
A General Lower Bound on the
I/O-Complexity of Comparison-based

Algorithms

Lars Arge∗ Mikael Knudsen†

Kirsten Larsent‡

Aarhus University, Computer Science Department
Ny Munkegade, DK-8000 Aarhus C.

August 13, 1992

August 13, 1992

Abstract

We show a relationship between the number of comparisons and
the number of I/O-operations needed to solve a given problem. We
work in a model, where the permitted operations are I/O-operations
and comparisons of two records in internal memory. An I/O-operation
swaps B records between external memory and the internal memory
(capable of holding M records). An algorithm for this model is called
an I/O-algorithm. The main result of this paper is the following:
Given an I/O-algorithm that solves an n-record problem Pn, using
I/O(x) I/O’s on the input x, there exists an ordinary comparison al-
gorithm that uses no more than n log B + I/O(x) · Tmerge(M −B, B)

∗E-mail: large@daimi.aau.dk
†E-mail: kmnk@daimi.aau.dk
‡E-mail: kiki@daimi.aau.dk

1

comparisons on input x Tmerge(n, m) denotes the number of compar-
isons needed to merge two sorted lists of size n and m, respectively. We
use the result to show lower bounds on the number of I/O-operations
needed to solve the problems of sorting, removing duplicates from a
multiset and determining the mode (the most frequently occurring ele-
ment in a multiset). Aggarwal and Vitter have shown that the sorting
bound is tight. We show the same result for the two other problems,
by providing optimal algorithms.

Topics: Algorithms and Data Structures, Computational Complexity.

1 Introduction

In the studies of complexity of algorithms, most attention has been given
to bounding the number of primitive operations (for example comparisons)
needed to solve a given problem. However, when working with data materials
so large that they will not fit into internal memory, the amount of time needed
to transfer data between the internal memory and, say, the hard disc is not
neglectable. Even with the rapid development in storage devices, it should be
safe to say that primitive operations in the internal memory can be carried
out within microseconds, whereas transfers between internal memory and the
hard disc cost in the order of milliseconds.

Aggarwal and Vitter [1] have considered the I/O-complexity of sorting, fast
Fourier transformation, permutation networks, permuting and matrix trans-
position. They give asymptotically matching lower and upper bounds for
these problems. The basic idea in their proofs is to count how many per-
mutations can be generated with a given number of I/O-operations and to
compare this to the number of permutations needed to solve a problem. They
do not in general make any restrictions on the operations allowed in inter-
nal memory, except that records are considered to be atomic and cannot be
divided into smaller pieces. Only when the internal memory is extremely
small, the comparison model is assumed.

We will be using the same model of computation except that in general we

2

will limit the permitted operations in the internal memory to comparisons.
Our result provides a lower bound for any problem that fits into this model,
among these is sorting where we obtain the same lower bound as in [1].

We shall consider n-record problems, where in any start configuration the n
records - x1, x2, . . . , xn - reside in secondary storage. The number of records
that can fit into internal memory is denoted M and the number of records
transferable between internal memory and secondary storage in a single block
is denoted B(1 ≤ B ≤ M ≤ n). The internal memory and the secondary
storage device together are viewed as an extended memory with at least
M + n locations. The first M locations in the extended memory constitute
the internal memory - we denote these s[1], s[2], . . . , s[M] - and the rest of the
extended memory constitute secondary storage. The k’th track is defined as
the B contiguous locations s[M +(k−1)B+1], s[M +(k−1)B+2], . . . , s[M +
kB] in extended memory, k = 1, 2, An I/O-operation is now an exchange
of B records between the internal memory and a track in secondary storage.

In the next section, we define I/O-trees on which the main result in section 3
is based. In section 4, we discuss the generality of the I/O-tree model, and in
section 5, we give optimal algorithms for two problems concerning multisets,
namely determining the mode and removing duplicates.

2 Definition of I/O-trees

An I/O-tree is a tree with two types of nodes: comparison nodes and I/O-
nodes. Comparison nodes compare two records xi and xj in the internal
memory using < or ≤. A comparison node has two outgoing edges, corre-
sponding to the two possible results of the comparison. An I/O-node per-
forms an I/O-operation, that is, it swaps B (possibly empty) records in the
internal memory with B (possibly empty) records from secondary storage.
The B records from secondary storage must constitute a track (see figure 1).

To each I/O-node, we attach a predicate Q and two functions π and π′. The
predicate Q contains information about the relationship between the xi’s.
We define the predicate recursively: First we attach a predicate Pk to each
edge from a comparison node k. If the node made the comparison xi < xj

3

Figure 1: Node-types: An I/O-node swaps the B records s(l1), . . . , s(lB) with
the B records in the k’th track, as denoted by the I/O-vector [k, l1, l2, . . . , lB],
where l1, l2, . . . , lB ∈ {1, . . . M} and are pairwise different, and k ∈ {1, 2, . . .}.
A comparison node compares xi with xj. xi and xj must be in internal
memory.

the predicate xi < xj is attached to the left edge, and xi ≥ xj the right edge.
Similarly with ≤. We now consider a path S where we number the I/O-nodes
s0, s1, s2, . . . starting in the root and ending in the leaf.

Qsi
is then defined as follows: Qs0 = True

Qsi
= Qsi−1

∧ P1 ∧ P2 ∧ . . . ∧ Pl

where P1, P2 . . . Pl are the predicates along the path from si−1 to si (see figure
2).

The π’s contain information about where in the extended storage the orig-
inal n records - x1, x2, . . . , xn - are placed. More formally, we have: π :
{1, 2, . . . , n} → {1, 2, . . .}, where π(i) = j means that xi is in jth cell in the
extended memory. Note that π is one-to-one. π’ is the result of performing
an I/O-operation in a configuration described by π, i.e., a track, consisting of
B records, is swapped with B records from the internal memory (as denoted

4

Figure 2: The predicate Qsi
is defined recursively from the predicate Qsi−1

and the predicates along the path between the two I/O-nodes.

by the (B + 1)-vector in figure 1). More formally, π′ = π except for the
following:

π′(π−1(l1)) = M + (k − 1)B + 1
π′(π−1(M + (k − 1)B + 1)) = l1
...
π′(π−1(lB)) = M + kB
π′(π−1(M + kB)) = lB

π in an I/O-node is, of course, equal to π′ in its closest ancestor, i.e., πsi
=

πsi−1
.

Definition 1 An I/O-tree is a tree consisting of comparison and I/O-nodes.
The root of the tree is an I/O-node where πroot(i) = M + i, i.e. corresponding
to a configuration where there are n records residing first in secondary storage
and the internal memory is empty. The leaves of the tree are I/O-nodes,
again corresponding to a configuration where the n records reside first in
secondary storage (possibly permuted with respect to the start configuration)

5

and the internal memory is empty. This means that π′
leaf (i) ∈ {M + 1, M +

2 . . . M + n} for all i.

Definition 2 If T is an I/O-tree then pathT (x) denotes the path x follows
in T . |pathT (x)| is the number of nodes on this path.

We split the problems solvable by I/O-trees into two classes: decision prob-
lems and construction problems. Decision problems are problems where we,
given a predicate QP and a vector x, want to decide whether or not x satisfies
QP . Construction problems are problems where we are given a predicate QP

and a vector x, and want to make a permutation ρ, such that ρ(x) satisfies
QP .

Definition 3 An I/O-tree T solves a derision problem P , if the following
holds for every leaf l:

(∀x : Ql(x) ⇒ QP (x)) ∨
(∀x : Ql(x) ⇒ ¬QP (x))

An I/O-tree T solves a construction problem P , if the following holds for
every leaf l:

∀x : Ql(x) ⇒ QP (xπ′−1
l

(M+1), xπ′−1
l

(M+2), . . . , xπ′−1
l

(M+n))

It is important to note that an I/O-tree reduces to an ordinary comparison
tree solving the same problem, if the I/O-nodes are removed. This is due to
the fact that the comparison nodes refer to records (numbered with respect
to the initial configuration) and not to storage locations.

3 The Main Result

Theorem 1 Let Pn be an n-record problem, T be an I/O-tree solving Pn and
let I/OT (x) denote the number of I/O-nodes in pathT (x). There exists an
ordinary comparison tree Tc solving Pn such that the following holds:

|pathTc
(x) ≤ n log B + I/OT (x) · Tmerge(M − B, B)

where Tmerge(n, m) denotes the number of comparisons needed to merge two
sorted lists of length n and m, respectively.

6

Proof We will prove the theorem by constructing the comparison tree Tc,
but first we want to construct another I/O-tree T ′ that solves Pn from the
I/O-tree T .

We consider a comparison subtree of T - an inner comparison tree of T with an
I/O-node as the root and its immediately succeeding I/O-nodes as the leaves
(see figure 3). A characteristic of this tree is that, except from the I/O-nodes
in the root and in the leaves, it only contains comparison nodes that compare
records in the internal memory, i.e. comparisons of the form xi < xj(xi ≤ xj)
where π(i), π(j) ∈ {1, .., M}. In other words Qi1 , Qi2 , . . . , Qil must be of the
form Qi ∧ (xi1 < xj1) ∧ (xi2 ≤ xj2) ∧ . . . where π(im), π(jm) ∈ {1, .., M}.
Moreover, one and only one of the predicates Qi1 , Qi2 , . . . Qil is true for any
x that satisfies Qi.

Figure 3: Comparison subtree

We now build T ′ from T by inductively building comparison subtrees in T ′

from comparison subtrees in T starting with the “uppermost” comparison
subtree: The root of the new comparison subtree is the same as the root of
the original comparison subtree. The internal comparison nodes are replaced
with a tree that makes all the comparisons needed for a total ordering of
records in internal memory. Finally, the leaves are I/O-nodes selected among
the l I/O-nodes in the original subtree in the following way: If R is the

7

predicate “generated” on the path from the root of T ′ to a leaf in the new
subtree, the I/O-node with the predicate Qij such that R ⇒ Qij is used. The
choice of I/O-node is well-defined because the predicate R implies exactly one
of the Qij ’s. If any of the leaves in the original comparison subtree are also
roots of comparison subtrees, i.e., they are not the leaves of T , we repeat the
process for each of these subtrees. Note that any of them may appear several
times in T ′. It should be clear that when T ′ is constructed in this way, it
solves Pn. Furthermore, for all x, pathTc

(x) and pathT ′(x) contain the same
I/O-nodes. This means that if the height of the comparison subtrees in T ′

is at most h, then the number of comparison nodes on pathT ′(x) is at most
h · I/OT (x). But then there exists an ordinary comparison tree Tc solving
Pn, such that |pathT (x)| ≤ h · I/O(x), namely the comparison tree obtained
from T ′ by removing the I/O-nodes.

It is obvious that our upper bound on |pathT (x)| improves the smaller an h
we can get. This means that we want to build a comparison tree, that after
an I/O-operation determines the total order of the M records in internal
memory with as small a height as possible. After an I/O-operation we know
the order of the M − B records that were not affected by the I/O-operation
- this is an implicit invariant in the construction of T ′. The problem is,
therefore, limited to placing the B “new” records within this ordering. If we,
furthermore, assume that we know the order of the B records, then we are
left with the problem of merging two ordered lists, this can be done using at
most Tmerge(M − B, B) comparisons. We cannot in general assume that the
B records are ordered, but because the I/O-operations always are performed
on tracks and because we know the order of the records we write to a track,
the number of times we can read B records that are not ordered (and where
we must use B log B comDarisons to sort them) cannot exceed n

B
.

Finally, we get the desired result:

|pathTc
(x)| ≤ n

B
B logB + I/OT ′(x) · Tmerge(M − B, B)

⇓
|pathTc

(x)| ≤ n log B + I/OT (x) · Tmerge(M − B, B)
✷

Two lists of length n and m (where n > m) can be merged using binary
merging [2] in m + � n

2t � − 1 + t · m comparisons where t = �log n
m
�. This

means that Tmerge(M −B, B) ≤ B log(M−B
B

)+ 3B which gives us the follow-

8

ing corollary:

Corollary 1

|pathTc
(x)| ≤ n log B + I/OT (x) ·

(
B log(

M − B

B
) + 3B

)

✷

It should be clear that the corollary can be used to prove lower bounds on
the number of I/O-operations needed to solve a given problem. An example
is sorting, where an n log n−O(n) worst-case lower bound on the number of
comparisons is known. In other words, we know that for any comparison tree
(algorithm) Tc that sorts n records there is an x such that |pathTc

(x)| ≥ n log
n−O(n). From the corollary we get n log n−O(n) ≤ n log B +I/OT (x) · (B
log(M−B

B
) + 3B), hence the worst-case number of I/O-operations needed to

sort n records is at least
n log n

B
−O(n)

B log(M−B
B

)+3B
.

Note that no matter what kind of lower bound on the number of comparisons
we are working with - worst-case, average or others - the theorem applies,
because it relates the number of I/O’s and comparisons for each instance of
the problem.

4 Extending the Model

In this section, we discuss extensions to the operations permitted in internal
memory and compare our model to the model used in [1].

The class of algorithms for which our result is valid comprises algorithms that
can be simulated by our I/O-trees. This means that the only operations per-
mitted are binary comparisons and transfers between secondary storage and
internal memory. It should be obvious that a tree, using ternary comparisons
and swapping of records in internal memory, can be simulated by a tree with
the same I/O-height, that only uses binary comparisons and no swapping
(swapping only effects the π’s). Therefore, a lower bound in our model will
also be a lower bound in a model where swapping and ternary comparisons
are permitted. Similarly, we can permit algorithms that use integer vari-
ables, if their values are implied by the sequence of comparisons made so far,

9

and we can make branches according to the value of these variables. This is
because such manipulations cannot save any comparisons.

The differences between our model and the model presented in [1] are, apart
from ours being restricted to a comparison model, mainly three things.
Firstly, Aggarwal and Vitter model parallelism with a parameter P that
represents the number of blocks that can be transferred concurrently. It
should be clear that we can get lower bounds in the same model by dividing
lower bounds proved in our model by P . Secondly, they only assume that a
transfer involves B contiguous records in secondary storage, whereas we as-
sume that the B records constitute a track. Reading/writing across a track
boundary, however, can be simulated by a constant number of “standard”
I/O’s. Hence, lower bounds proved in our model still apply asymptotically.
Finally, their I/O’s differ from ours in the sense that they permit copying of
records, i.e. writing to secondary storage without deleting them from inter-
nal memory. It can be seen that the construction in the proof of our theorem
still works, if we instead of one I/O-node have both an I-node and an O-node
that reads from, respectively writes to, a track. Therefore, our theorem still
holds when record copying is permitted.

5 Optimal Algorithms

Aggarwal and Vitter [1] show the following lower bound on the I/O-complexity
of sorting:

Ω

(
n log n

B

B log M
B

)

They also give two algorithms based on mergesort and bucketsort that are
asymptotically optimal. As mentioned earlier our result provides the same
lower bound.

An almost immediate consequence of the tight lower bound on sorting is a
tight lower bound on set equality, set inclusion and set disjointness, i.e., the
problems of deciding whether A = B, A ⊆ B or A ∩B = ∅ given sets A and
B. It can easily be shown (see e.g. [7]) that a lower bound on the number
of comparisons for each of these problems is n log n − O(n). An optimal
algorithm is, therefore, to sort the two sets independently, and then solving
the problem by “merging” them.

10

In the following, we will look at two slightly more difficult problems for which
our theorem gives asymptotically tight bounds.

5.1 Duplicate Removal

We wish to remove duplicates from a file in secondary storage - that is, make
a set from a multiset. Before removing the duplicates, n records reside at the
beginning of the secondary storage and the internal memory is emptya The
goal is to have the constructed set residing first in the secondary storage and
the duplicates immediately after. Formally this corresponds to the following
predicate:

QP (y) = ∃k : (∀i, j 1 ≤ i, j ≤ k ∧ i �= j : yi �= yj)∧
(∀i k < i ≤ n : ∃j 1 ≤ j ≤ k : yi = yj)

A lower bound on the number of comparisons needed to remove duplicates is
n log n−∑k

i=1 ni log ni −O(n), where ni is the multiplicity of the ith record
in the set. This can be seen by observing that after the duplicate removal,
the total order of the original n records is known. Any two records in the
constructed set must be known not to be equal, and because we compare
records using only < or ≤ we know the relationship between them. Any
other record (i.e. one of the duplicates) equals one in the set. As the total
order is known, the number of comparisons made must be at least the number
needed to sort the initial multiset. A lower bound on this has been shown
[3] to be n log n − ∑k

i=1 ni log ni − O(n).

Given this lower bound our theorem gives us the following lower bound on
the I/O-complexity:

I/O(Duplicate − Removaln) ∈ Ω

(
n log n

B
− ∑k

i=1 ni log ni

B log M
B

)

We match this lower bound asymptotically with an algorithm that is a variant
of merge sort, where we “get rid of” duplicates as soon as we meet them.
We use a block (of B records) in internal memory to accumulate duplicates,
transferring them to secondary storage as soon as the block runs full.

The algorithm works like the standard merge sort algorithm. We start by
making � n

M−B
� runs; we fill up the internal memory � n

M−B
� times and sort

11

the records, removing duplicates as described above. We then repeatedly
merge c runs into one longer run until we only have one run, containing k
records. c = �M

B
�− 2 as we use one block for duplicates and one for the “out

going” run. It is obvious that there are less than logc(� n
M−B

�) + 1 phases in
this merge sort, and that we in a single phase use no more than the number
of records being merged times 2

B
I/O-operations.

We now consider records of type xi. In the first phase we read all the ni

records of this type. In phase j there are less than �n/(M−B)�
cj−1 runs and we

therefore have two cases:

�n/(M−B)�
cj−1 ≥ ni: There are more runs than records of the type xi, this means

that in the worst case we have not removed any duplicates, and therefore all
the ni records contribute to the I/O-complexity.

�n/(M−B)�
cj−1 < ni There are fewer runs than the original number of xi’s. There

cannot be more than one record of the type xi in each run and therefore
the recordtype xi contributes with no more than the number of runs to the
I/O-complexity.

The solution to the equation �n/(M−B)�
cj−1 = ni with respect to j gives the num-

ber of phases where all ni records might contribute to the I/O-complexity.

The solution is j = logcv(
�n/(M−B)�

ni
)+1, and the number of times the record-

type xi contributes to the overall I/O-complexity is no more than:

ni

(
logc(

�n/(M − B)�
ni

) + 1

)
+

logc(�n/(M−B)�)+1∑
j=logc(

�n/(M−B)�
ni

)+2

�n/(M − B)�
cj

Adding together the contributions from each of the k records we get the
overall I/O-complexity:

I/O ≤ 2
B


n +

k∑
i=1


ni

(
logc(

�n/(M − B)�
ni

) + 1
)

+
logc(�n/(M−B)�)+1∑

j=logc(
�n/(M−B)�

ni
)+2

�n/(M − B)�
cj







=
2
B

[
n + n logc(�n/(M − B)� −

k∑
i=1

ni logc ni + n+

k∑
i=1

�n/(M − B)� ·


logc(�n/(M−B)�)+1∑

j=0

(c−1)j −
logc(

�n/(M−B)�
ni

)+1∑
j=0

(c−1)j







12

=
2
B

[
n + n logc(�n/(M − B)�) −

k∑
i=1

ni logc ni + n +
n − k

c2 − c

]

= 2
n log(�n/(M − B)�) −

∑k
i=1 ni log ni

B log(�M
B � − 2)

+
4n

B
+

2(n − k)
B(c2 − c)

∈ O

(
n log n

B −
∑k

i=1 ni log ni

B logM
B

)

5.2 Determining the Mode

We wish to determine the mode of a multiset, i.e. the most frequently occur-
ring record. In a start configuration, the n records reside at the beginning of
the secondary storage. The goal is to have an instance of the most frequently
occurring record residing first in secondary storage and all other records im-
mediately after. Formally this corresponds to the following predicate:

QP (y) = ∀j 1 ≤ j ≤ n : |{i | yi = y1, 1 ≤ i ≤ n}| ≥ |{i | yi = yj , 1 ≤ i ≤ n}|

Munro and Raman [3] showed that n log n
a
− O(n) is a lower bound on

the number of ternary comparisons needed to determine the mode, where a
denotes the frequency of the mode. This must also be a lower bound on the
number of binary comparisons, thus, our theorem gives the following lower
bound on the number of I/O-operations:

I/O(moden) ∈ Ω

(
n log n

aB

B log M
B

)

The algorithm that matches this bound is inspired by the distribution sort
algorithm presented by Munro and Spira [4]. First, we divide the multiset
into c disjoint segments of roughly equal size (a segment is a sub-multiset
which contains all elements within a given range). We then look at each
segment and determine which records (if any) have multiplicity greater than
the segment size divided by a constant l (we call this an l-majorant). If
no segments contained an l-majorant, the process is repeated on each of
the segments. If, on the other hand, there were any l-majorants, we check

13

whether the one among these with the greatest multiplicity has multiplicity
greater than the size of the largest segment divided by l. If it does, we have
found the mode. If not, we continue the process on each of the segments as
described above.

We now argue that both the division into segments and the determination
of l-majorants can be done in a constant number of sequential runs through
each segment.

To determine l-majorants we use an algorithm due to Misra and Gries [5].
First, l−1 candidates are found in a sequential run through the segment in the
following way: For each record it is checked whether it is among the present
l − 1 candidates (initially each of the l − 1 candidates are just “empty”).
If it is, this candidates multiplicity is incremented by l − 1. If not, all the
candidates multiplicities are decremented by 1, unless any of the candidates
had multiplicity 0 (or was “empty”), in which case the record becomes a
candidate with multiplicity l − 1 instead of one with multiplicity 0. When
the run is completed, if there were any l-majorants, they will be among the
candidates with positive multiplicity. This is checked in another sequential
run, where the actual multiplicities of the candidates are determined. Note
that l must be less than M−B because the l candidates have to be in internal
memory.

Figure 4: “The worst case”: di−1 �= di �= di+1 and [di−1, di[contains one
element whereas [di, di+1[is double the intended size.

The division of a segment into c disjoint segments of roughly equal size is
done by first finding c pivot elements, and then distributing the records in
the original segment into the segments defined by the pivot elements in a
sequential run. We use one block in internal memory for the ingoing records,
and c blocks, one for each segment, for the outgoing records (this means

c ≤ �M
B
� − 1). Aggarwal and Vitter [1] describe an algorithm to find

√
M
B

pivot elements in a set in O(n
B

) I/O’s. The algorithm satisfies the following:

14

If d1, d2, . . . , d√M
B

denote the pivot elements and Ki denotes the elements in

[di−1, di[then n

2
√

M
B

≤ |Ki| ≤ 3n

2
√

M
B

("). We now wish to argue that a slightly

modified version of the algorithm can be used to find pivot elements in a
multiset so that either |Ki| ≤ 3n√

M
B

or else all the records in Ki are equal.

We start by using the algorithm by Aggarwal and Vitter. This algorithm
depends almost exclusively on the k-selection algorithm that finds the kth
smallest element in a multiset in linear time [6]. This means that if we
implicitly assume an order of equal records, namely the order in which we
meet them, the resulting pivot elements define segments that satisfy (").
Some of the pivot elements might be equal, and we therefore use some slightly
different elements. If di−1 �= di = di+1 = . . . = di+k �= di+k+1, we use the
elements di−1, di, succ(di+k) and di+k+1, where succ(d) is the successor to d
in the record order. The segments now either consist of all equal records, or
else they are no more than double the size of the segments we get, assuming
that all records are distinct. This can be seen by looking at the “worst case”
which is when di−1 �= di �= di+1 and all records in]di−1, di+1[are equal (see
figure 4).

We have argued that the number of I/O-operations at each level is propor-
tional to n/B, and the analysis therefore reduces to bounding the number of
levels. An upper bound on the size of the largest segment on level j must
be n

(1
3

√
M/B)j

. It follows that the algorithm can run no longer than to a level

j where n

(1
3

√
M/B)j

/l ≤ a. Solving this inequality with respect to j, we find

that no matter what value of l we choose in the range {B, . . . , M − B}, we

get a bound on the number levels of O(
log n

aB

log M
B

). This gives us the matching

upper bound of O(
n log n

aB

B log M
B

).

Acknowledgments

The authors thank Gudmund S. Frandsen, Peter Bro Miltersen and Erik
Meineche Schmidt for valuable help and inspiration. Special thanks go to
Peter Bro Miltersen and Erik Meineche Schmidt for carefully reading drafts
of this paper and providing constructive criticism.

15

References

[1] Aggarwal, A., Vitter, J.S.: The I/O Complexity of Sorting and Related
Problems. Proc 14th ICALP (1987), Lecture Notes in Computer Science
267, Springer Verlag, 467-478, and: The Input/Output Complexity of
Sorting and Related Problems. Communications of the ACM, Vol 31 (9)
(1988) 1116-1127.

[2] Knuth, D.E.: The Art of Computer Programming, Vol 3: Sorting and
Searching, Addison-Wesley (1973) (p. 205-206).

[3] Munro, J.I., Raman, V.: Sorting Multisets and Vectors In-Place. Pro-
ceedings of WADS ’91, Lecture Notes in Computer Science 519, Springer
Verlag (1991), 473-479.

[4] Munro, I., Spira, P.M.: Sorting and Searching in Multisets. SIAM Jour-
nal of Computing, 5 (1) (1976) 1-8.

[5] Misra, J., Gries, D.: Finding Repeated Elements. Science of Computer
Programming 2 (1982), 143-152, North-Holland Publishing.

[6] Blum, M., Floyd, R.W, Pratt, V.R, Rivest, R.L, Tarjan, R.E.: Time
bounds for selection. Journal of Computer and System Sciences, 7(4)
(1972), 448-461.

[7] Ben-Or, M.: Lower bounds for algebraic computation trees. Proc. 15th
Ann. ACM Symp. on Theory of Computation, MA (1983) 80-86.

16

