
THE MENTOR PROJECT MODEL: A
MODEL FOR EXPERIMENTAL

DEVELOPMENT OF CONTRACT
SOFTWARE

Kristine Stougaard Thomsen
Computer Science Department
Aarhus University, Denmark,

on leave from
Mentor Informatik A/S

Fredens Torv 6, DK-8000 Aarhus C

July 1992

Abstract

The Mentor project model supports experimental development of
contract software. The application area is interactive information sys-
tems, i.e. systems closely integrated with user work practice.

The Mentor project model is a spiral model with iteration of activ-
ities such as (re-)design, estimation and negotiation, development and
evaluation of prototypes. End-users are actively involved in design and
evaluation. Repeated estimation and negotiation activities based on
a calculation model for estimating system extent ensure that growth
in extent is made visible and is subject to explicit decisions balancing
use quality of the system with cost and schedule. The project model
defines how to share the cost of experimentation between customer
and supplier.

The project model is in current use and has been successfully used
in several large projects during the last 6 years. This paper contains
a synthesis of the practical experiences gained through these projects

1



and relates the project model to ongoing discussions of system devel-
opment methodologies. The model contributes to the discussions by
focusing on contract software and by giving elaborate suggestions for
how to prototype large information systems with many users.

1 Introduction

In this paper, an interactive information system is considered to have the
following characteristics. It is structured around a database that models a
part of reality relevant for some administrative purpose of an organization.
The system typically has several users who update and query the database
as an integrated part of their daily work routines.

The term supplier is used to denote the system development organization
that is responsible for designing and programming the system in cooperation
with users. By customer, is meant the organization that orders the system
and negotiates resources like time and price with the supplier. That is, it
is assumed that there is a formal contact between supplier and customer
concerning the development process and the product to be delivered. By
users, is meant end-users, that are to use the system as a tool in their daily
work. In many in-house system development projects, the same distinction
between supplier, customer and users can be made, at least informally. In
fact, there is a trend, at least in Denmark, towards formalizing these roles
also in in-house system development.

Traditional waterfall models for system development, e.g. (Royce, 1970),
consist of a document-driven, linear sequence of phases. Such models have
proven insufficient for development of interactive information systems (Boehm,
1988). Project models that allow requirements to be gradually unveiled in
an interaction of development and evaluation, are better suited. However,
prototyping methodologies have shown to give other problems, including dif-
ficult project management and control, (Boehm e. al., 1984) and (Alavi,
1984). This results in difficulties using prototyping to large systems with
many users, and in particular to contract software.

During the last 6 years I have been working in a Danish consulting com-
pany, Mentor Informatics Ltd., where we try to meet this challenge in prac-
tice. We have developed the Mentor project model which is a spiral model
that combines experimental system development or evolutionary prototyping

2



with intensive use of user documentation and repeated negotiation. Nego-
tiation is based on a calculation model that makes growth of system extent
visible. The cost of experimentation is shared in a well-defined way between
customer and supplierand. Explicit decisions are made on how to balance
use quality, schedule and cost of the system. The model is therefore well
suited for contract software. Moreover, the model includes a division of the
system into subsystems and establishes autonomous working groups of users
and system developers for each subsystem. This makes the model well suited
for large systems with many users.

The Mentor project model has been successfully used in several large
projects. The two most important projects were the development of an ed-
ucational administration system (ESAS) and a financial system (ØSE) for
the Danish trade schools. There are 115 such schools with a total of ap-
proximately 2000 users. The schools differ in size and are in some degree
specialized for different trades. The customers in these projects were two
different departments in the ministery of education. The project effort of
the ESAS project was 220 person-months, and 60 users were actively in-
volved in the development. At present, ESAS includes 239 screens and 143
reports. The project effort of the ØSE project was 115 person-months, and
40 users were actively involved. ØSE includes 105 screens, 45 reports and
(approximately) 30 batchjobs. The platform and tools used in both projects
were mini-computers running UNIX, C and ORACLE. The ESAS and ØSE
projects will be used as examples throughout this paper.

This paper is a combination of can experience report and a contribution
to the ongoing debate on system development methodologies. The Mentor
project model is described in some detail in Section 2 to give an impression
of the practical implications of experimental development of large systems
with many users in a context of contract software. At the same time, the de-
scription is intended to be sufficiently abstract to be generally useful. Section
3 discusses experiences with use of the model. Section 4 contains a broad
discussion of various project models and their relative advantages and disad-
vantages as described in literature. The Mentor project model is related to
these ongoing discussions. Section 5 concludes the paper.

3



2 The Mentor Project Model

2.1 Division into Subsystems

The Mentor project model is based on a division of the system into sub-
systems. Each subsystem is treated as a separate sub-project, and explicit
interfaces are designed between subsystems.

The division into subsystems is performed at an early stage of the develop-
ment process. There is no well defined method for performing this division.
However, we have found it useful to base the division on criteria given by the
work practice of the users. That means defining a subsystem as a meaning-
ful unit seen from a user’s perspective, containing functionality related to a
logical set of tasks in the work situation.

As an example of subsystem division, the ESAS system for educational ad-
ministration was divided into 10 subsystems: Student administration, schema
and absence registration, examiniation planning, community home adminis-
tration, personnel administration, building and rooms administration, ma-
terial, equipment and furniture administration, activity planning, data ex-
change (with other schools) and system administration.

Such a division enables focused user involvement in system units that are
meaningful to the users. Moreover, it eases incremental implementation of
the system in the use organization, e.g. by implementing one subsystem at
a time.

Of course it is also important to minimize the dependencies between dif-
ferent subsystems, since explicit interfaces must be designed between subsys-
tems. These interfaces should be kept as simple as possible, but not at the
expense of a convenient division according to a user’s perspective.

2.2 Involved Actors

In the project model, we have several working groups: the managerial user
group, the specification groups and the design groups.

The managerial user group is a group of representative managers from
different kinds of use organizations. Representatives from the customer or-
ganization also participate. The managerial user group must accept each
specification and design of subsystems.

4



For each subsystem, a specification group is established. The specifica-
tion group consists of selected managerial users and end-users, together with
some system developers from the supplier organization. At least some of
the developers will continue to be involved in the further development and
programming of the subsystem.

For each subsystem, a design group is also established. The design group
consists of selected people from the specification group, supplemented with
more end-users, together with all the system developers that are involved in
the development of the subsystem.

2.3 System and Subsystem Life Cycle

Each subsystem has its own time schedule and life cycle. Coordination has to
take place between subsystems e.g. concerning design of interfaces between
subsystems and concerning requirements for a subsystem originating from
other subsystems.

Each subsystem has a general life cycle as illustrated in figure 1.

Figure 1: General subsystem lifecycle

Initially, the subsystem is specified, and time and price is negotiated based
on the specification. Then a number of iterations on the following activities
is carried through: (re-)design, renegotiation of time and price based on the
(re-)design, development of (the next) version of the subsystem and evalua-
tion of the subsystem through intensive user test.

The experimental process is controlled by limiting the number of iterations,
and gradually reducing the amount of experimentation involved to ensure

5



convergence of the process and eventual accomplishment. Moreover, the
extent of the system is closely monitored by means of re-estimation at well-
defined points of time followed by renegotiation of elements of the contract
between supplier and customer.

In the center of the spiral, the subsystem is implemented in the use orga-
nization and new spirals (not shown) of maintenance may be initiated.

The number of iterations in the spiral may vary from subsystem to sub-
system and depends on the degree of uncertainty about the requirements for
the subsystem. The more uncertainty, the more need for experimentation
and thus the more iterations. In the extreme case of no uncertainty, the sub-
system can be developed in one iteration, reducing the development model
to a specification based waterfall approach without experimentation. The
number of iterations is usually determined in advance, but may be changed
as a result of negotiation during the process.

Our practical experiences have been based on up to four iterations, but the
most common situation is three iterations, where the redesign in the third
iteration is limited to corrections of errors and minor inconveniences. The
unfolded spiral of our typical subsystem’s lifecycle is shown in figure 2.

Figure 2: Example of unfolded subsystem

6



In the following, each activity is briefly described to give an impression of
the practical implications of the model. All the estimation and negotiation
activities are treated separately in Section 2.4.

Specification

The specification group makes a specification of the subsystem. The specifi-
cation document is a draft user manual with sketches of screens and reports
and their intended functionality. Some introducing sections will usually also
be included, describing the relation between the different applications and
between the applications and the tasks of the use organization. The specifi-
cation remains open ended, containing questions and issues to be discussed
in further detail at later stages of the development process.

The specification has to be accepted by the managerial user group.

Design of Version 1

After specification and negotiation, the design group takes over. This group
produces a detailed design. Each screen and report is designed in detail,
and background jobs are described. In addition, the underlying data model
is designed. Finally, it is determined which system components should be
included in the first version of the subsystem. The first version of the sub-
system covers only the most necessary functions for a realistic evaluation,
and only one (or few) of each typical kind of function. This usually means
60-80 % of the designed functionality.

The design document is a revision of the specification document, still
shaped as a draft user manual, now supplemented with diagrams of the un-
derlying data model.

The design document has to be accepted by the managerial user group, if
there are substantial changes, compared to the intention of the specification.

Development of Version 1

Now, after a phase of re-negotiation, the system developers develop the first
version of the subsystem. They keep in contact with the users in the design
group during the development phase, at least by having a half-way-through
meeting, where the whole design group evaluates the applications developed

7



so far. Some minor corrections are made immediately, and the meeting usu-
ally causes many small adjustments.

The development activity usually takes 2-4 months depending on the size
of the subsystem.

Evaluation of Version 1

When the first version of the subsystem has been developed, it is installed in
a test environment, and evaluated by users. The users in the design group
are involved in the evaluation, together with new users, that have not been
involved so far.

The purpose of the evaluation is to see if the design matches the use sit-
uation, and to discover inconveniences and errors. A number of evaluation
reports are made by the users during the evaluation. The reports document
errors and suggestions for change and extension.

The evaluation typically lasts one or two weeks, depending on the size of
the subsystem. The customer and users are responsible for planning and
coordinating the evaluation activity.

Redesign

After the evaluation, the design group meets and redesign the subsystem,
based on the evaluation reports and on the experiences gained through the
evaluation. The first version is considered an experiment, and it may be quite
radically changed between the first and the second version of the subsystem.

General changes are incorporated not only in the system components
present in version 1, but also into the screens and reports that were not
included in the first version of the subsystem.

The redesign produces a new version of the design document. It may
include new screens and reports compared to the previous version, or some
screens or reports may have been removed or replaced by others.

Development of Version 2

After another phase of renegotiation, the system developers produce version 2
based on the redesign results. Version 2 also includes the system components
omitted from version 1.

8



Evaluation of Version 2

Version 2 of the subsystem is evaluated by users in the same way as version
1.

Completion

The completion phase is a rudimentary third iteration of redesign, renego-
tiation, implementation and evaluation. The design group meets or other-
wise agrees on what changes have to be made before the system is ready
for implementation in the use organization. This time, suggestions for new
functionality in the system will usually be postponed, unless they are crucial
for the success of the system. That is, the revision is this time expected to be
less radical, mainly being minor modifications of screens and reports and cor-
rection of errors. In this way the experimental character of the development
process is reduced during the process to ensure accomplishment.

The changes to the subsystem are made, and a one day meeting is arranged
for the design group to try out the system and check that all needed changes
have been implemented.

Implementation in Use Organizations

Now, after a period of test in realistic settings and education of all users, the
subsystem is ready to be introduced in the entire use organization. Either
alone, if incremental introduction is wanted, or together with other subsys-
tems.

2.4 Estimation and Negotiation Based on a Calcula-
tion Model

After each of the activities that may contribute with new or changed function-
ality of the subsystem, there is a short phase of estimation and negotiation.

The contract beween customer and supplier includes a calculation model
or price list for calculating system extent, which is an estimate of the project
effort of developing the system. The calculation model consists of a set of
different complexity categories for the different kinds of system components,

9



with an associated extent measured in hours of development effort. The
principle is shown in figure 3.

Figure 3: Calculation model

These rules are combined with a set of guidelines for what distinguishes a
simple, an average and a complex screen, etc.

The extent of a subsystem is obtained by considering each system compo-
nent described in the specification or (re-)design document. Each component
is categorized into one of the categories of the calculation model, and the ex-
tent of the system is calculated as the sum of the extents of all its components.
The principle of such a calculation is illustrated in figure 4.

Figure 4: Extent calculation for a subsystem

The system extent calculated after the initial specification is usually used
for the initial time and price negotiation between customer and supplier.

10



At later stages, the phases of estimation and negotiation serve to illustrate
the consequences of user requirements to the system extent. A new esti-
mate of system extent is calculated by reconsidering each system component
and determining its complexity category. Old system components may have
changed their complexity category, and new components may have been de-
signed. Note that changes to a system component that do not affect its
complexity category, leave the extent unchanged. That is, the extent mea-
sure includes room for experimentation within the given complexity category.
The new estimate of system extent is compared to the previous estimate, and
in case of difference between the two values, a negotiation between customer
and supplier takes place.

The result of the negotiation may be that parts of the system’s function-
ality is given low priority and postponed or cut down in order to keep price
and schedule unchanged. Alternatively, it may be decided to develop the
system as currently designed, and change the price to reflect the increased
extent, usually by multiplying the extent with a price pr. hour. In this case
the schedule may also need to be negotiated. Maybe the supplier can just
add more person-resources to the development process and keep schedule.
However, there will usually be a limit to the amount of ressources that can
be added to a project without delaying rather than speeding it up, (Brooks,
1975). Therefore, our agreements with the customer usually determine a
maximum extent that can be realized within a given schedule. When a sys-
tem’s extent exceeds this maximum, reduction of functionality is needed or
schedule must be changed.

As an example, figure 5 illustrates the increase of the extent measure of
six1 of the subsystems during the development of ESAS, the educational
administration system for the Danish trade schools. The different columns
show the extent measure in person-hours at different stages in the develop-
ment process. The rightmost column shows the growth of the subsystem as
a percentage of the extent estimated titer specification.

The price of the system was negotiated between customer and supplier to
reflect the growth, but the price was not a full “extent multiplied with price
pr. hour”. Because of the original fixed price contract, a compromise was
made between the original price and the calculated extent. Schedule was also

1The ESAS project started as a fixed price project, but was changed after the first
subsystems so that negotiation based on the extent measure took place after each phase
that influenced system extent. Therefore, figure 5 only covers the last 6 subsystems.

11



adjusted because meeting the requirements of the users had higher priority
than keeping schedule. Subsystem 1 (not shown in figure 5) was subject to
the maximum adjustment of 6 months.

Figure 5: Increase of extent measure

In the ØSE project of developing a financial system to the Danish trade
schools, price was calculated as the extent multiplied with a price pr. hour.
The price pr. hour was determined in the beginning of the project. The tight
schedule of the project, which was determined by a new law for financial
management of trade schools, caused the extent measure to be used more for
giving priorities and cutting down functionlity than for adjusting price and
schedule. Perhaps as a consequence of a broad knowledge and accept of the
schedule among the users, growth was actually much less than in the ESAS
project, only 10 − 15 %. The system was delivered on schedule.

2.5 Parallelism Between Subsystems

The project model encourages parallel or incremental development of differ-
ent subsystems. The specification groups for the subsystems should have a
significant overlap of participants, to ensure consistency, whereas the users
involved in the different design groups should be particularly interested and
skilled in the work routines affected by the specific subsystem. However,
overlap between design groups may be advantagous provided no users are
overburdened.

12



Usually, the development of one subsystem should be started before the
others and brought beyond the evaluation of the first version, before detailed
design of any other subsystem is started. This makes it possible to take
advantage of the experiences from the ftist version of the first subsystem
in the design of the following, and thus minimizes the risk of duplicating
inadequate design. This is particularly important, if the user interface is
subject to experimentation during the development process. Otherwise the
final system may suffer from having an incoherent user interface.

Coordination between subsystems is needed in order to design good in-
terfaces between subsystems. Part of the interfaces can be designed at an
early stage, whereas others will be needed as the development of the differ-
ent subsystems progresses. Requirements to a subsystem may also arise as a
consequence of the design of another subsystem.

The total system lifecycle can be illustrated by figure 6, which is actually
a part of the time schedule for the development of ØSE. Because of the tight
schedule, many activities took place in parallel, although it would have been
an advantage to gain experiences from evaluating the first subsystem before
starting specification of the other subsystems.

Figure 6: Incremental development of subsystems

13



2.6 Preconditions for Use of the Model

Two important preconditions for use of the model should be pointed out.
The first concerns the development tools and software system architecture,
the second concerns the contract between customer and supplier.

Appropriate Architecture and Tools are Needed

During an experimental system development process, both data model, func-
tionality and user interface may undergo substantial changes. In order to
make experimental system development possible in practice, these changes
must be cheap to realize all the way through the process. This calls for a
general software architecture that is independent of the actual data model,
functionality and interface so that it can be stable during the process of ex-
perimentation. The architecture must also be highly modular in order to
isolate each change to a single system component. Besides being a precondi-
tion for cheap changes, this is also a precondition for the development of a
calculation model like the one described in Section 2.4, which is based solely
on “visible” components like screens and reports, i.e. components that are
directly meaningful to customers and users.

We have developed such an architecture and a production environment
that we use together with the Mentor project model. The architecture is
a modular client-server architecture which makes a division of the system
into subsystems and an orthogonal division into layers. The layers span the
gap between the presentation of the system to the user, and the underly-
ing database system. Each layer encapsulates an important design decision
as recommended by Parnas (1972) and Parnas et. al. (1985 a), including
all dependencies on hardware and software platform. The architecture is
described in detail in (Thomsen, 1992) and compared to the architecture
obtained when using fourth generation languages, which are often used for
prototyping information systems.

The Contract Must be a Process Contract

In order to make use of the project model, the contract between customer and
supplier must be prepared for it. The contract should primarily be a contract
about the process by which a system is to be obtained. Secondarily, the
contract can contain requirements about minimum functionality and about

14



schedule. An important part of the contract is a calculation model that
enables estimation of system extent and explicit negotiation, when system
extent changes radically during the process.

The need for process contracts is also discussed by Grønbæk et. al. (1992).

3 Discussion of Experiences Using the Men-

tor Model

In this section our experiences of using the Mentor project model are dis-
cussed. Focus is on the major themes mentioned in the introduction: exper-
imental development of contract software, prototyping for many users and
prototyping of large systems. Each theme is discussed by means of a number
of assertions and associated reflections.

3.1 Experimental Development of Contract Software

Customers are increasingly willing to make process contracts

It is our experience that as information systems are getting more and more
integrated into the work practice in the work places, there is a growing un-
derstanding that product contracts and waterfall models for system devel-
opment are inadequate. However, our experience is based on relatively few
customers, and many will probably still hesitate to accept process contracts
whose deliverables are not well specified in advance. Therefore it is impor-
tant that a process contract contains a calculation model that defines how
to calculate system extent. It is important to note and convince customers
that design to cost is still possible, also in process contracts, since the extent
measure can be actively used to keep cost and schedule stable.

Mentor Informatics Ltd. are in the process of establishing a quality man-
agement system meeting the ISO 9001 standard. It is our conviction, that
process contracts and experimental development in the controlled form rep-
resented by the Mentor project model will be able to meet the requirements
of ISO 9001. Although the formulations in the standards (see for instance
ISO 9000-3) do not directly support experimental development, it is explic-
itly stated that the standard does not enforce use of a specific life cycle
model. The primary purpose of the standard is to ensure that all steps

15



are planed, plans are documented and deviations from plans are documented
and justified. According to our interpretation, the standard does not prevent
contracts from being dynamic, changing gradually from process to product
agreements as the development process proceeds. Neither does it prevent
that requirements are developed gradually through experiments. Hopefully,
we are right in our interpretation of the intentions of ISO 9001. Otherwise
the standard could severely restrict the possibilities for improving software
development in the future.

The Mentor model indentifies when system extent increases

The purpose of experimentation is to improve the use quality of the system.
In order to control resources, it is necessary to distinguish between use qual-
ity, system extent and cost. Improvement in use quality does not necessarily
affect system extent. However, experimentation often also leads to new re-
quirements that make system extent increase. Identifying when this happens
makes it possible to make explicit decisions on how to weight use quality,
schedule and cost against each other. The project model uses the calculation
model to make major changes in system extent visible and subject to explicit
discussion and negotiation.

Of course this does not eliminate all sources of disagreement between the
actors, but the negotiations can now be carried out in a much more direct
and transparent way.

Among the problems that still remain is the categorization of system com-
ponents. However, our experience shows, that it is possible, when there are
only a few different categories.

The Mentor model defines how to share the cost of experimentation

The calculation model eliminates many of the tug-of-wars that supplier and
customer usually have about whose fault it is that the system does not fulfil
its purpose, does not meet the specification or is not delivered on schedule.
When the price of the system is based on the extent measure obtained by the
calculation model, responsibility for the cost of experimentation is shared be-
tween supplier and customer in a well-defined way: Experimentation within
the original extent measure of the system is on the supplier, while experi-
mentation that results in specification of new components (screens, reports
etc.) or in components changing complexity category, is on the customer.

16



Our calculation model gives a realistic cost measure

Practical experience in using our software architecture and our calculation
model was needed in order to define aproppriate extent measures for the com-
plexity categories based on average experiences. Our extent measures for the
different complexity categories were defined early in the ESAS project. They
have been used unchanged in the ØSE project and seem to be stable.

In the project of developing ØSE, the financial system to the trade stools
in Denmark, the actual project effort was registered as 17.233 person-hours
when the system was first installed at all schools, whereas the extent measure
for that version of the system was calculated to 16.410 person-hours. We find
this relatively small deviation satisfactory and consider it a verification of the
usefulness of the calculation model.

3.2 Prototyping for Many Users

Specification groups and design groups work well

As mentioned in the introduction, 60 users were actively involved in the ESAS
project, and 40 in the ØSE project. This was of course only possible because
the customer and use organizations gave high priority to active involvement
of end-users. The schools were willing to pay for it by allowing the involved
users to spend a substantial amount of time participating. The customer
payed by giving economic compensation to the schools for letting the users
participate.

Another important precondition for the successful involvement of so many
users, was the division into subsystems, and the associated specification and
design groups. These working groups were each sufficiently small to be effi-
ciently working.

The specification and design groups were all relatively inhomogenous, re-
presenting both managers and users from the schools. Moreover, the trade
schools are specialized for different trades and have varying size, which make
their interests differ on many important questions. The specification and de-
sign groups are explicitly established to reflect these different interests. The
groups were relatively autonomous and were responsible for success of the
projects. As a result, they worked responsibly and democratically, although
of course not without conflicts and compromises. In some cases, where dis-

17



agreements were too severe to find a suitable compromise, the result has been
design and development of two different sets of functions in the system. For
instance, the ESAS subsystem for schema and absence registration includes
two different versions of functions for absence registration because of differ-
ent work practices. Some schools register absence on a weekly basis, whereas
others relate absence to individual lectures.

User motivation is high

It is our experience that the users are active and motivated in this kind
of development process. There are probably several reasons for this. The
close cooperation between system developers and users in the design groups
means that the users involved have a direct and immediate influence, which
stimulates interest and responsibility. At the same time it gives the users
realistic expectations about the coming system, which is of great importance
when implementing the system in the use organization. Other reports on
prototyping approaches have shown similar effect on user motivation. See
for instance (Grønbæk, 1989).

To some extent, we also attribute the high motivation to the division of
the system into subsystems. The design groups are established with users
who are allready interested in the domain associated with the subsystem.
The division of labour and the specialization of knowledge at the workplace
can be mirrored in the way different users are associated with design groups
for different subsystems.

Finally, specification and design documents are shaped as draft user man-
uals. This ensures continuity in the way the properties of the system are
communicated with the users, and makes it easier for them to relate what
they see in the different versions of the system to what they have actually
designed.

Few conflicts between users and developers

The expliciteness of discussion about use quality, extent and cost has some
positive side effects on the cooperation between users and system developers
in the design groups. It makes it clear to the users when to argue with the
system developers that some feature should be added or changed, and when
to argue with the customer organization that resources should be allocated
to make some important but costly extension.

18



This is also a relief for the system developer working in the design group.
It makes it possible to be more creative in the design process. A fixed price
based solely on an initial specification, according to our experiences often
results in a project stressed by sneaking growth, which moderates creativity
at least on the part of the supplier.

3.3 Prototyping of Large Systems

Subsystem division gives managable units

The division into subsystems gives a number of relatively autonomous projects
of more managable size. Interfaces between subsystems are explicitly de-
signed and encapsulated into dedicated modules in the architecture. Subsys-
tems can be developed in parallel or sequentially, depending on the depen-
dencies between them and depending on schedule requirements.

Robustness and maintainability can be obtained

Some of the problems of prototyping pointed out by comparative studies of
prototyping and waterfall models are robustness and maintainability. See
for instance (Boehm et. al., 1984) and (Alavi, 1984). As mentioned in
Section 2.6, we use a general modular architecture for information systems,
described in (Thomsen, 1992). This architecture is independent of the actual
data model, functionality and user interface of the system. The architecture
is therefore not subject to experimentation during the development process,
but is stable to the changes made to the data model, functionality and user
interface.

The modular architecture ensures that most small changes in the require-
ments for the system imply only small changes in the system. Typical changes
in requirements can be isolated to a single layer in a single subsystem. Usu-
ally even to a single module within the layer.

Later in the system’s lifecycle, the modular architecture supports main-
tenance and portability. More details on the advantages of the architecture
are given in (Thomsen 1992). Here it is also argued that the architecture
is superior to the architecture obtainied when using fourth generation lan-
guages, both with respect to long term maintainability and with respect to
the flexibility needed in order to support experimental system development.

19



4 Comparison With Other Project Models

In this section, the Mentor project model is related to other project models
and to literature with critique and suggestions for existing project models.

The Waterfall Model

“The waterfall model” covers a whole class of project models developed dur-
ing the 1970’es. Another term used for the same is “life cycle model”. One of
the most influential presentations of the model is given in (Royce, 1970). The
characteristics of the waterfall model is its linear sequence of phases. Each
phase takes a document produced by the previous phase as inpit, and pro-
duces another document as output. The sequence of documents range from
initial requirements specifications over design documents at various levels, to
documents and code representing the final system.

The waterfall model is well suited to handle the complexity inherent in
many systems, and promote the development of a coherent and robust tech-
nical design. Moreover, since the specification at an early stage gives a com-
plete description of the task at hand, the process of development can be
monitored with respect to its use of resources and its progress. However, the
model has its severe weaknesses.

Boehm (1988) characterizes the waterfall model as document-driven and
argues that it does not work well for interactive end-user applications: “Docu-
ment-driven standards have pushed many projects to write elaborate specifi-
cations of poorly understood user interfaces and decision support functions,
followed by the design and development of large quantities of unusable code.”
(Boehm, 1988, p. 63 ). Boehm claims that the requirement that each docu-
ment should be fully elaborated at some specific level of detail, obscures the
high risk areas of system development.

McCracken and Jackson (1982) describe some important reasons for the
insufficiency of the waterfall model. They claim that “system requirements
cannot ever be statedfilly in advance, not even in principle, because the user
doesn’t know them in advance”. Moreover they stress that “system develop-
ment methodology must take into account that the user, and his or her needs
and environment, change during the process.” McCracken & Jackson, 1982,
p. 31 ).

The waterfall model has often been used for development of contract soft-

20



ware. Since the specification is made early in the process, it is often incom-
plete or even erroneous. Nevertheless, the specification often forms the only
basis for estimating the whole project and establishing a contract between
customer and supplier with a fixed price and a fixed time schedule. The
consequence is, that during the development process, the customer and the
supplier will both make efforts to interpret the original specification accord-
ing to their interests. The supplier experiences being forced to deliver more
than paid for, using more internal resources than originally anticipated. This
results in internal management problems and in great efforts to limit losses.
Losses can be limited by being rigid in the negotiations with both users and
the customer and by taking technical short cuts. Clearly this means a system
of poor quality both technically and with respect to usability.

It can be concluded that the waterfall model is only well suited in situations
with low uncertainty about the problem to solve for the users. A theoretical
and philosophical discussion of this theme can be found in (Dahlbom &
Mathiassen, 1991, chapters 4 and 5). A more practical and pragmatic view
is given in (Andersen et al., 1990, chapter 2).

The Mentor project model includes the waterfall model as a special case,
when uncertainty is considered so low that only one iteration of the spi-
ral is needed in the development process. The Mentor model is partially
document-driven, and in this respect resembles the waterfall model. How-
ever, the Mentor model uses documents with open ended points and revises
the documents in an experimental way based on the use of prototypes.

Evolutionary Prototyping

Floyd (1987) advocates a paradigm change from a product-oriented to a
process-oriented perspective on software engineering. She uses the term
product-oriented to cover waterfall models and characterizes the process-
oriented view on software development as follows: “The process oriented view
relies on a cyclic model of (re-)design, (re-)implementation and (re-)evaluation,
each cycle leading to a version of the somare system which can be evaluated
in the context of work processes.” (Floyd, 1987, pp. 201-202). Emphasis is
on establishing a framework for mutual learning between users and system
developers. “The desired functionality of the system will gradually become
unveiled as a result of interleaved processes of development and use” (Floyd,
1987, p. 201.)

21



Floyd (1984) gives a systematic presentation of different prototyping ap-
proaches. One of them is called evolutionary prototyping and is similar to
the model described by McCracken & Jackson (1982). Evolutionary proto-
typing is characterized by vertical prototypes that evolve into a production
system. That is, prototypes with selected fuctions implemented in full detail
and based on the same platform and development tools as the target system.

Several comparative studies of the strengths and weaknesses of the water-
fall model and prototyping exist. In (Davis et. al., 1988) the models are
compared by means of a graphical representation that allows some interest-
ing properties to be compared, all of which are related to the ability and
ease of meeting user requirements. The comparison is intended as an aid in
choosing an appropriate project model. However, it seems that the compar-
ison is biased, since none of the benefits of the waterfall model are visible in
the comparison, and none of the problems of prototyping.

(Boehm et. al. 84) contains a small empirical study, and Alavi (1984)
presents the results of an analysis of 12 prototyping projects. Their studies
show that benefits of prototyping compared to use of the waterfall model
include higher level of user satisfaction and lower cost of systems. On the
other hand, the studies also show some problems of prototyping: Project
management and project control become more difficult, and the final system
may be less robust and less maintainable due to insufficient overall technical
design. The result could therefore easily be unforeseen expenses and a system
with poor maintainability.

Boehm (1988) characterizes evolutionary prototyping as code-driven. He
claims that “It is generally difficult to distinguish it from the old code-and-fix
model, whose spaghetti code and lack of planning were the initial motivation
for the watevall model.” (Boehm, 1988, p. 63).

Moreover, it could be argued that a potential disadvantage of relying heav-
ily on the work practice of users is that it may result in conservative systems
that support status quo rather than being innovative. However, the risk as-
sociated with not being anchored in the existing work practice, when working
for changes, is much larger. Without such anchoring, changes in work or-
ganization and changes in use of technology will fail to work in practice.
This view is common in the Scandinavian tradition of system development.
Further discussion can be found in (Greenbaum & Kyng, 1991, chapter 1).

In addition to the critique presented so far, I claim that the area of con-
tract software seems to be a neglected area in the discussions of prototyping

22



methodologies. The difficulties revealed by the comparative studies suggest
that matching prototyping to contract software is a non-trivial task.

The Mentor model resembles evolutionary prototyping in allowing require-
ments to be vague and incomplete initially. Requirements become gradually
clarified through the development and evaluation of a number of vertical pro-
totypes, evolving into a production system. On the other hand, the Mentor
model supplements prototyping by requiring specification and design docu-
ments to be elaborated. Although not complete and final, these documents
help planning and managing the process. In particular, the calculation model,
which allows calculation of an estimated system extent based on a specifica-
tion or design document, supports management of resources and makes the
model suited for contract sofmare development.

Mixed Methodologies

Several suggestions for combining the waterfall model and prototyping exist.

Rapid throw-away prototyping in requirements specification as
described by for instance Mason & Carey (1983) substitutes traditional re-
quirements specification in the waterfall model by prototyping. However,
since prototyping is restricted to the initial phase of the development project,
the problem of change in requirements during the development process re-
mains unsolved.

The contingency approach described by Burns & Dennis (1985) sug-
gests that choice between a waterfall model and prototyping should be based
on a judgement of two orthogonal properties of the system in question: com-
plexity and uncertainty. Uncertainty is determined by three contingencies:
the degree of structuredness, user task comprehension and developer task
proficiency. Complexity is determined by four contingencies: project size,
number of users, volume of new information and complexity of new informa-
tion production. In case of low uncertainty and low complexity, prototyping
is recommended. High complexity and low uncertainty should lead to choos-
ing a waterfall model, while high uncertainty and low complexity should lead
to choosing prototyping. Finally, if both complexity and uncertainty are
high, a mixed methodology is recommended. No details of such a mixed
methodology are given however, but the authors refer to rapid throw-away
prototyping as an example of a mixed methodology. Moreover, they briefly
sketch a mixed methodology which they fall “Phased design”. This method-

23



ology seems to have similarities with the Mentor model, but lacks details and
seems to restrict subsystems to be developed in strict sequence. The authors
state that prototyping for one user is not difficult; prototyping for many is.
However, in their recommendation to use a mixed methodology in case of
high uncertainty and high complexity, they do not elaborate further on how
to prototype for many users.

The Spiral Model described by Boehm (1988) is a risk-driven iterative
model. Depending on repeated risk analysis, iterations of the spiral are
initiated to eliminate the main risk factors. A typical cycle of the spiral starts
with identification of objectives, alternatives and constraints. In the next
step risks are evaluated. The next step depends on the relative remaining
risks and could for instance be prototyping or use of a waterfall model on
some part of the system or the total system. Final step in the cycle is a
review of all products produces by the cycle, including plans for the next
cycle. Boehm includes in his paper a prioritized top-ten list of software risk
items and suggestions for associated risk management techniques.

The Mentor project model resembles the Spiral model in its iterative and
converging approach. The Mentor model is less general than the Spiral
model, since it focuses on interactive information systems. This area is dom-
inated by a few of the risk items identified by Boehm: Unrealistic schedules
and budgets, development of wrong functionality or user interface, and con-
tinual stream of requirement changes. Management of these risks are built
into the Mentor model, which can be characterized as a combination of a
document-driven and a prototype-driven spiral model. Within its narrower
application area, the Mentor model is much more elaborate than the Spiral
model. It describes in detail how to use prototypes to eliminate risk, not only
when to use them. Moreover, as pointed out by Boehm himself, the Spiral
model does not match contract software in its present form. The Mentor
model is particularly developed to match contract software.

Mathiassen & Stage (1990) criticizes both the contingency approach and
the spiral model for focusing too much on when to use specifications or proto-
types and giving too little advice on how to improve the use of specifications
and prototypes in design of software. They suggest to focus on mode of opera-
tion (rational or experimental) separated from means of expression (specifica-
tions or prototypes). Traditionally, specifications have been associated with
a rational mode of operation, whereas prototypes have been associated with
an experimental. Mathiassen and Stage suggest that rational approaches

24



based on prototypes and experimental approaches based on specifications
should be considered equally relevant. The Mentor model can be considered
an attempt in this direction: Specifications are shaped as draft user manuals
that are revised after experimentation with prototypes. Similarly, the model
describes how to use prototyping in a rational way that allows planning and
management. Use of specifications in an experimental way, faking a rational
process, has also been suggested by Parnas & Clements (1985 b).

In summary, the Mentor model belongs to the category of mixed method-
ologies. We find that specifications and prototypes supplement each other as
means of communicating between system developers and users. We also find
that the combination offers an appropriate compromise between the need for
experimentation and the need for planning and management.

5 Concluding Remarks

The Mentor project model for experimental development of contract software
within the area of interactive information systems has been introduced. The
project model describes a spiral of iterations of design, negotiation based
on estimation, development of prototypes and evaluation of prototypes. It
is a model for experimental development of large systems with many users.
The users are actively involved in design and evaluation of prototypes. The
model represents a mixed methodology, combining use of specifications and
prototypes, and it has proven useful in practice.

In order to make use of the project model, the contract between customer
and supplier must be prepared for it. The contract should primarily be a
contract about the process by which a system is to be obtained. An im-
portant part of the contract is a calculation model that enables estimation
of system extent and explicit negotiation, when system extent changes dur-
ing the process. This calculation model should be based on experience with
appropriate tools and software architecture.

Acknowledgements

I am grateful to all my collegues at Mentor who share with me the experiences
that inspired this paper. Thanks are also due to Susanne Bødker, Joan

25



Greenbaum, Kaj Grønbæk, Morten Kyng, Lars Mathiassen, Peter A. Nielsen,
and Randall Trigg who commented on earlier drafts.

This work was supported by The Danish Natural Science Research Council,
grant no. 11-8385.

Bibliography

Alavi, M., (1984): “An Assessment of the Prototyping Approach to Informa-
tion Systems Development”, Computing Practices, Communications
of the ACM, 27(6):556-563.

Andersen, N. E. et. al., (1990): “Professional Systems Development”,
Prentice Hall, Cambridge.

Boehm, B., (1988): “A Spiral Model of Software Development and Enhan-
cement”, COMPUTER, 21(5):61-72.

Boehm, B. W., T. E. Gray & T. Seewaldt , (1984): “Prototyping versus Speci-
fying: a Multiproject Experiment”, IEEE Transactions on Software Engine-
ering, SE-10(3):290-303.

Brooks, F. P., (1975): “The Mythical Man Month - Essay on Software Engine-
ering”, Reading, MA: Addison-Wesley.

Burns, R. N. & A. R. Dennis, (1985): “Selecting the Appropriate Application
Development Methodology”, Data Base, Fall 1985, pp. 19-23.

Dahlbom, B. & L. Mathiassen, (1991): “Struggling with quality - The Philoso-
phy of Developing Computer Systems”, Department of Computer Science,
Chalmers University of Technology and the University of Gøteborg, August
1991 (Draft to be revised and published in the fall of 1992).

Davis, A. M., E. H. Bersoff & E. R. Comer, (1988): “A Strategy for Compating
Alternative Software Development Life Cycle Models”, IEEE Transactions on
Software Engineering, 14(10): 1453-1461.

26



Floyd, C., (1984): “A Systematic look at Prototypes”, in: R. Budde et. al. (eds.):
“Approaches to Prototyping”, Proceedings of the Working Conference on Pro-
totyping, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, pp. 1-18.

Floyd, C., (1987): “Outline of a Paradigm Change in Software Engineering”, in:
G. Bjerknes et. al. (eds): “Computers and Democracy”, Avebury, pp. 191-210.

Greenbaum, J. & M. Kyng (eds.), (1991): “Design at Work”, Lawrence Erlbaum.

Grønbæk, K., J. Grudin, S. Bødker & L. Bannon, (1992): “Improving Condition
is for Cooperative System Design - shifting from a product to a process focus”,
in A. Namioka & D. Schuler (eds): “Participatory Design”, Erlbaum Associates,
Hillsdale N.Y.

Grønbæk , K, (1989): “Rapid Prototyping with Fourth Generation Systems: An
Empirical Study”, OFFICE: Technology and People, 5(2): 105-125.

ISO 9000-3: Quality management and quality assurance standards - Part 3:
Guidelines for the application of ISO 9001 to the development, supply and
maintenance of software, ISO, Schweiz, 1991.

Mason, R. E. A. & T. T. Carey, (1983): “Prototyping Interactive Information
Systems”, Communications of the ACM, 26(5):347-354.

Mathiassen, L. & L. Stage, (1990): “Complexity and Uncertainty in Software
Design”, in: Proceedings of the COMPEURO 90 Conference held in Tel
Aviv, Israel, May 7-9, 1990.

McCracken, D. D. & M. A. Jackson, (1982): “Life Cycle Concept Considered
Harmful”, ACM SIGSOFT, Software Engineering Notes, 7(2):29-32.

Parnas, D. L., (1972): “On the Criteria To Be Used in Decomposing Systems into
Modules”, Communications of the ACM, 15(12): 1053-1058.

Parnas, D. L., P. C. Clements & D. M. Weiss, (1985 a): “The Modular Structure
of Complex Systems”, IEEE Transactions on Software Engineering, SE-11(3):
259-266.

27



Parnas, D. L. & P. C. Clements, (1985 b): “A Rational Design Process: How and
Why to Fake It”, in H. Ehrig et. al. (eds.): “Formal Methods and Software
Development”, Lecture Notes in Computer Science, No. 186, Springer-Verlag,
Berlin, pp. 80-100.

Royce, W.W., (1970): “Managing the Development of Large Software Systems:
Concepts and Techniques”, Proc. WESCON August 1970, pp. 1-9, or Proc.
ICSE 9, Computer Society Press, 1987, pp. 328-338.

Thomsen, K. S., (1992): “A General Software Architecture for Information Sys-
tems”, DAIMI PB 402, Computer Science Department, Aarhus University.

28


