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Literal resolution (LR) is a new resolution strategy for propositional calcu-
lus. Each step of LR involves a literal A. At an A-step of LR, the old clause
set S is replaced by a new clause set S’ consisting of all the resolvents from
S which involve A, together with those clauses of S which do not contain A
or its negation. LR repeatedly formulates new clause sets in this way and
future resolution does not need any old clause. LR is sound and complete.
It is conceptually simple and easy to understand, and it provides an in-
tuitive and straightforward proof for the completeness of the propositional

version of Robinson resolution.

1. Introduction

The resolution principle ( Robinson resolution ) discovered by Robin-
son [Ro65] is a cornerstone for mechanical theorem proving and problem
solving. Robinson resolution has become so popular a theory that it has
gone into text books for undergraduate teaching in computer science.
This does not imply, however, that the presentation of the theory has left
no room for improvements. In fact, it is the purpose of this note to give
a proof for the completeness of Robinson resolution for propositional cal-
culus based on a very simple idea of literal resolution, which is different
from known resolution strategies such as linear resolution [Lo70], unit
preference resolution [WoRo64], semantics trees [KoHa69], etc.

The completeness of Robinson resolution relies on the expressiveness
of Herbrand’s universe, the compactness of propositional calculus and a
key fact that the propositional version of Robinson resolution is complete.

1




This version of Robinson resolution is described as follows. For any finite
clause set T' of atomic propositions ( i.e. propositional variables ), define

R(T)=TU{C|Cis aresolvent of two clauses in T' }.
Now, given a clause set .S, let
RYUS) =8
RH(S) = R(R(S)) for each i > 0

and let R*(S) = U;»oR'(S). Because there can only be finitely many
resolvents, R*(S) = R"(S) for some n. The proof of the completeness of
the resolution goes by showing that S is logically equivalent to R"(S) so
the inconsistency of S will be detected by finding a O (the empty clause)
in R™(S). But the strategy is not very intuitive and the proof is not so
straightforward.

Literal resolution (LR) uses the idea of a transition system. Each
step of LR can be seen as a transition labelled with a literal A. At an

A-transition of LR, written S A, g , there is at least one resolution
from S involving A and the old clause set S is replaced by a new clause
set S’ consisting of all the resolvents from S which involve A, together
with those clauses of S which do not contain A or its negation. LR
repeatedly formulates new clause sets in this way, resulting in a sequence
of transitions like

A A A Ay Ay
So =% 8] =8 9y .S, I S L

Future resolution does not need any old clause. In other words, when
s 4 g , the satisfiability of S is the same as that of S’. Note this
is weaker than requiring S and S’ to be logically equivalent. In fact

from S -2 §' we can not deduce that S and S’ are logically equivalent
(Example 1).

LR is sound and complete. It is sound in the sense that whenever
there is a clause set in the transition which contains an empty clause,
the original clause set must be inconsistent; It is complete because if the
original clause set is inconsistent, we will be able to detect it by deriving
an empty clause from the transition. Since literal resolution is sound
and complete, it is as powerful as Robinson resolution. Literal resolution
enjoys, however, the following advantages.
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In terms of the number of transitions, LR clearly terminates in m
steps, where m is the number of propositional variables in the input clause
set S ( Note this does not imply that LR is polynomial as the size of the
clause set may grow expomnentially. In fact it is unlikely that there is a
polynomial time algorithm for any resolution because the 3-satisfiability
problem is well-known to be NP-complete ).

LR abandons old clause set. After an A-transition like S -4 §' ,
clauses in S which contain A or A do not appear in S, and S will never
be needed in the future, compared with Robinson resolution where all
old clause sets remain active ( i.e. they may be needed in the future )
and the number of clauses never decrease.

More heuristic information is provided by LR. For LR, there are no
two different transitions with the same label A. This means we have
done, once and for all, all resolutions which involve A. For Robinson
resolution, it does not say when we do not need resolutions which involve
a particular literal.

Based on the above three, we argue that LR is conceptually simpler
and easier to understand, resulting in a more intuitive and straightfor-
ward proof of the completeness of the propositional version of Robinson
resolution.

2. Literal Resolution

Let A= {T, Ay, A1, --- } be a countable set of propositional vari-
ables ( or atomic propositions ) where T stands for ‘true’. We assume
reader’s familiarity with propositional calculus and follow standard no-
tations. So A, V, —, etc., are propositional connectives. A literal is a
member of AUA, where A ={ 1, =4y, =4, --- } with L = =T, stand-
ing for ‘false’. Let A, B range over literals. Write A for the negation of
A, which is always in AU A by the axiom ——A4 & A. A clause is a finite
subset of literals. Let C range over clauses. The empty clause is written
as L,

A truth assignment & is a function from A to { L, T }. Truth
assignment extends to all literals by assigning -®(A) to ®(—A4). We write
®[L/A] for the truth assignment which is the same as ® except that at
A it is assigned L and similarly ®[T /A] is a truth assignment which is
the same as ® except that at A it is assigned T. A clause set S is valid



at @, written ® |= S, if for any clause C'in S, T € { ®(4) | A e C }.
Otherwise we say S is invalid at ®. S is satisfiable if it has a valid truth
assignment. Otherwise S is unsatisfiable. An unsatisfiable clause is also
called inconsistent. S is equivalent to S’ if they have the same set of
valid truth assignments.

Fach proposition has a conjunctive normal form, which is written as
a clause set. Robinson introduced a single rule for clause sets called
resolution rule, written as

Cou{A} Ciu{A}
CoUCy ’

where Cjy and C are clauses and A is a literal, with A standing for its
negation. CoUC is called the resolvent of CoU{ A} and C1U{ A }. To be
more precise we call an application of the resolution rule an A-resolution.
when the literals involved are A and A.

Definition S -4 S’ is a literal transition from a clause set S to a
clause set S’ labelled with literal A if

1. there exist C, C'in Ssuch that Ae C, A € C';
2. 8" = {C'| C is a resolvent of an A-resolution of two clauses in S}

U{C"| C" € Sand {A, A} NC" =}

To be definite, we always label a literal transition S A, 8 with

A€ A Call S 45 ' an A-transition. Sometimes we omit the label and
write S — §’, to mean that there is a literal transition from S to S’.

Example 1
{{4,B}L,{-B}} > {{A}}

is a B-transition.

By literal resolution (LR) we mean the following algorithm based on
literal transitions.




Step 1.

Step 2.

Step 3.

Step 4.

Literal Resolution
Input a finite clause set 5.
For any literal A, any clause C of S, if A and A both
appear in C, replace that clause by { T }.
If O € Sy or there is no resolvent from Sy, then stop.
Choose a literal A such that for some C, C' € Sy, A € C,
A € C'; Replace Sy by S, where S is specified by the

A-transition Sy -+ S ; Go to step 2.

After the algorithm stops, if O is in the current clause set then the
input clause is unsatisfiable; otherwise it is satisfiable.

Example 2 For clause set

{{A4, B, ~C}, {4, B, C}, {A B}, {4} },

we have the following sequence of literal transitions:

So

{{Aa B, _'C}a {A7 B, 0}7 {Aa _1B}7 {—'A}}
= {{A, B}, {4,-B}, {-4}}
= {{A}, {-4}}

A, {o}.

{{Aa B, —10}7 {A> B, C}) {A> _'B}’ {_'A}}

1s unsatisfiable.

Literal resolution is a resolution strategy which replaces the old clause
set by a new clause set. The key idea is that each step performs resolu-
tions related to a single literal. Note that if at each step we only perform
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one resolution, or all possible resolution, the corresponding algorithms are
not correct as shown by the following two examples.

Example 3 Performing an A-resolution on

{{AaB}v {A> —"-B}a {ﬁ'A}}

we can get
{{B}a {Aa —'B}}

This clause set is satisfiable while the original one is not.

Example 4 Performing all possible resolutions on

{{A>B}7 {_‘B}v {_'A}}

we get
1B}, {A}}

We also failed in detecting the inconsistency of the original clause set.

Literal resolution works for the two examples as demonstrated below.
For Example 3 we have

{{A, B}, {4,-B}, {-4A}} & {{B}, {-B}}
{0},

while for Example 4,

{{A, B}, {-B}, {~4}} S {{B}, {-B}}

L, {o}.

3. Soundness and Completeness

In this section we prove that literal resolution is sound and complete.
LR is sound in the sense that for any input clause set S, whenever
O is in the current clause set after literal resolution terminates, S; is
unsatisfiable. It is complete in the sense that if the input clause S
is unsatisfiable, then O must be in the current clause set when literal
resolution stops.



Note that for Robinson resolution, R*(S) is equivalent to S. This is
not a necessity for resolution to work. In fact literal resolution does not
have this property, i.e., when S — S’, S and S’ need not be equivalent
as Example 1 shows.

The following lemma is the key for completeness. We write S S’ for
the disjoint union of two clause sets S, S’.

Lemma Let S be a finite clause set and
s 49
Then the satisfiability of S’ implies the satisfiability of S.

Proof By mathematical induction on n, the number of clauses in .5,
we show that

VS, 8, 3. (S 4 8 & ® | S') = (B[L/A] |= S or B[T/A] = S).

Base case (n =2 ). Assume S <~ §', & =5 and | S |= 2. By the

definition given for —i->, in this case S must be of the form
{CU{A},C"U{-4A}}
and S’ of the form { {C UC'} }. Since ® = 5, either @ = { {C} },

which implies
S[L/A]E{CU{A}, C'U{-A} ]

or & k= { {C"} }, which implies
B[T/A|E{CU{A}, C'U{-A} ).

Induction step. Suppose the conclusion is true for all S with k or
smaller number of clauses. Suppose S A, 8" and @ E S, where S =
S.a4WS4 W RW{ C }. Here the size of S_4W.S4 ¥R is not more than k, S_4
consists of all the clauses of S\ { C' } which contain the literal = A, and Sy
consists of all the clauses of S\ { C } which contain the literal A. If A € C,
then either (i) @ = {C\{A} }or (ii) 2 = {C'\{-A} | C" € S.4 },
since @ = 5" and W C ', where

W={{(C"\{-AHU(C\{A})[C" €S54}
7



For case (i), if S4 = () then clearly ®[L/A] = S; Otherwise, if S4 # 0,
then we have

SaWS4WR -4 S\ W

and
¢ =S\ W.
By induction hypothesis,
q’[_l_/A] f= S_aWS s WR
or

O[T/A] =S4 WS40 R.

This implies
(P[_L/A] i= S-oa LﬂSALﬂRL‘U{C}

or

O[T/Al | S-4 WS4 WRW{C)
since @ ={C\{A}}.

For case (ii), it is easy to see that
Q[T/AlES-4WS4,WRW{C}

because S-4 consists of all the clauses in S which contain = A4, and they are

already evaluated to T under ® without considering the truth assignment
for A.

The proof for the case =A € C' works by symmetry.

We are left to check the case { A, mA }NC = (). By definition, C € 5
and
SaWS R S\ {C).
Clearly @ |= (S'\{C'}). By induction hypothesis, ®[L/A] I S-4WS,WR
or ®[T/A] = S-4 WS4 W R. Therefore ®[L/A] | S-aWS,WRW{C} or
QT/Al =S4 WS4WRW{C}since {C} € S. QED

Now we can prove

Theorem ( The soundness and completeness of LR ) Sy is unsatis-
fiable iff there are literals Ag, Ay, --- A, in Sy such that

An—l

A A A
Sop—= 8 = 8 =5 .- 8,1 7= 8,



and O € S,, where whenever a literal and its negation appear in some
clause at the same time, we always replace that clause by { T }.

Proof (<«): Suppose S is satisfiable and S -2+ S'. Then clearly S’
is satisfiable by the soundness of the resolution rule. Thus if O € S, S,
must be unsatisfiable.

(=) : Suppose Sy is unsatisfiable. Suppose

Sy 2% 5 A4 5, A2 “-Sn1—+5m

O & S, but S, has no further transition. Then S, is satisfiable because it
has the valid truth assignment ®, given below. For each C € S,,, C # 0.
Let ®¢ be an assignment which assigns T to A if A € US,; assings L to
Aif A € US,. Clearly ®; = S, because A € US, implies A ¢ U S,
and =A € US, implies A € U S,,.

By the lemma given above, we deduce that S is satisfiable, which is
a contradiction. This means we must have O € S,,. QED

It is clear that for a clause set S, the satisfiability of S can be de-
cided in no more than m steps of transition, where m is the number of
propositional variables in S.

Using the idea of LR we propose the following restricted form of
Robinson resolution: For any ( finite ) clause set S of atomic propo-

sitions, define
£(5)=U S,

i>0
where Sy = .5 and S;’s form an LR transition sequence:

A A A Ax
So 2% 5 A g, A2 g, Ay g A

Obviously it is always the case that
L(S) TR S).
From the completeness of LR we immediately get

Corollary The propositional version of Robinson resolution is sound
and complete.

In most cases the size of £(.S) can be much smaller than that of R*(.S).
Take Example 2, for example. LR produced 6 new clauses while brute
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force Robinson resolution produces the following 11 new clauses.
{4, B}, {B, -C'}, {B, Ct, {-B}, {4, -C}, {A, CY,
{A}L B} {C} {~C}, O

4, Conclusion

We have presented a resolution strategy called literal resolution and
we have shown that literal resolution is sound and complete. The basic
idea of literal resolution is to perform all resolutions related to a particular
literal in each step, and to replace the old clause set by a new clause
set consisting of the literal-related resolvents, and clauses which can not
involve in any resolution related to the literal. From the proof of the
soundness and completeness theorem we can see that the order of literals
chosen at each step does not affect whether we can find a O eventually.
This is not to say, however, that if there are two transitions from S such

as
S.
% Y
So S

then there exists a clause set S’ such that

PN
WA

( this is the so called Church-Rosser property ) as Example 5 shows.

Example 5 Consider the clause set

{{A4, B}, {-4,B}, {B}}.

We have

{{4,-B}, {-4, B}, {B}} S {{T}L{B}}
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and
{{A4,-B}, {-4,B}, {B}} S {{T} {4}}

But there are no transitions for { {T}, {B} }and { {T}, {4} } to
get to the same clause set.

This leaves us some room to choose a better transition sequence to
reduce the time complexity. In general it is suggested that we choose a
literal which results in as small the number of resolvents as possible. In
particular, if CU{ A}, C'"U{=A} are the only two clauses in S which

have A or —A present, then a transition § -4+ S’ will make the size of S’
less than that of S.

It is clear that if there are no more than k literals in S then LR will
terminate with a time complexity of O(an), where n is the size of S. It
should be interesting to give an analysis of the average time complexity
of LR and to compare it with other resolution strategies.
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