
The bit probe complexity measure revisited∗

Peter Bro Miltersen†

May 1992

Abstract

The bit probe complexity of a static data structure problem within
a given size bound was defined by Elias and Flower. It is the number
of bits one needs to probe in the data structure for worst case data and
query with an optimal encoding of the data within the space bound.
We make some further investigations into the properties of the bit
probe complexity measure. We determine the complexity of the full
problem, which is the problem where every possible query is allowed,
within an additive constant. We show a trade off between structure
size and the number of bit probes for all problems. We show that the
complexity of almost every problem, even with small query sets, equals
that of the full problem. We show how communication complexity
can be used to give small, but occasionally tight lower bounds for
natural functions. We define the class of access feasible static structure
problems and conjecture that not every polynomial time computable
problem is access feasible. We show a link to dynamic problems by
showing that if polynomial time computable functions without feasible
static structures exist, then there are problems in P which can not be
reevaluated efficiently on-line.

∗Work partially supported by the ESPRIT II Basic Research Actions Program of the
EC under contract No. 7141 (project ALCOM II).

†Aarhus University, Computer Science Department, Ny Munkegade, Building 540, DK-
8000 Aarhus C, Denmark. E-mail: pbmiltersen@daimi.aau.dk

1

1 Introduction and preliminaries

Elias and Flower [6] introduced the following model of retrieval problems.
A set D, called the set of data, a set Q, called the set of queries and a set
A, called the set of answer is given, along with a function f : D × Q → A.
The problem is to devise a scheme for encoding elements of D into data
structures in the memory of a random access machine. When an x ∈ D has
been encoded, it should be possible at a later point in time to come forward
with any y ∈ Q and efficiently compute f(x, y) using random access to the
data structure encoding x.

This model is a convenient model for any combinatorial static data struc-
ture problem.

A complexity measure considered by Elias and Flower was the bit probe
measure, measuring only the number of bitwise accesses to the data struc-
ture. Computation is for free. The bit probe measure was later generalized
to the cell probe measure by Yao [15], where memory cells, accessed in a
single operation, may contain more than one bit. While these models do
not necessarily provide realistic upper bounds, lower bounds derived in this
model are certainly valid as lower bound for any realistic, sequential model
of computation.

In order to be able to make some fine grained distinctions which could
otherwise not be made, the version of the measure we adopt is the bit probe
measure. We also consider this to be the most appealing combinatorial mea-
sure, architecture independent as it is.

In order to make a combinatorial theory we have to assume that the sets D
and Q are finite. Given a problem, it is easy to convert it to a finite problem
by making suitable restrictions on the size of the inputs. For convenience,
we will restrict ourselves to decision problems and thus assume A = {0, 1}.
Definition 1 Let f : D × Q → {0, 1}. Let b be a natural number. Let
G : D → {0, 1}b be a acheme for encoding elements of D into binary strings
of length b. The bit probe complexity of f with respect to G, CG(f) is the
number of bits one needa to probe in G(x) in order to compute f(x, y) knowing
y for worst case x, y. If f(x, y) can not be determined from probing G(x),
we put CG(f) = ∞. The bit probe complexity of f is

Cb(f) = min{CG(f) | G : D → {0, 1}b}
The object of this paper is the study of the properties of Cb(·) as a com-

2

plexity measure in its own right. Note that we restrict ourselves to worst
case analysis. Elias and Flower considered, simultaneously, worst case com-
plexity, average complexity and the computational complexity of performing
the access operation. Later studies in cell probe complexity have, however,
focused on worst case complexity.

Note that the limitation b on the space used by a static data structure is
essential in order to get a non-trivia theory. Indeed, if the number of bits in
the data structure is allowed to be as much as |Q|, it is possible to construct a
data structure which make any query answerable in constant time, by simply
letting the data structure consist of a table containing the answer. to each
possible query. When a query is made, the answer can be found by a single
probe to the data structure, i.e.

Proposition 2 For any f : D × Q → {0, 1},
C |Q|(f) ≤ 1

Note that if the set of queries separates the set of data, i.e. x �= y ⇒ ∃q ∈
Q : f(x, q) �= f(y, q), it is not possible to determine f(x, y) from G(x) unless
any x gets a unique encoding, and we have

Proposition 3 If Q separates D in f : D×Q → {0, 1}, then for b < �log|D|�
Cb(f) = ∞

The requirement b ≥ �log |D|� will be assumed implicitly in all statements
from now on. If we have probed sufficiently to identify x completely, the
value of f(x, y) can be determined, so

Proposition 4 For all b,

Cb(f) ≤ �log |D|�
We shall improve this bound slightly in Section 2.

Notation

All logarithms in this paper are base 2. When we in the future say a function
f : D × Q → {0, 1} we more often than not mean an infinite family of
functions fi : Di × Qi → {0, 1}. This will be apparent from the context.
When considering Cb(f), we assume b is a function of i with b(i) ≥ log |Di|.
The quantity Cb(f) is then itself a function of i and we can use asymptotic
notation in the statements about Cb(f).

3

Outline of paper

In section 2, we consider the full problem ε, for which every problem with
data set D is a subproblem. We provide very tight bounds on its complexity
and a trade off between b and Cb(ε). We also provide a trade off, although
not as good, between b and Cb(f) for every function f .

In section 3, we consider problems where the query set is small compared
to the data set, and prove the existence of functions with bit probe complexity
almost as large as the full problem. We prove that random problems have
large complexity. Unfortunately, the arguments are non-constructive.

In section 4, we consider lower bounds for explicit problems. We show
a connection between bit probe and communication complexity giving small
lower bounds and sketch an approach which may lead to larger lower bounds.

In section 5, we define the class of access feasible static problems S and
introduce a notion of reduction which enable us to identify certain natural
problems as hard for natural classes of problem, even though we can not
prove large lower bounds for them.

In section 6, we discuss the relationship between static and dynamic data
structure problems and show a non-obvious link between the two, making
it possible to transfer large lower bounds from the static to the dynamic
case. Specifically, we show PSIZE �⊆ S ⇒ P �⊆ D, where D is the class of
functions which can be reevaluated on-line in polylogarithmic time [12].

2 Bounds for the full problem ε

We consider the problem ε : D × P(D) → {0, 1} given by ε(x, y) = 1 iff
x ∈ y. We call this problem the full problem, since there is a query for
each predicate over the set of data. Thus, we should prepare ourselves for
any question whatsoever about the input. The problem was investigated
by Elias and Flower, but since they considered worst case complexity and
average case complexity simultaneously, their upper and lower bounds do not
directly apply for the bit probe complexity measure. We will determine the
exact bit probe complexity of this problem, up to a small additive constant.

Theorem 5 If (1 + Ω(1))log |D| ≤ b ≤ 2|D| then

Cb(ε) ≤ �log |D|� − �log log� + 1 + o(1)

4

Proof An x ∈ D can be encoded in binary using n = �log |D|] bits. Fix
any such encoding. By our assumptions on b, we can select a constant k > 0
so that n + b

k
≤ b for sufficiently large n. Let r = �log log b − s�, where

s = log 1

1− log k
log b

. We consider a data structure for encoding x ∈ D consisting

of two parts.

• The n − r first bits in the binary encoding of x

• For each predicate p : {0, 1}r → {0, 1}, the value of p on the final r bits
in the encoding of x.

The number of bits used in this structure is

B = n − r + 22r ≤ n + 22−slog b = n + b1− log k
log b = n +

b

k
≤ b.

Thus, the data structure is legal. In order to answer a query S ⊆ D, we read
the first n− r bits of the data structure, i.e. the first n− r bits of the input
x ∈ D. Let these bits form the string x1. Let p be the predicate over the
last r bits in the input defined by

p(x2) ⇔ x1x2 ∈ S

We can identify the predicate p using our knowledge about x1 and S only, i.e.
without reading further in the structure. The answer to the query is the value
of p(x2) which can be read directly in the structure. Thus Cb(ε) ≤ n− r +1.
Since s = o(1), we have the desired bound.

✷

Since ε is the full problem, we have that for any set D, Q and any function
f : D × Q → {0, 1}, Cb(f) ≤ �log |D|� − �log log b� + 1 + o(1) with b as in
the theorem. For reasonable values of b, this is only a slight improvement
on the naive upper bound �log |D|� which holds for all functions. However,
the next theorem tells us that the bound is optimal up to a small, additive
constant.

Theorem 6
Cb(ε) ≥ log |D| − log log b − o(1)

Proof Let d = Cb(ε). Thus, any query can be answered by decision tree
of depth d over the b bits in the optimal structure. By adding redundant

5

probes in the tree, we can assume that any path in such a tree has depth d.
The number of nodes in such a tree is 2d − 1 and the number of leaves is 2d.
In each node is the name of an address in the data structure and in each leaf
the answer to the query, either 0 or 1. Thus, the number of possible trees is

t = b2d−122d ≤ (2b)2d

= 2(log b+1)2d

= 22d+log log b+o(1)

There has to be a different tree for each different query. The number of
queries is 2|D|. Thus

22d+log log b+o(1) ≥ 2|D|

and
d ≥ log |D| − log log b − o(1).

✷

Thus, we have determined the complexity of ε within 1.5 + ε probes for
sufficiently large |D| and exhibited an interesting trade off between b and
Cb(ε).

By a similar technique, we can prove a small trade off between b and
Cb(f) for any function f .

Theorem 7 For any f, b, k ≥ 1,

C(2b)2
k−1

(f) ≤ Cb(f) − k + 1

Proof Let Cb(f) = d and let an optimal encoding G establishing this be
given. Now consider a data structure for encoding x ∈ D consisting of

• For each possible decision tree T of depth k over the b bits in the
original structure, for which the answer in the leftmost leaf is 0, the
answer to T in G(x).

As in the proof of Theorem 6, there are b2k−122k
decision trees of depth k

over b bits, so the size of the structure is (2b)2k−1. Now consider answering
any query y ∈ Q. Since the bits in G(x) are present in the new structure,
we can simulate the original algorithm for d− k probes and arrive at a node
in the decision tree for y which is the root of a tree of depth k. Either the
answer to this tree or the answer to its negation is present in the structure,
so we may now simply look up the answer to y or its negation, using one
probe.

✷

6

3 Functions with small query sets

The full function is not really typical when considered as static data struc-
ture problems, since the cardinality of the set of queries vastly exceeds the
cardinality of the set of data. In natural applications, we expect a query to
be describable in much fewer bits than the data. Indeed, the point of making
static data structures is to be able to answer queries in time comparable to
the time it takes to make the query, rather than in time comparable to the
size of the data. If the number of bits in a query is at least log |D|, this is
always possible, and the problem is therefore trivialized.

Therefore, we consider now situations where |Q| << |D|. Of course, if |Q|
gets as small as b, we know from the Introduction that one probe suffices. It
turns out that if a single query is added, so that |Q| = b + 1, the complexity
may jump from constant to linear, and if |Q| = (1 + ε)b, we may arrive at
the same complexity as the full function, up to an additive constant.

Theorem 8 For any |D|, b, a function f : D×{1, . . . , b+1} → {0, 1} exists
so that

Cb(f) ≥ log |D| − log b − log log b − o(1)

Also, for any |D|, b, ε > 0, a function g : D × {1, . . . , �(1 + ε)b�} → {0, 1}
exists, so that

Cb(g) ≥ log |D| − log log b + log
ε

1 + ε
− o(1)

i.e. g has the same complexity as the full function, up to an additive constant.

Note that for |Q| = b + 1, there is an additive gap of log b between the
lower bound and the complexity and the full function. We do not know if
the upper bound can be improved for very small |Q| or if better lower bounds
are available.

In order to prove the theorem, we need the following combinatorial lemma,
which was first proved by Adleman [1]. We include the proof here for com-
pleteness.

Lemma 9 Let U be a universe and let S be a family of subsets of U with
|M | ≤ l for each M ∈ S, where l < |Ui|. Then a set T ⊆ U exists so that

|T | ≤ � log |S|
log |U | − log l

� + 1

7

and so that ∀M ∈ S : T �⊆ M .

Proof The proof is an induction in |S|. The theorem is correct for |S| = 1.
Let a = |{(M, x) ∈ S × U |x ∈ M}|. We have a ≤ l|S|, so there exists an

x0 ∈ U with |{M ∈ S|x0 ∈ M}| ≤ l|S|
|U | . Let S ′ = {M ∈ S|x0 ∈ M}. By

induction a set T ′ exists with

|T ′| ≤ � log |S ′|
log |U | − log l

� + 1 ≤ � log |S|
log |U | − log l

�

and ∀M ∈ S ′ : T �⊆ M . Put T = T ′ ∪ {x0}.

✷

Proof of Theorem 8. Let S be the set of possible encodings of the elements
of D into data structures with b bits. We have

|S| = 2|D|b

since for each element in D and each bit in the data structure, one chooses
either to set or clear this bit on this particular input. The number of predi-
cates which can be decided by a depth d decision tree over b bits is, as shown
in the proof of Theorem 6, at most

l = 22d+log log b+ε(b)

where ε is o(1). Let U be the entire set of predicates over D. The size of U
is |U | = 2|D|. By 1emma 9 a subset T of U of size

|T | = � |D|b
|D| − 2d+log log b+ε(b)

� + 1 = � b

1 − 2d+log log b−log |D|+ε(b)
� + 1

exists, so that for any encoding, some predicate in T can not be decided with
d probes over the encoding. Let d = log |D| − log(b + 2) − log log b − ε(b).
Then

|T | ≤ � b

1 − 1
b+2

� + 1 = b + 1

If T = {t1, t2, . . . , tb+1}, let f(x, i) = 1 if and only if x ∈ ti. This establishes

the existence of f . Let d = log |D| − log log b − ε(b) + log
ε− 2

b

1+ε− 2
b

. Then

|T | ≤ b

1 − ε− 2
b

1+ε− 2
b

+ 1 ≤ (1 + ε)b − 1 ≤ �(1 + ε)b�

This establishes the existence of g.

8

✷

When studying a complexity measure, one is interested in knowing the
complexity of allmost all functions. In order to obtain such results for Cb(·)
we need a version of Adleman’s lemma which bounds the probability that a
random set has the property of T .

Lemma 10 Let U be a universe and let S be a family of subsets of U with
|M | ≤ l for each M ∈ S, where l < |U |. Let 42 ≤ k < log |U |

l
and let T be

a random sequence from U of size t ≥ (1 + 7/k)(log |S|
log |U |−log l−log k

+ 1). The
probability that ∀M ∈ S : T �⊆ M is at least

1 − 2−r

where r = 7
k
(log |S|

log |U |−log l−log k
+ 1)

Proof The proof is similar to the proof of the preceding lemma. Let x1, x2, . . .
be a random sequence of elements from U . Let S0 = S and Si+1 = {M ∈
Si|xi ∈ M}. The expected size of Si+1 given that Si has size s is at most ls

|U | .

Let Xi be the event that |Si+1| > kl|Si|
|U | . By Markov’s inequality P (Xi) < 1

k
.

Although the events Xi are not independent, this estimate holds, no matter
how previous events turned out. This means that the probability of at least a
certain number of events can be bounded from above using Chernoff bounds
[5, 8]. Let

T = |{1 ≤ j ≤ i|Xj = 1}|
The expectation of T is

E(T) ≤ i

k

By the Chernoff bound, for r ≥ 6E(T)

P (T ≥ r) ≤ 2−r

Let v = log |S|
log |U |−log l−log k

+ 1. If i − T ≥ v, we have that Si = 0. Put

i = (1 + 7/k)v. Then

6E(T) ≤ 7

k
v

since k ≥ 42 and

P (i − T ≥ v) = P (T ≤ 7

k
v) = 1 − P (T >

7

k
v) ≥ 1 − 2r

9

✷

Theorem 11 Let ε > 0. For almost all functions g : D×{1, . . . �(1+ε)b�} →
{0, 1},

Cb(g) ≥ log |D| − log log b + log
ε

1 + ε
− o(1)

i.e. g has the same complexity as the full function, up to an additive constant.

Proof Choose k = log b. Let U be as in the proof of Theorem 8. By Lemma
10 a random sequence of predicates T from U of size

|T | = (1 + 7
k
) |D|b
|D|−2d+log log b+ε(b)−log k

+ 1 =

(1 + 7
k
) b

1−2d+log log b−log |D|+δ(b) + 1

has with probability 1 − o(1) the property that for any encoding, some
predicate in T can not be decided with d probes over the encoding. Let
d = log |D|− log log b− δ(b)−h(b), where (1+ 7

log b
)b/(1− 2h(b)) = �(1+ ε)b�.

It is easy to see that h(b) = log ε
1+ε

+ o(1).

✷

4 Lower bounds for explicitly defined func-

tions

How large lower bounds can be proven for explicitly defined functions with a
small query set? Yao [15] and Ajtai [3] proved lower bounds in the cell probe
model for various dictionary problems. These lower bounds are however quite
small, compared to the lower bounds we know most problems have. Observe,
however, that the problems for which lower bounds have been considered
in the literature actually also have very small upper bounds, and that the
bounds obtained are tight. So we may have more luck if we aim for problems
for which no small upper bound is known.

The best known lower bound in the bit probe model appears to be the
one derived by Elias and Flower, showing in our notation that for the equality
function δ : D × D → {0, 1} with δ(x, y) = 1 iff x = y has

2Cb(δ)+1

(
b

Cb(δ)

)
≥ |D|

10

and thus,

Cb(δ) ≥ log |D| − 1

log b + 1
.

In this section we show how this lower bound by Elias and Flower can be
generalized using communication complexity. A slightly different form of
their lower bound is given as a corollary. Recall the following definitions bv
Yao [14]:

• Let f : X × Y → {0, 1}. Let x ∈ X be given to one person, Alice, and
let y ∈ Y be given to another party, Bob. The two-way communication
complexity C2(f) of f is the worst case number of bits transferred
between the two parties in an optimal (w.r.t. communication) protocol
for computing f(x, y). Bits can be transferred both ways.

• The one-way communication complexity of f , C1(f) is defined in the
same way, except that Bob is not allowed to send bits to Alice.

For more precise aenmtions and a survey on communication complexity, see
Lovász [9]. Given a function f : D × Q → {0, 1}, we have that

Cb(f) ≤ C1(f)

by the data structure consisting of the message from Alice to Bob. Usually,
this is not a very interesting upper bound, since C1(f) = �log n� if the set
of queries separates the set of data [14]. This is, of course, the case for most
interesting problems. A more interesting lower bound is provided by the
two-way communication complexity of f .

Theorem 12
Cb(f) ≥ C2(f)/(�log b� + 1)

Proof Let an optimal static data structure for f be given. A two-way pro-
tocol for computing f(x, y) is as follows.

• Alice computes the structure corresponding to her input x, but does
not send anything yet.

• Bob simulates the query operation corresponding to his input y by
sending Alice requests for the bits he wants to read in the structure. A
request can be described in �log b� bits. Alice sends the value of the bit
in question back. This is repeated until Bob has read what he needed
in the data structure, i.e. for at most Cb(f) rounds.

11

• After this, Bob knows f(x, y).

Thus C2(f) ≤ (�log b� + 1)Cb(f)

✷

Several interesting functions with |D| = |Q| has linear communication com-
plexity. A useful inequality for showing this is the rank lower bound by
Mehlhorn and Schmidt [10]: Let M f be the |D| × |Q| matrix defined by
M f

ij = f(i, j). Then C2(f) ≥ �log rankF (M f)� where the rank of the matrix
is taken over any field F . We thus get

Corollary 13

Cb(f) ≥ �log rangF (M f)�
�log b�+1

For instance, the equality function δ has rankF (M δ) = |D|. We thus get:

Cb(δ) ≥ �log |D|�
�log b�+1

Let us sketch another approach which may lead to larger lower bounds for
explicitly defined functions.

Definition 14 Let D be a set, end let A be a set system on D, i.e. a subset
of P(D). Let prodd(A) be the set system on D consisting of the sets which
can be described as the intersection of at most d sets from A. Let spand(A) be
the set system consisting of disjoint unions (of any size) of sets in prodd(A).
Let B be a set system on D. Let rankd(B) = min{|A||B ⊆ spand(A)}.

Given a function f and a q ∈ Q, let Sf be the set system {sq|q ∈ Q},
where sq = {x ∈ D|f(x, q) = 1}.
Lemma 15 Let D = {1, . . . , n} and let f : D ×Q → {0, 1} have Cb(f) = d.

rankd(Sf) ≤ 2b

Proof If Cb(f) = d then every y ∈ Q can be answered by a decision tree
of depth d over the encoding of x ∈ D. A decision tree of depth d can
also be described as the “OR” of “AND”’s of size d of bits in the data
structure and their negations. But this implies that sy is the disjoint union
of the intersection of at most d sets in A where A is the following set of size
2b: For each bit v in the data structure there are two sets in A, namely
{x ∈ D|The bit v is set to 1 when the input is x} and its complement.

12

✷

Lemma 16 For any d, s,

rankd(Sf)
�d/s� ≥ rankk(Sf)

Theorem 17 For any s,

Cb(f) ≥ s(
log ranks(Sf)

log b + 1
− 1) + 1

Proof With Cb(f) = d, we have

2b ≥ rankd(Sf) ≥ rankk(Sf)
1

�d/s�

so

�d/s� ≥ log ranks(Sf)

log b + 1

and

d = s(
d + s − 1

s
− 1) + 1 ≥ s(�d/s� − 1) + 1 ≥ s(

log ranks(Sf)

log b + 1
− 1) + 1

✷

Note that rankF (M f) is a lower bound on rank1(Sf), where F is any field.
Putting s = 1, this gives us a slightly different version of Corollary 13.

Corollary 18

Cb(f) ≥ log rankF (M f)

log b + 1

It seems to be a natural approach to proving larger lower bounds for ex-
plicitly defined functions to try to generalize the linear algebra techniques
for obtaining lower bound of the rank1 of sets to techniques for dealing with
ranks for higher values of s. Counting arguments reveal that sets of suffi-
ciently high ranks exists, so only explicitness is a problem. As yet, however,
we know of no lower bounds for explicitly defined functions which are better
than Ω(log |Q|

log b
).

13

5 Feasible problems, reductions and complete-

ness

When we want to construct a static data structure it is because we want to
be able to answer a query in a time comparable to the time it takes to put
forward the query rather in time comparable to the size of the data, which
is typically much larger. This can be done with a structure of size |Q|, but
this is typically unreasonable large.

This leads naturally to the following definition of an access feasible static
problem.

Definition 19 A function f : D × Q → {0, 1} with |D| ≥ |Q| is an ac-
cess feasible problem if there exists a data structure encoding x ∈ D using
logO(1) |D| bits such that given y, f(x, y) can be determined from the structure
using at most logO(1) |Q| bit probes. The class of access feasible static poblems
is denoted S.

Equivalently, C log O(1)|D|(f) ≤ logO(1)|Q|. Thus, we require that a query can
be answered with a polynomial (in the size of the query) amount of probing
in a data structure of polynomial (in the size of the data) size. The definition
seems to be the most reasonable, robust, definition of an access feasible static
problem. One could argue that a polynomial sized structure is to large, and
that a pseudolinear structure would be more appropriate. However, since our
main interest is lower bounds and hardness results, the results gets stronger
by allowing polynomial sized structures. Note that δ from section 4 is con-
sidered access feasible by the definition, but this is because of the size of the
query set. Note also that if a problem has |Q| = O(log |D|), the problem is
access feasible by the structure consisting of the answer to any possible query,
and if log |Q| = logΩ(1)|D| it is access feasible by the structure consisting
of any non-redundant encoding of x ∈ D. The definition is therefore only
interesting for intermediate values of |Q|.

If we want to prove that a problem is access infeasible we can not use
Theorem 12, since C2(f) ≤ min{|log |D|, log |Q|}. However, we do know that
access infeasible problems exist.

Proposition 20 Sc �= ∅
Proof Let b = 2log2 log |D| in Theorem 8. A function f : D×{1, . . . , b + 1} →
{0, 1} exists so that Cb(f) = Ω(log |D|). But C logO(1)|D|(f) ≥ Cb(f), and

14

log |D| >> logO(1)(b + 1)

✷

Since the construction in Theorem 8 can be carried out in exponential (in
log |D|) space, there are exponential space functions which are not in S.
However, it seems hard to get lower bounds on more explicitly denned func-
tions, e.g. functions in P . Let us be a bit more precise.

Definition 21 Let f : D × Q → {0, 1} be a function with |D| ≥ |Q|. We
say that f has polynomial sized circuits (f ∈ PSIZE) if Boolean encodings
bD : D → {0, 1}�log |D|� and bQ : Q → {0, 1}�log |D|� exist so that that the
function f ′ has polynomial sized circuits where

f ′(xy) = f(b−1
D (x), b−1

Q (y))

We prefer to use the non-uniform version of P in order to avoid the tech-
nical inconvenience of having to identify which fi one is to compute. Most
natural static problems (like the ones mentioned in the introduction) are in
P . Indeed, we are not likely to make data structures for problems which
are computationally infeasible. If PSIZE ⊆ S, we are able to make access
feasible implementations of every problem in P . We conjecture that this is
not so.

Conjecture 22 PSIZE �⊆ S.

We have to leave this conjecture open. Before we consider possible ap-
proaches to proving it, let us do what complexity theory usually does in
a tight corner like this: Introduce a notion of reduction and identify hard
problems.

Definition 23 A problem f1 : D1 × Q1 → {0, 1} statically reduces to a
problem f2 : D2 × Q2 → {0, 1} if

• log |D2| = logO(1) |D1]

• log |Q2| = logO(1) |Q1]

• A function r : D1 → D2 and a function q : Q1 → Q2 exist, so that
f1(x, y) = f2(r(x), q(y)).

If f1 statically reduces to f2, we write f1 ≤ f2.

15

Note that this reduction is actually a slight variation of the rectangular re-
duction suggested for communication problems by Babai, Frankl and Simon
[4].

Proposition 24 If f2 ∈ S and f1 ≤ f2 then f1 ∈ S
Definition 25 For a class of families of functions C, f is C-complete with
respect to static reductions if f ∈ C and every problem in C statically reduces
to f .

The following problem in P is easily seen to be PSIZE-complete.

• D is the set of circuits of size n with m inputs.

• Q is the set of assignments to m inputs (m ≤ n).

• cv(x, y) is the value of the circuit x when y is given as input.

Thus cv is not in S unless PSIZE ⊆ S. This means that there is most likely
no way to encode a circuit using space polynomial in the size of the circuit
so that the value of the circuit on any input can be found with a number of
probes, polynomial in the number of inputs.

We can also exhibit provably access infeasible problems among exponen-
tial space problems, using reductions.

• D is the set of Turing machines of size n.

• Q is the set {0, 1}m(m ≤ n).

• T (x, y) = 1 iff x accepts y using space at most 2n.

Theorem 26 T /∈ S.

Proof By, the above, a family of functions f : {1, . . . , 2n}×{1, . . . , �2log2 n�} →
{0, 1} not in S exists. Specifically, if f is defined to be the lexicographically
first function on these domains having maximal complexity, f is such a family
of functions. This function can be computed by a Turing machine T using
space exponential in n. By the s-m-n theorem, let Tx be this Turing machine
with the first input fixed to x, |Tx| = O(n). By padding, we can ensure that
Tx uses space at most 2n.

✷

16

Note that the proof is simply a proof of exponential space completeness with
respect to static reductions. Note however, that exponential space complete-
ness with respect to classical reductions (e.g. logspace reductions) is not
sufficient to ensure infeasibility. This is because such reductions do not nec-
essarily respect the distinction between data and query. For a nature example
of this consider the following problem, equiv:

• Given a finite alphabet Σ and two expressions r1, r2 over Σ, · (concate-
nation), ∪ (union), ∗ (Kleene star) and 2 (squaring), tell whether they
denote the same language.

It is known [11] that equiv is EXPSPACE-complete in the usual sense. The
domain of this problem has a natural factorization, i.e. we can consider it
as a static data structure problem, where r1 is the datum and r2 the query.
However, this problem has an access feasible solution, because we can encode
r1 as a prefix free encoding of min(r1), the lexicographically least extended
regular expression denoting the same language as r1, padded with zeroes
to make all data structures for expressions of length |r1| the same length.
The number of bits required is O(|r1|). In order to find out if r2 = r1, one
computes min(r2) and checks if the encoding of this expression is a prefix
of the data structure. The number of probes required is O(|r2|). We do
unfortunately not know any natural problems, complete for EXPSPACE
with respect to static reductions.

In order to prove PSZIE �⊆ S, we merely have to give a sufficiently
explicit construction of a set Q of high (superpolylogarithmic in |D|) rankd-
value, where d is superpolylogarithmic in |Q|. Counting arguments, similar to
the ones in the previous section, show that sets of sufficiently high rank exist,
indeed that a random set will do. It is our hope that explicit constructions
and thus PSZIE �⊆ S are within reach.

6 An application to dynamic problems

Miltersen [12] and, independently, Sairam, Vitter and Tamassia [13] proposed
a complexity theory of dynamic problems. A dynamic problem is a data
structure problem where in addition to queries, small changes to the data can
be made. We suggested looking at a model which captures several of these
problems, namely on-line reevaluation of functions. Given a function f :

17

{0, 1}n → {0, l}m the on-line reevaluation of f is the problem of maintaining
a data structure which maintains a z ∈ {0, 1}n and supports the following
operations:

• change(i, v). Changes the value of zi to v (v ∈ {0, 1}).

• query(j). Outputs the value of fj(z), i.e. the j’th coordinate of f(z).

If for instance f takes the adjacency matrix of an undirected graph and
returns the adjacency matrix of its transitive closure, the problem of reeval-
uating f on-line is the dynamic connectivity problem [7]. For several problems
in P , no data structure which implements the on-line reevaluation problem
with polylogarithmic operation complexity is known. Miltersen defined D
as the class of problems for which a data structure with polynomial initial-
ization time and polylogarithmic operation complexity on a RAC [2] exists,
and conjectured P �⊆ D. The same class was defined by Sairam, Vitter and
Tamassia under the name of incr -POLYLOGTIME and the same conjecture
was made. In this section we describe an approach to this problem using the
developed theory on static problems.

Although dynamic problems in a superficial analysis is merely a gen-
eralization of static problems, it is not immediately obvious how to transfer
interesting lower bounds from the static to the dynamic case. This is because

• The number of queries in a dynamic problem of the above kind is
so small that the problem is trivialized when the static version of it
is considered. The number m is assumed to be polynomial in n which
means that |Q| = logO(1)|D| so if the change operation is not considered,
the problem is trivially in S. For instance, for the dynamic graph
connectivity problem, tne queries are pairs of vertices. i.e. |Q| =
log |D|.

• In static problems, a restriction on the amount of space used is essential.
In dynamic problems, it is not obvious how to take advantage of huge
amounts of space, so the problem is not trivialized when the space
restriction is removed. We would therefore like to get lower bounds in
the dynamic case without any restriction on the space used, in order
to get the most general lower bounds.

We will show, however, that by a non-direct approach one can transfer in-
teresting lower bound from the static to the dynamic case. Specifically, we

18

will prove the following theorem, which links the central open problem of the
static theory to the central open problem of the dynamic one.

Theorem 27 PSIZE �⊆ S ⇒ P �⊆ D

In the following lemma, C(f) is the size of a minimal circuit computing
f and B(f) is the bit probe complexity of reevaluating f on-line [12].

Lemma 28 If P ⊆ D then for all f , B(f) = log O(1)C(f).

Proof Let f : {0, 1}n → {0, 1}. Assume C(f) ≥ n (If not, f does not de-
pend on some of its variables and these can be discarded). If P ⊆ D, then
the circuit value problem, taking as input the description of a circuit c and
an input x, can be reevaluated in time polylogarithmic in |c| + |x| by an
algorithm A. If this algorithm is given an optimal circuit for f as input, the
result follows by restricting the change-operation to work on the x-part of
the input.

✷

Proof of Theorem 27. We prove the converse implication. Thus, assume
P ⊆ D.

Let a problem f : D×Q → {0, 1} in PSIZE be given, including Boolean
encodings of D and Q. We shah prove f ∈ S. If |Q| ≤ log|D|, there is nothing
to prove, so assume |Q| > log |D|. Let A be an optimal algorithm (i.e. of
operation complexity B(f)) for reevaluating f(z) on-line, with f considered
as a problem f : {0, 1}n → {0, 1}, where n = �log |D|� + �log |Q|�. By the
lemma, B(f) ≤ logO(1) log |D|. The idea of the proof is to construct a static
structure for x ∈ D from the addresses of the bits changed in the dynamic
structure in A, when the first �log |D|� bits of z is changed into the encoding
of x.

We can assume [12] that the number of bits used in the structure of A
is at most (2n + 1)(2B(f) − 1). Thus, the address of a specific bit can be
described in �log n� + B(f) + 2 = logO(1) log |D| bits.

Given an x ∈ D, consider initializing A to z = 0n and after that changing
z to b(x)0�log |Q|�, where b(x) is the binary encoding of x, using the change
operation at most �log |D|� times. These operations change the appearance
of the memory of A, but at most B(f)�log|D|� = logO(1) |D| bits are changed.
Let L(x) be a sorted list of the addresses of the bits whose values are different
in the final and the initial version of the data structure. The size of L(x) is

19

logO(1) |D|.
Consider L(x) as a static structure for representing x (using a padding

scheme to make the structure the same length for all x).

Given y, the value of f(x, y) can be found by changing the value of the
final �log |D|� bits in z to b(y) using the change operation in A and finally
performing a query operation.

var

m : array[1..s] of {⊥, 0, 1}

init:
for i := 1 to s do

m[i] := ⊥

set(j, v):

m[j] := v

value(j):

u := the value of bit no. j in the initial version of
the memory of A (when z is initialized to 0n).

if

m[j] �= ⊥ → return m[j]
m[j] = ⊥ ∧ j ∈ L(x) → return ¬u
m[j] = ⊥ ∧ j /∈ L(x) → return u

fi

Figure 1: Simulation of memory access in A

We do not have the memory of A at hand but must perform the simulation
using the list L(x), which contains complete information of the data structure
of A at a time when z = b(x)0�log |D|�. Accessing the memory of A can be
simulated by the algorithm in figure 1, where s is the number of bits in the
memory of A, the operation set(j, v) changes bit no. j to v and value(j)
returns the value of bit no. j. The membership test of j ∈ L(x) needed in
the algorithm can be implemented by doing a binary search in L(x). Since
L(x) is a list of logO(1) |D| items, each of length logO(1) log |D|, the search uses
logO(1) log |D| probes. This is the only part of the algorithm which probes

20

L(x). To establish the value of f(x, y), we have to simulate �log |Q|� + 1
operations of A, each requiring B(f) accesses to the memory of A. This
establishes

Cb(f) ≤ (�log |D|� + 1)logO(1) log |D|.
Since |Q| > log |D|, this is polynomial in log |Q|.

✷

Note that the structure L(x) in the proof is actually quasilinear in log |D|.
Thus, the theorem still holds if we adopt a more restricted version of S, where
only quasilinear sized structures are allowed.

As mentioned, we consider proving PSIZE �⊆ S within reach, because of
the combinatorial simplicity of static data structure problems. In our view,
the above theorem is therefore the most promising approach to closing the
open problems stated in [12] and [13].

References

[1] L. Adleman, Two theorems on random polynomial time, 19th Symp.
Found. of Comp. Sci. (1978), 75-83.

[2] D. Angluin, L. G. Valiant: Fast Probabilistic Algorithms for Hamiltonian
Circuits and Matchings, J. Comp. Sys. Sci. 18 (1979) 155-193.

[3] M. Ajtai, A lower bound for finding predecessors in Yao’s cell probe
model, Combinatorics 8 (1988) 235-247.

[4] L. Babai, P. Frankl, J. Simon, Complexity classes in communication
complexity theory, Proc. 27th IEEE FOCS (1986) 337-347.

[5] K Chernoff, A measure of asymptotic efficiency for tests based on the
sum of observations, Ann. Math. Statist. 23 (1952), 493-509.

[6] P. Elias, R.A. Flower, The complexity of some simple retrieval problems,
J. Ass. Comp. Mach. 22 (1975), 367-379.

[7] G. N. Frederickson, Data Structures for On-Line Updating of Minimum
Spanning Trees, with Applications, Siam J. Camp. 14 (1985), 781-798.

21

[8] T. Hagerup, C. Rüb, A guided tour of Chernofl bounds, Inform. Proces.
Lett. 33 (1990), 305-308.

[9] L. Lovász, Communication complexity: A survey, in “Paths, Flows, and
VLSI Layout”, edited by B.H. Korte, Springer Verlag, Berlin New York
(1990).

[10] K. Mehlhorn, E.M. Schmidt, Las Vegas is better than determinism in
VLSI and distributed computing, Proc. 14th ACM STOC (1982) 330-
337.

[11] A.R. Meyer, L. Stockmeyer, The equivalence problem for regular ex-
pressions with squaring requires exponential space, IEEE 13th Annual
Symposium on Switching and Automata Theory (1972), 125-129.

[12] P.B. Miltersen, On-line reevaluation of functions, Aarhus University
Tech. Report DAIMI PB-380.

[13] S. Sairam, J.S. Vitter, R. Tamassia, Complexity models for incremental
computation, Manuscript, 1991.

[14] A. C.-C. Yao, Some complexity questions related to distributive comput-
ing, Proc. 11th ACM STOC (1979) 209-213.

[15] A. C.-C. Yao, Should tables be sorted?, JACM 28 (1981), 615-628.

22

