that certain recursively defined assertions are sensible and gives
techniques for reasoning about them. For example, the proof rules often
given for reasoning about maximum fixed points have the form

Sl g QS(SI)
S C vS.8(8)

v5.¢(5) C ¢(vS.4(9))

expressing that vS.4(S) is the greatest postfixed point. One problem
with these proof rules is that they are not backwards sound; it may well
be that ' C v5.¢(S) without S’ C ¢(S")

Backwards sound proof rules can be based on the following, a key fact on
which the model checker is based.

Lemma 2 (reduction lemma)

Let ¢ be a monotonic function on P(E). For P C E

PCuS$(S) & P Cows.(PUs(s)).

Proof:
“=" Assume P C vS5.¢(S). Then
PU@vS.¢(S)) = PUvS.¢(S) = v8.4(S).

Therefore vS.¢(5) is a postfixed point of § — PUH(S). As vS.(PUH(S))
is the greatest such postfixed point,

vS.6(S) C vS.(P U $(S)).
By monotonicity,
VS.H(5) = HvS.H(S) C $(vS.(PU(S)).
But P C vS5.¢(S) so P C ¢p(vS(P U ¢(S))), as required.

“«” Assume P C ¢(vS.(PU¢(S)). As vS.(PU@(S)) is a fixed point of
S— PU¢(S),

vS.(PU@(S)) = PUgvS.(PU@S))).
Hence, by the assumption
v5.(PU¢(S)) = ¢(vS.(PU¢(S)),
ie. vS.(PUQ(S)) is a fixed point, and so a postfixed point of ¢. Therefore
vS.(PUG(S)) C vS.4(S)

as vS.¢(S) is the greatest postfixed point. Clearly P C vS.(PU #(9)) so
P C vS5.¢(S), as required. |

We are especially concerned with this lemma in the case where P is a
singleton set {p}. In this case the lemma specialises to

p € vS.9(S) & p € d(wS.({p} U H(S))).

For us vS5.¢(8) will be a property of processes expressed by a recursive
assertion and a point, like p, a process. The equivalence says a process

4

p satisfies a recursively defined property iff the process satisfies a certain
kind of unfolding of the recursively defined property. The unfolding is
unusual because into the body of the recursion we substitute not just the
original recursive definition but instead a recursive definition in which
the body is enlarged to contain p. As we shall see, there is a precise
sense in which this small modification, p € ¢(vS.({p} U ¢(9))), is easier
to establish than p € v5.¢(S), thus providing a method for deciding the
truth of recursively defined assertions at a process. The proof systems
of [4] and [8] hinge on the same idea though, to my mind, in a rather
disguised form. For example, Larsen’s proof system for maximum fixed
points is essentially based on the backwards-sound proof rules

p € ¢(vS.({p} U ¢(5)))
p € vS.({p} Ua(9)) p € vS.6(8) ’

though he uses of sequents containing assumptions like p : S instead of
process names in the assertions themselves.

2 The modal v-calculus

We wish to check assertions are true of processes (or states) of a labelled

transition system (Proc, {-%| « € labels}). Perhaps there are some basic
properties of processes which we wish to keep track of. To cater for this
we take a model to have the form

(Proc, {3] a € labels}, V).

where V' is a function from basic assertions a to the subsets V(a) C Proc
of processes satisfying them. We assume the model is nonempty and
finite, i.e. that Proc is a nonempty finite set. With respect to such a
model we define the following language of assertions.

Au=a|T|F|-A|AANA1| AV A | (@A X |vX{7}A

where a is a basic assertion, a € labels, X € Var a set of variables, and
T=r1...,7, 15 a finite, possibly empty, list of processes. We shall regard
{7} as a finite, possibly empty, set. A syntactic restriction is placed on
the formation of vX{7}A4 so that A determines a monotonic function
according to the semantics, presented shortly: every free occurrence of X
in A should be under an even number of negations. A conventional max-
imum fixed point vX.A can be taken to abbreviate vX{}A4. Although
we have chosen to base the assertion language on maximum fixed points,
minimum fixed points can be derived; a minimum fixed point pX.A4 can

5

be defined as -vX.=A[-X/X]. The assertion A[~X/X]is like A but with
—X substituted for every free occurrence of X. In general A[B/X] is the
assertion resulting from substituting B for every free occurrence of X
taking care that no free variables in B become bound in A by renaming
bound variables. Fortunately, from now on we shall only deal with sub-
stitutions A[B/X] in which B is closed, and so avoid the awkwardness
with accidental binding of free variables. Later we shall use FV(A) to
mean the set of free variables of A. The set of assertions in general we
write as Assn, and the set of closed assertions is written as Assn¢.

An environment is a function p : Var — P(Proc). For an environment

p, variable X and subset S C Proc we use p[S/X] to mean p updated to
have value S at X i.e.

Y # X,

MWqu:{gm ifY =X

The denotation [[A]] of an assertion A is a function from environments to
subsets of Proc such that:

[a]p = V(a)
[T]p = Proc, [F]p=0,
[4]p = Proc\ 4],
[Ao A Ai]p = [Ao]p N [Ai]p,
[4v 4rlp = [AddpU[Ailp,
[{()A]p = {p € Proc|3q e [4]p. p > q},
!IX]]p = p(X),

[vX{r}Alp = U{S C Proc|S C {7} uU[A]p[S/X]}.

Thus the denotation of [vX{7}A]p is the maximum fixed point of the
function

S — {7} U [4]p[S/X].

In particular vX{}A denotes the maximum fixed point vS.([4]p[S/X])
with respect to an environment p. If we were to include basic assertions
corresponding to states i.e. for a process p we have an assertion p such
that [p]p = {p} then we could write vX{r1,...,r,} A instead as vX.(# V
...V#,VA). We do not make processes into assertions in this way because
the generality is not needed and it would complicate the definition of a
well-founded relation on assertions, important for the proof of soundness
and completeness of the model checker.

For examples and details of the expressiveness of the v-calculus we refer
the reader to [2], [4], [8] and [10].

We mention a technical lemma to do with substitutions which will be of
use later.

Lemma 3 (substitution lemma)

For B a closed assertion, X a variable, A an assertion we have
[A[B/X]]p = [A]p[[B]p/X].

Proof: This is proved to hold for all assertions A by a routine structural
induction on A. |

We are interested in establishing an algorithm to decide efficiently whether
or not a process p satisfies a closed assertion A. In other words, we wish
to determine whether p € [A]p is true or false, for an arbitrary environ-
ment p—the environment p cannot affect the denotation [A]p of a closed
assertion A.

Definition: Define a correctness assertion to be a pair p - A where
p € Proc and A € Assn®. Let p be an arbitrary environment. For a
correctness assertion p - A, define
true if p € [A]p
HA] =]
l»] { false otherwise.

The algorithm will be presented in the form of reduction rules involving
logical combinations of correctness assertions. Ultimately, the reduction
works on primitive operations on truth values, the notation for which is
defined now.

Notation: Write T" for the set of truth values {true, false}. Write = for
the operation of negation on T'; thus -y (true) = false and -y (false) =
true. Write Az for the operation of binary conjunction on T'; thus ty Arty
is true if both ¢, and ¢; are true and false otherwise. Write Vo for the
operation of binary disjunction; thus ¢Vt is true if either ¢, or ¢; is true
and false otherwise. It is convenient to have disjunctions of finite sets.
Let I be a finite set indexing truth values {¢; | i € I}. The disjunction
Wr{t; | © € I} is true if ¢; is true for some 7 € I and false otherwise.

The heart of the reduction of a correctness assertion to a truth value
is contained in the next lemma which expresses equalities between the
truth values of correctness assertions. (That something is indeed reduced
in passing from the left to the right hand side of (vi)(b), so ensuring
termination of the reduction, will be demonstrated in the next section.)

7

Lemma 4 Let p € Proc. For closed assertions A, Ay, A1 and assertion
B such that FV(B) C {X} we have:

(i) [p T = true, [pF F] = false

(i1) [p - —A] = =r[pt A]

(iii) [pEAgANA] = [pk A Arpt A4
(iv) [pFAov Al = [pt A Vr[pF A
(Vg [p F (o) 4] = Wr{le-4Allp> ¢}

(a) [[pI-VX{z}B]] true z'fpe{_)?} _
(b) [pFvX{r}B] = [pt BlvX{p,7}B/X]] ifp¢ {7}

Proof: Parts (i)—(v) are obvious from the definitions. We only show

(vi).
(a) Suppose p € {7}. By definition

[vX{r}Blp=U{S C Proc| S C {7} U[B]p[S/X]}

for an arbitrary p. Thus {r} C [vX{7}B]p. So p € [vX{7}B]p

making

[p - vX{7}B] = true.

(b) Suppose p ¢ {7}. Let p be an arbitrary environment. Define
#(S) = [B]p[S/X] for S C Proc. Then [vX{7}B]p = vS. ({7} u
#(S)) by definition. We obtain the following chain of equivalences:
[p+ vX{7}B] = true iff pe [vX{7}B]p

i {p} C 5. ({7} UH(S))
iff {p} C{r}us(@s ({p,7}U¢(9)))

by the reduction lemma 2
iff peoS.({p,7IU¢(S)))asp¢ {7}
iff p e [BlplvS.({p, 7} U[B]p[S/X])/X]

by recalling the definition of ¢
iff p € [BlpllvX{p,7}B]p/X]

from the definition of [vX{7}B]
iff pe[BvX{p,7}B/X]]p

by the substitution lemma 3

iff [p + BlvX{p,7}B/X]] = true.
8

Thus [p b vX{7}B] = true iff [p - BlvX{p, T}B/X]] = true, if
p & {r}. As [pF A] has value true or false for any closed assertion
A, this implies (b). |

The model checker

The last lemma suggests a reduction strategy for settling whether or not
a process p satisfies a closed assertion A. With respect to the model

(Proc,{= | a € Labels},V) we mimic the equations of the lemma by
the following reduction rules:

(pFa)

(pFa)
(pHT)

(p+ F)
(pF—B)

(p - Ao AN Al)
(p F Ao V Al)
(pt (a)B)
(pFvX{7}B)
(p+vX{r}B)

D

true ifp € V(a)

false ifp & V(a)

true

false

-(pF B)

(pFA)) A(pF Ay

(pFA4y) V(pk Ay)

W{gt B |p= g}

true ifpe {r}

(pF BlvX{p,7}B/X]) ifp¢g{r}

A full set of reduction rules will also include rules specifying the evalua-
tion of the boolean expressions built out of correctness assertions using
=, A,V and W. To cover the range of different methods of evaluation
of such boolean expressions we merely stipulate that the rules have the

following properties:

For negations:

VteT. (b—"t & —b—* —pt)

For conjunctions:

If by —* tg and by —* t; and ¢y,#; € T then

VteT. (bo/\bl -—>*t<=>t0/\T251=t>

For disjunctions:

If by —* typ and by —* ¢; and ¢y, t; € T then

VteT. (bo\/bl -“-)*t@toth]:t)

9

For disjunctions of sets:
IfViel (bj—*t;and ¢; € T) then

VieT. Wib;|iel} >t wr{t;|icI}=t

Certainly, any sensible rules for the evaluation of boolean expressions
will have the properties above, whether the evaluation proceeds in a left-
to-right, right-to-left or parallel fashion. Under these assumptions the
reduction rules are sound and complete in the sense of the theorem below.

Theorem 5 Let p € Proc and A be a closed assertion. For any truth
value t € T,

(pFA) >*t iff[p- A] = ¢.

Proof: The proof proceeds by well-founded induction on assertions with
the relation

A" < Aiff A'is a proper subassertion of 4
or A, A' have the form
A=vX{r}Band 4' = vX{p,7}B with p ¢ {r}

As Proc is a finite set, the relation < is well-founded.

We are interested in showing the property
Q(A) ©4es VP EProcVt € T. [(pk A) ="t & [pF A] = 1]

holds for all closed assertions A. The proof however requires us to extend

the property @ to assertions A with free variables FV(A), which we do
in the following way:

For A € Assn,

QT (A) Saer VO :FV(A) —» Assn®.
(VX € FV(4). Q(8(X))) = Q(A[6])].

Notice that when A is closed Q*(A) is logically equivalent to Q(A4).

We show Q*(A) holds for all assertions A by well-founded induction on
<. To this end let A be an assertion such that Q@ (A') for all assertions
A" < A. We are required to show it follows that Q*(4). So we let
0 :FV(A) — Assn°with VX € FV(A). Q(6(X)) and show Q(A[f]) for
all the possible forms of A.

10

A = a: In the case where A = a, a basic assertion, we have Alf] = a and
(pFa)>"te [pta] =t
for all p € Proc,t € T. Hence Q(A[f)]).

A =T: In this case, A[f] = T, and
(pFT) >t & true=t
& [pHET] =t
for all p € Proc,t € T'. Hence Q(A[f]) in this case.
A = F: In this case, A[f] = F, and
(pFF)—>"t & false=t
& [pHF]=t
for all p € Proc,t € T'. Hence Q(A[6)]).

A = —B: In this case A[f] = ~(B[f]). As B < A we have Q*(B), so
Q(B). Letting p € Proc,t € T we have:

(pF—(BlF]) =t < —(pk B[o]) - ¢
& (pt B[f]) »* -yt by the property as-
sumed of evaluation
for negations
< [pk B[f]] = as Q(BIf])
& [p+—(Blf]]]

Hence Q(A[6]) in this case.

A = Ay N A;: In this case A[f
[[p l" Ao[e]:ﬂ = to and [[p [“ Al[]:ﬂ t
Q1 (A4p) and Q+(A1) Thus Q(A4, [0])
and (p F A4[0]) —»* t;. Now, for t € T,

Ao[0] A A1]6]. Let p € Proc. Let
As Ag < A and A; < A we have
and Q(41]6]), s o (p+ Aol6]) —* to

(pF A0l AAL[B])) —*t < (pF A[6]) A (pF Ai[8])) —* ¢
< oAt =1t

by the property assumed for the evalua-
tion of conjunctions

& [pt Aol Ar [p+ Af6]] =
& [pF Alf] A ALff]] = ¢

11

Hence Q(A[f]) in this case.

A=AV Ay In this case A[f] = Ag[0] V A1]0]. As Ag < Aand 4; < A
we have Q(Ao[f]) and Q(A;[f]). Let p € Proc. Letting [p - Aq[6]] =
and [p = A;[0]] = t1, we obtain (p F A4¢[f]) —* ¢, and (p - Aq[0]) —* t;.
Now, for t € T,

(P Alf]V A[B])) =t & (pF Ab]) V (pF A1) —* ¢
& toVrti =t

by the property assumed for the evalua-
tion of disjunctions

<= [[pP-AO[G]]]VTl[pl—Al[ﬁ]]]zt
~ [[pl—Ao[G]VAl[O]]]:t

Hence Q(A[6]) in this case.

A = (a)B: In this case A[f] = (a)(B[f]). Let p € Proc. For all g such
that p = g let [¢ - B[f]] = t,. As B < A we have Q(B[6]) and thus
(¢ = B[f]) —* t, for all g such that p % q. Now, for t € T,
(P (a)(Blf])) ="t & W{(¢F B[6]) | p > q} ="t
e Wrfty [p=>q} =t
by the property assumed for
the evaluation of disjunctions

& Wr{lgF Blo]] |p=>q} =t
= [pr(a)(BO])] =1t

Hence Q(A[6]) in this case.

A = X: In this case, when A is a variable the Q(A[f]) holds trivially.

A = vX{7}B: In this case A[f] = vX{r}(B[f]). Let p € Proc. Either
p € {7} or not.

If pe {7} then

(ptvX{r}B[f]) -*t < true=t¢
s IprvX{T}HBE)] = ¢
forany t € T.

12

Otherwise p ¢ {7}. Then vX{p,7}B < A, so Q(vX{p, 7 }(B[8])). De-

ne

¢': FV(B) — Assn ¢ by

o [B(Y) ifY # X
oY) = { vX{p, 7} B[f]) fY =X

Q(0'(Y)). As B < A we have

(
for Y € FV(B). Certainly VY € FV(B).
(BI8)[vX {p, 7 H(B[6])/X]. Thus

Q*(B). Hence Q(B[¢']). But B[] =

from the reduction rules,

(pFvX{T}(BIf) ="t & (p+ (B)[X{p, 7HB[6])/X]) —* 1t
< (p H B[H’]) —*t
e [pFEBI]]=t asQ(B[F])
& [pt (BIE)X{p, 7 }(B[6))/X]] =t
& [prvX{r}B[6)] =t by lemma 4.

Hence, whether p € {7} or not, Q(A[f]) in this case.

In every case determined by the form of A we have shown Q(A[6]). Tt
follows that VA € Assn. (VB < 4 Q*(B)) = Q*(4). By well-founded
induction we conclude Q*(A) for all assertions A, and in particular Q(A)
for all closed assertions A. |

As a corollary we obtain the termination of the algorithm on all correct-
ness assertions. In particular the evaluation of boolean expressions in
standard ML or Miranda have the properties we require for the theorem
to hold, and in these languages it is straightforward to write a function
which evaluates according to the reduction rules, and thus obtain a work-
ing model checker. Of course, it is not tuned for efficiency and, beyond
some keeping-track of the states visited, makes no optimisations. Some
discussion of suitable optimisations and the comparison with other algo-
rithms can be found in [1]. In particular, [1] shows that the approach
of “local model checking” does not directly improve on the asymptotic
complexity of the algorithm in [2]. However, this is in the worst cases;
the algorithm of [2] finds all the states that satisfy an assertion, which is
often unnecessary in determining whether or not a particular state does
and can be avoided with the approach of “local model checking”.

13

A cknowledgements

This note can be viewed as a recasting of some of the work for the
Edinburgh-Sussex Concurrency Workbench done by Kim Larsen, Colin
Stirling and David Walker, albeit with improvements and simplifications.
Around the time that this note was being prepared Rance Cleaveland
used very similar ideas to give an another tableau method [1] for model

checking the v-calculus but one which was more easily implementable
than that of Stirling and Walker.

14

References

[1]

[10]

Cleaveland, R., Tableau-based model checking in the propositional
p-calculus. Report of the Computer Science Department, University
of Sussex, 1989. To appear in Acta Informatica.

Emerson, A. and Lei, C., Efficient model checking in fragments of
the propositional mu-calculus. Proc.LICS, 1986.

Cleaveland, R., Parrow, J. and Steffen, B., The Concurrency Work-
bench. To appear.

Larsen, K.G., Proof systems for Hennessy-Milner logic. Proc. CAAP,
1988.

Kozen,

D., Results on the propositional mu-calculus. Theor.Comp.Sci.27,
333-354, 1983.

Milner, A.J.R.G., Communication and concurrency. Prentice Hall,
1989.

Pratt, V., A decidable p-calculus. Proc.22nd.FOCS, 421-27, 1981.

Stirling, C. and Walker D., Local model checking the modal mu-
calculus. Proc. CAAP, 1989.

Tarski, A., A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5, 1955.

Walker, D., Automated analysis of mutual exclusion algorithms us-
ing CCS. Submitted for publication, 1988.

15

