
Coloured Petri Nets Extended with
Place Capacities, Test Arcs

and Inhibitor Arcs

Søren Christensen
Niels Damgaard Hansen

Computer Science Department, Aarhus University
Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, Denmark
Phone: +45 86 12 71 88

Telefax: +45 86 13 57 25
Telex: 64767 aausci dk

E-mail: schristensen@daimi.aau.dk, ndh@daimi.aau.dk

Abstract

In this paper we show how to extend Coloured Petri Nets (CP-nets), with three new
modelling primitives—place capacities, test arcs and inhibitor arcs. The new modelling
primitives are introduced to improve the possibilities of creating models that are on the
one hand compact and comprehensive and on the other hand easy to develop, under-
stand and analyse. A number of different place capacity and inhibitor concepts have
been suggested earlier, e.g., integer and multi-set capacities and zero-testing and
threshold inhibitors. These concepts can all be described as special cases of the more
general place capacity and inhibitor concepts defined in this paper.
We give an informal description of the new concepts and show how the concepts can
be formally defined and integrated in the Petri net framework—keeping the basic prop-
erties of CP-nets. In contrast to a number of the previously suggested extensions to
CP-nets the new modelling primitives preserve the concurrency properties of CP-nets.
We show how CP-nets with place capacities, test arcs and inhibitor arcs can be trans-
formed into behaviourally equivalent CP-nets without these primitives. From this we
conclude that the basic properties of CP-nets are preserved and that the theory devel-
oped for CP-nets can be applied to the extended CP-nets. This means that, e.g., the
generalisations of analysis methods of CP-nets to cover the new modelling primitives
are straightforward.

The reader is assumed to be familiar with the notion of CP-nets.

The work presented in this paper has been supported by a grant from the Danish Research Programme for

Informatics (grant number 5.26.18.19).

Introduction
The development of high-level Petri Nets, CP-nets [Jen91], [Jen92] and Predi-
cate/Transition nets [Gen86], during the late 70’s and the 80’s has been a substantial step
in the direction of breaking the limitations of Petri Nets for modelling large and com-
plex systems. We have, nevertheless, during our CP-net modelling, recognised that
there exist a number of problems that are hard to capture by means of the existing
modelling primitives. This often results in unnecessarily complex models or models
which do not satisfactorily describe the modelled systems.

This is the motivation for the introduction of three new modelling primitives: place
capacities, test arcs and inhibitor arcs. The primitives are general in the sense that they
are equally useful for modelling in a number of different application areas—not just
tailored for use in one specific area. Place capacities, test arcs and inhibitor arcs facili-
tate the creation of compact, comprehensive but still easily understandable models. It
should be noted that the inclusion of these new modelling primitives does not, in theory,
increase the computational power of CP-nets. All CP-nets including place capacities, test
arcs and inhibitor arcs can be transformed into CP-nets without these primitives, but the
nets will often be more difficult to read. We show how CP-nets with place capacities,
test arcs and inhibitor arcs can be transformed into behaviourally equivalent CP-nets
without these primitives. It is hereby ensured that the theory developed for CP-nets can
be applied to the extended CP-nets. This is especially valuable when the analysis meth-
ods of CP-nets are generalised to cover extended CP-nets.

The discussion of place capacities and inhibitor arcs is based on work presented in
[Bil88]. We show how the work presented in [Bil88] can be generalised and improved to
overcome a number of the problems noted there.

Our paper is organised as follows. First place capacities, test arcs and inhibitor arcs
are described one at a time. Each modelling primitive is presented informally before it
is formally defined. It is possible to read the informal descriptions without reading the
formal definitions, but it is not recommended to read the formal definitions without
reading the informal introductions.

In this paper we have left out the technical details of some of the proofs. The
detailed proofs can be found in [CD92].

1. Informal Introduction to Place Capacities
In this section we propose to extend CP-nets with a general place capacity construct.
The approach is based on ideas originating from Kurt Jensen and briefly mentioned in
[Bil88]. First we informally describe the generalised place capacity concept. Then we
discuss how it relates to a number of previously proposed concepts. The formal defini-
tion of the generalised place capacity concept can be found in section 2.

Previously proposed place capacity concepts are different generalisations of the place
capacity construct of P/T-nets to cover high level nets, see, e.g., [GLT79], [Res85] or
[Dev89]. As they have all proved to be useful from a practical point of view for differ-
ent modelling purposes, we want to define a place capacity concept for CP-nets general
enough to cover all of them.

The basic idea behind our approach is described in the following. A small example
illustrating our place capacity concept is given below the description. We propose to ex-
press place capacity as a combination of:

• A capacity colour set associated with each capacity place.

• A capacity projection, which is a linear function mapping markings of the ca-
pacity place into multi-sets over the capacity colour set. We use the term projection
to indicate that this function is often used to disregard some of the information as-
sociated with the marking of the capacity place. The result of mapping a multi-set,
ms, over the colour set into a multi-set over the capacity colour set by means of the
capacity projection is called the volume of ms. Throughout this paper we use the
term volume of an arc expression to denote the volume of the multi-set of tokens
determined by the arc expression.

• A capacity multi-set restricting the acceptable markings of the capacity place.
The capacity multi-set is a multi-set over the capacity colour set. A marking of a
capacity place is legal if the volume of the marking does not exceed the capacity
multi-set.

In Fig. 1.1 we show a capacity stating that a place p, holding pairs, can be marked with
at most two tokens with identical first components. The colour set of p is the product of
two colour sets, U and V. The place capacity of p is specified as the triple: (U, Proj1,
2*U), where U is the capacity colour set, Proj1 is the capacity projection mapping pairs
onto their first component and 2*U is the capacity multi-set consisting of 2 elements of
each colour in U.

p
U* V

(U, Proj1, 2*U)

Fig 1.1: Place capacity expressing an upper limit on identical first components

In the following we show how three earlier proposed capacity concepts: integer capac-
ity, multi-set capacity and multi-set capacity with unbounded colours [Bil88], can be ex-
pressed in terms of our general capacity concept.

Integer capacity, sometimes also called total capacity, can be represented as a single
integer specifying the upper limit of the number of tokens on the place regardless of to-
ken colours. In our general framework we handle this as follows: the capacity colour
set is a singleton set, e.g., E = {e}. The capacity projection is the function, Ig, ignoring
the colour of the tokens. This means that Ig maps any colour into e, e.g., Ig(3`a + 2`c) =
5`e, where a and c are colours of the colour set U of the capacity place. Finally the ca-
pacity multi-set is k`e where k is the integer determining the upper limit of the number
of tokens.

From a modelling point of view, the new place capacity concept may seem to create
an unnecessary overhead: you now have to specify both the capacity colour set and the
capacity projection in addition to the original integer capacity. To reduce this overhead
we suggest to use a shorthand notation for some of the most commonly used capacity
restrictions. In the following figures the general notation is illustrated in the left-hand
side whereas a shorthand notation is shown in the right-hand side.

Fig 1.2 illustrates how the integer capacity of a place p can be expressed in terms of
the general place capacity concept.

p
U

(10)

p
U

(E, Ig , 10`e)

Figure 1.2: Integer capacity (left: general notation, right: shorthand notation)

Multi-set capacity expresses place capacity in terms of a multi-set over the colour set of
the place. This multi-set denotes the upper limit of tokens of specific colours. Multi-set
capacity can, in the same way as integer capacities, easily be expressed by means of the
generalised place capacity concept. The capacity colour set of a place is identical to the
colour set of the place. The capacity projection is the identity function, and the capacity

multi-set is identical to the original multi-set capacity. This is illustrated in Fig 1.3 to-
gether with a shorthand notation of it.

p
U

(2`a+7`b+1`c)

p
U

(U, Id, 2`a+7`b+1`c)

Figure 1.3: Multi-set capacity (left: general notation, right: shorthand notation)

Multi-set capacities with unbounded colours are identical to multi-set capacities except
that the multi-set is allowed to contain infinite elements [Bil88]. In terms of our general
capacity concept multi-set capacities with unbounded colours can be expressed as fol-
lows. The capacity colour set of a place is identical to the colour set of the place. The
capacity projection is the identity function except that unbounded colours are discarded,
i.e., mapped into the empty multi-set. In this paper we denote by Id* the identity func-
tion omitting the colours having a zero coefficient in the associated multi-set parameter
(in [] brackets), e.g., Id*[2`a+7`b](4`b + 3`c) = 4`b. Finally, the capacity multi-set is
the multi-set, where unbounded colours are discarded. Please note that the functions Id
and Id* are identical when the parameter multi-set of Id* contains all members of the
colour set. Fig. 1.4 shows a multi-set capacity with unbounded colours.

p

(U, Id*[2`a+7`b], 2`a+7`b)

U
p

U

[2`a+7`b]

Figure 1.4: Multi-set capacity with unbounded colours (left: general notation, right: shorthand notation)

Above we have only considered simple place capacity restrictions. The general concept
of place capacity also allows us to specify more elaborated capacities, e.g., only allow-
ing lists of a certain length or pairs where the first component differs from the second.

In order to formally define the behaviour of CP-nets with place capacities, we extend
the enabling rule of CP-nets to handle place capacities, but we do not change the occur-
rence rule. Adding a capacity restriction to a place constrains the enabling of the input
transitions of the place. Informally, a step is enabled in CP-nets with place capacities if
the following conditions are satisfied:

(i) The step is enabled in the traditional CP-net sense—that is, there are enough to-
kens of the right colours on the input places.

(ii) The marking of capacity places does not violate the specified capacity restrictions
when the tokens produced in the step are added.

Intuitively, the second condition seems too restrictive, because you would have expected
to be allowed to subtract the tokens consumed in the step before testing the capacity re-
striction. This would, however, violate the so-called diamond rule of Petri nets stating
that steps can be split into an arbitrary sequence of substeps. The diamond rule is illus-
trated in Fig. 1.5: transitions A and B are concurrently enabled in marking M with
bindings bA and bB. If A occurs with binding bA, we arrive at marking Ma where B is
enabled with binding bB, and vice versa. If A and B occur concurrently with bindings
bA and bB respectively, we arrive immediately at marking Mab.

M

Mab

MbMa

B

A

A

B

A B

Figure 1.5. The diamond rule of Petri nets

The small net in Fig. 1.6 illustrates why it is necessary to use the enabling rule outlined
above. Let us assume that the place p has integer capacity 1 and it is initially marked
with one token. Transition A adds a token to p and B consumes a token from p.

A p
E

1`e

B
e e

Figure 1.6: Net illustrating the enabling rule

If we use the obvious enabling rule, where we subtract the tokens consumed in the step
when we calculate the enabling, this would mean that A and B are concurrently enabled,
B can occur before A, but A cannot occur before B, thus violating the diamond rule as
illustrated in Fig. 1.7.

M

Mab

Mb

B

A B

A

Figure 1.7: Diamond rule diagram when using obvious enabling rule

If we instead use the enabling rule (ii), outlined above, the diamond rule is preserved
since our enabling rule prevents A and B from being concurrently enabled without each
of them being enabled alone. We then obtain the diagram shown in Fig. 1.8.

M

Mab

Mb

B

A

Figure 1.8: Diamond rule diagram when using our restricted enabling rule

As mentioned in the introduction, it is valuable to know that a CP-net with the new
modelling primitives can be transformed into a behaviourally equivalent CP-net without
the primitives. The idea behind the transformation of capacities is to add a complemen-
tary place for each capacity place and then omit the capacity restriction without hereby
changing the behaviour of the model. The complementary place p' of a capacity place p
can be viewed as modelling the "free space" available on the capacity place. Fig. 1.9 il-
lustrates the transformation.

p
CS

InitMs(CapCS, CapProj, CapMs)

A

A p
CS

InitMs

p'
CapCSCapMs – CapProj(InitMs)

B

B

expr1

expr1

CapProj (expr1)

expr2

expr2

CapProj (expr2)

Figure 1.9: Transformation into behavioural equivalent CP-net without place capacities

The colour set of p' is equal to the capacity colour set of p. The initial marking of p' is
the multi-set capacity of p subtracted the volume of the initial marking of p. For each
arc, a, connected to p we have an arc a' connecting the transition of a to p'. If a is an in-
put arc of p, a' is an output arc of p' and vice versa. The arc expression of a' is the vol-
ume of the arc expression of a, i.e., if a multi-set m is added to p by means of the arc a,
the volume of m is removed from p', and vice versa.

The behaviour is not changed by the transformation because the arcs to the comple-
mentary place specify the same restrictions to the ordinary enabling rule as the enabling
condition (ii) above. In Fig. 1.10 we have shown the CP-net obtained by transforming
the net of Fig. 1.6.

A p
E

1`e

B

p'
E

1`e 1`e

1`e 1`e

Figure 1.10: Behaviourally equivalent CP-net of the net shown in Fig. 1.6

The formal definition of CP-nets with capacities and the transformation of CP-nets with
place capacity into behaviourally equivalent CP-nets can be found in section 2.

2. Formal Definition of CP-nets with Place Capacities
In this section we formalise how the place capacity concepts introduced in the previous
section can be added to CP-nets. The notation used in this chapter is consistent with the
one used in [Jen91] and [Jen92]. First we recall the definition and notation for
multi-sets.

A multi-set m, over a non-empty set S, is a function m ∈[S → N]. The non-negative in-
teger m(s) ∈N is the number of appearances of the element s in the multi-set m. We
usually represent the multi-set m by a formal sum:

\i\su(s ∈S,, m(s)`s)
By SMS we denote the set of all multi-sets over S. The non-negative integers
{m(s)  s ∈S} are called the coefficients of the multi-set m, and the number of appear-
ances of s, m(s), is called the coefficient of s. An element s ∈S is said to belong to the
multi-set m iff m(s) ≠ 0 and we then write s ∈m.

2.1 The Definition of CP-nets with Place Capacities

We recall the definition of non-hierarchical CP-nets:

Definition 2.1 ([Jen92], Def. 2.5)
A non-hierarchical CP-net is a tuple CPN = (Σ, P, T, A, N, C, G, E, I) satisfying the
requirements below:
(i) Σ is a finite set of non-empty types, called colour sets.
(ii) P is a finite set of places.
(iii) T is a finite set of transitions.
(iv) A is a finite set of arcs such that:

• P ∩ T = P ∩ A = T ∩ A = Ø.
(v) N is a node function. It is defined from A into P × T ∪ T × P.
(vi) C is a colour function. It is defined from P into Σ. Continues

(vii) G is a guard function. It is defined from T into expressions such that:
• ∀t ∈T: [Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ].

(viii) E is an arc expression function. It is defined from A into expressions such that:
• ∀a ∈A: [Type(E(a)) = C(p(a))MS ∧ Type(Var(E(a))) ⊆ Σ]
where p(a) is the place of N(a).

(ix) I is an initialization function. It is defined from P into closed expressions such
that:
• ∀p ∈P: [Type(I(p)) = C(p)MS].

A detailed explanation of the requirements of this definition can be found in [Jen91] and
[Jen92]. For an arc, a, we use s(a), d(a), p(a) and t(a) to denote the source, destination,
place and transition respectively. A(x) denotes the set of all arcs connected to the node
x. Moreover, we use Var(expr) to denote the variables appearing in an expression expr
and we use Type(v) and Type(expr) to denote the type of a variable v and an expression
expr, respectively. For more information about the use of types, expressions and vari-
ables in CP-nets see [Jen91] or [Jen92].

We now formally define CP-nets with place capacities. Some explanation is given
below the formal definition. It is recommended to read this explanation in parallel with
the definition.

Definition 2.2
A CP-net with place capacities is a tuple CPNC = (CPN, CS) satisfying the require-
ments below:
(i) CPN is a non-hierarchical CP-net: (Σ, P, T, A, N, C, G, E, I).
(ii) CS is a capacity specification: (CN, CC, CP, CM).
(iii) CN ⊆ P is a set of capacity nodes.
(iv) CC is a capacity colour function. It is defined from CN into Σ.
(v) CP is a capacity projection function. It is defined from CN into linear func-

tions such that:
• ∀p∈CN: CP(p) ∈[C(p)MS → CC(p)MS]L.

(vi) CM is a capacity multi-set function. It is defined from CN into closed expres-
sions such that:
• ∀p ∈CP: [Type(CM(p)) = CC(p)MS ∧ CP(p)(I(p)) ≤ CM(p)].

(i) CPN is a CP-net, cf. Def. 2.1.
(ii) A capacity specification is defined as a four tuple satisfying (iii) - (vi).
(iii) CN denotes the subset of places with capacity restriction. If a place p belongs to

CN we say that p is a capacity place. In Fig. 1.1 we have a single capacity place p.
(iv) For each capacity place we specify a capacity colour set. The capacity colour set

of p in Fig. 1.1 is U.
(v) The capacity projection maps multi-sets over the colour set of the place to

multi-sets over the capacity colour set. We demand that CP is linear. We say that a
multi-set ms over the colour set of a capacity place p has volume CP(p)(ms).
Analogously for an arc a we say that the volume of the arc expression of a is the
volume of the multi-set determined by the arc expression, i.e., CP(p(a))(E(a)).
The projection function of p in Fig. 1.1 is Proj1. If the marking of p is 1`(a,x) +
1`(a,y) + 2`(b,x) the volume of p is 2`a + 2`b.

(vi) The capacity multi-set of a place is a multi-set over the capacity colour set of the
place. We demand that the volume of the initial marking of p is less than or equal
to the capacity multi-set of p. In Fig. 1.1 we have a capacity multi-set: 2*U.

2.2 Behaviour of CP-nets with Place Capacities

Having defined the static structure of CP-nets with place capacities we are now ready to
consider their behaviour. Adding a capacity restriction to a given place constrains the
enabling of the input transitions of the place, but does not change the effect of an occur-
rence.

Our definitions of bindings, B(t), token elements, TE, binding elements, BE, mark-
ings, M, and steps, Y, are identical to the definitions given in [Jen92], which except for
technical details are identical to those of [Jen91]. However, the enabling rule of CP-nets
must be extended to take place capacities into account.

Definition 2.3
A step Y ∈Y is enabled in a marking M ∈M iff the following properties are satisfied:

(i) ∀p ∈P:\i\su((t,b) ∈Y,, E(p,t)) ≤ M(p).

(ii) ∀p∈CN: CP(p)(M(p) +\i\su((t,b) ∈Y,, E(t,p))) ≤ CM(p).
If Y fulfils (ii) it is said to be capacity enabled.

(i) This is the enabling rule of CP-nets, See [Jen91] Def. 2.6 or [Jen92] Def. 2.8.
(ii) The capacity enabling rule ensures that all reachable markings fulfil the restriction

imposed by the place capacities, i.e., the volume of the marking of each capacity
place must be less than or equal to the capacity multi-set.
This rule is comparable to the usual enabling rule ensuring that the marking of a
place exceeds the multi-set of tokens consumed by an enabled step without taking
advantage of the tokens added in the step. In the capacity enabling we also include
the volume of the tokens added, but we do not subtract the volume of the tokens
removed as discussed earlier.

2.3 Behaviourally Equivalent CP-net

All CP-nets with place capacities can be transformed into behaviourally equivalent
CP-nets. The transformation is informally described in section 1.

Definition 2.4
Let a CP-net with place capacities CPNC = (CPN, CS) be given with CPN = (Σ, P, T,
A, N, C, G, E, I) and CS = (CN, CC, CP, CM). Then we define the equivalent
CP-net to be CPN* = (Σ*, P*, T*, A*, N*, C*, G*, E*, I*) where:
(i) Σ* = Σ.
(ii) P* = P ∪ P' where P' = {p' | p ∈CN}.
(iii) T* = T.
(iv) A* = A ∪ A' where A' = {a' | a ∈A(CN)}.
(v) Ν*(a) = \s\do2(\b\lc\{(\a\al\co2\hs10(N(a),iff a ∈A,(p',t),iff a=b' ∈A' ∧ N(b) =
(t,p),(t,p'),iff a=b' ∈A' ∧ N(b) = (p,t).)))
(vi) C*(p) = {C(p),iff p ∈P,CC(q),iff p=q' ∈P'.
(vii) G* = G.
(viii) E*(a) = {E(a),iff a ∈A,CP(p(b))(E(b)),iff a=b' ∈A'. Continues

(ix) I*(p) = {I(p),iff p ∈P,CM(q) − CP(q)(I(q)),iff p=q' ∈P'.

(i) The set of colour sets is unchanged.

(ii) We extend the set of places to include a complementary place of each capacity pla-
ce. We use single prime to indicate a complementary place, i.e., the complemen-
tary place of p is denoted p'. We assume P' to be disjoint from other net elements.

(iii) The set of transitions is unchanged.
(iv) The set of arcs is extended to include arcs connected to the complementary places.

For each arc a connected to a capacity place we have an arc, a', connected to the
complementary place. We assume A' to be disjoint from all other net elements.

(v) The node function is changed to match (iv). A complementary arc a' connects a
complementary place with the transition t(a). If a is an input arc of p, a' will be an
output arc of p' and vice versa.

(vi) The colour function is extended to handle the complementary places.
(vii) The guard function is unchanged.
(viii) The arc expressions are changed to match (iv). The arc expression of an arc con-

nected to a complementary place is the volume of the arc expression of the arc
connected to the original place.

(ix) The initialisation expressions are extended to handle the complementary places.
The initial marking of a complementary place is the multi-set difference between
the capacity multi-set and the volume of the initial marking of the original place.

Before we show that the transformation specified in Def. 2.4 preserves the behaviour of
the CP-nets, we show a lemma that allows us to restrict the set of markings without ne-
glecting any reachable marking.

Lemma 2.5
Let CPN be a CP-net with complementary places corresponding to the capacity specifi-
cation CS = (CN, CC, CP, CM).
Then we have the following property:

∀p∈CN ∀ M ∈[M0›: M(p') = CM(p) – CP(p)(M(p)).

Proof: The proof can be derived from the previous definitions in the following way:
the property is true in the initial marking due to the transformation in Def. 2.4 (ix). If
a binding changes the marking of a capacity place the arcs to the complementary place
ensure that the marking of the complementary place is updated accordingly: from Def.
2.4(iv) we know that an arc a, connected to a capacity place will have a corresponding
arc a'. From Def. 2.4(v) we know that if an input arc of p then a' is an output arc of p'
and vice versa. Finally Def. 2.4(viii) specifies that the arc expression of a' is the volume
of the arc expression of a. ♦
We are now ready to show that the transformation specified in Def. 2.4 preserves the
behaviour of the CP-nets. We show that there is a correspondence between markings
and steps of the original CP-net with place capacities and markings and steps of the
transformed CP-net.

M denotes the set of all markings and Y denotes the set of all bindings, see ([Jen92],
Def. 2.13). We use M | Q to denote function restriction of M to the subset of places
specified by Q. All concepts with a star refer to CPN*, while those without refer to
CPNC. We denote the subset of all markings M* fulfilling the capacity restriction of
lemma 2.5 by M+.

Theorem 2.6
Let CPNC be a CP-net with place capacities and let CPN* be the equivalent CP-net.
Then we have the following properties:
(i) M = (M* | P) ∧ M 0 = (M0* | P).
(ii) Y = Y*.
(iii) ∀ M1,M2 ∈M+, ∀ Y ∈Y: (M1 | P) [Y›CPNC (M2 | P) ⇔ M1 [Y›CPN *M2.

Proof: A detailed proof can be found in [CD92].

3. Informal Introduction to Test Arcs
When modelling with CP-nets you often have to model a situation similar to a tradi-
tional database system where multiple users share some common data. A straightfor-
ward CP-net description of this situation is shown in Fig. 3.1, where the actual database
is modelled as a token on the place Data Base.

Data BaseRead Update

Read Req

Answer

Upd Req

Done

v

v

oldvalue

newvalue

question

answer

information

done

Figure 3.1: Small database example

Users are often allowed to read the data simultaneously, but only one at a time is al-
lowed to update the data—often called multiple-read/single-write. Hereby data integrity
is ensured.

Unfortunately, the model of Fig. 3.1 suffers from the lack of concurrency between
simultaneous occurrences of the Read transition. Due to the enabling rule of CP-nets, an
occurrence step can only contain one instance of either the Read transition or the
Update transition, because each occurrence of the transitions monopolises the token,
hereby preventing simultaneous access. In the case of the Update transition, this is
exactly what we want to model, but the Read transitions are not able to access the data
simultaneously. We are not able to model the wanted concurrency—at least not in the
straightforward way shown above. If we have an upper limit for the number of
simultaneous reads we could, of course, create sufficient tokens for all of these and then
let each Read access only a single token, while Update changes all tokens. This solution
unfortunately increases the complexity of the net inscriptions and the model contains a
limit to the number of simultaneous reads.

As illustrated above, this lack of appropriate modelling primitives has often resulted in
descriptions with either reduced concurrency or increased complexity of the net struc-
ture and/or the net inscriptions. We therefore propose to extend CP-nets with a new
kind of arcs called test arcs. In contrast to ordinary arcs, several test arcs are allowed to
access the same tokens in the same occurrence step, but not in the same step as ordinary
arcs access the tokens. Test arcs cannot change the marking of a place.

Besides being a convenient modelling primitive, test arcs also simplify the transfor-
mation of CP-nets with inhibitor arcs into CP-nets, as we shall see in sections 5 and 6.

We have chosen to draw test arcs as connectors with a cross bar at both ends of the
connector instead of arrowheads, because they are easy to draw and they can easily be
distinguished from both source and destination of ordinary arcs. The small database ex-
ample of Fig. 3.1 is then changed into the model shown in Fig. 3.2. The model in Fig
3.2 now expresses the wanted functionality and concurrency. Several instances of the
Read transition may occur in the same occurrence step, but not concurrent with the Up-

date transition since, due to the ordinary arc, it still needs to get exclusive access to the
token.

Data BaseRead Update

Read Req

Answer

Upd Req

Done

oldvalue

newvalue

question

answer

information

done

v

Figure 3.2: Small database example using test arcs

In the following section we formally define how CP-nets can be extended with test arcs.
We also describe how a model with test arcs can be formally transformed into a be-
haviourally equivalent CP-net without test arcs. The idea behind the transformation is
illustrated in Fig. 3.3. For each token in the original net we generate an infinite set of
tokens in the equivalent CP-net by using the cross product with an infinite colour set Z.
A test arc is then transformed into two ordinary arcs with opposite directions, which
produce and consume only one single token, while ordinary arcs consume all tokens
corresponding to the original token, i.e., an infinite set of tokens. In Fig. 3.3 the × op-
erator is used to denote the multi-set cross product and z denotes a variable of type Z.

p
CS

Test Consume

p
CS * Z

Test Consume

1`w1`v

1`w x Z

1`v x 1`z

1`v x 1`z

Figure 3.3: Transformation of test arcs

This means, that if the place p of the original net with test arcs is marked with, e.g., 2`a,
the corresponding place in the transformed net is marked with 2`(a,z1) + 2`(a,z2) +
2`(a,z3) + . . . , where z1, z2, z3, . . . are the colours of the infinite colour set Z. The
Test transition of the transformed net consumes and produces only one token, e.g.,
1`(a,z7), whereas Consume removes 1`(a,z1) + 1`(a,z2) + 1`(a,z3) + Having
infinitely many different tokens in the marking of a place is not a theoretical problem,
it corresponds to a PTnet with infinitely many places each having a finite marking.

4. Formal Definition of CP-nets with Test Arcs
In this section we show how test arcs are formally defined. In Def. 4.1 we give the
structural definition of test arcs. In Def. 4.2 we define the additions to the enabling rule
of CP-nets. Finally, in Def. 4.3, Lemma 4.4 and Theorem 4.5 we define the transfor-
mation of CP-nets with test arcs into behaviourally equivalent CP-nets.

4.1 The Definition of CP-nets with Test Arcs

Definition 4.1
A CP-net with test arcs is a tuple CPNT = (CPN, TS) satisfying the requirements be-
low:
(i) CPN is a non-hierarchical CP-net: (Σ, P, T, A, N, C, G, E, I).
(ii) TS is a test arc specification: (AT, NT, ET).
(iii) AT is a set of test arcs, such that: AT ∩ (P ∪ T ∪ A) = Ø. Continues

(iv) NT is a test node function. It is defined from AT into P×T.
(v) ET is the test expression function. It is defined from AT into expressions such

that:
• ∀a ∈AT: [Type(ET(a)) = C(p(a))MS ∧ Type(Var(ET(a))) ⊆ Σ]
where p(a) is the place of NT(a).

(i) CPN is a CP-net, see Def. 2.1.
(ii) TS is a triple, defined as follows:
(iii) AT is the set of test arcs. All test arcs are disjoint from other net elements.
(iv) The test node function maps each test arc into a pair, where the first element is a

place and the second a transition. Even though we use P×T it is important to re-
member that test arcs have no direction.

(v) The type of the test expression of a test arc, a, must match the colour set of the
place of a. All variables of a test expression must be of known colour sets. This is
exactly the same demand as for ordinary arc expressions, Def. 2.1 (viii).

We extend the p and t functions so that they also handle test arcs. This can be done by
means of the NT function.

4.2 Behaviour of CP-nets with Test Arcs

Test arcs only influence the enabling of bindings, i.e., not the actual tokens moved when
an enabled binding occurs. This means that we only need to specify the new enabling
rule, and keep the occurrence rule of CP-nets unchanged.

Definition 4.2
A step Y ∈Y is enabled in a marking M ∈M iff the following properties are satisfied:

(i) ∀p ∈P: \i\su((t,b) ∈Y,, E(p,t)) ≤ M(p).

(ii) ∀a∈AT: ∀(t(a),b)∈Y: ET(a) ≤ M(p(a)) −\i\su((t',b') ∈Y,, E(p(a),t')<b'>).
If Y fulfils (ii) it is said to be test arc enabled.

(i) This is the enabling rule of CP-nets, See [Jen91] Def. 2.6 or [Jen92] Def. 2.8.
(ii) For each test arc we demand that the required multi-set of tokens can be accessed,

after the tokens used in the step have been consumed but before the tokens pro-
duced in the step have been added.

4.3 Behaviourally Equivalent CP-net

All CP-nets with test arcs can be transformed into behaviourally equivalent CP-nets.
The idea behind the transformation was illustrated in section 3.

Definition 4.3
Let a CP-net with test arcs CPNT = (CPN, TS) be given with CPN = (Σ, P, T, A, N, C,
G, E, I) and TS = (AT, NT, ET). Then we define the equivalent CP-net to be
CPN* = (Σ*, P*, T*, A*, N*, C*, G*, E*, I*) where:
(i) Σ* = Σ ∪ {U×Ζ | U∈Σ} ∪ {Z}, where Z∉Σ is an infinite colour set.
(ii) P* = P.
(iii) T* = T.
(iv) A* = A ∪ (AT×Dir), where Dir = {In,Out}. Continues

(v) Ν*(a) = \s\do2(\b\lc\{(\a\al\co2\hs10(N(a),iff a ∈A,(p(a'),t(a')),iff
a= (a',In) ∈AT×Dir,(t(a'),p(a')),iff a= (a',Out) ∈AT×Dir.)))

(vi) C*(p) = C(p)×Ζ.
(vii) G* = G.
(viii) E*(a) = {E(a) ∗ Ζ , iff a ∈A,ET(a') ∗ 1`vz,iff a=(a',d) ∈(AT×Dir)

where vz is a variable of type Z. vz must be unique for each test arc a.
(ix) I*(p) = I(p)×Z.

(i) The set of colour sets is extended to include the colour sets determined by the
cross product of each original colour set and a new infinite colour set called Z. Z
itself is also included in the set of colour sets.

(ii) The set of places is unchanged.
(iii) The set of transitions is unchanged.
(iv) The set of arcs is extended by arcs corresponding to the test arcs. Each test arc is

substituted by a pair of ordinary arcs.
(v) The node function is extended to handle the arcs corresponding to the test arcs.

For each test arc, a', we have an arc (a,In) having p(a) as the source and t(a) as the
destination, and an arc (a,Out) having t(a) as the source and p(a) as the destination.

(vi) The colour set of each place is the cross product of the old colour set and the new
infinite colour set Z.

(vii) The guard function is unchanged.
(viii) The arc expressions are changed to match (vi). For the ordinary arcs we specify

that the expressions must take a token for each colour in Z, i.e., an infinite set of
tokens. The expressions corresponding to the test arcs will take only a single to-
ken. The tokens consumed by an arc (a,In) will have the same value as the tokens
produced by (a,Out).

(ix) The initialization expression is changed to fit (vi).

Before we show that the transformation specified in Def. 4.3 preserves the behaviour of
the CP-nets, we show a lemma that allows us to restrict the set of markings without ne-
glecting any reachable marking. We show that for any reachable marking of a place we
have a full set of Z tokens for each colour c, where (c,z) is a member of the marking.

Lemma 4.4
Let CPN = (Σ, P, T, A, N, C, G, E, I) be a CP-net corresponding to the translation of
a test arc specification.
Then we have the following property:

∀p∈P ∀ M ∈[M0› ∀ (c,z) ∈M(p): M(p)(c,z)∗(1`c × Ζ) ≤ M(p).

Proof: From Def. 4.3(vi) we know that the colour set of a place p has the structure
CS×Ζ. The lemma holds for M0 due to the transformation specified in Def. 4.3(ix).
From Def. 4.3(viii) we have that each arc corresponding to an ordinary arc moves a
full set of Z tokens, while the arcs corresponding to a test arc do not change the mark-
ing. This means that all reachable markings will fulfil lemma 4.4. ♦
We are now ready to show that the transformation specified in Def. 4.3 preserves the
behaviour. M denotes the set of all markings and Y denotes the set of all bindings, see
([Jen92], Def. 2.13). We use M×Ζ to denote the marking, which for each place p, has

the tokens: M(p)×Ζ. We use Y\VZ to denote the restriction of a binding element Y=(t,b)
where variables of colour set Z are discarded, i.e., Y\VZ = (t,b\VZ). All concepts with a

* refer to CPN*, while those without refer to CPNT. M+ denotes the subset of all
markings, M*, fulfilling the restriction of lemma 4.4.

Theorem 4.5
Let CPNT be a CP-net with test arcs and let CPN* be the equivalent CP-net. Then we
have the following properties:
(i) M+ = {M×Ζ | M∈M} ∧ M 0* = M0×Ζ.
(ii) Y = {Y*\VZ | Y*∈Y*}.
(iii) ∀ M1,M2 ∈M, ∀ Y* ∈Y*:

M1×Ζ [Y*›CPN *M2×Ζ ⇒ M1 [Y*\VZ›CPNT M2.
∀ M1,M2 ∈M, ∀ Y ∈Y:

M1 [Y›CPNT M2 ⇒ ∃ Y* ∈Y*: Y = Y*\VZ ∧ M 1×Ζ [Y*›CPN *M2×Ζ.

Proof: A detailed proof can be found in [CD92].

5. Informal Introduction to Inhibitor Arcs
The convenience of inhibitor arcs providing the ability to test for the absence of tokens
has been known in the Petri net area for a long time. As in the case of place capacities, a
number of different inhibitor concepts have been proposed, reflecting the fact that they
are useful for different modelling purposes—see, e.g., [Bil88] or [CDF91]. Neverthe-
less, the concepts seem to be generalisations of the P/T inhibitor concepts to cover high-
level Petri nets, e.g., zero-testing inhibitor arcs and threshold inhibitor arcs. A transi-
tion t connected to a place p by a zero-testing inhibitor arc can only occur if the mark-
ing of p is empty. If t and p are connected by a threshold inhibitor arc t can only occur
if the marking of p is less than or equal to a specified multi-set called the threshold.

In this paper we improve and generalise the inhibitor arcs defined in [Bil88] in sev-
eral ways. This section informally describes by means of small examples both the rea-
sons why we find it necessary to change the concepts and the actual changes we propose.
The generalised inhibitor arcs are formally defined in section 6.

Please note that we throughout this paper have chosen to draw inhibitor arcs as con-
nectors with a circle at both ends because this notation ensures that inhibitor arcs are
easily distinguished from both source and destination of ordinary arcs. Furthermore,
this notation indicates that inhibitor arcs define an undirected relationship between
places and transitions.

In [Bil88] the enabling rule defined to cover inhibitor arcs states that a multi-set of
bindings is enabled if there are enough tokens on the input places, there is enough vol-
ume left in the capacity places and the inhibitor thresholds are not exceeded. Unfortu-
nately this enabling rule does not preserve the diamond rule.

Mab

A Bp
U

(2`a+7`b) Empty

M

Mab

MbMa
a

BA

B

A B
Zero test

Figure 5.1: CP-net with inhibitor arcs violating the diamond rule

Let us assume that the inhibitor arc of Fig 5.1 is a zero-testing inhibitor arc, and the
place p is unmarked. Then A and B are concurrently enabled according to the above en-

abling rule. If B occurs before A, A is no longer enabled, and the diamond rule is not
fulfilled—an edge of the diamond is missing as illustrated in the diamond rule diagram
of Fig. 5.1. To ensure that the diamond rule is preserved, we strengthen the enabling
rule concerning inhibitors arcs. We demand that the threshold restrictions are valid for
the current marking plus the tokens produced in the step. Hereby the diamond rule is
satisfied since the concurrency causing the problem is transformed into a conflict—see
Fig. 5.2.

M

Mab

MbMa

BA

B

Figure 5.2: Diamond rule diagram for changed enabling rule

One may, of course, argue that this enabling rule is too restrictive from a modelling
point of view, because models are hereby left out. It is, however, our belief that the di-
amond rule is such an essential and integral part of the Petri net framework and neces-
sary in order to be able to understand the behaviour of CP-nets, that one must not devi-
ate from it.

The next change we propose concerns the generality of the inhibitor concept. From our
point of view there is no reason why the class of inhibitor arcs should be limited to
zero-testing inhibitors and threshold inhibitors. We therefore propose to generalise the
inhibitor concept along the line of the generalisation of the place capacity concept. We
introduce a new generalised concept covering both zero-testing and threshold inhibitors.
In order to be able to transform a CP-net with inhibitor arcs to a behaviourally equiva-
lent CP-net in a straightforward way, we demand—like [Bil88]—that the place of an
inhibitor arc must be a capacity place. The reason for this demand will be clear later
when we discuss the transformation.

We suggest to define the inhibitor condition as an ordinary arc expression, except it
must evaluate to a multi-set over the capacity colour set of the place the inhibitor arc is
connected to. The inhibitor arc expression then expresses the threshold that must not be
exceeded by the volume of the marking of the place.

In Fig. 5.3 we show how zero-testing and threshold inhibitor arcs are easily ex-
pressed by means of the new inhibitor concept. The place p of Fig. 5.3 is a capacity
place with multi-set capacity 2`a + 7`b + 1`c. Since the capacity projection is equal to
the identity function the volume of the marking of p is equal to the marking of p. The
threshold inhibitor is then expressed by defining the inhibitor arc expression equal to
the threshold multi-set, i.e., 1`a + 2`b. This means that the Threshold transition is only
enabled if the marking of p is less than or equal to 1`a + 2`b.

The zero-testing inhibitor is obtained by associating the empty multi-set, with the
inhibitor arc. This means that the transition Zero-test is only enabled if the marking of
p is the empty multi-set.

Zero-testp

(2`a+7`b+1`c)

UEmpty

Threshold Empty1`a+2`b

Figure 5.3: Zero-testing and threshold inhibitors expressed by means of inhibitor arc expressions

In [Bil88] it is pointed out several times that it is important to be able to transform pro-
posed extensions of CP-nets into behaviourally equivalent CP-nets without the exten-
sions. This is an obvious way of ensuring that the basic properties of CP-nets are pre-

served. Unfortunately, the transformation of inhibitor arcs proposed in [Bil88] does not
preserve the entire behaviour. Only the single step behaviour—also called interleaving
behaviour is preserved. This means that the behaviours of the two models are only
equivalent as long as we consider steps without concurrency. The author is well aware
of this problem, and it is suggested to be subject for further work.

There are two reasons for the difference in the behaviour of the two models in
[Bil88]: the problem with the enabling rule illustrated above and the selected transfor-
mation. In [Bil88] the basic idea is to transform an inhibitor arc a, connected to a place
p, into two ordinary arcs with opposite directions connected to the complementary place
p'. The arc expressions of the arcs connected to p' are the capacity of p minus the arc
expression of a. The transformation of the zero-testing inhibitor of Fig 5.1 is illustrated
in Fig. 5.4.

A Bp
U

Empty

p'
2`a+7`b U

M

Mab

MbMa
a

BA

B
2`a+7`b

2`a+7`b

a

Figure 5.4: Transformation of zero-testing inhibitor arc and associated diamond rule

It is obvious from Fig. 5.1 and 5.4 that this transformation may limit the amount of
concurrency. If p is unmarked the transitions A and B are concurrently enabled in the
model of Fig. 5.1, but not in the transformed model in Fig 5.4. Since A and B concur-
rently access the same tokens a conflict arises between the transitions—a conflict that
did not exist in the original model because of the enabling rule chosen in [Bil88]. If two
transitions are connected to the same place by means of inhibitor arcs, the transformati-
on may also cause the two transitions to be in conflict, because they—when transformed
to ordinary arcs—try to access the same tokens in the same step. Fig. 5.1 and 5.4 also
illustrate that the difference in behaviour results in different diamond rule diagrams.

Our solution to this problem is straightforward. We propose to use our strengthened
enabling rule and to use test arcs in the transformation instead of two ordinary arcs
with opposite directions. Hereby we avoid the problems described above. We propose to
transform an inhibitor arc between a transition A and a place p into a test arc between
A and the complementary place p' hereby ensuring that the concurrency of the model is
preserved. Note that the arc expression of an inhibitor arc evaluates to a multi-set over
the capacity colour set. The transformation of inhibitor arcs is illustrated in Fig. 5.5.

p
CS

(CapCS, CapProj, CapMs) InitMs

A

A p
CS

InitMs

p'
CapCS

CapMs - CapProj(InitMs)

expr

CapMs - expr

Figure 5.5: Transformation of an inhibitor arc to test arc connected to the complementary place

Fig 5.5 also illustrates why we demand that the place of an inhibitor arc must be a ca-
pacity place—otherwise it would be impossible to compute the initial marking of the
complementary place and the test arc inscription.

Please note that our transformation—due to the use of test arcs—preserves the con-
currency between two transitions connected to the same place by inhibitor arcs. This is
illustrated in Fig. 5.6 showing the transformation of Fig. 5.3.

Zero-testp
U

Empty

Threshold

p'

2`a+7`b+1`c

U

2`a+7`b+1`c1`a+5`b+1`c

Figure 5.6: Transformation of Fig. 5.3

6. Formal Definition of CP-nets with Inhibitor Arcs
In contrast to the sections on place capacities and test arcs this section does not show
how CP-nets with inhibitor arcs can be transformed directly into CP-nets. Instead we
show how the same behaviour can be expressed using complementary places and test
arcs as illustrated above.

6.1 Definition of CP-nets with Inhibitor Arcs
Since we demand that inhibitor arcs are connected to capacity places, inhibitor arcs are
introduced into a framework where place capacity already is defined.

Definition 6.1
A CP-net with inhibitor arcs is a tuple CPNCI = (CPN, CS, IS) satisfying the require-
ments below:
(i) CPN is a non-hierarchical CP-net: (Σ, P, T, A, N, C, G, E, I).
(ii) CS is a capacity specification: (CN, CC, CP, CM).
(iii) IS is an inhibitor arc specification: (AI, NI, EI).
(iv) AI is a set of inhibitor arcs, such that: AI ∩ (P ∪ T ∪ A) = Ø.
(v) NI is the inhibitor node function. It is defined from AI into CN×Τ.
(vi) EI is the inhibitor expression function. It is defined from AI into expressions

such that:
• ∀a ∈AI : [Type(EI(a)) = CC(p(a))MS ∧ Type(Var(EI (a))) ⊆ Σ]
where p(a) is the capacity place of NI(a).

(i) CPN is a CP-net, see Def. 2.1.
(ii) CS is a capacity specification, see Def. 2.2.
(iii) IS is an inhibitor arc specification, defined as a triple with the following elements:
(iv) AI is the set of inhibitor arcs. Inhibitor arcs are disjoint from other net elements.
(v) The inhibitor node function maps each inhibitor arc into a pair, where the first el-

ement is a capacity place and the second a transition. Even though we use CN×T it
is important to remember that inhibitor arcs have no direction.

(vi) The type of the expression of an inhibitor arc, a, must match the capacity colour
set of the place of a. All variables of an inhibitor arc expression must be of known
colour sets.

We extend the p and t functions so that they also handle inhibitor arcs. This can be done
by means of the NI function.

6.2 Behaviour of CP-nets with Inhibitor Arcs

The behaviour of CP-nets with inhibitor arcs is described as follows:

Definition 6.2
A step Y ∈Y is enabled in a marking M ∈M iff the following properties are satisfied:

(i) ∀p ∈P: \i\su((t,b) ∈Y,, E(p,t)) ≤ M(p).

(ii) ∀p∈CN: CP(p)(M(p) +\i\su((t,b) ∈Y,, E(t,p))) ≤ CM(p).

(iii) ∀a∈AI: ∀(t(a),b)∈Y: EI(a)

≥ CP(p(a)) (M(p(a)) +\i\su((t',b') ∈Y,, E(t',p(a))<b'>)).
If Y fulfils (iii) it is said to be inhibitor arc enabled.

(i) This is the enabling rule of CP-nets, See [Jen91] Def. 2.6 or [Jen92] Def. 2.8.
(ii) The capacity enabling rule is defined in Def. 2.3.
(iii) For each inhibitor arc we demand that the threshold expression evaluates to a

multi-set which is larger than the volume of the marking together with the volume
of the added tokens.

6.3 Behaviourally Equivalent CP-net

In sections 2.3 and 4.3 we have shown how to transform CP-nets with place capacities
and CP-nets with test arcs into behaviourally equivalent CP-nets. We could specify a
similar transformation for CP-nets with inhibitor arcs, but instead we take the easy way
out. We show how to transform inhibitor arcs into test arcs connected to complemen-
tary places. This means that we must do the following: by means of Def. 2.3, we trans-
form a CP-net with place capacities and inhibitor arcs into a CP-net with complemen-
tary places and inhibitor arcs. Then we use Def. 6.3, see below, to transform the in-
hibitor arcs into test arcs connected to the complementary places. Finally, we use Def.
4.3 to transform a CP-net with test arcs into an ordinary CP-net.

Definition 6.3
Let a CP-net with inhibitor arcs and complementary places CPNI = (CPN, IS) be the
result of the transformation of a CP-net having the capacity specification CS = (CN,
CC, CP, CM). We use the following notation: CPN = (Σ, P∪P', T, A∪A', N, C, G, E,
I) and IS = (AI, NI, EI). We define the equivalent CP-net with test arcs to be
CPNT* = (CPN*, TS) where TS = (AT, NT, ET) where:
(i) CPN* = CPN.
(ii) AT = A I.
(iii) ΝT(a) = (p',t) where ΝI(a) = (p,t).
(iv) ET(a) = CM(p(a)) − E I(a).

(i) The basic net definition is unchanged.
(ii) Each inhibitor arc is substituted by a test arc.
(iii) The test node function maps a test arc into the pair consisting of the complemen-

tary place and the transition of the inhibitor arc.
(iv) The expression of the test arc is the multi-set difference between the capacity

multi-set and the inhibitor expression of the original arc.

Theorem 6.4
Let CPNI be a CP-net with inhibitor arcs and complementary places and let CPNT* be
the equivalent CP-net with test arcs. Then we have the following properties:
(i) M = M* ∧ M 0 = M 0*
(ii) Y = Y*.
(iii) ∀ M1,M2 ∈M, ∀ Y ∈Y: M1 [Y›CPNI M2 ⇔ M1 [Y›CPN T*M2.

Proof: A detailed proof can be found in [CD92].
In the previous sections we have given an informal introduction to the notion of place
capacity, test arcs and inhibitor arcs. We have also shown how these concepts can be
formally defined in such a way that the extended CP-nets can be transformed into be-
haviourally equivalent CP-nets without extensions. For reasons of simplicity we have
introduced the primitives one at a time. When modelling you would probably often
want to use all three primitives. In the following section we have therefore shown how
the three concepts can be combined into a single net formalism called CP-nets with
place capacities, test arcs and inhibitor arcs.

7. CP-nets with place capacities, test arcs and inhibitor arcs
The three extensions described in the previous sections can easily be combined into a
single model making it possible to model systems using place capacities, test arcs as well
as inhibitor arcs.

Using the transformation defined in Def. 2.4, 4.3 and 6.3 we have shown, that a
CP-net with place capacities, test arcs or inhibitor arcs can be transformed into a be-
haviourally equivalent CP-net. Since we from section 6.3 know that the transformation
of inhibitor arcs uses both complementary places and test arcs, the straightforward or-
der of transformation of a CP-net with both place capacities, test arcs and inhibitor arcs
is: first place capacities are transformed into complementary places using Def. 4.2.
Then we use Def. 6.3 to transform the inhibitor arcs into test arcs connected to the
complementary places. Finally we use Def. 4.3 to transform the test arcs either remain-
ing from the original net or resulting from the transformation of the inhibitor arcs into
a CP-net.

8. Conclusion
In this paper we have extended CP-nets to include three new modelling primitives: place
capacities, test arcs and inhibitor arcs, hereby improving the possibilities to create com-
pact and understandable descriptions reflecting the modelled system in a
straightforward way.

Our place capacity concept may be viewed as a generalisation of the previously pro-
posed place capacity concepts: integer capacity, multi-set capacity and multi-set capacity
with unbounded colours. In addition to these a number of other useful capacity restric-
tions can be formulated by means of our generalised concept.

Test arcs are—in contrast to ordinary arcs—able to access the same tokens simulta-
neously, but test arcs are not allowed to change the marking. Often the modelled system
allows concurrent access to common data provided that the data is not changed. Without
test arcs or similar modelling primitives this situation is difficult to model and therefore
often results in models with either reduced concurrency or increased complexity in net
structure and/or net inscriptions.

The definition of inhibitor arcs is also a generalisation of previously proposed in-
hibitor arc primitives. We associate an inhibitor arc expression with each inhibitor arc.
The inhibitor arc expression is written like an ordinary arc expression. The result of

the evaluation of the inhibitor arc expression is denoted the threshold value and the
associated transition is disabled if the threshold value is exceeded. A number of useful
inhibitor conditions including zero-testing inhibitors and threshold inhibitors are easily
expressed by means of our generalised inhibitor concept. To preserve the diamond
rule—stating that steps can be split up into substeps—we need to strengthen the enabling
rule known from previously proposed inhibitor concepts. We demand that the thresh-
olds are not exceeded for the current marking and with the tokens produced in the step.

We have given an informal description of the new concepts, a formal definition and
shown how they fit nicely into the Petri net framework. Both the static and dynamic
properties of CP-nets with place capacities, test arcs and inhibitor arcs are formally de-
fined. In order to ensure that the extensions do not violate the basic properties of
CP-nets we have shown how CP-nets with place capacities, test arcs and inhibitor arcs
can be transformed into behaviourally equivalent CP-nets. The possibility to transform
a CP-net with the three new primitives to a behaviourally equivalent CP-net allows us to
relate properties of the extended CP-nets to properties of the CP-nets. This is, e.g., use-
ful when the analysis methods of CP-nets are generalised to cover extended CP-nets.

It should be noted, that place capacities, test arcs and inhibitor arcs from a theoreti-
cal point of view do not increase the computational power of CP-nets. It is, however,
widely accepted that place capacities and inhibitor arcs are valuable modelling primi-
tives. We furthermore believe that the inclusion of test arcs results in models reflecting
the concurrency of the modelled system to a larger extent.

Acknowledgement
We would like to thank Kurt Jensen for valuable discussions and Peter Huber, Kjeld
Høyer Mortensen, Mogens Nielsen and Laura Petrucci for many helpful comments on
earlier versions of this paper.

References
[Bil88] J. Billington: Extending Coloured Petri Nets. University of Cambridge, Computer

Laboratory, Technical Report No. 148, October 1988. (Ph.D. Thesis).
[CD92] S. Christensen, N. Damgaard Hansen: Coloured Petri nets extended with place ca-

pacities, test arcs and inhibitor arcs. Daimi PB–398, ISSN 0105–8517, May 1992.
Available as: Daimi PB–398, ISSN 0105–8517, May 1992.

[CDF91] G. Chiola, S. Donatelli and G. Franceschinis. Priorities, Inhibitor Arcs and Concur-
rency in P/T Nets. Proceedings of the 12th International Conference on Application and
Theory of Petri Nets, Aarhus 1991, 182-205.

[Dev89] R. Devillers: The Semantics of Capacities in P/T Nets. In: G. Rozenberg (ed.): Ad-
vances in Petri Nets 1989. Lecture Notes in Computer Science, vol. 424. Springer-Verlag,
1989, pp. 128-150.

[Gen86] H.J. Genrich: Predicate/Transition nets. In: W. Brauer, W. Reisig and G. Rozenberg
(eds.): Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986 Part I,
Lecture Notes in Computer Science vol. 254, Springer-Verlag 1987, 207-247.

[GLT79] H.J. Genrich, K. Lautenbach and P.S. Thiagarajan: Elements of general net theory. In:
W. Brauer (ed.): Net theory and applications. Proceedings of the Advanced Course on General
Net Theory of Processes and Systems, Hamburg 1979, Lecture Notes in Computer Science
vol. 84, Springer-Verlag 1980, 21-163.

[Jen91] K. Jensen: Coloured Petri nets: A high level language for system design and
analysis. In: G. Rozenberg (ed.): Advances in Petri Nets 1990. Lecture Notes in Computer
Science, vol. 383. Springer-Verlag, 1990, pp. 342-416.

[Jen92] K. Jensen: Coloured Petri nets. Basic concepts, analysis methods and practical
use. Volume 1: Basic concepts. EATCS monographs on Theoretical Computer Science,
Springer-Verlag 1992.

[Res85] W. Reisig: Petri Nets. An introduction. EATCS Monographs on Theoretical Computer
Science, Vol. 4, ISBN 3-540-13723-8 or 0-387-13723-8, Springer-Verlag, 1985.

Content
Introduction.. 2
1. Informal Introduction to Place Capacities .. 2
2. Formal Definition of CP-nets with Place Capacities .. 6

2.1 The Definition of CP-nets with Place Capacities....................................... 6
2.2 Behaviour of CP-nets with Place Capacities... 8
2.3 Behaviourally Equivalent CP-net.. 8

3. Informal Introduction to Test Arcs ..10
4. Formal Definition of CP-nets with Test Arcs ..11

4.1 The Definition of CP-nets with Test Arcs...11
4.2 Behaviour of CP-nets with Test Arcs...12
4.3 Behaviourally Equivalent CP-net...12

5. Informal Introduction to Inhibitor Arcs..14
6. Formal Definition of CP-nets with Inhibitor Arcs..17

6.1 Definition of CP-nets with Inhibitor Arcs...17
6.2 Behaviour of CP-nets with Inhibitor Arcs ..18
6.3 Behaviourally Equivalent CP-net...18

7. CP-nets with place capacities, test arcs and inhibitor arcs....................................19
8. Conclusion...19
Acknowledgement...20
References ...20

