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Abstract

Our aim is to provide a simple non-interleaved operational se-
mantics for CCS in terms of a model that is easy to understand—
asynchronous transition systems. Our approach is guided by the re-
quirement that the semantics should identify the concurrency present
in the system in a natural way, in terms of events occurring at inde-
pendent locations in the system.

We extend the standard interleaving transition system for CCS by
introducing labels on the transitions with information about the loca-
tions of events. We then show that the resulting transition system is
an asynchronous transition system which has the additional property
of being elementary, which means that it can also be represented by
a 1-safe net.
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We establish a close correspondence between our semantics and
other approaches in terms of foldings.

We also introduce a notion of bisimulation on asynchronous tran-
sition systems which preserves independence. We conjecture that the
induced equivalence on CCS processes coincides with the notion of
location equivalence proposed by Boudol et al.

1 Introduction

Process algebra like CCS [9] are a well established formalism for specifying
concurrent systems. However, the traditional semantics for these languages
is given in terms of labelled transition systems in which parallel composition
is interpreted as non-deterministic interleaving.

Several attempts have been made to provide a non-interleaved seman-
tics for CCS-like languages, in which the concurrency implicit in a process
expression P is explicitly represented in the semantics of P .

One approach is to incorporate information about concurrency into the
conventional sequential transition system describing the behaviour of P by
introducting an algebra of transitions. This can be done implicitly, by deco-
rating each transition with a “proof of its derivation” [3], or explicitly, as in
[8].

Another approach is to interpret process expressions in terms of a richer
model—typically Petri nets [3, 6, 11]. This involves decomposing a process
into local “components” and then constructing a net from these components.

Both these approaches have the drawback that they are complicated.
When one introduces an algebra over the transitions, one has to go through
a second level of reasoning about the transition system in order to identify
the underlying events in the system (where we use the term event in the
sense of Petri nets).

On the other hand, translating a term directly into a Petri net suffers from
the usual problems associated with explicitly manufacturing one particular
net which gives rise to the required behaviour—a lot of effort has to be put
into to creating the places and hooking them up correctly to the transitions
and then proving that the net one has constructed does in fact exhibit the
required behaviour.
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Our aim is to provide a simple non-interleaved operational semantics for
CCS in terms of a model that is easy to understand. The criteria we have in
mind are the following.

• The semantics should be as close to the original (interleaving) transition
system as possible.

• The semantics should identify the concurrency present in the system
in a natural way, in terms of events occurring at independent locations
in the system.

• The structure representing the behaviour should be finite, whenever
possible—this means that we should treat recursion carefully and un-
fold the system only if necessary.

• There should be a way to formally relate our semantics to other existing
approaches.

• The semantics should be simple!

With this in mind, we choose to interpret CCS over the class of asyn-
chronous transition systems [2, 12, 13]. An asynchronous transition system
is a normal transition system where the labels are viewed as events. The
transition system comes equipped with a binary relation on the events which
specifies when two events in the system are independent of each other.

Asynchronous transition systems and Petri nets are closely related to each
other. In [13], it is shown that one can define a subclass of “elementary”
asynchronous transition systems which are, in a precise sense, equivalent to
1-safe Petri nets.

To interpret CCS in terms of asynchronous transition systems, we restrict
the language slightly. Instead of the normal operator + expressing non-
deterministic choice, we use guarded choice. In other words, we restrict
terms with + to be of the form aP + bQ, where a and b could be the invisible
action τ—we do not permit general expressions of the form P + Q. The rest
of the language is the same as in standard CCS. We claim that this language
is still a very powerful and useful language for specifying concurrent systems.
For instance, all the examples in [9] conform to our syntactic restriction.

To obtain an asynchronous transition system from a CCS expression, we
decorate transitions with labels which indicate the location where the action
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occurs. While this is in the same spirit as decorating transitions with their
proofs, it turns out that our labelling directly gives us the underlying events
of the system. In other words, we do not need to impose an algebra on our
labels to identify events—two transitions correspond to the occurrence of
the same event iff they carry the same label. The independence relation we
define on events reflects a natural notion of independence on locations.

We then prove that the asynchronous transition system LTS(P ) we as-
sociate with a process expression P is in fact elementary. This means that
we obtain “for free” a Petri net semantics for our language, by appealing to
the results of [13].

We express the connection between our semantics and some other ap-
proaches in terms of foldings. These are special types of bisimulations in
which the target of the folding is, in general, a smaller, more compact re-
presentation of the behaviour described by the first system. We show that
the normal interleaved transition system for our language, as defined in [9],
can be folded onto the asynchronous transition system we define. On the
other hand, in [13], a denotational semantics for CCS is presented in terms
of asynchronous transition systems. We show that the denotational transi-
tion system associated with a term P can also be folded onto the transition
system we associate operationally with P .

Finally, we define a notion of bisimulation on asynchronous transition
systems which preserves independence. When applied to the asynchronous
transition systems we use to describe the behaviour of CCS processes, this
gives rise to an equivalence on process terms which we conjecture is equivalent
to the notion of location equivalence defined in [5].

The paper is organized as follows. We begin with a brief introduction
to asynchronous transition systems. The next section introduces the process
language and its operational semantics. Section 4 establishes that the asyn-
chronous transition system we define for a process P is elementary. In Section
5, we show how to relate our semantics with other standard approaches. The
next section describes bisimulations on synchronous transition systems. We
conclude in Section 7 with a discussion of how our work relates to other
approaches and suggestions for further study.
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2 Asynchronous transition systems

We begin by recalling the standard notion of a (labelled sequential) transi-
tion system.

Definition 2.1 (Transition system)
A transition system is a quadruple TS = (S, i, E, Tran) where

• S is a set of states, with initial state i.

• E is a set of events.

• Tran ⊆ S × E × S is the transition relation.

Asynchronous transition systems were introduced independently by Bed-
narczyk [2] and Shields [12]. These transition systems incorporate informa-
tion about concurrency explicitly, in terms of a binary relation which specifies
which pairs of events are independent of each other. The particular definition
we adopt here is from [13].

Definition 2.2 (Asynchronous transition systems)
An synchronous transition system is a structure ATS = (S, i, E, I,Tran)
such that

• (S, i, E,Tran) is a transition system.

• I ⊆ E×E is an irreflexive, symmetric, independence relation satisfying
the following four conditions:

(i) e ∈ E ⇒ ∃s, s′ ∈ S. (s, e, s′) ∈ Tran.

(ii) (s, e, s′) ∈ Tran and (s, e, s′′) ∈ Tran ⇒ s′ = s′′.

(iii) e1Ie2 and (s, e1, s1) ∈ Tran and (s, e2, s2) ∈ Tran
⇒ ∃u. (s1, e2, u) ∈ Tran and (s2, e1, u) ∈ Tran.

(iv) e1Ie2 and (s, e1, s1) ∈ Tran and (s1, e2, u) ∈ Tran
⇒ ∃s2. (s, e2, s2) ∈ Tran and (s2, e1, u) ∈ Tran.

Condition (i) stipulates that every event in E must appear as the label
of some transition in the system. The second condition guarantees that the

5



system is deterministic. The third and fourth conditions express properties of
independence: condition (iii) says that if two independent events are enabled
at a state, then they should be able to occur “together” and reach a common
state; condition (iv) says that if two independent events occur immediately
after one another in the system, it should also be possible for them to occur
with their order interchanged.

Asynchronous transition systems can be equipped with a natural notion
of morphism to form a category [13]. In [13], Winskel and Nielsen establish a
coreflection between a subcategory of asynchronous transition systems, which
we shall call elementary asynchronous transition systems, and a category of
1-safe Petri nets.

Here, we shall restrict our attention to the correspondence between these
two categories at the level of objects. At this level, what the coreflection es-
tablishes is that given an elementary asynchronous transition system, we can
construct a 1-safe Petri net whose case graph is isomorphic to the transition
system we started with.

The extra axioms characterizing elementary asynchronous transition sys-
tems are phrased in terms of generalized regions.

Definition 2.3 (Regions)
Let ATS = (S, i, E, I,Tran) be an asynchronous transition system. A region
of ATS is a pair of functions r = (rS, rE) where

rS : S → {0, 1} and
rE : E → ({0, 1} × {0, 1}) such that

(i) ∀(s, e, s′) ∈ Tran. (rE(e) = (1, 0) or rE(e) = (1, 1)) ⇒ rS(s) = 1.

(ii) ∀(s, e, s′) ∈ Tran. rS(s′) = rS(s) + x2 − x1,
where rE(e) = (x1, x2).

(iii) Let e1, e
′
1 ∈ E and rE(e1) = (x1, x2) and rE(e′1) = (x′

1, x
′
2).

If e1Ie′1 then ((x1 = 1) or (x2 = 1)) ⇒ x′
1 = x′

2 = 0.

For conveniences we shall refer to both components, rS and rE, of a region
r simply as r.

Regions correspond to the places of the 1-safe net that one would like to
associate with an elementary synchronous transition system ATS. Intuitively,
we want to associate with ATS a 1-safe Petri net N such that ATS represents
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the case graph of N . Thus, the states of ATS should correspond to the
reachable markings of N and the events of ATS should correspond to the
transitions of N . Let r be a region in ATS. We specify whether or not the
“place” r is marked at the “marking” s by r(s). For each “transition” e,
r(e) says how r is “connected” to e in the associated net. Conditions (i) and
(ii) in the definition of a region then correspond to the firing rule for Petri
nets. Condition (iii) reflects the intuition that two transitions in a net are
independent provided their neighbourhoods are disjoint.

In [13], regions (or conditions, as they are called there) are described
slightly differently, in terms of subsets of states and transitions. Our formu-
lation is equivalent to the one in [13]. Our regions are generalizations of those
originally used to describe the connection between elementary net systems
and elementary transition systems [7, 10].

We introduce some notational conventions for regions, borrowed from net
theory. Given a region r and an event e, we say that r ∈ •e if r(e) = (1, 0)
or r(e) = (1, 1). Similarly, we say that r ∈ e• if r(e) = (0, 1) or r(e) = (1, 1).
We say that e ∈ •r if r ∈ e• and e ∈ r• if r ∈ •e. Finally, for s ∈ S, we
sometimes say that s ∈ r, or that r holds at s, to indicate that r(s) = 1.

We can now characterize elementary asynchronous transition systems.

Definition 2.4 (Elementary asynchronous transition systems)
Let ATS = (S, i, E, I,Tran) be an asynchronous transition system. ATS is
said to be elementary if it satisfies the following three conditions.

(i) Every state in S is reachable by a finite sequence of transitions
from the initial stats i. (Reachability)

(ii) ∀s, s′ ∈ S. s 
= s′ ⇒ ∃ a region r. r(s) 
= r(s′). (Separation)

(iii) ∀s ∈ S. ∀e ∈ E. If there does not exist s′ such that (s, e, s′) ∈
Tran, then there exists an r ∈ •e such that r(s) = 0. (Enabling)

Call a region r non-trivial iff there exists some e ∈ E such that r ∈ •e
or r ∈ e•. Clearly, for a trivial region r. r(s) = r(s′) for all s, s′ ∈ S.
So, it follows that conditions (ii) and (iii) in the definition of elementary
asynchronous transition systems actually require the existence of a non-trivial
region satisfying the required properties.

As we have mentioned before, given an elementary asynchronous transi-
tion system ATS, we can construct a 1-safe net NATS whose case graph is
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isomorphic to ATS. The transitions of NATS are given by the events of ATS
and the places of NATS are given by the regions of ATS. We shall not go
into the details of the construction of NATS . The interested reader is re-
ferred to [13]. (A similar construction is described for going from elementary
transition systems to elementary net systems in [10]).

A final point that should be emphasized is that so far we have been work-
ing with unlabelled asynchronous transition systems. Thus, the “labels” on
the transitions correspond to the events of the system and are analogous to
the “names” of the transitions of a Petri net. To relate asynchronous tran-
sition systems to, say, process algebras like CCS, we have to add an extra
layer of labelling by means of a labelling function as follows.

Definition 2.5 (Labelled asynchronous transition systems) Let Σ be
an alphabet. A Σ-labelled asynchronous transition system is a pair (ATS , l)
where ATS = (S, i, E, I,Tran) is an asynchronous transition system, and
l : E → Σ is a labelling function.

Thus, for the CCS term a nil‖a nil , we would associate an asynhronous
transition system with two events e1 and e2 which are independent of each
other, both labelled a.

Given a labelled elementary asynchronous transition system, we can easily
transport the labelling to the corresponding net that we construct since we
keep track of the underlying events. In fact, in [13] it is shown that the
coreflection between unlabelled elementary asynchronous transition systems
and 1-safe Petri nets can be lifted in a natural way to a coreflection between
the corresponding categories of labelled systems. We shall not go into the
details here.

3 The language and its operational semantics

The process language we consider is a subset of CCS where choice is always
guarded.

We fix a set of actions Act = Λ ∪ Λ, where Λ is a set of names ranged
over by α, β, . . . and Λ is the corresponding set of co-names {α | α ∈ Λ}. As
usual, we assume that ¯ is a bijection such that α = α for all α ∈ Λ. The
symbol τ /∈ Act denotes the invisible action. We use a, b, c . . . to range over
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Act and µ, ν . . . to range over Act τ = Act ∪ {τ}. We also assume a set V of
process variables and let x, y, . . . range over V .

The set of process expressions Proc is given by the following grammar.

P ::=
∑
i∈I

µiPi | P‖P | P\α | x | rec x.P

where µi ∈ Act τ , α ∈ Λ and x ∈ V .

Thus, the guarded sum
∑

i∈I µiPi represents the process which can ex-
ecute any one of the actions µi (which would be τ) and evolve into the
corresponding process Ei. The indexing set I could, in general, be infinite.
We abbreviate by nil the process consisting of a guarded sum indexed by
the empty set. The normal CCS prefixing operator aP is represented by a
guarded sum over a singleton index set.

The other constructs are standard. P1 ‖ P2 denotes the parallel com-
position of P1 and P2—i.e. the process consisting of P1 and P2 executing
independently, with the possibility of synchronization. P \α denotes the re-
striction of P with respect to α—P\α is the process that behaves like P but
is not permitted to perform visible actions α or α. rec x.P is the process
satisfying the recursive definition x = P . We assume that each occurrence of
x in P is guarded by an action µ ∈ Act τ—in other words, each x in P appears
within a subterm of the form Σi∈I µiPi. We do not consider the relabelling
operator, though it would be incorporated without too much difficulty into
our setup.

We enrich the standard operational semantics of CCS by adding some
information on the labels of the transitions which will permit us to directly
extract the underlying events of the transition system representing the be-
haviour of a CCS term.

We have to depart slightly from the traditional transition system for
CCS, where states are given directly by process expressions. We will need to
identify recursive processes with their one-step unfoldings. So, define ≡ to
be the least congruence with respect to the operators ‖ and \α such that

rec x.P ≡ P [rec x.P/x]

where, as usual, P [rec x.P/x] denotes the term obtained by substituting
rec x.P for x in P . For P ∈ Proc, let [P ] denote the set of process expres-
sions equivalent to P . The states of our transition system will effectively be
equivalence classes of process expressions.
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Our operational semanticsis defined as follows (henceforth we assume that
{0, 1} ∩ Λ = ∅):

P =
∑

i∈I µiPi

µi−−−−→
[P ][Pi]

Pi (Sum)

P0
µ−→u P ′

0 implies P0‖P1

µ−−−→
0u

P ′
0‖P1 (Par)

P1‖P0

µ−−−→
1u

P1‖P ′
0

P0
a−→u P ′

0, P1
a−−−→v P ′

1 implies P0‖P1
τ−−−−−→〈0u, 1v〉 P ′

0‖P ′
1 (Com)

P
µ−−→u P ′ implies P \α

µ−−−→αu
P ′\α, (Res)

µ /∈ {α, α}
P

µ−−→u P ′, P ≡ P1 and

P ′ ≡ P ′
1 implies P1

µ−−→u P ′
1 (Struct)

So, for a basic action performed by a process of the form Σi∈I µiPi, we tag
the transition with the source and target process expressions. We extend the
tag with 0’s and 1’s on the left as we lift the transition through the left and
right branches of a parallel composition With each communication, we keep
track of the tags corresponding to the two components participating in the
communication. By extending the tag to the left with α for each restriction
\α, we keep track of the nesting of restrictions with respect to the overall
structure of the process. This will be crucial in order to be able to determine
whether or not a communication is possible even though the visible actions
which make up the communication are restricted away. Finally, (Struct)
ensures that processes from the same equivalence class are capable of making
exactly the same moves.

The string of 0’s and 1’s which we use to tag a transition when we move
down the left and right branches of a parallel composition essentially pins
down the location where the transition occurs. Locations will provide us with
a natural way of identifying independence between transitions. Our notion
of location is closely related to the static approach advocated by Aceto [1]
for dealing with the idea of locations introduced by Boudol et al [4, 5]. We
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have more to say on the connection between our approach and the approach
of [1, 4, 5] in Section 6.

It is not difficult to establish that the states of the transition system de-
fined by our operational semantics are in fact equivalence classes of process
expressions. Formally, we have the following proposition.

Proposition 3.1

∀P, P ′. ∀µ. ∀u. ( P
µ−→u P ′ iff ∀P1 ≡ P. ∀P ′

1 ≡ p′. P1
µ−→u P ′

1 ).

We conclude this section with a couple of examples. The first example illus-
trates how our semantics distinguishes concurrency from non-deterministic
interleaving. Figure 1 shows the behaviour of the processes a‖b and ab + ba.
Notice that the transition system for a‖b has four transitions, but only two
distinct labels on the transitions. This captures the fact that there are only
two underlying (independent) events, one labelled a and the other labelled
b. In contrast, the process ab + ba has four distinct events.

Figure 1: Concurrency versus non-deterministic interleaving

The next example illustrates how our semantics deals with recursion.
Consider the two processes rec x.ax ‖ rec x.ax and rec x.(ax ‖ ax). The
transition systems corresponding to these processes are shown in Figure 2.

The standard interleaved transition system for the first process would
consist of a single state with a single a-labelled transition looping back to that
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state. On the other hand, our semantics generates two a-labelled transitions,
because, intuitively, the a could occur at two different locations in the process.
However, notice that our semantics still yields a finite transition system for
this term.

Figure 2: Recursion

The standard interleaved transition system for rec x.(ax‖ax) is infinite,
because unfolding the term creates more and more components in paral-
lel. Our semantics also assigns an infinite transition system in such a case.
Notice though, that it still keeps track of the underlying events in a consis-

tent manner. Thus, the two top level a-transtions (labelled
a−−−−−−→

0[aP ][P ]
and

a−−−−−−→
1[aP ][P ]

) correspond to events which are distinct from the a-transitions

arising in the new components generated by the unfolding (for example, the

transition labelled
a−−−−−−→

00[aP ][P ]
).

The two examples in Figure 2 illustrate a general point about our se-
mantics—our semantics will assign a finite transition system to a process P
whenever the standard interleaving semantics would do so. This connection
is made more precise in Section 5.
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4 From CCS to asynchronous transition sys-

tems

We would like to establish that the transition system describing the behaviour
of a process P ∈ Proc is in fact a (labelled) elementary asynchronous transi-
tion system.

To do this, we first show that the extra information that we have in-
troduced into the labels of the transitions when defining the operational se-
mantics of our process language is sufficient to distinguish the events of the
underlying transition system and define a natural notion of independence
between events.

We then prove that we have “enough” regions around to ensure that
the transition system we are considering satisfies the two regional separation
properties which are required for it to be elementary.

We begin by establishing a simple fact about the nature of the labels in
the transition system defined by our operational semantics.

Proposition 4.1 (Syntax of labels)

For any transition P̂
µ−→u P̂ ′, u is of the form

(i) s[P ][P ′], where s ∈ ({0, 1} ∪ Λ)∗, and µ ∈ Act .

(ii) s[P ][P ′], where s ∈ ({0, 1} ∪ Λ)∗, and µ = τ .

(iii) s〈s0[P0][P
′
0], s1[P1][P

′
1]〉, where s, s0, s1 ∈ ({0, 1} ∪ Λ)∗, and µ = τ .

Proof By induction on the length of the derivation of the transition P̂
µ−→u P̂ ′.

✷

Henceforth, for convenience, we shall omit the brackets around the process
expressions in the event labels and simply write sPP ′ instead of s[P ][P ′] and
s〈s0P0P

′
0, s1P1P

′
1〉 instead of s〈s0[P0][P

′
0], s1[P1][P

′
1]〉.

Each distinct label in our transition system will correspond to an event,
as follows.
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Definition 4.2 (Events) Define the set of events Ev as follows:

Ev = {(µ, u) | ∃P, P ′ ∈ Proc. P
µ−→u P ′}

For e ∈ Ev , we can identify Loc(e) ⊆ {0, 1}∗, the location(s) where e occurs,
as follows:

∀e = (µ, u). Loc(e) =

{
{s ↓{0,1}} if u = sPP ′

{ss0 ↓{0,1}, ss1 ↓{0,1}} if u = s〈s0P0P
′
0, s1P1P

′
1〉

where, for s ∈ ({0, 1}∪Λ)∗, s ↓{0,1} denotes the projection of s onto {0, 1}. In
other words, s ↓{0,1} is the subsequence of s obtained by erasing all elements
not in {0, 1}.

From the way we introduce information about locations into our event
labels, it is clear that the location Loc(e) of an event e is a string which
identifies the nested component where e occurs. We can identify a natural
independence relation on locations and lift it to events as follows.

Definition 4.3 (Independence on events)

Define an independence relation on locations Il ⊆ {0, 1}∗×{0, 1}∗ as follows:

∀s, s′ ∈ {0, 1}∗. (s, s′) ∈ Il iff s 
� s′ and s′ 
� s

where � is the prefix relation on strings.

We can extend this to a relation Îl ⊆ ({0, 1} ∪ Λ)∗ × ({0, 1} ∪ Λ)∗ in the
obvious way.

∀ŝ, ŝ′ ∈ ({0, 1} ∪ Λ)∗. (ŝ, ŝ′) ∈ Îl iff (ŝ ↓{0,1}, ŝ
′ ↓{0,1}) ∈ Il

For convenience, we shall write both Îl and Il as Il.

Using Il we can define an independence relation on events I ⊆ Ev × Ev
as follows:

∀e, e′ ∈ Ev . (e, e′) ∈ I iff ∀s ∈ Loc(e). ∀s′ ∈ Loc(e′). (s, s′) ∈ Il

Having defined the set of events Ev and the independence relation I on
events, we have essentially all the data we need to define an asynchronous
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transition system corresponding to the operational behaviour of a process P .
However, we shall hold off defining this transition system for a while and first
analyze the behaviour of P as given by the operational semantics in greater
detail.

To analyze the behaviour of a process term P , we will need to decompose
it into its sequential components.

Definition 4.4 (Component of P at location s)

Comp : ({0, 1} ∪ Λ)∗ × Proc ⇀ Proc

is a (partial) function defined inductively as follows.

Comp(ε, P ) = P, providedP 
= rec x.Px

(where ε is the empty string)
Comp(0s, P0‖P1) = Comp(s, P0)
Comp(1s, P0‖P1) = Comp(s, P1)
Comp(αs, P \α) = Comp(s, P )
Comp(s, rec x.P ) = Comp(s, P [rec x.P/x])

The following observation will prove useful later on.

Proposition 4.5

(i) ∀P ∈ Proc. Comp(ε, P ) ≡ P .

(ii) If P ≡ P ′ and Comp(s, P ) is defined, then Comp(s, P ) ≡
Comp(s, P ′).

(iii) ∀P ∈ Proc. Comp(s1s2, P ) ≡ Comp(s2,Comp(s1, P )).

Proof These follow in a straightforward way from the definition of Comp.

✷

Having identified the sequential components of a process term P , the next
lemma shows that we can use the extra labelling information on each tran-
sition to “project” each move of P down to the actual sequential component
where it occurs.

Lemma 4.6 (Decomposing transitions)
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(i) ∀s. ∀P . If P
µ−−−→

sP1P ′
1

P ′

then P1 =
∑

i∈I µiPi
µj−−−→

P1P ′
1

Pj = P ′
1, where j ∈ I, µj = µ

and Comp(s, P ) ≡ P1, Comp(s, P ′) ≡ P ′
1

and neither µ nor µ appears in s.

(ii) ∀s, s0, s1. ∀P. If P
τ−−−−−−−−−−−→

s〈s0P0P ′
0,s1P1P ′

1〉
P ′

then P0
a−−−→

P0P ′
0

P ′
0, P1

a−−−→
P1P ′

1

P ′
1,

for some a, a ∈ Act ,
Comp(ss0, P ) ≡ P0, Comp(ss0, P

′) ≡ P ′
0,

Comp(ss1, P ) ≡ P1, Comp(ss1, P
′) ≡ P ′

1

and s0 = 0s′0 and s1 = 1s′1
and neither a nor a appears in s0 or s1.

Proof

(i) We proceed by induction on n, the length of the derivation of the

transition P
µ−−−→

sP1P ′
1

P ′.

n = 1: Then P must be of the form
∑

i∈I µiPi with µ = µj for some j ∈ I
and the required result follows trivially.

n > 1: We have to consider the rule applied at the final step of the
derivation of this transition.

In all cases the proof follows in a straightforward manner from the induc-
tion hypothesis and we omit the details.

(ii) We proceed by induction on n = |s|.
n = 0: We then know that the last rule applied to derive the transition

P
τ−−−−−−−−−−−→〈s0P0P ′

0,s1P1P ′
1〉

P ′ which modified its label was (Com).

By the definition of (Com), it follows that P = Pl‖P − r and P ′ = P ′
l‖P ′

r,

with Pl
a−−−→

s′0P0P ′
0

P ′
l and Pr

a−−−→
s′1P1P ′

1

P ′
r, where a ∈ Act and s0 = 0s′0 and s1 = 1s′1.

The rest of the result then follows by appealing to (i).

After the last application of (Com), (Struct) may have been applied one or
more times to obtain the actual transition. However, in applying (Struct), the
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label on the transition is left unchanged. Further, the new process expressions
which are the source and target of the transition are structurally equivalent
to the original ones, so, by Proposition 4.5 the required property continues
to hold.

n > 0: We have to consider the cases where s = 0s′, s = 1s′ and s = αs′

for some α ∈ Λ. All three cases follow in a straightforward manner from the
induction hypothesis. ✷

Just as we can project moves down from a process to its sequential com-
ponents, we can identify when the moves of the sequential components can
be lifted to the whole process. (This is not completely straight-forward. The
move of the sequential component may be forbidden in the overall process
because the component lies within the scope of a restriction. This is where
we crucially use the information in the labels about the nesting of restriction
symbols with respect to the locations).

Lemma 4.7 (Composing transitions)

(i) ∀ s.∀P . If Comp(s, P ) ≡ P1 and P1 =
∑

i∈I µiPi
µj−−−→

P1P ′
1

Pj = P ′
1,

where j ∈ I and neither µj nor µj appears in s

then P
µj−−−→

sP1P ′
1

P ′, where Comp(s, P ′) ≡ P ′
1

(ii) ∀s, s0, s1. ∀P. If Comp(ss0, P ) ≡ P0, Comp(ss1, P ) ≡ P1,

with P0
a−−−→

P0P ′
0

P ′
0, P1

a−−−→
P1P ′

1

P ′
1,

for some a, a ∈ Act, where s0 = s′0, s1 = 1s′1

and neither a nor a appears in s0 or s1.

then P
τ−−−−−−−−−−−→

s〈s0P0P ′
0,s1P1P ′

1〉
P ′ where

Comp(ss0, P
′) ≡ P ′

0 and Comp(ss1, P
′) ≡ P ′

1.

Proof

(i) We proceed by induction on n = |s|, the length of s.

n = 0: Then Comp(ε, P ) ≡ P1 = Σi∈IµiPi. Clearly P
µj−−−→

P1P ′
1

P ′ as re-

quired, where Comp(ε, P ′) ≡ P ′ ≡ P ′
1.
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n > 0: We have three cases to consider—s = 0s′, s = 1s′ and s = αs′, for
some α ∈ Λ.

Let s = 0s′. Then, since Comp(0s′, P ) is defined, P must be equivalent
to an expression of the form Pl‖Pr. Since Comp(0s′, P ) ≡ Comp(s′, Pl) ≡ P1,

by the induction hypothesis, we know that Pl
µj−−−→

s′P1P ′
1

P ′
l for some P ′

l such that

Comp(s′, P ′
l ) ≡ P ′

l . Applying the rule (Par) (and possibly (Struct)), it then

follows that P ≡ Pl‖Pr
µj−−−→

sP1P ′
1

P ′
l ‖Pr ≡ P ′ with Comp(s′, P ′) ≡ P ′

1 by the

definition of Comp.

The case s = 1s′ is symmetric to the case s = 0s′.

The last case is when s = αs′. Then it is clear that P is equivalent to
an expression of the form Pα \α. Since Comp(αs′, P ) ≡ Comp(s′, Pα) ≡
P1, by the induction hypothesis Pα

µj−−−→
s′P1P ′

1

P ′
α with Comp(s′, Pα) ≡ P1 and

Comp(s′, P ′
α) ≡ P ′

1. Since we know that neither µj nor µj appear in αs′, we

can apply (Res) (and p ossibly (Struct)) to obtain P ≡ Pα\α µj−−−→
sP1P ′

1

P ′
α\α ≡ P ′

with Comp(s′, P ′) ≡ P ′
1 by the definition of Comp.

(ii) By induction on n = |s|.
n = 0:

Since s0 = 0s′0 and s1 = 1s′1 and both Comp(s0, P ) and Comp(s1, P )
exist, it must be the case that P is equivalent to an expression of the form
Pl‖Pr.

Then, by appealing to (i) we know that Pl
a−−−−→

s′0P0P ′
0

P ′
l and Pr

a−−−−→
s′1P1P ′

1

P ′
r,

where Comp(s′0, P
′
l ) ≡ P ′

0 and Comp(s′1, P
′
r) ≡ P ′

1. Applying (Com) (and pos-

sibly (Struct)), it then follows that P ≡ Pl ‖Pr
τ−−−−−−−−−−→〈s0P0P ′

0,s1P1P ′
1〉

P ′
l ‖P ′

r ≡ P ′.

From the definition of Comp it is straightforward to check that Comp(s0, P
′) ≡

P ′
0 and Comp(s1, P

′) ≡ P ′
1 as required.

n > 0:

The result follows in a straightforward manner from the induction hy-
pothesis. The proof is similar to the induction step in part (i) of this lemma
and we omit the details. ✷
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From the way we have described the “local” behaviour of processes, it is
natural to expect that the occurrence of an event e should leave sequential
components lying at locations independent of Loc(e) untouched. This is ex-
pressed by the following lemma.

Lemma 4.8

(i) ∀s, s′. ∀P. P
µ−−−→

sP1P ′
1

P ′ and (s, s′) ∈ Il implies that Comp(s′, P ) =

Comp(s′, P ′).

(ii) ∀s, s0, s1, s
′
1. ∀P. P

τ−−−−−−−−→
s〈s0P0P ′

0,s1P1P ′
1〉P

′ and (ss0, s
′) ∈ Il and

(ss1, s
′) ∈ Il implies that Comp(s′, P ) = Comp(s′, P ′).

Proof (i) By induction on n = |s|.
n = 0: Then s = ε and so for any s′, (s, s′) /∈ Il and there is nothing to

prove.

n > 0: First, consider the case where s = 0s1. Then P must be equivalent
to a process of the form Pl ‖Pr.

Then Comp(s, P ) = Comp(s1, Pl). Since the transition must have come

from the left side of a parallel compostion, we have Pl
µ−−−−−−→

s1P1P ′
1

P ′
l . It is also

straightforward to argue that P ′ must be equivalent to P ′
l ‖Pr.

For Comp(s′, P ) to be defined, s′ must either be of the form 0s′1 or 1s′1.

Suppose that s′ = 0s′1. Then, we must have (s1, s
′
1) ∈ Il as well and by the

induction hypothesis, Comp(s′1, Pl) = Comp(s′1, P
′
l ). Since Comp(s′, P ) =

Comp(s′1, Pl) and Comp(s′, P ′) = Comp(s′1, P
′
l ), the result follows.

On the other hand, if s′ = 1s′1, then we know that Comp(s′, P ) =
Comp(s′1, Pr) = Comp(s′, P ′) and we are done.

The case s = 1s1 is symmetric to the case s = 0s1.

The final case is where s = αs1. Then P must be equivalent to a process
of the form Pα\α. It then follows that s′ must also be of the form αs′1 in
order for Comp(s′, P ) to be defined. But then (s1, s

′
1) ∈ Il and the result

follows easily from the induction hypothesis.
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(ii) Again by induction on n = |s|.
This time we have to analyze ss0 and ss1 with respect to s′. The result

follows by a straightforward, though tedious arguments similar to the one
used to prove part (i) of this lemma. ✷

We now have enough results about the operational behaviour of a process
to be able to prove the result we are after. Define the obvious transition
system TSCCS = (S, i, E, I,Tran) where

• S = {[P ] | P ∈ Proc}.

• E = Ev .

• I ⊆ Ev × Ev is given by Definition 4.3.

• Tran ⊆ S × Ev × S = {([P ], (µ, u), [P ′]) | P
µ−→
u

P ′}.

The only problem is that this transition system does not have an initial
state i. It can be checked, however, that the notion of a region does not
depend on the existence of an initial state. So, for convenience, we shall
define regions over this (large) transition system without an initial state,
and then prove that the axioms for elementariness hold for the reachable
part of the transition system for an arbitrary choice of initial state.

In what follows, we shall, for simplicity, denote an element [P ] of S simply
as P .

Definition 4.9 (Regions)

Let s ∈ ({0, 1}∪Λ)∗ and P =
∑

i∈I µiPi. Then R(s, P ) is a pair of functions

R(s, P )S : S → {0, 1} and
R(s, P )E : E → ({0, 1} × {0, 1}) defined as follows:

∀P ′ ∈ S. R(s, P )S(P ′) =

{
1 if Comp(s, P ′) ≡ P
0 otherwise

∀e = (µ, s1P1P
′
1) ∈ E. R(s, P )E(e) = (x, y), where :
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x =

{
1 if s = s1 and P ≡ P1

0 otherwise

y =

{
1 if ∃s′1. s1s

′
1 = s and Comp(s′1, P

′
1) ≡ P

0 otherwise

∀e = (τ, s′〈s0P0P
′
0, s1P1P

′
1〉) ∈ E. R(s, P )E(e) = (x, y), where :

x =




1 if (s = s′s0 and P ≡ P0)
or (s = s′s1 and P ≡ P1)

0 otherwise

y =




1 if ∃s′0. s′s0s
′
0 = s and Comp(s′0, P

′
0) ≡ P

or ∃s′1. s′s1s
′
1 = s and Comp(s′1, P

′
1) ≡ P

0 otherwise

So, a region R(s, P ) holds at a state P ′ iff the component of P ′ at location
s is a sequential component equivalent to P .

For e = (µ, u), R(s, P ) ∈ •e iff e is located at s and e originates from a
sequential component equivalent to P .

To decide when R(s, P ) ∈ e• is a little more complicated. If e = (µ, s1P1P
′
1),

the näıve expectation is that R(s, P ) ∈ e• provided that s = s1 and P ′
1 ≡ P .

However P ′
1 need not be a sequential term, so we actually have to link e

to the sequential components of P ′
1. In other words, we have to check that

Comp(s′1, P
′
1) ≡ P for some s′1. Since s′1 is the “sub-location” of the compo-

nent with respect to s1, the location where e occurs, it must in fact be the
case that s1s

′
1 = s in order that R(s, P ) ∈ e•.

Lemma 4.10 ∀s. ∀P =
∑

i∈I µiPi. R(s, P ) is a region of the (pseudo)-
transition system TSCCS.

Proof We have to establish three facts:

(i) ∀R(s, P ). ∀e, e ∈ E. If (e, e′) ∈ I then R(s, P ) ∈ (•e ∪ e•)
⇒ R(s, P ) /∈ (•e′ ∪ e′•).

(ii) ∀R(s, P ). ∀(P1, (µ, u), P ′
1) ∈ Tran. R(s, P ) ∈ •(µ, u) implies

R(s, P )(P1) = 1.

(iii) ∀R(s, P ). ∀(P1, (µ, u), P ′
1) ∈ Tran. R(s, P )(P ′

1) =
R(s, P )(P1) + y − x, where R(s, P )(µ, u) = (x, y).
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(i) follows in a straightforward manner from the definition of the
independence relation I and the definition of regions.

(ii) follows directly from Lemma 4.6 and the definition of regions.

To establish (iii) we have to consider the various possibilities.
First, assume that the event e is of the form (µ, s2P2P

′
2). In other

words, we are looking at a transition (P1, (µ, s2P2P
′
2), P

′
1) ∈ Tran.

Consider an arbitrary region r = R(s, P ).

(a). Suppose that r ∈ •e and r /∈ e•. Since r ∈ •e, we know
that s = s2 and P ≡ P2. Since r /∈ e•, we know that
Comp(ε, P ′

2) 
≡ P (since s2ε = s). By Lemma 4.6, we
know that Comp(s, P1) = Comp(s2, P1) ≡ P2 ≡ P and
so R(s, P )(P1) = 1. On the other hand, again by Lemma
4.6, Comp(s2, P

′
1) ≡ P ′

2, which implies that Comp(s, P ′
1) =

Comp(s2, P
′
1) 
≡ P . So R(s, P )(P ′

1) = 0 and we are done.

(b). Next, suppose that r /∈ •e and r ∈ e•. Since r ∈ e•, we know
that there exists s′2 such that s2s

′
2 = s and Comp(s′2, P

′
2) ≡

P . To find out whether Comp(s, P ′
1) ≡ P , we can rewrite

this as Comp(s2s
′
2, P

′
1). This is equivalent to Comp(s′ −

2,Comp(s2, P ′
1)). But, by Lemma 4.6, we know that Comp(s2,

P ′
1) ≡ P ′

2 and so we have Comp(s, P ′
1) ≡ Comp(s′2, P

′
2) ≡ P .

So R(s, P )(P ′
1) = 1.

On the other hand, since r /∈ •e, we know that either s 
= s2

or s = s2 and P2 
≡ P . Suppose s = s2. Then Comp(s, P1) ≡
P2 (by Lemma 4.6) and, since P2 
≡ P , we have R(s, P )(P1) =
0. On the other hand, if s 
= s2, we know from the fact that
r ∈ e• that s2 � s—i.e. there exists s′2 such that s2s

′
2 = s.

But we know from Lemma 4.6 that Comp(s2, P1) ≡ P2

and, furthermore, P2 =
∑

i µiPi. Hence Comp(s, P1) ≡
Comp(s′2,Comp(s2, P1)) ≡ Comp(s′2, P2) must be undefined,
because s′2 
= ε. Thus Comp(s, P1) 
≡ P and so R(s, P )(P1) =
0.

(c). Next, suppose that r ∈ •e and r ∈ e•. Then, from argu-
ments similar to the ones used for (a) and (b), it follows
that R(s, P )(P1) = R(s, P )(P ′

1) = 1.

(d). Finally, suppose that r /∈ •e and r /∈ e•.
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If s = s2, by Lemma 4.6, it is easy to see that Comp(s, P1) =
Comp(s2, P1) ≡ P2. So R(s, P )(P1) = 1 iff P ≡ P2 iff
R(s, P ) ∈• e. So, we must have R(s, P )(P1) = 0. Similarly,
we can argue that R(s, P )(P ′

1) = 0.

Next consider the case when s 
= s2.

Suppose that (s, s2) ∈ Il. Then, by Lemma 4.8, it follows
that R(s, P )(P1) = R(s, P )(P ′

1) and we are done.

On the other hand, suppose that s � s2. Then there ex-
ists s′ such that ss′ = s2. We know, by Lemma 4.6, that
Comp(s2, P1) ≡ P2. So, if Comp(s, P1) ≡ P , where P =∑

i µiPi, then we would have Comp(s2, P1) ≡ Comp(s′, Comp
(s, P1)) ≡ Comp(s′, P ) which is undefined, since s′ 
= ε. This
is a contradiction, so we cannot have Comp(s, P1) ≡ P and
therefore R(s, P )(P1) = 0. By a similar argument, it then
follows that R(s, P )(P ′

1) = 0 as well.

The final situation is when s2 � s. Then there exists s′2 such
that s2s

′
2 = s. We know that Comp(s, P1) ≡ Comp(s′2,Comp

(s2, P1)) ≡ Comp(s′2, P2) (by Lemma 4.6.) But, P2 =
∑

i µiPi,
so Comp (s′2, P2) must be undefined for s′2 
= ε and hence
R(s, P )(P1) = 0. To show that R(s, P )(P ′

1) = 0, notice that
Comp(s′2, P

′
2) 
≡ P because R(s, P ) /∈ e•. But Comp(s, P ′

1) =
Comp(s2s

′
2, P

′
1) ≡ Comp(s′2,Comp(s2, P

′
1)) ≡ Comp(s′2, P

′
2),

by Lemma 4.6. So Comp(s, P ′
1) 
≡ P and R(s, P )(P ′

1) = 0.

We have to do a similar analysis in case e corresponds to a synchronization
of the form (τ, s′〈(slPlP

′
l , srPrP

′
r〉). The details are essentially the same and

we omit them.

✷

We now define precisely the asynchronous transition system which we
wish to prove elementary.

Let P̂ be any process expression. Then LTS (P̂ ) = ((SP̂ , [P̂ ], EP̂ , IP̂ ,
Tran P̂ ), lP̂ ) where

• SP̂ = {[P ′] | P ′ ∈ Proc and P ′ is reachable from P̂ in TSCCS}. [P̂ ] is
the initial state.
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• EP̂ = {(µ, u) ∈ Ev | ∃[P ′], [P ′′] ∈ SP̂ . P ′ µ−→
u

P ′′}.

• IP̂ = I ∩ (EP̂ × EP̂ ), where I is the relation defined in Definition 4.3.

• Tran P̂ ⊆ SP̂ × EP̂ × SP̂ = {([P ], (µ, u), |P ′]) | P
µ−→
u

P ′}

• lP̂ : EP̂ → Act τ is given by lP̂ (µ, u) = µ.

It is straightforward to verify that for each P̂ , LTS (P̂ ) is in fact a labelled
synchronous transition system. What we need to show is that it is elementary.

In what follows, fix a process expression P̂ and the corresponding tran-
sition system LTS (P̂ ). For simplicity, we shall refer to the states [P ] of
LTS (P̂ ) simply as P .

We first have the following simple proposition, which we state without a
proof.

Proposition 4.12 Let R(s, P ) be a region of TSCCS as defined above. Then
R(s, P ) is a (possibly trivial) region of LTS (P̂ ).

To establish that the asynchronous transition system LTS (P̂ ) that we
have defined is elementary, we have to establish that the two regional axioms
hold with respect to regions which are non-trivial when restricted to LTS (P̂ ).

Lemma 4.12 (Separation by regions)
Let LTS (P̂ ) = ((SP̂ , [P̂ ], EP̂ , IP̂ ,Tran P̂ ), lP̂ ), ∀P1, P2 ∈ SP̂ . P1 
≡ P2 implies

that there exist s and P such that R(s, P ) is a non-trivial region of LTS (P̂ )
and either P1 ∈ R(s, P ) and P2 /∈ R(s, P ) or P1 /∈ R(s, P ) and P2 ∈ R(s, P ).

Proof It is fairly obvious from our definition of Comp that if P1 
≡ P2

then there is some s for which Comp(s, P1) 
≡ Comp(s, P2). So there is no
problem finding a region R(s, P ) which separates P1 and P2.

What we have to argue is that the region separating P1 and P2 is non-
trivial. However, notice that the previous lemma about regions applies to all
regions. Consider any trivial region R(s′, P ′). If R(s′, P ′) holds somewhere
in LTS (P̂ ), R(s′, P ′) can cease to hold only by the occurrence of some event
e such that R(s′, P ′) ∈ •e. Similarly, R(s′, P ′) could have begun to hold only
after the occurrence of some event e such that R(s′, P ′) ∈ e•. Since R(s′, P ′)
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was assumed to be trivial, it therefore follows that it either holds for all states
in SP̂ or fails to hold for all states in SP̂ .

In other words, if Comp(s′, P1) ≡ P ′, but R(s′, P ′) is a trivial region, we
know that Comp(s′, P2) ≡ P ′ as well and so this is not the component on
which P1 and P2 differ. Thus, any component on which P1 and P2 differ must
correspond to a non-trivial region, and we are done. ✷

Lemma 4.13 (Enabling) Let LTS (P̂ ) = ((SP̂ , [P̂ ], EP̂ , LP̂ ,Tran P̂ ), lP̂ ).
∀P ∈ SP̂ . ∀(µ, u) ∈ EP̂ . If there does not exist a P ′ such that (P, (µ, u), P ′) ∈
Tran P̂ , then there is some non-trivial region R(s′, P ′) ∈ •(µ, u) such that
P /∈ R(s′, P ′).

Proof First consider the case where e = (µ, u) is of the form (µ, s1P1P
′
1).

Then, since e must occur somewhere in the transition system, we know that

there exists P2 and P ′
2 such that P2

µ−−−→
sP1P ′

1

P ′
2. So, by the definition of a region,

R(s1, P1) ∈ •e. Further, by Lemma 4.6, neither µ nor µ appears in s1.

Now, if P ∈ R(s1, P1), then, by Lemma 4.7, there must exist a P ′ such

that P
µ−−−→

sP1P ′
1

P ′. Since we have assumed that there is no
µ−−−→

sP1P ′
1

move leading

out of P , we can conclude that P /∈ R(s1, P1) and we are done.

The situation when e is of the form (τ, s〈s0P0P
′
0, s1P1P

′
1〉) is handled sim-

ilarly, appealing to part (ii) of Lemmas 4.6 and 4.7. ✷

Theorem 4.14 ∀P ∈ Proc. LTS (P ) is an elementary asynchronous transi-
tion system.

5 Relationships to other approaches

We now show how the operational semantics we have provided for this lan-
guage relates to two other approaches for providing a semantics for CCS.

The first connection we draw is with respect to the standard interleaving
transition system for CCS, as defined by Milner in [9]. We “project” down
from the asynchronous transition system LTS (P ) we assign to a term P
to obtain a corresponding labelled sequential transition system TS (P ) by
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forgetting the extra information about the events. We then exhibit a strong
relationship between TS (P ) and the transition system for P which would be
generated by the semantics in [9].

The other comparison is with respect to the way Winskel and Nielsen
define a denotational semantics for a process language in [13]. They provide
a semantics in the category of asynchronous transition systems, where the
operators of the process language are interpreted as appropriate categorical
constructions. We will sketch their approach briefly, without going into too
much technical detail, and then describe how the asynchronous transition
systems they assign denotationally compare to the asynchronous transition
systems we assign operationally.

We begin by relating our semantics to the standard interleaving seman-
tics for CCS. Recall the definition of LTS (P ) for a term P . LTS (P ) =
((SP , [P ], EP , IP ,TranP ), lP ) where

• SP = {[P ′] | P ′ ∈ Proc and P ′ is reachable from P in TSCCS}. [P ] is
the initial state.

• EP = {(µ, u) ∈ Ev | ∃[P ′], [P ′′] ∈ SP . P ′ µ−→
u

P ′′}.

• IP = I ∩ (EP × EP ), where I is the relation defined in Definition 4.3.

• TranP ⊆ SP × EP × SP = {([P ], (µ, u), |P ′]) | P
µ−→
u

P ′}

• lP : EP → Act τ is given by lP (µ, u) = µ.

We extract a labelled (sequential) transition system TS (P ) from LTS (P )
in the obvious way, by forgetting the extra information in the labels of the
events.

Definition 5.1 Let LTS (P ) = ((SP , [P ], EP , IP ,TranP ), lP ). Then, TSP =
(S ′

P , [P ], E ′
P , IP ,Tran ′

P ) where

• S ′
P = SP with [P ] as the initial state.

• E ′
P = {µ | (µ, u) ∈ EP}.

• Tran ′
P ⊆ S ′

P × E ′
P × S ′

P = {([P ], µ, [P ′]) | ([P ], (µ, u), [P ′]) ∈ TranP}
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Let Seq(T ) be the standard sequential transition system for a process
term P ∈ Proc. Essentially, this is the transition system obtained using our
rules (Sum), (Par), (Com) and (Res), ignoring the labels “below the arrow”,
and adding in place of (Struct) the following rule.

P [rec x.P/x]
µ−−−→P ′ implies rec x.P

µ−−−→P ′ (Rec)

To relate these two approaches formally, we define a folding map on tran-
sition systems as follows.

Definition 5.2 (Foldings) Let TS k = (Sk, ik, Ek,Trank), k = 1, 2, be two
labelled sequential transition systems. Then, a folding from TS 1 onto TS 2 a
pair of functions f = (fS, fE) where
fS : S1 → S2 and
fE : E1 → E2 such that:

(i) fS, is onto, with fS(i1) = i2.

(ii) ∀(s1, e1, s
′
1) ∈ Tran1. (fS(s1), fE(e1), fS(s′1)) ∈ Tran2.

(iii) ∀(fS(s1), e2, s
′
2) ∈ Tran2. ∃(s1, e1, s

′
1) ∈ Tran1 such that

fE(e1) = e2 and fS(s′1) = s′2.

A similar notion has been defined in [6] where it is called a transition pre-
serving homomorphism.

If fE = id , the identity function, then a folding corresponds to a special
type of a bisimulation, where the second system is, in general, a smaller,
more compact representation of the behaviour described by the first system.

Theorem 5.3 There is a folding from Seq(P ) onto TS (P ) whose map on
the events is the identity and whose map on states takes a process term P to
its equivalence class [P ].

Proof The proof follows by induction on the structure of P and we omit
the details. ✷

So, we have shown that the asynchronous transition system we generate
is, in some sense, a “practical” transition system. It is finite whenever the
normal interleaved transition system is finite and hi, in fact, slightly fewer
states in general.
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However, as we have pointed out in Section 3, the asynchronous transition
system we associate with a process P ∈ Proc could have more transitions
than the standard interleaved transtion system for P . For instance, we have
shown that P = rec x.ax‖rec x.ax would generate two a-labelled transitions
in our set up whereas it would have only one a-labelled transition in the
standard approach. However, when we project these two a transitions down
to TS (P ), we only get a single a transition because sequential transition
systems are extensional—there cannot be two different transitions with the
same label connecting the same pair of states. It is not difficult to see,
though, that the set of transitions that we add at any state in going from
Seq(P ) to LTS (P ) is always finite.

This is also a good place to discuss why we identify states in our tran-
sition system as equivalence classes [P ] rather than just process expressions
P . The natural way to work directly with process expressions as states in
our framework would be to extend the rule (Rec) with extra labels on the
transitions as follows.

P [rec x.P \x]
µ−−−→
u

P ′ implies rec x.P
µ−−−→
u

P ′ (Rec’)

However, since the moves of rec x.P are then exactly the same as those
of P [rec x.P/x], the asynchronous transition we end up with is no longer
elementary, in general. For instance, the transition system corresponding
to the term a rec x.ax would have two states, a rec x.ax and rec x.ax.
There would be a transition from a rec x.ax to rec x.ax via the event
(a, [a rec x.ax][rec x.ax]) and a transition via the same event looping from
the state rec x.ax back to itself. It is not difficult to show that this does not
correspond to an elementary asynchronous transition system.

Next, we describe, somewhat informally, the approach taken by Winskel
and Nielsen in [13] to provide a denotational semantics for CCS-like languages
in terms of asynchronous transition systems.

Let the “basic” operators which are used to build up process terms be
prefixing (aP ), choice (+), parallel composition (‖), restriction (\α) and
recursion (rec x.P ).

Assuming inductively that we have built up an synchronous transition
system Den(P ) denoting a term P , the transition system corresponding to
aP is obtained by adjoining a new initial state to Den(P ) and adding a new
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event labelled a which connects the new initial state to the initial state of
Den(P ).

P1 ‖P2 is modelled by a version the categorical product of Den(P1) and
Den(P2). This produces a transition system which is essentially the same as
the one our operational semantics produces for P1 ‖P2.

Restriction is also handled directly in a categorical framework, using
Cartesian liftings and fibrations, which essentially achieve the same effect
as one would exnect intuitively.

The first major difference between the denotational approach and our
operational appoach arises in the treatment of +. The denotational tran-
sition system corresponding to the term P1 + P2 is obtained by taking the
categorical coproduct of Den(P1) and Den(P2). This operation essentially
consists of taking disjoint copies of Den(P1) and Den(P2) and fusing together
their initial states. This means that the denotation of the term a nil + a nil
would be a transition system with two distinct a-labelled transitions leading
from the initial state. On the other hand, our operational semantics would
generate only a single event for this process. Thus, in general, the denota-
tional treatment of + would give rise to “wider” transition systems than our
operational semantics.

The other major difference is in the treatment of recursion. In the deno-
tational approach, a term of the form rec x.P is always completely unfolded.
Thus any process of this form gives rise to an infinite transition system.
On the other hand, terms of the form rec x.ax would produce finite cyclic
transition systems according to our operational semantics.

Thus, the denotation of a term P would, in general, be an “unfolded”
version of the transition system that our operational semantics would gener-
ate. The “unfolding” would be both “horizontal” (because of the treatment
of +) and “vertical” (because of the treatment of recursion).

To relate these two approaches, we extend our definition of a folding to
asynchronous transition systems as follows.

Definition 5.4 (Strong foldings) Let (ATS 1, l1) and (ATS 2, l2) be two
σ-labelled transition systems, where ATS k = (Sk, ik, Ek, Ik,Trank), k = 1, 2.
Then, a strong folding from (ATS 1, l1) onto (ATS 2, l2) is a pair of functions
f = (fS, fE) where
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fS : S1 → S2 and
fE : E1 → E2 such that:

(i) f is a folding from TS1(S1, i1, E1,Tran1) onto
TS 2 = (S2, i2, E2,Tran2).

(ii) ∀e1 ∈ E1. ∀e2 ∈ E2. e2 = fE(e1) implies l2(e2) = l1(e1).

(iii) ∀e1, e
′
1 ∈ E1. (e1, e

′
1) ∈ I1 implies (fE(e1, fE(e′1)) ∈ I2.

(iv) ∀(fS(s1), e
′
2, s

′
2), (fS(s1), e

′′
2, s

′′
2) ∈ Tran2. (e′2, e

′′
2) ∈ I2 implies

∃(s1, e
′
1, s

′
1), (s1), e

′′
1, s

′′
1) ∈ Tran1 such that fE(e′1) = e′2,

fS(s′1) = s′2, fE(e′′1) = e′′2, fS(s′′1) = s′′2 and (e′1, e
′′
1) ∈ I1.

The extra requirements on a strong folding are that the map on the
underlying events preserve labels and the independence relation. The last
clause adds the requirement that concurrent steps in the second system be
pulled back to concurrent steps in the first system. This is a bit weaker
than saying that every pair of independent events in the second system has
a pair of independent events in the first system as its pre-image via fE,
because we could have “unused” independences in the second system which
never actually give rise to a concurrent step. (For instance, in the term
a(b‖ c) + d(e‖ f), the event labelled b and the event labelled f would be
independent by our operational semantics, though there is no state where
they are simultaneously enabled and, in fact, no run where they both occur).

For P ∈ Proc let Den(P ) be the denotational transition system corre-
sponding to a term (as defined in [13]) and let LTS (P ) be the asynchronous
transition system corresponding to P defined in the previous section We then
have the following result.

Theorem 5.5 There exists a folding from Den(P ) onto LTS (P ).

Proof We shall not go into the details, because it will also involve describing
the denotational semantics more precisely. The proof is fairly straightfor-
ward, by induction on the structure of the term P . ✷
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6 Bisimulations on asynchronous transition

systems

We now examine the question of how to define a sensible notion of bisimu-
lation on labelled asynchronous transition systems which respects the inde-
pendence relation on the underlying events.

As we had mentioned earlier, asynchronous transition systems can be
equipped with a natural notion of morphism [13]. These morphisms map
states and events in such a way that independence is preserved globally.

Though transition system morphisms preserve behaviour, they appear to
be unsatisfactory for defining a natural notion of bisimulation. The main
problem is the stipulation that independence must be preserved globally.

Intuitively, a bisimulation describes how systems match each other’s be-
haviour along individual runs. In the conventional framework, the existence
of a bisimulation between two systems ensures that the branching behaviour
of each system can be faithfully simulated by the other along each run. When
extending this to asynchronous transition systems, it is natural to further re-
quire that the independence relation be preserved by the bisimulation along
each run, but not necessarily globally.

To illustrate this point, consider the two CCS expressions (b + α‖αb) \
α and b + τb. In the first process, the two b moves would be considered
independent in our set up, because they appear on different sides of the ‖
operator. However, it is easy to see that in any run of the first process,
exactly one of the two b moves will occur. So, it seems reasonable to expect
that these two processes should be bisimilar, though the second process has
no independent events.

Thus one needs a way of relating two systems along each run. Unfortu-
nately, this means that it no longer suffices to present the bisimulation in
terms of a relation on states—we have also to “remember” how we reached
the state. In particular, we need to remember the independences we have
observed so far. This ensures that in extending the run from that state, we
can remain consistent with the choices already made while relating events
along this run.

One way to formalize this intuition is to follow the approach Aceto uses
to characterize a static version of location equivalence [1].
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For the next few definitions, fix a pair of labelled asynchronous transi-
tion systems (ATS 1, l1) and (ATS 2, l2), where ATS k = (Sk, ik, Ek, Ik,Trank),
k = 1, 2.

Definition 6.1 A relation ϕ ⊆ E1 × E2 is lI-consistent provided

• ∀(e1, e2) ∈ ϕ. l1(e1) = l2(e2).

• ∀e1, e
′
1 ∈ E1. ∀e2, e

′
2 ∈ E2. (e1, e2) ∈ ϕ and (e′1, e

′
2) ∈ ϕ ⇒

e1I1e
′
1 iff e2I2e

′
2.

The first condition says that the labels on the related events must match,
whereas the second condition says that the independence relation must be
preserved by ϕ in a strong way. In other words, ϕ is consistent with respect
to both l and I.

Let Φ denote the family of all lI-consistent relations ϕ ⊆ E1 × E2.

We now wish to define a notion of equivalence bred on these lI-consistent
relations between events. The idea is straightforward—as we match events
from the two systems along a given run, we have to ensure at each stage
that the events we have related constitute an lI-consistent relation. To make
this a bisimulation, we have to further ensure that at each stage the choices
available to each process can be matched by the other process in such a way
that the current lI-consistent relation extends to a larger one.

To achieve this, we associate with each ϕ ∈ Φ, a relation ∼ϕ⊂ S1 × S2.
s1 ∼ϕ s2 is to be read as follows; if we reach s1 in TS 1 and s2 in TS 2 during
a simulation along which we have associated events by ϕ then it is possible
to extend the simulation along all possible choices of transitions at s1 and s2

in a manner consistent with ϕ.

Formally, we have the following definition:

Definition 6.2 ∼Φ= {∼ϕ| ϕ ∈ Φ} is the largest Φ-indexed family of sym-
metric relations on S1 × S2 satisfying:

If s1 ∼ϕ s2 then ∀(s1, e1, s
′
1) ∈ Tran1. ∃(s2, e2, s

′
2) ∈ Tran2 such that

ϕ ∪ {(e1, e2)} ∈ Φ and s′1 ∼ϕ∪{(e1,e2)} s′2.

Two labelled asynchronous initial states are related by the transition sys-
tems are bisimilar if their empty relation between events.

32



Definition 6.3 ATS 1 ∼ ATS 2 iff i1 ∼∅ i2.

It is easy to verify the following.

Proposition 6.4 ∼ is an equivalence relation on labelled asynchronous tran-
sition systems.

Example 6.1 Let P1 = (b + α‖αb) \ α and P2 = b + τb. Then LTS (P1) ∼
LTS (P2), as shown below.

LTS (P1) has three events, e1 = (b, α0[b + α][nil ]), e′2 = (τ, α〈0[b + α][nil ],
1[αb][b])), and e′3 = (b, α1[b][nil ].

LTS (P2) also has three events, e′1 = (b, [b + τb][nil ]), e′2 = (τ, [b + τb][b]),
and e′3 = (b, [b][nil ]),

We can define

• ∼∅= {(P1, P2), (P2, P1)}.

• ∼{(e1,e′1)}= {((nil ‖αb)\α, nil), (nil , (nil ‖αb)\α)}.

• ∼{(e2,e′2)}= {((nil ‖b)\α, b), (b, (nil ‖b)\α)}.

• ∼{(e2,e′2),(e3,e′3)}= {((nil ‖nil)\α, nil), (nil , (nil ‖nil)\α)}.

Example 6.2 Let P1 = (aαc ‖ bαd) \α and P2 = (aαd ‖ bαc) \α. Then
LTS (P1) 
∼ LTS (P2).

Both processes are deterministic, so they both have only one possible run.
Since each event has a unique label in each process, along this run we will have
to relate, for instance, the a and c labelled events in P1 to the corresponding
a and c events in P2. However, these events are not independent in P1

whereas they are independent in P2. So, there exists no lI-consistent relation
corresponding to the (unique) maximal run of P1 and P2.

The equivalence we have described applies in general to all labelled asyn-
chronous transition systems. When restricted to the transition systems we
construct for CCS terms, it amounts to defining a notion of strong bisimula-
tion over terms in Proc. We can extend the definition smoothly to deal with
weak bisimulation over CCS terms as follows.
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First, given an Act τ -labelled synchronous transition system (ATS , l),
where ATS = (S, i, E, I,Tran), define the weak transistion relation ⇒⊆
S × E × S in the obvious way.

⇒= {(s, e, s′) | ∃s0, s1, . . . , sn. ∃e0, e1, . . . , en−1. s = s0, s′ = sn

and ∀0 ≤ i < n. (si, ei, si+1)
such that e = ej, 0 ≤ j < n, where l(e) 
= τ
and ∀0 ≤ i < n. i 
= j ⇒ l(ei) = τ}

We need to extend ⇒ to describe purely internal transitions between
states. In this framework, it is convenient to construct a second relation
❀⊆ S × S such that

❀= {(s, s′) | s = s′ or ∃s0, s1, . . . , sn. ∃e0, e1, . . . , en−1. s = s0, s′ = sn

and ∀0 ≤ i < n. (si, ei, si+1), where l(ei) = τ}
Now consider a pair of Act τ -labelled asynchronous transition systems

(ATS 1, l1) and (ATS 2, l2), where ATS k = (Sk, ik, Ek, IkTrank), k = 1, 2,
with weak transition relations ⇒k and ❀k, k = 1, 2 respectively.

We retain the notion of an lI-consistent relation as before. We can now
define a weak notion of equivalence � between transition systems. We first
begin with the Φ-indexed versions of �.

Definition 6.5 �Φ= {�ϕ| ϕ ∈ Φ} is the largest Φ-indexed family of sym-
metric relations on S1 × S2 satisfying:

If s1 �ϕ s2 then

• ∀(s1, e1, s
′
1) ∈ ⇒1 . ∃(s2, e2, s

′
2) ∈ ⇒2 such that ϕ ∪ {(e1, e2)} ∈ Φ and

s′1 �ϕ∪{e1,e2)} s′2.

• ∀(s1, s2) ∈ ❀1 . ∃(s2, s
′
2) ∈ ❀2 such that s′1 �ϕ s′2.

Once again we say that ATS 1 � ATS 2 iff i1 �∅ i2. It can be verified
that � is an equivalence relation on Act τ -labelled asynchronous transition
systems.

The induced weak equivalence � on process terms is closely related to
the notion of location equivalence defined by Boudol et al [5]. Aceto [1] has
provided an alternative characterization of this equivalence for a sublanguage
where processes are viewed as “networks” of sequential components—i.e. par-
allel composition is restricted to the top level.
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It is not hard to see that by restricting our language to a language like
the one Aceto considers, our definition of � coincides with his notion of lo-
cation equivalence, and hence, with the notion of Boudol et al. In fact, we
believe that this is true for the entire language we consider. Let ≈l denote
the location equivalence of [5].

Conjecture ∀P, P ′ ∈ Proc. LTS (P ) � LTS (P ′) iff P ≈l P ′.

7 Discussion

In this paper, we have described how to provide a semantics for CCS in
terms of elementary asynchronous transition systems. By appealing to the
coreflection between this class of transition systems and 1-safe Petri nets
established in [13], we obtain as a corollary a Petri net semantics for the
language we consider.

Admittedly, the language we consider is not full CCS. However, as we have
already mentioned, we believe that the language studied here is a powerful
and useful subset of CCS which is sufficient for specifying most concurrent
systems of interest.

As we had pointed out in the Introduction, many other people have pro-
vided non-interleaved semantics for CCS [3, 6, 8, 11]. Our claim is that our
semantics is simpler and more natural than those described elsewhere. To a
large part, this is because all these approaches deal with full CCS, whereas
we avoid having to deal with processes of the form P + (Q‖R), which are
the main source of complications for these approaches. However, we feel that
the benefits that we obtain by restricting the syntax more than justify the
choice we have made.

For one, we use a very straightforward extension of the standard opera-
tional semantics. To actually read off the events of the transition system and
the independence relation on the events from our operational semantics is
trivial. Having proved here once and for all that the resulting asynchronous
transition system is elementary, we can be sure that we are working with a
“nice” object. So, for instance, feeding our operational description of a term
into a verification tool should be no more difficult than feeding the standard
interleaved description of the term.
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In contrast, using “proved transitions” [3] or working with an algebra of
transitions [8] always requires a second level of rezoning about the transitions
to recover the underlying events of the system.

In the approaches which directly yield a Petri net semantics [3, 6, 11], for
every term P one has to first construct a “concrete” implementation of a net
describing the behaviour of P and then work back to recover the global states,
because one typically needs to reason about the global states of the system.
Instead, we directly provide the global states and, through the independence
relation, provide a means of recovering the lock states if they are required.

Another interesting feature of the semantics we describe here is that the
independence relation on events directly reflects the idea of events occurring
at independent locations. This seems to be a very natural way to think
about independence. We feel that it would be difficult to extend this idea in
a straightforward way to deal with the full language.

We also believe that our result establishing that the normal interleaved
transition system for a term can be folded onto our asynchronous transition
system is quite valuable. This means that our approach yields a tractable sys-
tem whenever the conventional approach would and, once again, has a bear-
ing on the possibilities of mechanically verifying properties of such systems.
(In [6], a similar result is proved, but in the opposite direction—i.e. they
show that the non-interleaved transition system they define can be folded
into the standard interleaved one).

In this paper, we have also introduced a notion of bisimulation over la-
belled asynchronous transition systems which preserves independence in a
fairly natural way. This permits us to equip our language with a simple
notion of equivalence which respects the non-interleaved nature of our se-
mantics and yet abstracts away from the concrete syntax. This is a feature
which has been lacking in earlier approaches to providing a non-interleaved
semantics for CCS.

It is clear that there is a close connection between the equivalence we
define and the location equivalence of [5]. A problem with the equivalence
defined in [5] is that it is based on a transition system which is infinitely
branching, even for the simplest of process terms. If our conjecture that
the two equivalences coincide is true, then our definition would provide an
effective way of checking location equivalence for a very large class of CCS
processes.
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An issue which is yet to be resolved is how best to define bisimulations
over synchronous transition systems. We believe that our approach refleets
the right intuition. However, we would be happier with a more “global”
definition of how to relate two systems, rather than the incremental definition
we have provided here, which makes is rather clumsy to actually present a
bisimulation (as in Example 6.1).
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