A GENERAL SOFTWARE
ARCHITECTURE FOR INFORMATION
SYSTEMS

Kristine Stougaard Thomsen
Computer Science Department
Aarhus University, Denmark,

on leave from
Mentor Informatik A /S
Fredens Torv 6, DK-8000 Aarhus C

July 1992

Abstract

A general software architecture for large and medium size infor-
mation systems is presented. The architecture is a multi-level client-
server architecture, where all dependencies on hardware and software
platform are encapsulated into modules. The architecture provides
a skeleton around which to grow an information system and is inde-
pendent of the actual data model, functionality and user interface of
the system. It supports division of labour during development, and
it supports maintenance, enhancement and portability of the result-
ing system. In all these respects, the architecture is superior to the
architecture obtained when using fourth generation languages.

The architecture has been successfully used in several large projects
during the last 6 years and practical experience shows that it provides
a reusable starting point for future development projects.

1 Introduction

In this paper, an information system is considered to have the following
characteristics. It is structured around a data model a database, that models
a part of reality that is relevant for some administrative purpose of the use
organization. The users of the system update and query the data model
as an integrated part of their daily work routines. The different ways of
manipulating and querying the data model constitute the functionality of
the system, for instance in the form of screen and report applications. The
users interact with the system through the user interface which provides the
“look and feel” of the system. Some of the manipulations and queries to the
database may be complex, but the main source of complexity is the size and
complexity of the data model, and the large number of relatively homogenous
applications and their integration with the work routines of the users.

During the last 6 years I have been working in a Danish consulting com-
pany, Mentor Informatics Ltd., where we have developed a general system
architecture for information systems. The architecture has been successfully
used in several large projects. The two most important projects were the
development of an educational administration system (ESAS) and a finan-
cial system (OSE) for the Danish trade schools. There are 115 such schools
with a total of approximately 2000 users. The initial project effort of the
ESAS project was 220 person-months, and at present, after 5 years of use,
maintenance and enhancement, the ESAS system consists of 239 screens and
143 reports. The initial project effort of the OSE project was 115 person-
months, and the OSE system now consists of 105 screens, 45 reports and
(approximately) 30 batchjobs. The platform and tools used in both projects
are mini-computers running UNIX, C and ORACLE. The ESAS and OSE
projects will be used as examples throughout the paper.

The paper is organized as follows: Section 2 discusses requirements for a
sound software architecture for large and medium size information systems;
Section 3 describes the general architecture that we use, and Section 4 gives
a brief introduction to the production environment that we have established
to support development of systems with this architecture; In Section 5, the
advantages of the architecture are discussed in relation to the requirements
in Section 2. Moreover, the architecture is compared to the architecture
obtained when using 4’th generation languages.

2 Requirements for an Architecture

Most of the requirements for a sound software architecture for large and
medium size information systems discussed in this section apply to computer
systems in general, but the actual architecture suggested in Section 3 on the
basis of the requirements is particularly suitable for information systems.

Support Maintenance and Enhancement

An information system is used as an integrated part of the daily work in an
organization. An organization is dynamic and changes in an interplay with its
environment. Changes in the organization result in changes in requirements
for the information system. The lifetime of the system therefore depends
on the ease of maintaining and enhancing the system to meet changed re-
quirements, which is closely related to the modular structure of the system’s
architecture.

Parnas (1972) has described the principles of modular software architec-
ture and later in more detail in (Parnas et. al., 1985). The basic idea is
that each design decision that may change independently of others should
be encapsulated into a module. The module hides the design decision and
reveals as little as possible about the secret in its interface to other mod-
ules. Quoting (Pamas et. al. 1985, p. 260) the following goals of such a
modularization are important:

a) FEach module’s structure should be simple enough to be understoodfully.

b) It should be possible to change the implementation of one module with-
out knowledge of the implementation of other modules and without affecting
the behaviour of other modules.

c) The case of making a change in the design should bear a reasonable
relationship to the likelihood of the change being needed (...)

d) It should be possible to make a major software change as a set of in-
dependent changes to individual modules, i.e., except for interface changes,
programmers changing the individual modules should not need to communi-

cate. (...)

e) A software engineer should be able to understand the responsibility of
a module without understanding the module’s internal design.

(...)

The recommendations of Pamas et. al. are based on the “Divide and
Conquer” principle, which has been successfully applied in algorithm design.
Parnas et. al. applies this principle to the larger scale of software engineering
and combines it with the idea (c) of taking into consideration the likelihood of
change. This has been discussed in more detail by Jackson (1983) and Coad
& Yordon (1991) as one of the principles behind object oriented design. A
system’s overall structure should be based on relatively stable properties and
concepts of the application domain together with relatively stable design
decisions. Properties and design decisions that are more likely to change
should not be the basic structure of the system but rather be encapsulated
into modules that can be easily changed.

Support Division of Labour

The Divide and Conquer principle supports division of labour, and several of
Parnas’s goals are directly concerned with enabling a team of system develop-
ers to share the development task among them without too much overhead.

If a task would take K months to complete for 1 person, the ideal would
be, that the task could be partitioned in such a way, that x people could
complete the task in K/x months. As argued in (Brooks, 1975) this is rarely
the case in practice. When a task is divided, several workers need training,
and coordination between subtasks is needed. The amount of time spent on
training grows linearly with the number of workers, whereas the time spent
on coordination tends to grow polynomially (or even worse) with the number
of people involved. Brooks describes this phenomenon in order to argue that
“adding manpower to a late software project makes it later”.

Brooks also establishes that some tasks have a sequential nature that
makes them unpartitionable. Most tasks involved in systems development
have some degree of sequential nature, e.g. design must take place before
programming, programming before test, and test before installation. That
is, even with extensive modularization, we can only obtain a limited partition

of the original task. There will be an inherent limit to the number of people
that can meaningfully be assigned to participate in performing the task. This
limit is determined partly by the degree of sequential nature of the task and
partly by the quality and fine-grainedness of the modularization.

Support Portability

Portability can be considered a special case of maintenance where parts of
the hardware or software platform on which the system is build, is replaced.
A software architecture that supports portability can be obtained, using Par-
nas’s principles, by encapsulating the design decisions conserning choice of
hardware and software platform into modules thet prevent these decisions
from being used by other modules.

Portability in a broader sence also includes the possiblity of using dif-
ferent hardware configurations than the one anticipated when the system
is designed. At present, we see a trend towards distributed configurations
connected in networks. This indicates that changes from centralized to dis-
tributed configurations are likely to occur. According to Parnas’s principle
(c), this change should therefore be easy to implement if a central solution
is chosen initially. It should be easy to change the system to run on various
different distributed configurations, including heterogenous configurations of
different cumputers.

Support Growing instead of Building Software Systems

Brooks (1987) distinguishes between building and growing a large software
system. He expresses the opinion that the most promising contribution to
improvements in software development during recent years comes from the
field of prototyping. For a discussion of prototyping, see (Floyd, 1984) and
(Floyd, 1987). Growing a software system means incrementally adding more
and more functionality to the system while constantly being able to test and
evaluate the system according to user needs. As Brooks points out, growing
a system in this way requires top-down design. Some fundamental principles
for structuring the whole system must be decided initially allowing flesh to
be added to the bones of the overall architectural skeleton as development

proceeds.

We would like an architecture that can act as such a skeleton for a system
that is to be grown in cooperation with users. That is, the basic structuring
of the system should be independent of the actual data model, functionality
and user interface of the system.

3 A General Software Architecture

In this section, the general software architecture is presented as if the whole
system is running on a central machine using a single database system and a
single set of user interface tools. This is the way the architecture has primar-
ily been used till now in our projects, but among the major advantages of the
architecture is its openness to distribution on heterogenous configurations,
as discussed in Section 5. Now, however, we look at the centralized ver-
sion, and terms like “server process” and “distribution of operations” should
not be confused with the similar terminology within the field of distributed
computing.

The architecture is a client-server architecture which makes a division
of the system into subsystems and an orthogonal division into layers. The
layers span the gap between the presentation of the system to the user,
and the underlying database system. The architecture is shown in figure
1, and the different components of the figure are described in detail in the
following subsections. Figure 1 is a runtime picture of the system, showing
the running processes and how they communicate. There is not a one to
one correspondance between processes in the running system and programs
or modules of the system. How processes relate to program modules will be
made clear in the description of the different layers.

3.1 System Layers

The horizontal layers shown in figure 1 are the database system layer, the
logical database layer, the server layer, the application layer, the presentation
layer, and the layer consisting of the interface tool available on the terminal,
PC or work station from which the user interacts with the system.

Subsystem 1 Subsystem N

Interface tool Terminal, PC or Terminal, PC or
layer workstation workstation
Presentation Screen processes Screen processes

layer

O(?O O%)O

Application Application processes Application processes

. 00O, 0O

Server layer Server processes > Server processes

Off \C%o

Logical database Database server Database server
layer processes processes

00 OO 00 OO

Database system Database system Database system

faver Subsystem 1 Subsystem N

Figure 1: A General Software Architecture

The top and bottom layers consist of basic software that constitutes the
environment for our architecture, while the intermediate four layers consti-
tute the architecture of the system. Each of the four intermediate layers
consists of a number of separate processes. A process acts as a server that
waits to receive requests from processes at higher levels. In the processing
of such a request, the process can act as a client by sending requests to pro-
cesses at lower levels, asking for services provided by this layer. A general
communication module linked on all processes encapsulates the design deci-
sion of how communication is implemented between all intermediite layers in
the architecture.

The Interface Tool Layer Provides Means For User Interaction

The interface tool layer is part of the environment in which the system is
built. It provides tools for programming the interaction between user, display,
keyboard etc.

The Presentation Layer Encapsulates the Interface Tools

The presentation layer consists of a number of screen processes, one for each
screen application that is run by a user at the given moment. Thus, the
number of processes in this laver varies with the number of current users and
their activities.

The presentation layer implements the general functionality of the user
interface and the specific layout of screens, regardless of their underlying
functionality. In a system with a character oriented user interface, the screen
process handles the sequence of fields to be filled by the user or shown to the
user. Moreover, activation of function keys are caught and leads to activation
of different functions, some of which may be activated by sending messages
to the application layer.

Only one general screen program is involved in implementing the presenta-
tion layer. Besides, there is a set of datafiles with screen layout descriptions,
one for each screen. The general screen program is a module that encap-
sulates two important design decisions that may vary independently of the
rest of the system: the choice of basic interface tool on which the system is
built and the general principles of the user interface. The different screen
processes in the presentation layer shown in figure 1 are all instantiations of
the same general screen program using different screen descriptions for the
actual screen.

The Application Layer Encapsulates Specific Functionality

The specific functionality of each screen application is implemented in the
application layer. Each screen process has an associated application process,
that determines what is the effect of manipulating the user interface given
in the screen process. Besides, report applications and batch jobs run as

application processes with no associated screen process.

There is an individual program for each application. It knows about
which data in the database are relevant for the application, on what basis
they are fetched or updated, and what computations are to be performed on
them before or after the presentation of them in case of a screen.

The Server Layer Provides Interfaces between Subsystems

The server layer consists of a fixed number of server processes. It is at
this level interfaces between subsystems are defined. One (or more) of the
servers provide the high level operations by means of which applications in
other subsystems can interact with the database owned by the subsystem at
hand. In figure 1, the interface server processes are shown as larger circles
in the server layer, and it is shown by means of arrows, that they allow for
communication between subsystems.

Moreover, the server layer provides higher level operations on top of the
logical database layer, including bundling of database operations and consis-
tency checks.

There is an individual program for each server.

The Logical Database Layer Encapsulates the Underlying Database
System

The logical database layer consists of a number of database server processes.
The services provided by these processes are logical operations on the under-
lying database, such as retrieval and update operations of varying complexity.

Each operation is characterized by an interface, consisting an operation
code and a format of a communication record. The implementation of the
operation in terms of operations on the underlying database system is hidden
within the logical database layer and is of no concern to the client processes.

The logical database layer is implemented by a single program, the database
server program, from which all database server processes are instantiated,
and a data file, called the dbt-file, that contains the implementation of all

logical operations. The logical database layer encapsulates two important
design decisions: the choice of underlying database system and the represen-
tation of the data model implemented in the database, that is the layout of
tables and fields etc.

In principle, all database server processes could support the same logical
database operations, but a table describes how the services are distributed
among them. More details on this are given in Section 4.1.

The Database System Layer Provides Traditional Database Facili-
ties

The database system layer is part of the environment in which the system
is built. We assume that it provides traditional database facilities such as
transactions, concurrency control, error recovery etc. Similarly, the question
of distribution of the database, replication etc. is considered to be part of
this layer and not the architecture of the system.

The Flow of Requests Through the Layers

As an example of the flow of requests through the layers in the runtime
architecture, we consider a user interacting with a screen in the financial
system. The screen allows the user to check the balance of an account.

The typing of the account number takes place as an interaction between
the user and the screen process of the screen in question. When the user
activates a specific function key, the screen process sends a message to the
application process, which knows what to do about it. In this case, the ap-
plication process knows that an account has to be found, and its balance
computed. Therefore, the application process sends a request to a server
process, in this case an account server process in the server layer. As a con-
sequence of this request, the account server process sends a series of requests
to some database server process to get the account with the typed account
number and all the postings that have been registered on this account. As
the database server process at the logical database level responds to these
requests, the account server process sums up the amounts of the postings,
sends the result back to the application process, which in turn sends values

10

to the screen process, which presents them to the user.

The account server process mentioned is in fact an interface server process
in one of the subsystems of the @SE system, and the operation of finding the
balance of an account is an operation that is accessible to other subsystems
in the financial system.

The application process may send requests directly to database server
processes instead of going through the server layer. This is relevant when only
low-level logical operations on the database are needed by the application.

3.2 Subsystems

As shown in figure 1, the system is divided into vertical subsystems. Each
subsystem can be considered a high level module that encapsulates all design
decisions of the subsystem making only the interface routines in the server
layer visible to other subsystems.

The Division into Subsystems is Based on User Work Practice

The division into subsystems is performed at an early stage of the develop-
ment process. There is no well defined method for performing this division.
However, we have found it useful to base the division on criteria given by the
work practice of the users. That means defining a subsystem as a meaning-
ful unit seen from a user’s perspective, containing functionality related to a
logical set of tasks in the work situation.

As an example of subsystem division, the system for educational adminis-
tration was divided into 10 subsystems: Student administration, schema and
absence registration, examiniation planning, community home administra-
tion, personnel administration, building and rooms administration, material,
equipment and furniture administration, activity planning, data exchange
(with other schools) and system administration.

Such a division eases incremental implementation (growing) of the system
in the use organization, e.g. by implementing one subsystem at a time.

Of course it is also important to minimize the dependencies between dif-

11

ferent subsystems, since explicit interfaces must be designed between subsys-
tems. These interfaces should be kept as simple as possible.

A Subsystem is Responsible for its own Database

Each subsystem has its own database, at least logically. Physically, they may
be just different subsets of tables in the same database system, or they may
be based on different database systems, maybe even on different machines
as discussed in Section 5. Responsibility for maintaining the database and
ensuring its consistency is localized to the individual subsystems. Moreover,
responsibility is localized to the two levels called the logical database level
and the server level.

Besides, each subsystem consists of a number of different applications,
that help the user in performing some tasks that involve querying or manip-
ulating the database. Each application in the system, e.g. each screen and
each report etc., belongs to a specific subsystem.

Interfaces between Subsystems are Localized to the Server Layer

The subsystems interact with each other through the interfaces defined by
the interface server processes in the server layer, as mentioned in the previous
section. The operations provided by the set of interface server processes of
a subsystem, are the only means by which other subsystems can access the
database of the subsystem.

4 A Production Environment

Before a system can be developed using this architecture, a production en-
vironment must be established. To give an impression of the extent of this,
our present production environment is briefly described.

Our production environment provides standard modules that form the
skeleton around which to grow the information system together with a set of
tools for building components of the system. Moreover, a set of guidelines and

12

standards are maintained that can lead programmers through the tasks of
developing screens, reports, server processes, interface operations etc. Both
standard modules, tools and guidelines are expected to be tailored to the
needs of each specific software development project.

The standard modules in our production environment are primarily the
communication module, the general screen program and the database server
program. They can be reused in different software development projects,
since they are totally independent of the actual functionality of the system
to be developed. However, they must of course exist in a version that matches
the platform on which the system is to be developed.

The tools and guidelines in our production environment take advantage
of the characteristics that an information system consists of a large number
of relatively similar system components, i.e. screens, reports and background
jobs. The tools and guidelines support mass production of such components
but are intended to be flexible enough to enable easy incorporation of new
ideas that come up when growing the system, both regarding user interface
and functionality.

4.1 Tools and Standard System Modules
The Communication Module

The entire system architecture, shown in figure 1, is based on communicat-
ing processes organized in a multi-level client-server configuration. A com-
munication module that provides a high level way of sending requests and
responses between processes at all layers is therefore a fundamental system
module provided by our production environment. Each process in the system
has this communication module linked with it.

The communication module provides a procedure interface that allows
a client process to send a communication record containing a code that
uniquely identifies a specific service and the actual parameters of the op-
eration that implements the service. The client need not know the identy of
the server that supports the service. In a global table, information is main-
tained about which processes in the system supports which services, and the
communication module automatically forwards a request to me server pro-

13

cess that supports it. The table is initialized on the basis of a text file that
can be edited on location followed by re-initilization. This is particularly rel-
evant when detaining how logical database operations are to be distributed
among the database server processes.

The communication module also includes mechanisms for receiving a re-
sponse or a sequence of responses as a result of a request to a server, and
mechanisms for exclusive communication between two processes for a period
of time without interruption from other processes.

At present we have a UNIX version of the communication module, and a
VMS version is forthcoming. Furthermore, we have a prototype version of a
communication module that supports distribution as discussed in Section 5.

The Database Tools

Our production environment provides a standard program that implements
the database server processes. The database server program will typically
need adjustment to each project, for instance to implement specific security
requirements. The database server program is compiled with no knowledge
of the operations that it is to support. The actual operations, together with
the size and format of the communication records associated with them, are
described on a separate file, called the dbt-file that is read as data by the
running database server processes. A database server process indexes into
the dbt-file when receiving a request with some operation code from a client.
That is, format and size of communication records are not known at compile
time. This makes the process of generating new logical database operations
quite fast, since it does not involve recompilation of the database server
program.

We have tools that support the process of creating new tables in the
database and creating logical operations. One tool automatically creates a
set of logical standard operations for a table and translates them into the
format of the dbt-file, readable by the database server program. Another
tool reads an SQL-expression from a text file and generates a new logical
operation on the dbt-file.

At present we have two versions of the database server program that
support the relational databases ORACLE and INGRES, respectively.

14

The Screen Tools

Our production environment provides a general screen program. The pro-
gram is tailored to each individual project and implements the general func-
tionality of the user interface. Moreover, we have screen tools that provide a
high level interface to defining and manipulating the specific layout properties
of the individual screens.

At present, our screen tools and our general screen program only exist
in a version based on a textual user interface tool, but we are working on
developing a version that uses the X Window System.

The Application Tools

The application tools consist of tools that support development of screen ap-
plications and tools that support development of reports and batchjobs. The
screen application tools form a supplement to the screen tools in supporting
the description of the individual functional properties of a screen application.
The tools primarily consist of skeleton programs to be filled out with bodies
for general procedures, which are activated as the result of requests from the
screen process when certain events are caused by the user.

The tools that support report applications and batchjobs mainly consist
of skeleton programs.

4.2 Standards and Guidelines

Besides the different tools and standard modules that support the system
architecture, each project develops and maintains a set of standards and
guidelines that are important for flexible mass production. Actually, this has
only been done in one project till now, the project of developing a finan-
cial system to the Danish trade schools. However, the experiences of using
the standards and guidelines were so positive that we now regard them as
inseparable from the tools and standard modules.

We have standards for specifications, screen layout, database tables, pro-
grams, and documentation. Most of the details of the standards are cre-

15

ated and maintained during the project and are used to ensure consistency
throughout the system and between subsystems.

We have guidelines for many of the typical system developer’s tasks in
the project. Guidelines for how to make a new screen, a new report, a new
table with standard operations in the database, a new complex database
operation, a new interface server between subsystems, a new operation in an
interface server etc. The guidelines offer a different entry to the tools than
the set of manuals available for the tools. The guides take the task at hand
as the starting point. They describe step by step what to do and what tools
to use to do the job.

A few of the guidelines are drafted in the beginning of the project or could
be inherited from earlier projects, but most of them are created and main-
tained during the development process by the involved system developers
themselves.

Therefore, the guidelines at all times reflect the accumulated experience
of optimal use of the available tools.

5 Advantages of the Architecture

In this section, the architecture and our practical experiences with it are re-
lated to the requirements for a software architecture for information systems,
presented in Section 2. The discussion is structured as a set of assertions with
related reflections. Aspects of our production environment are also consid-
ered when they contribute to the quality of the development process or the
developed product. Moreover, development of systems with this architec-
ture is compared to development of systems by means of fourth generation
languages (4GL).

5.1 Maintenance and Enhancement

The architecture supports maintenance of functionality
By maintenance of functionality, I mean changes and additions to the data-
base, corresponding changes to screens and reports, changes in layout and

16

functionality of screens and reports, new screens and reports or whole new
subsystems.

Changes to the database may be needed in order to enhance the data
model or in order to change the representation of existing data for instance
to improve performance of critical database operations. When changes to
the database are made, the logical database layer shows some of its strength.
The application programs contain only calls to logical database operations.
The correspondance between these logical operation and their representa-
tion in terms of the underlying physical database system is represented only
once, namely in the dbt-file used by the database server program. If the
database change is only a structural reorganization of tables and fields, only
the implementation of the logical database operations in the dbt-file has to be
changed. All applications and even the database server program can remain
unchanged.

If the database change involves definition of new fields or removal of ex-
isting fields, the format of the communication record used between clients
and database server processes is changed accordingly. For applications that
do not make use of new or removed fields, recompilation is sufficient. Ap-
plications that make use of removed fields or should make use of new fields
must of course be more substantially changed.

When general changes to the user interface are to be made, changes can
be localized to the general screen program, and individual treatment of all
applications can be avoided.

When individual changes to screens and reports are to be made, the com-
mon structure of the programs is a big advantage. Moreover, most programs
are relatively small, since most general properties are separated from the spe-
cific. This makes minor changes easy to perform, also for other programmers
than the one who made the program.

When new screens or reports are to be developed, the guides for devel-
opment described in Section 4.2 are invaluable. Without such guides, a lot
of knowledge about optimal use of the tools would be lost, because of the
gradual turnover of labour among system developers.

4GL are inferior with respect to maintenance of functionality
Typically, applications developed by means of 4GL have access to the data-

17

base directly incorporated in the source code in the form of embedded SQL
expressions. SQL expressions involving a specific database table are spread
all over the system’s source code. When changing the database table, all
these expressions must be found and changed throughout the entire system’s
source code. In practice this makes the process of changing the database
extremely vulnerable and time consuming.

General changes to the user interface is either impossible, in case the
required changes involve aspects of the interface defined by the 4GL itself,
or a major task involving all applications developed so far.

With respect to individual changes to screens and reports, 4GL is com-
parable to our architecture.

The architecture supports customization

If the same system is used by several different use organizations, these may
have different requirements. Some differences can be easily handled within
our architecture.

Assume that two use organizations want two different versions of a spe-
cific subsystem, because their work practice differ in this particular area.
Provided the two versions of the subsystem can offer the same interface to
other subsystems, that is, the interface server processes of the two versions of
the subsystem can support the same logical operations, the two alternative
versions can be implemented with no effect on other subsystems.

The architecture supports performance tuning on location

Besides differences in functionality requirements, there may also be different
performance requirements to the system in different use organizations. For
instance because of different size of database, different number of users or
different hardware configurations. In this case some individual tuning of the
system can be done in the database server layer of the system.

Assume that information has been gathered in a use organization about
which logical database operations are used most often and which are most
time consuming. We are able to do that by telling the database server pro-
cesses (on the fly) to output identification and time consumption of all log-
ical database operation that execute for more than a certain threshold of
time. Now, the division of labour between the database server processes,

18

i.e. who should support which logical database operations, can be tuned.
For instance, some database server processes could be dedicated to time con-
suming operations that are noncritical with respect to response time, and
others could be dedicated to operations that are often used and require fast
response. The database server processes are all instantiations of the same
program, and the distribution of logical database operations among them is
described on a text file, which can be edited on location. We could even
decide to add an extra database server process to the system.

Of course some effort in this direction, determining the default situation,
must be done before installing the system, but the point is that there may
be individual needs to meet.

Unfortunately, our current practice on installing new versions of systems
imply that such individual tunings are lost. However, that is a problem in
our current practice and not inherent in the architecture. On installation,
changes and additions to the file describing distribution of operations should
be installed in some intelligent way rather than just installing a whole new
version of the file.

5.2 Division of Labour

The architecture is superior to 4GL in supporting division of labour

The subsystem division makes it possible to have several teams of developers
work in parallel in autonomous subprojects, coordinating only through the
design of interfaces in the server layer of the subsystems. More complex
coordination can then be limited to take place within a subsystem rather
than between them. This limits the number of other subtasks that each
subtask may need to coordinate with.

Within a single subsystem, division of labour can obviously be based on
the individual screens and reports. However, even more finegrained division
of labour is supported, since the task of implementing specific services in the
logical database layer or in the server layer can be assigned to individual
developers.

The division of labour supported by 4GL is less finegrained. The only
obvious division of labour is based on individual screens and reports, since

19

database tables, fields and operations are designed as an integrated part of
the application development.

Moreover, the lack of a subsystem division when using 4GL makes it likely
that coordination cost will grow more rapidly as a function of the number of
developers sharing the task. The reason for this is that there is no obvious
way of reducing the number of subtasks that each subtask needs to coordinate
with.

It is thus likely that the inherent limit to the number of developers that
can meaningfully share the development task will be lower when using 4GL
than when using our architecture.

Production of system components is as efficient as with 4GL

It is our experience that given our production environment, production of
system components like screens and reports, including the production of
associated database operations and interface operations, is as efficient as
production of similar components using a 4GL. Our experience is primarily
based on comparison with Oracle’s SQL*Forms.

The guidelines help improve productivity and quality

We experience a high motivation among the system developers for creating
and maintaining the guidelines, because they are immediately useful. The
guidelines often reveal differences in the way different developers use the tools
and cause explicit discussions about practice. These discussions sometimes
result in suggestions for new tools or improvements in the existing tools. In
this way practice can be improved to increase both productivity and quality.

The guidelines are the key to resource flexibility

Since the guidelines at all times reflect the accumulated experiences of op-
timal use of the available tools, they are invaluable in the training of new
system developers on the project. The guidelines are a key to resource flexi-
bility in the project, i.e. the ability to utilize extra resources in peak periods.

20

5.3 Portability

The architecture supports portability to another operating system

If the system has to be ported to a different operating system, only the com-
munication module needs to be rewritten. All other source codes can remain
unchanged (provided they are written in some portable programming lan-
guage) and just need recompilation in order to generate code to the new
platform and link to the new communication module. Of course, the archi-
tecture requires an operating system with support for multiprocessing and
communication between processes.

The architecture supports change of database platform

If the system has to be changed to use a different database system, only
the database server program needs reprogramming together with the dbt-file
containing the representation of logical database operations in terms of op-
erations on the underlying physical database system. The other processes in
the system remain unchanged, since the application processes communicate
with the database server in terms of logical operations, and the format of the
communication records remains unchanged.

The architecture supports change of user interface tools

If another user interface tool is to be used, the general screen program must
be rewritten. Again, the other processes are unaffected. At least in principle.
In practice, a change of user interface tool will often be followed by a wish
to make use of new facilities in the new interface tool. For instance, if the
change is from a character oriented interface to a graphical interface. If the
graphics facilities are to be fully utilized, there will be additional changes to
be made in the application layer of the system and maybe in the represen-
tation of the individual layout properties of screens. However, to obtain the
same functionality of the system on a new user interface tool, reprogramming
of the general screen program is sufficient.

This is obtained by the separation of the data model, functionality and
user interface into different layers of the architecture. In this respect, our ar-
chitecture resembles the model-view-controller (MVC) concept in Smalltalk-
80. For an introduction to MVC, see (Pinson & Wiener, 1988).

The architecture supports distributed configurations

21

If the system is to run in a distributed configuration across a network, only
the communication module needs to be reprogrammed so that processes com-
municate across the network instead of just through the operating system.
All programs for processes in all layers in the system architecture can remain
unchanged.

The changes needed in the communication module are of course non-
trivial, but could be implemented by means of a commercially available pack-
age for Remote Procedure Calls (RPC). For a closer description of RPC, see
(Birrell & Nelson, 1984). However, we have chosen to make our own RPC,
primarily because all the commercially available products that we know of
require communication records to be known at compile time, which we find
unsatisfactory. See for instance the NCS product from Hewlett-Packard de-
scribed in (Kong et. al., 1990). We want to maintain the flexibility described
in Section 4.1, that new logical database operations can be added without
recompilation of the database server program. By now, we have a prototype
running that can communicate between equal UNIX machines (i.e. without
data conversion).

The architecture will also need to be augmented with additional perma-
nent processes to control communication, and administrate replicated tables
describing distribution of operations and physical location of processes.

As it can be seen, our architecture does not reduce distribution to a
question of a few lines of code, but the important thing is that the change
from a centralized to a distributed version can be done without touching
the great bulk of code in the four layers of the system that implement the
system’s data model, functionality and user interface. Changing a centralized
system to a distributed system costs approximately the same as it would cost
to establish a production environment initially for developing the system in
a distributed version from the beginning.

There is one condition for this to be true. Error handling at the appli-
cation level must be transparent to distribution. Both the centralized and
the distributed version include communication between processes, and such
a communication may fail for various reasons. Exceptions should therefore
be designed to be general enough to cover both the centralized and the dis-
tributed case. If different error messages are to be given at the application
level, error codes can be used, and their relation to various messages main-

22

tained in a single module.

When the above changes have been made to the communication module,
the system can be distributed according to several different patterns.

The database server processes could be placed on a server machine to-
gether with the physical database, whereas the application processes and
screen processes could run on the individual user machines. Alternatively,
since the presentation layer and the application layer are implemented as
separate processes, they can also run on different machines. If for instance a
specific application process requires special computational power available on
a particular computer in the network, the screen process can run on the user’s
machine while the application process runs on the more powerful computer.

These patterns of distribution all make the system meet the definition
of client-server processing given by Buzzard (1990) where a continuum of
distributed processing schemes is described.

The architecture supports heterogenous configurations

If the system is to run on a heterogenous configuration of machines with
different user interface tools, there could be a separate version of the general
screen program for each type of machine, whereas each application program
needs only exist in one version, because the application process is separated
from the screen process.

If the system is inhomogenous in the sense that it involves maintenance
of several different databases, the problem of handling this is isolated to the
database server program. The database server program should then exist in
several versions, one for each underlying database system, for instance Oracle
and Ingres. Logical database operations on the Oracle database should be
supported by database server processes instantiated from the Oracle database
server program. Similarly for operations on the Ingres database. All other
layers in the system’s architecture need not be aware of which parts of the
data model are stored in the Oracle database and which in the Ingres.

When combined with distribution, heterogenous database systems could
of course run on different machines together with their associated database
server processes. Note however, that this does not mean that the architecture
directly supports distributed databases in the sense, that the same database
is distributed and replicated on several machines. This kind of distribution

23

could be integrated in the architecture, but it requires an underlying database
system that supports distribution.

The architecture supports integration with other systems

When an information system, A, with our architecture, needs to be integrated
with another information system, B, this can be done at the server level. The
interface server processes of A should implement operations needed by B, and
B should be augmented with an interface server process if there is not already
one in its architecture. To A, B will then look exactly like any subsystem of
A itself.

4GL are inferior with respect to portability

A 4GL system is dependent on a specific database system and a specific in-
terface tool. The system can only be moved to another platform if the 4’th
generation tool is available on this platform or the whole system is repro-
grammed.

Changing the configuration of a 4GL system from a centralized to a dis-
tributed configuration is also limited by the present capabilities of the 4GL,
unless you are willing to reprogram the total system.

5.4 Growing Instead of Building Systems

The architecture supports growing systems

When growing a large information system, a top-down design is needed in
order to establish a skeleton around which to grow the system. The architec-
ture provides such a skeleton. The architecture is independent of the actual
data model, functionality and user interface of the system. Our experiences
with using the architecture in connection with an experimental project model
for system development are described in (Thomsen, 1992).

4GL are inferior with respect to growing large system

When growing large systems, the lack of such an architectural skeleton that
modularizes the system appropriately, will be serious, while less important
when growing small ones.

When growing a system, changes of the system’s functionality and user

24

interface will be needed during the development process. Users evaluating
the system or prototypes of it will propose changes that will make the system
better match the use situation. Growing a system therefore requires the same
properties of the system as described in Section 5.1 on maintenance and
enhancement. Here it was argued that 4GL are inferior to our architecture.

When the users want a general change in e.g. the user interface, our tools
are tailored to meet the new requirements. The direct access to tailoring our
tools to needs makes production more flexible than when using 4GL, where
all design must take place at the premises of the available static tool.

The overhead of using the architecture is insignificant

A potential disadvantage of our architecture is the large number of processes
in the running system, compared for instance to the number of processes re-
sulting from the architechture of a 4GL system. Processes take up space and
communication between processes may reduce performance. However, in a
running system with many users, there may be considerably fewer database
processes running than in a 4GL system, where each user typically results
in a separate database process. Since the number of database processes is
often critical to the price of the database system software, and the database
processes often take up much more space than other processes, our architec-
ture may often be superior also in this respect. Moreover, the database server
processes are all instances of the same program and the code is therefore only
allocated once, regardless of the number of actual database server processes
running. Only the data segment of the processes takes up space. The same
applies to the screen processes in the presentation layer.

With respect to overhead in time, it is our experience that the time
spent on communication is insignificant compared to the time it takes to
access the database and compared to user response time in the interaction
on screens. It is our conviction that communication time is not significant to
the response time of the system as experienced by the users. Of course, the
occurrence of bottlenecks in the system is critical. If long queues of requests
to server processes occur, the distribution of services among them must be
reconfigured.

However, it should be noted that our architecture is intended for large
and medium size information systems. For small systems with only few users,
4GL may be a better choice.

25

6 Conclusion

A general software architecture has been presented. The architecture is a
multi-level client-server architecture, where all dependencies on hardware and
software platform are encapsulated into modules. The architecture provides a
skeleton around which to grow an information system. It supports division of
labour during the development process, and maintenance, enhancement and
portability of the resulting system. The architecture is independent of the
actual functionality of the system and is based on relatively stable properties
of information systems in general, while design decisions that are likely to
change are encapsulated into modules.

Several projects have successfully used the architecture and practical ex-
perience shows that the architecture provides a reusable starting point for
new projects. A brief description of an existing production environment has
been given. The production environment contains standard modules and
guidelines to be used in the development of information systems with the
suggested architecture.

The architecture has been compared to the architecture obtained when
using 4’th generation languages. It has been argued that for large systems,
the proposed architecture is superior with respect to its support for division
of labour during development of systems, its support for growing instead
of building systems, its support for maintenance and enhancement of the
resulting systems and its support for portability of systems.

Acknowledgements

[am grateful to all my collegues at Mentor who share with me the experiences
that inspired this paper. Special thanks to Ole Jacobsen for sharing his
insight with me. Thanks are also due to Susanne Bgdker, Joan Greenbaum,
Kaj Grgnbak, Morten Kyng, Ole Lehrmann Madsen and Peter A. Nielsen
who commented on earlier drafts of this paper.

This work was supported by The Danish Natural Science Research Coun-
cil, grant no. 11-8385.

26

References

Birrell, A. D. & B. J. Nelson, (1984): “Implementing Remote Procedure
Calls”, ACM Transactions on Computer Systems, 2(1):39 - 59.

Brooks, F. P., (1975): “The Mythical Man Month - Essay on Software
Engineering”, Reading, MA: Addison-Wesley.

Brooks, F. P., (1987): “No Silver Bullet”, Computer, 20(4):10-19.

Buzzard, J., (1990): “The Client-Server Paradigm: Making Sense Out of
the Claims”, Data Based Advisor, August 1990, pp 72-79

Coad, P. & E. Yordon, (1991): “Object Oriented Analysis”, Second edition,
Prentice-Hall, Englewood Cliffs, NJ, 1991.

Floyd, C., (1984): “A Systematic look at Prototypes”, in: R. Budde et. al.
(eds.): “Approaches to Prototyping”, Proceedings of the Working
Conference on Prototyping, Springer-Verlag, Berlin-Heidelberg-New York
-Tokyo, pp. 1-18.

Floyd, C., (1987): “Outline of a Paradigm Change in Software Engineering”,
in: G.Bjerknes et. al. (eds): “Computers and Democracy”, Avebury,
pp. 191-210.

Jackson, M., (1983): “System Development”, Prentice-Hall, Englewood Cliffs,
NJ.

Kong, M. et. al., (1991): “Network Computing System Reference Manual”,
Prentice-Hall, Englewood Cliffs, NJ, 1990.

Pamas, D. L., (1972): “On the Criteria To Be Used in Decomposing Systems
into Modules”, Communications of the ACM, 15(12): 1053-1058.

Parnas, D. L., P. C. Clements & D. M. Weiss, (1985): “The Modular Struc-

ture of Complex Systems”, IEEE Transactions on Software Engineering,
SE-11(3):259-266.

27

Pinson, L. J. & R. S. Wiener, (1988): “An Introduction to Object-Oriented
Programming and Smalltalk”, Addison-Wesley Publishing Company.

Thomsen, K. S.; (1992): “he Mentor Project Model: A Model For Experimen-
tal Development Of Contract Software”, DAIMI PB 401, Computer
Science Department, Aarhus University.

28

