
Towards a Modular Analysis of Coloured Petri
Nets

Søren Christensen
Department of Computer Science, Aarhus University

Ny Munkegade, Bldg. 540

DK-8000 AARHUS C, Denmark

Phone: +45 86 12 71 88

Telefax: +45 86 13 57 25

E-mail: schristensen@daimi.aau.dk

Laure Petrucci
CEDRIC-IIE

18, Allée Jean Rostand

F-91025 EVRY Cedex, France

Phone: +33 (1) 60 77 97 40

Telefax: +33 (1) 60 77 96 99

E-mail: berthe@cnam.cnam.fr

June 1993

Abstract

The use of different High-level Petri net formalisms has made it
possible to create Petri net models of large systems. Even though
the use of such models allows the modeller to create compact repre-
sentations of data and action, the size of models has been increasing.
A large model can make it difficult to handle the complexity of the
modelling as well as the analysis of the total model. It is well-known

1



that the use of a modular approach to modelling has a lot of advan-
tages. A modular approach allows the modeller to consider different
parts of the system independently of one another and also to reuse the
same module in different systems. A modular approach to analysis is
also attractive. It often dramatically decreases the complexity of the
analysis task.

In this paper, we present modular CP -nets. They are not intended
to be used for practical modelling purposes, but they constitute a for-
mal and general framework for discussing different ways of compos-
ing individual CP -nets called modules. Modular CP -nets allow us to
study composition without restricting the structure of the individual
modules. Modular CP -nets are quite simple and do not include syn-
tactical sugar which is convenient and often necessary when modelling
in practice. Instead, they have only a few but very general composition
constructs.

The main result of the paper is the possibility of composing anal-
ysis results of the individual modules, in order to obtain results which
are valid for the entire modular CP -net. For this purpose, we in-
troduce place invariants at the level of modular CP -nets and we show
how such place invariants can be obtained from those of the individual
modules.

The reader of this paper is assumed to be familiar with the basic
defmitions of CP -nets and the concept of place invariants. But it is
not necessary to be familiar with hierarchical CP -nets.

1 Introduction

The use of High-Level Petri Nets, e.g., Predicate/Transition Nets and CP -
nets, has been of great importance for the use of Petri Nets to model real
systems. But it turns out that it is often necessary and convenient to separate
Petri Nets into a number of related descriptions. The work on hierarchical
CP -nets ([HJS90], [Jen91]) shows how a set of hierarchy concepts can be
used to relate a set of CP -nets in a formal way. The purpose of hierarchical
CP -nets has been to give the modeller a set of facilities which can ease the
handling of large models. In contrast to this, we define modular CP -nets
in order to be able to discuss composition concepts for CP -nets in a concise
way. Reentrant nets, presented in [Che91], are coloured nets with a set of
input places and a disjoint set of output places. Reentrant nets are meant to

2



represent a protocol phase. Some equivalences allow to use different reentrant
nets (with a same interface) as part of a model.

The reasons for defining modular CP -nets instead of using an existing
model, e.g., hierarchical CP -nets, are twofold. First of all, we want a sim-
plified model which does not include all the concepts which are useful when
modelling with CP -nets. Instead, we only include the basic primitives needed
in the discussion of CP -nets analysis. Secondly, we want to discuss compo-
sition concepts which are based both on the sharing of places and on the
sharing of transitions. However, as explained below, no existing model has a
formal definition and allows both relations between CP -nets.

Modular CP -nets consist of sets of formally related CP -nets, each CP -net
is called a module. We consider two sorts of relations between modules which
are quite natural and often used. The first construct can be described as a
set of places sharing the same tokens. When a transition adds (respectively
removes) a token to one of the places in me set, it is added to (respectively
removed from) all the places in me set. We call this place fusion. For the
second construct, we fuse sets of transitions. All transitions of a set occur
as one indivisible action sharing the values assigned by a common binding.
Place fusion and transition fusion were both introduced in [HJS90], but the
formal definition of hierarchical CP -nets in [Jen91] only uses constructs based
on place fusion. A formal model with constructs based on transition fusion
can be found in [CD92]. The paper only considers place invariant analysis.
An overview of different analysis methods of CP -nets can be found in [Jen92].

The rest of the paper is organized as follows:

In section 2, we informally introduce the notion of module CP -nets and
the concepts of place sharing and transition sharing. An example shows the
intuition behind place sharing and transition sharing.

In section 3 we explain how the analysis results for modules can be ex-
ploited to obtain results which apply to the entire module CP -net. The
analysis method considered is place invariants calculus, which is applied to
the examples of section 2.

In section 4, we introduce the formal definition of modular CP -nets and
their behaviour, i.e., we define the enabling and occurrence rules. We also
prove that each modular CP -net has a behaviorally equivalent CP -net.

Finally, section 5 contains the formal definitions of place invariants and

3



place flows for modular CP -nets. We show that place invariants of module
CP -nets correspond to place invariants of the equivalent CP -net. The main
result is a constructive proof of how place flows of the individual modules
can be combined to place flows of me module CP -net.

2 Modular CP-nets

In this section, we present two different ways of modelling a problem, one
using place sharing, and the other using transition sharing. The example
described is a variation of the resource allocation system from [Jen91]. In
the next section, the resource allocation examples are used to show how
analysis results of modules can be composed. This means that properties of
a modular CP -net can be proved by means of formal analysis of the individual
modules.

The resource allocation example has a set of processes which share a com-
mon pool of resources. There are two different kinds of processes, called p-
processes and q-processes, and three different kinds of resources: r-resources,
s-resources and t-resources. Each process is cyclic and during the individual
parts of its cycle, the process needs to have exclusive access to a varying
amount of the resources. For each process, we have an integer value count-
ing the number of process cycles. We use the following definition of colours:
P = {p, q}, I = Integer, U = P ×I and E = {e}. We use a variable x of type
P and a variable i of type I. A multi-set containing two p tokens with count
5 and one q token with count 3 will be denoted by 2′(p, 5) + 1′(q, 3). The
p-processes can be in four different states, while q-processes can be in five
different states. In the initial state, there are 2 p-processes and 3 q-processes,
plus 1 r-resource, 3 s-resources and 2 t-resources. The CP -net is presented
in Fig. 1. It is so small that we would not decompose it in practice, but it
can still be used to introduce the basic concepts of modular CP -nets.

4



Figure 1: Example of CP -net.

A first possibility consists in modelling separately the p-processes and the
q-processes. This leads to two modules, as shown in Fig. 2, each of them
describing the interaction between processes of one kind and the resources.
The modules are composed by fusion of the two shared resource places, S
and T . In Fig. 2, the places to be fused together have the same name.
In a practical modelling tool we would need more elaborated techniques to
identify members of a given fusion set. All places in a place fusion set must
have the same colour, and the same initial marking.

You can view all places of a place fusion set as being representatives of
the same underlying place. This means that they share the same marking:

5



when a token is added to a place which belongs to a place fusion set, all
places of the place fusion set will have the same token added. When a token
is removed from a place which belongs to a place fusion set, all places of the
place fusion set will have the same token removed. The fusion of the resolve
places, S and T , ensures that the modular CP -net of Fig. 2 has exactly the
sue behaviour as the CP -net of Fig. 1.

Figure 2: Modular CP -net with 2 modules and 2 place fusion sets with 2
members each.

6



Figure 3: Modular CP -net with 3 modules and 9 transition fusion sets with
2 members each.

Another way of modelling the resource allocation system is to separate the
cycle of p-processes, the one of q-processes and the use of resources, as shown
in Fig 3. The three modules share transitions, corresponding to synchronous
actions. Transitions having the same names belong to the same fusion set.
This means that we have 9 transition fusion sets with 2 members each. Each
transition of a transition fusion set describes a part of a more complex action
and all parts must occur together. We say that a transition fusion set is
enabled if we can specify a set of bindings such that all transitions in the
fusion set are enabled for this set of bindings. A variable may be shared by

7



several of the transitions and will be bound to the same value for all of these.
The change produced by the occurrence of a transition fusion set for a given
binding is the sum of changes produced by all the transitions of the fusion
set.

A transition can describe an action which is a basic part of a number of
independent actions. This means that a transition can be a member of several
transition fusion sets. Since the behaviour of the three transitions T3p, T4p
and T4q is identical, we could include only one of the three transitions and
have it as a member of three transition fusion sets. If our main concern was
guidelines for modelling we would have done this, but Fig. 3 corresponds to
a straightforward separation of the original CP -net.

The modular CP -net of Fig. 3 has exactly the same behaviour as the CP -
net in Fig 1. Each transition fusion set of the modular CP -net corresponds
to exactly one transition of the CP -net.

We have presented two examples of modular CP -nets having me same
behaviour The first one was an example of modules related by place fusion
while the second one used transition fusion. In general, both place fusion
and position fusion can coexist within a module CP -net.

In the next section, we will present a module approach of place invests
calculus.

3 Place Invariants of Modular CP-nets

All analysis methods extract information about properties of a CP -net in
a condensed way. Place invert use me idea of mapping the markings of all
places into a common colour set. The mapping is done by means of weights
attached to the places. A weight is a function which specifies the information
we want to extract from the markings of a place. Since we want to compare
the information extracted from the markings of different places, the weights
must map from markings of a plate into a common range. A weight-function
maps each place into such a weight. We say that a weight-function determines
a place invariant if the multi-set sum of the weighted markings of places is
constant for all reachable markings. It is often the case that a single place
invariant ignores the marking of some places. This is done by assigning a
zero function to the places which should be ignored.

8



3.1 Place Invariants of the CP-net

For the example shown in Fig. 1, we find several place invariants. One of
the place invariants extracts the identity of the processes from the places
called: Aq, Bq, Cq, Dq and Eq, and no information from the others. This
means that a projection function is used as the weight for Aq, Bq, Cq, Dq
and Eq, and a zero function is the weight used for all other places. We can
show that the sum of the weighted markings is constant for all reachable
markings. This means that the set of q-processes does not change, only
their state changes. Instead of checking all reachable markings, we can also
check that the weighted sum of tokens consumed by each binding for each
transition is equal to the weighted sum of tokens produced, We say that a
weight-function having this property defines a place flow. It can be proved
that the place flow property is sufficient to ensure that the weight unction
determines a place invest.

In our notation of weight functions we use the following notation: places
having a zero weight are simply left out, the identity function is implicit, the
Pr (Projection) function maps multi-sets of pairs of P × I into multi-sets
of P , the Ig (Ignore colour) function maps a multi-set of size s into s′e and
we use the noes of the places to refer to the marking of the place, e.g., we
write Bp instead of M(Bp). For the example in Fig. 1, we have five place
invariants:

W1 Pr(Bp + Cp + Dp + Ep) = 2′p.
W2 Pr(Aq + Bq + Cq + Dq + Eq) = 3′q.
W3 R + Ig(Bq + Cq) = 1′e.
W4 S + Ig(Bq) + 2 ∗ Ig(Cp + Dp + Ep + Cq + Dq + Eq) = 3′e.
W5 T + Ig(Dp + Eq) + 2 ∗ Ig(Ep) = 2′e.

We can construct other place invests but all of the above place invariants
can easily be interpreted in terfns of the CP -net: as an example, W1 shows
that all the p-processes are in one of the states represented by Bp, Cp, Dp
or Ep. W3 shows that the R resources are either free (i.e. in state R) or oc-
cupied by a q-process in state Bq or Cq. Using the information from the five
place invests above, it is straightforward to prove that the system is deadlock
free and similar behavioural properties.

9



3.2 Plate Invariants of the Modular CP-net with Place
Sharing

In Fig. 2. we have two modules, one for the p-processes and one for the
q-processes. The two modules are related trough two place fusion sets, i.e.,
through the s-resources and t-resources. For the p-processes, we have three
place invariants:

Wp1 Pr(Bp + Cp + Dp + Ep) = 2′p.
Wp2 S + 2 ∗ Ig(Cp + Dp + Ep) = 3′e.
Wp3 T + Ig(Dp) + 2 ∗ Ig(Ep) = 2′e.

For the q-processes, we have for place invariants:

Wq1 Pr(Aq + Bq + Cq + Dq + Eq) = 3′q.
Wq2 R + Ig(Bq + Cq) = 1′e.
Wq3 S + Ig(Bq) + 2 ∗ Ig(Cq + Dq + Eq) = 3′e.
Wq4 T + Ig(Eq) = 2′e.

Is it possible to construct place invariants of the total system from the place
invariants of the individual modules?

The place invariants Wp1, Wq1 and Wq2 do not include any places which
are shared, so Wp1, Wq1 and Wq2 are place invariants of the total system,
independently of the context of the other modules in the modular CP -net.
The rest of the place invariants have non-zero weights for some of the shared
places. In this situation we can only combine the place invariants if the weight
functions assign the same weight to the shoed places. This means that we
can combine Wp2 and Wq3, because they both have an identity weight for S
and a zero weight for T . Analogously, we can combine Wp3 and Wq4 because
they both have an identity weight for T and a zero weight for S. From the
place invariants of the individual modules we deduce the following place in-
variants of the modular CP -net:

Wp1 Pr(Bp + Cp + Dp + Ep) = 2′p.
Wq1 Pr(Aq + Bq + Cq + Dq + Eq) = 3′q.
Wq2 R + Ig(Bq + Cq) = 1′e.
Wp2 + Wq3 S + Ig(Bq) + 2 ∗ Ig(Cp + Dp + Ep + Cq + Dq + Eq) = 3′e.
Wp3 + Wq4 T + Ig(Dp + Eq) + 2 ∗ Ig(Ep) = 2′e.

These five place invariants correspond to linear independent place invariants

10



of the equivalent CP -net.

From the above, we see that a set of place invariants of the modules
can be combined to cover the total system if they have the same weights
for places which are shared. This is not true in the general case, but if we
restrict ourselves to combining place flows it is legal. This will be detailed in
the formal definition of invariants (section 5). If the weight functions do not
match, in the sense described above we may sometimes obtain a matching
by scaling one of the weight functions. The scaling is done by “multiplying”
all of the weights by a common function.

3.3 Plain Invariants of the Modular CP-net with Tran-
sition Sharing

For the example shown in Fig. 3, we have three modules, one for the p-
processes, one for the q-processes and one for the resources. The three
modules are related through transition fusion for each pair composed of a
transition in p-processes or q-processes and the corresponding transition in
the resource module. If we view the modules independently of their context
we can find a set of place invariants of the individual CP -nets. For the p-
processes, we have one place invariant:

Wp : Pr(Bp + Cp + Dp + Ep) = 2′p.

For the q-processes, we have one place invariant:

Wq : Pr(Aq + Bq + Cq + Dq + Eq) = 3′p.

And the resource sharing module has only the trivial zero place invariant. Is
it possible to construct place invariants of the total system from the place
invariants of the modules?

In this case we have no shared places and this means that Wp and Wq

both are invariants of the entire system. However, it should be obvious that
we cannot construct all the place invariants from those of the individual
modules. The problem is that we demand too much of the weight functions.
We demand that each transition leaves the invariant unchanged, while it
would be sufficient to demand that each transition fusion set does this. In

11



order to relax the conditions of the weight functions for the modules, we
introduce the notion of flow preservation. We say that a transition is flow
preserving if and only if for any binding it preserves the invariant. Then we
are able to check that the non-fused transitions are flow preserving for each
module. And that transition fusion sets are flow preserving across modules,
i.e., that the transitions together preserve the invariant.

The above examples allowed us to show the intuition behind module CP -
nets and their alive the concepts analysis by means of place invariants. In
the next sections, we formalize the concepts presented up to now. In section
4, we give the formal definition of a modular CP -net and of the equivalent
CP -net. In section 5, we extend the notion of place invariants and place
flows to modular CP -nets.

4 Formal Definition of Modular CP-nets

Before defining modular CP -nets, we recall the definition of Coloured Petri
Nets and the basic concepts used in this definition. We use the notations
of [Jen92], but equivalent definitions can be found in [Jen91]. To give the
abstract definition of CP -nets, it is not necessary to fix the concrete syntax
in which the modeller writes the net expressions, and we shall only assume
that such a syntax exists, making it possible in an unambiguous way to talk
about:

• The elements of a type, T . The set of all elements in T is denoted by
the type name T itself. The set of multi-sets over T is denoted by TMS.

• The type of a variable, v—denoted by Type(v).

• The type of an expression, expr—denoted by Type(expr).

• The set of variables in an expression, expr—denoted by Var(expr).

• A binding of a set of variables, V —associating with each variable v ∈ V
an element b(v) ∈ Type(v).

• The value obtained by evaluating an expression, expr , in a binding,
b—denoted by expr < b >. Var(expr) is required to be a subset of
the variables of b, and the evaluation is performed by substituting for

12



each variable v ∈ Var(expr) the value b(v) ∈ Type(v) determined by
the binding. An expression without variables is said to be a closed
expression. It can be evaluated in all bindings, and all evaluations give
the same value—which we often shall denote by the expression itself.
This means that we simply write “expr” instead of the more pedantic
“expr <>”.

Now we are ready to define CP -nets. We use B to denote the boolean
type (containing the elements {false, true}, and having the standard oper-
ations from propositional logic), and when Vars is a set of variables, we use
Type(Vars) to denote the set of types {Type(v) | v ∈ Vars}.

Definition4.1 ([Jen92], Def. 2.5)
A CP-net is a tuple CPN = (Σ, P, T, A, N, C, G, E, I) satisfying the req-
uirements below:
(i) Σ is a finite set of types, called colour sets.
(ii) P is a finite set of places.
(iii) T is a finite set of transitions.
(iv) A is a finite set of arcs such that:

• P ∩ T = P ∩ A = T ∩ A = ∅.
(v) N is a node function. It is defined from A into

P × T ∪ T × P .
(vi) C is a colour function. It is defined from P into Σ.
(vii) G is a guard function, It is defined from T into expressions

such that:
• ∀t ∈ T : [Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ]

(viii) E is an arc expression function. It is defined from A into
expressions such that:
• ∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]
where p(a) is the place of N(a).

(ix) I is an initialization function. It is defined from P into closed
expressions such that:
• ∀p ∈ P : [Type(I(p)) = C(p)MS ].

We denote the set of arcs connected to a node x by A(x). The set of variables
associated with a position t is denoted by Var(t) and defined by:

∀t ∈ T : Var(t) = {v | v ∈ Var(G(t)) ∨ ∃a ∈ A(t) : v ∈

13



Var(E(a))}.

Definition 4.2([Jen92], Def. 2.6)
A binding of a transition t is a function b defined on Var(t) such that:

(i) ∀v ∈ Var(t) : b(v) ∈ Type(v).
(ii) G(t) <b>.

By B(t) we denote the set of all bindings for t.

To talk about the elements of the entire Module CP -net with modules in
a set S, we use the notations

P =
⋃

s∈S

Ps T =
⋃

s∈S

Ts A =
⋃

s∈S

As

The disjointness of the net elements means that without ambiguity we can
use a “global” colour set function C ∈ [P → Σ] instead of the “local” colour
set functions Cs ∈ [Ps → Σs]. me global function is defined from the local
functions, in the following way:

∀s ∈ S ∀p ∈ Ps : C(p) = Cs(p).

Analogously, we can define global versions of the node function N , the guard
function G, the arc expression function E, and the initialization function
I. It also means that we can use p(a), t(a), s(a), d(a), A(x1, x2), A(x), In(x),
Out(x), X(x) and E(x1, x2) – in exactly the same way as for CP -nets. When
x1 and x2 belong to different modules A(x1, x2) = ∅ and E(x1, x2) = ∅.

Some motivation and explanation of the individual parts of the definition
are given immediately below it, and it is recommended to read both in pa-
rallel.

Definition 4.3
A Modular CP-net is a triple MCPN = (S, PF, TF ), satisfying the fol-
lowing requirements:
(i) S is a finite set of modules such that:

• Each module, s ∈ S, is a CP -net:
Ms = (Σs, Ps, Ts, As, Ns, Cs, Gs, Es, Is).

14



• The sets of net elements are pairwise disjoint:
∀s1, s2 ∈ S : [s1 �= s2 ⇒ (Ps1 ∪ Ts1 ∪ As1) ∩ (Ps2 ∪ Ts2 ∪ As1) = ∅].

(ii) PF ⊆ 2P is a finite set of place fusion sets such that:
• Members of a place fusion set have identical colour sets and

equivalent initialization expressions.
∀p1, p2 ∈ pf : [C(p1) = C(p2) ∧ I(p1) = I(p2)]

(iii) TF ⊆ 2T is a finite set of transition fusion sets.

(i) A module CP -net contains a finite set of modules, each of them being
a CP -net. These modules must have disjoint sets of places, positions and
arcs.

(ii) Each place fusion set is a set of plates to be used together. 2P denotes
the set of all sub-sets of places. We demand that all elements of a place fusion
set have the same colour set and that they have equivalent initial markings.
By external places EP ⊆ P we denote the set of all places which are members
of a place fusion set and by internal places, IP = P − EP , we denote all
non-fused places. It should be noted that we, in contrast to [HJS90], do not
demand the place fusion sets to be disjoint.

(iii) Each transition fusion set is a set of transitions to be fused together.
By external transition ET ⊆ T we denote the set of all transitions which are
members of a transition fusion set and by internal transitions, IT = T −ET ,
we denote all non-fused transitions. It should be noted that wee in contrast
to [HJS90], do not demand the transition fusion sets to be disjoint.

In Def. 4.4, we introduce place groups and transition groups. The notion
of place groups corresponds to the notion of place instance groups for hier-
archical CP -nets ([Jen92, Def. 3.5]).

Definition 4.4
A place group pg ⊆ P is an equivalence class of the smallest equivalence
relation containing all pairs (p1, p2) ∈ P × P where
∃pf ∈ PF : p1, p2 ∈ pf .

A transition group tg ⊆ T consists of either a single non-fused transiti-
on t or all the members of a transition fusion set tf ∈ TF .

Place groups and transition groups are defined very differently since a place
can be a member of at most one plate group while a transition can be a mem-

15



ber of several transition groups. Place groups form a petition of the set of
places. This means that each place p is a member of one and only one place
grump which shall be denoted [p]. Note that all place groups and transition
groups have at least one element. In the followings we use names with a prime
to denote place groups and transition groups, e.g. p′ and t′. From Def. 4.3
(ii) and 4.4 we know that all places of a place group will have the same colour
set and equivalent initial markings, this allows us to talk about C(p′) and
I(p′) without being ambiguous. We define: ∀p′ = [p] ∈ PG : C(p′) = C(p)
and I(p′) = I(p).

Next, we define the set of variables associated with a transition group,
the binding of a transition group and the guard of a transition group.

Definition 4.5
A binding of a transition group t′ is a function b defined on the variables
of the transition group, Var(t′) =

⋃
t∈t′ Var(t), such that:

(i) ∀v ∈ Var(t′) : b(v) ∈ Type(v).
(ii) ∀t ∈ t′ : G(t) <b>.

We denote the conjunction of guards of a transition group t′ by G(t′),
and the set of all bindings by B(t′).

A binding will assign only one value for a variable, i.e. a variable name
will refer to the same value for all transitions in a transition group.

Next, we extend the arc function A to handle place groups and transition
groups:

A(x′, y′) = {a ∈ A | ∃x ∈ x′∃y ∈ y′ : N(x, y) = a}.

Then the expression function E is extended from arcs to place groups and
transition groups. The summation is well-defined because all the involved
expressions have the same type, according to Def. 4.1 (viii) and Def. 4.3 (ii):

∀(x1, x2) ∈ (PG × TG ∪ TG × PG) : E(x′, y′) =
∑

a∈A(x′,y′)

E(a).

Now, we define token elements, bindings elements, markings and steps for
modular CP -nets. This is done in a similar way as for hierarchical CP -nets.

16



Definition 4.6
A token element is a pair (p′, c) where p′ ∈ PG and c ∈ C(p′), while a
binding element is a pair (t′, b) where t′ ∈ TG and b ∈ B(t′). The set
of all token elements is denoted by TE while the set of all binding
elements is denoted by BE.

A marking is a multi-set over TE while a step is a non-empty and finite
multi-set over BE. The initial marking M0 is the marking which is obta-
ined by evaluating the initialization expressions:

∀(p′, c) ∈ TE : M0(p
′, c) = I(p′)(c).

The set of all markings and steps are denoted by M and Y, respectively.

The enabling rule of a module CP -net can now be expressed. The inequality
used to compare a value to a marking is the inequality of multi-sets.

Definition 4.7
A step Y is enabled in a marking M iff the following property is satisfi-
ed:

∀p′ ∈ PG :
∑

(t′,b)∈Y E(p′, t′) <b>≤ M(p′).

When a step Y is enabled in a marking M1 it may occur, changing the
marking M1 to another marking M2, defined by:

∀p′ ∈ PG : M2(p
′) = (M1(p

′) −
∑

(t′,b)∈Y E(p′, t′) <b>)+∑
(t′,b)∈Y E(t′, p′) <b> .

We say that M2 is directly reachable from M1 by the occurrence of
step Y , which we also denote by: M1[Y � M2.

Next, we show that each modular CP -net has a behavioural equivalent CP -
net.

We denote the source of an arc a by s(a), the place connected to a by
p(a) and the transition connected to a by t(a). Some motivation and expla-
nation of individual parts of the definition of the equivalent CP -net is given
immediately below it, and it is recommended to read both in parallel.

Definition 4.8
Let a modular CP -net MCPN = (S,PF ,TF ) be given. Then we define
the equivalent CP-net to be CPN = (Σ∗, P ∗, T ∗, A∗, N∗, C∗, G∗, E∗, I∗)
where:

17



(i) Σ∗ = Σ.
(ii) P ∗ = PG.
(iii) T ∗ = TG.
(iv) A∗ = {(a, t′) ∈ A × TG | t(a) ∈ t′}.
(v) ∀a∗ = (a, t′) ∈ A∗:

[ s(a) ∈ P ⇒ N∗(a∗) = ([p(a)], t′)∧
s(a) ∈ T ⇒ N∗(a∗) = (t′, [p(a)])].

(vi) ∀p∗ ∈ P ∗ : C∗(p∗) = C(p∗).
(vii) ∀t∗ ∈ T ∗ : G∗(t∗) = G(t∗).
(viii) ∀a∗ = (a, t′) ∈ A∗ : E∗(a∗) = E(a).
(ix) ∀p∗ ∈ P ∗ : I∗(p∗) = I(p∗).

Note that all components of the constructed CP -net are valid.

(i) The set of colours sets of the equivalent CP -net is equal to the union
of the colour sets of the modules.

(ii) The equivalent CP -net has one place for each place group.

(iii) The equivalent CP -net has one transition for each transition group.

(iv) The transition of an arc may belong to several transition groups.
When this is the case, we get a copy of the arc for each transition group.

(v) The nodes of an arc can be determined from the transition group
attached to it and from the place of the original arc. From (iv), we know
that t(a) ∈ t′.

(vi) From Def. 4.3(ii) and 4.4 we know that all places of a place group
have the same colour set and we know that all place groups have at least
one member. The colour set of a place group is determined by one of the
members of the place group.

(vii) The guard of a transition group is the conjunction of the guards of
the transitions which are members of the transition group.

(viii) The expression associated with an arc is the same as the expression
of the original arc.

(ix) From Def. 4.3(ii) and 4.4 we know that all places of a place group
have the same initial marking and we know that all place groups have at
least one member. The initial marking of a place group is determined by one
of the members of the place group.

18



In section 2, we claimed that the presented modular CP -nets and the CP -
net, given as examples, were equivalent according to the behaviour. This can
be checked using Def. 4.7.

The following theorem shows that a modular CP -net and its equivalent
CP -net have the same behaviour. All names that refer to the equivalent
CP -net are marked by an asterisk, e.g., M0 refers to the initial marking of
the modular CP -net and M∗

0 to the initial marking of its equivalent CP -net.

Definition 4.9
Let MCPN be a modular CP -net and let CPN ∗ be the equivalent CP -net.
Then we have the following properties:
(i) M = M

∗ ∧ M0 = M∗
0 .

(ii) Y = Y
∗.

(iii) ∀ M1, M2 ∈ M,∀ Y ∈ Y : M1[Y �MCPN M2 ⇔ M1[Y �CPN ∗ M2.

Proof:

Property (i): From [Jen92], Def. 2.7, we have M
∗ = TE∗

MS where TE∗

consists of all pairs (p∗, c) with p∗ ∈ P ∗ and c ∈ C∗(p∗). From Def. 4.69, we
have M = TEMS where TE consists of all pairs (p′, c) with p′ = [p] ∈ PG and
c ∈ C(p). Thus, it is sufficient to prove that P ∗ = PG and C∗(p∗) = C(p),
but this follows from Def. 4.8 (ii) and (vi).
Next, let us prove that the two initial markings are identical. From Def. 4.6,
we have:

(∗) ∀(p′, c) = ([p], c) ∈ TE : M0(p
′, c) = (I(p))(c).

From [Jen92], Def. 2.7, we have:

∀(p∗, c) ∈ TE ∗ : M∗
0 (p∗, c) = (I∗(p∗))(c),

which by Def. 4.8 (ii) and Def. 4.6 is equivalent to:

∀(p′, c) = ([p], c) ∈ TE : M∗
0 (p′, c) = (I∗(p′))(c),

which by Def. 43 (ix) is equivalent to:

∀(p′, c) = ([p], c) ∈ TE : M∗
0 (p′, c) = (I(p))(c),

which has the same form as (∗).

Property (ii): From [Jen92], Def. 2.7. we have that Y
∗ consists of all non-

empty and finite multi-sets in BE ∗
MS where BE ∗ consists of all pairs (t∗, b)

with t∗ ∈ T ∗ and b ∈ B∗(t∗). From Def. 4.6, we have that Y consists of all

19



non-empty and finite multi-sets in BEMS where TE consists of all pairs (t′, b)
with t′ ∈ TG and b ∈ B(t′). Thus it is sufficient to prove that T ∗ = TG and
B∗(t∗) = B(t), but this follows from Def. 4.8 (iii), (iv), (v), (vii) and (viii).

Property (iii): First, we prove that the enabling rules coincide, i.e.:

M1[Y �MCPN⇔ M1[Y �CPN .

From Def. 4.7 it follows that M1[Y �MCPN iff:

(∗∗) ∀p′ ∈ PG :
∑

(t′,b)∈Y E(p′, t′) <b> ≤ M1(p
′).

From [Jen92], Def. 2.7, it follows that M1[Y �CPN iff:

∀p∗ ∈ P ∗ ∑
(t′,b)∈Y E∗(p∗, t) <b> ≤ M1(p

∗).

which by Def. 4.3 (ii)+(iii) is equivalent to:

∀p′ ∈ PG
∑

(t′,b)∈Y E∗(p′, t′) <b> ≤ M1(p
′).

which by Def. 4.8 (iv) + (vi) + (ix) and the extension of E∗ from A∗ to
(PG × TG ∪ TG × PG), is equivalent to:

∀p′ ∈ PG
∑

(t′,b)∈Y E(p′, t′) <b> ≤ M1(p
′).

which is identical to (∗∗).

Next we must prove that the occurrence rules coincide, i.e.:

M1[Y �MCPN M2 ⇔ M1[Y �CPN M2.

This part of the proof can be structured just like the part regarding en-
abling rules and we will not include it. �

We have defined modular CP -nets which allow a user to express relation-
ship between places and transitions in individual CP -nets called modules.
The behaviour of module CP -nets was detailed. In the next section, we
will discuss how the place invariants analysis method for CP -nets can be
extended to modular CP -nets.

20



5 Place Invariant Analysis

In this section we show how the concepts of place invariants and place flows
can be extended to modular CP -nets. Place invariants can be used in the
proofs of properties of a CP -net, e.g. to show that there are no dead mark-
ings. In this paper, we focus on the concepts of place invariants and place
flows, more than on the use of invariants in the proof of properties of CP -
nets. It is possible to find examples of the use of place invariants in e.g.
[Jen81], [Jen86], [Jen91] and [Jen92].

5.1 Place Invariarnts of CP-nets

In this subsection, we define the concepts of place invariants and place flows.
But we first define some basic concepts.

The example in Fig. 4 shows a transition T1 which, for any binding,
produces two identical tokens, one for place A and one for place B. If we
want to specify a weight for A and B such that the weighted sum of tokens
is constant, we need to allow both positive and negative weights. The easiest
and most general way to obtain this is to replace multi-sets by weighted sets.

Figure 4: It can be convenient to have both positive and negative weights.

A weighted set over a non-empty set S, is defined in exactly the same
way as a multi-set—except that we now also allow negative coefficients. This
means that we can always subtract two weighted sets over the same set S
from each other, and it also means that scalar-multiplication with negative
integers can be allowed. The set of all weighted sets over S is denoted by
SWS . Weighted sets have properties which are analogous to those of multi-
sets. In particular, we say that a function W ∈ [AWS → BWS ] is linear
iff:

W (w1 + w2) = W (w1) + W (w2)

21



for all weighted-sets w1, w2 ∈ AWS . The set of linear functions in [AWS →
BWS ] is denoted by [AWS → BWS ]L

Definition 5.1.1
Let CPN = (Σ, P, T, A, N, C, G, E, I) be a CP -net.
(i) W is a weight function with range R ∈ Σ iff:

∀p ∈ P : W (p) ∈ [C(p)WS → RWS ]L.
(ii) The weight function W determines a weighted marking:

∀M ∈ M : W (M) =
∑

p∈P W (p)(M(p)).

(iii) The weight function W determines a place invariant iff:
∀M ∈ [M0 >: W (M) = W (M0).

A weight function maps each place p into a weight W (p) which is a linear
function—mapping from weigthed-sets over the colour set of p into weigthed-
sets over some colour set R. R is common to all weights of W and we call
this the range of W . For a given marking we calculate the weighted marking
as the sum of the weights of the individual places. The weight function W
determines an invariant iff all reachable markings have the same weighted
sum.

In the following, we use names with a double prime to denote subsets,
e.g. T ′′ ⊆ T .

Definition 5.1.2
Let CPN = (Σ, P, T, A, N, C, G, E, I) be a CP -net.
(i) A transition t is flow preserving for a weight function W iff:

∀b ∈ B(t) :
∑

p∈P W (p)(E(p, t) <b>) =∑
p∈P W (p)(E(t, p) <b>).

(ii) The weight function W is a place flow of T′′ iff all transitions
of T ′′ are flow preserving.

(iii) The weight function W is a place flow iff it is a place flow of T .

We say that a transition is flow preserving for a weight function W iff each
binding removes—when W is taken into account—the same set of tokens as
it adds. In practice we do not need to sum through all places, it is sufficient
to sum through In(t) for the first sum and through Out(t) for the second sum.

All weights are liner functions. This means that any linear combination

22



of two place flows is a place flow, e.g. if W1 and W2 are place flows, with
identical range, and z1, z2 ∈ Z then z1 ∗ W1 + z2 ∗ W2 is a place flow. A
zero weight is a function which maps any weighted-set to the empty set. The
weight function which assigns zero weights to all places is always a place
flow. We say that a place p is included in W if W (p) is a non-zero function.
Similar remarks apply to place invariants.

The main reason for introducing place flows is the difficulty to check place
invariants on the total set of reachable states. Place flows can be checked on
the structure of the CP -net.

The following theorem describes the relationship between place invariants
and place flows. A binding element is said to be dead when it can never occur.

Definition 5.1.3
Let a CP -net be given and let W be a weight function.
(i) W is a place flow ⇒ W determines a place invariant.
(ii) If no binding elements are dead:

W is a place flow ⇔ W determines a place invariant.

Proof: The theorem is part of the classical theory for invariant analysis.
For CP -nets a proof of (i) can be found in [Jen81] and [Jen86]. The proof of
(ii) is straightforward. �

5.2 Place Invariants of Modular CP-nets

In this section, we show how the formal definitions of place invariants and
place flows can be given for modular CP -nets, This sub-section is structured
like the previous one and it should be easy to compare the definitions given
for CP -nets and Modular CP -nets.

Definition 5.2.1
Let a MCPN = (S,PF ,TF ) be a modular CP -net.

(i) W is a weight function with range R ∈ Σ iff:
∀p′ ∈ PG : W (p′) ∈ [C(p′)WS → RWS ]L.

(ii) The weight function W determines a weighted marking:
∀M ∈ M : W (M) =

∑
p′∈PG W (p′)(M(p′)).

23



(iii) The weight function W determines a place invariant iff:
∀M ∈ [M0 >: W (M) = W (M0).

Weight functions of Module CP -nets map place groups to weights, just like
weight functions of CP -nets map places to weights. If the Module CP -net
contains no place fusion sets, the definitions are totally equivalent. Weighted
markings and place invariants are also generalized to work on place groups.

Definition 5.2.2
Let a MCPN = (S,PF ,TF ) be a modular CP -net.
(i) A position group t′ is flow preserving for a weight function W

iff:
∀b ∈ B(t′) :

∑
p′∈PG W (p′)(E(p′, t′) <b>=

∑
p′∈PG W (p′)(E(t′, p′)

<b>).

(ii) The weight function W is a place flow of TG ′′ iff all transition
groups of TG ′′ are flow preserving.

(iii) The weight function W is a place flow iff it is a place flow of
TG, i.e., all transition groups are flow preserving.

The concept of flow preserving is defined for transition groups, this means
that transitions which are fused will be handled as parts of the fusion group
and not as seperate transitions.

Definition 5.2.3
Let a Modular CP -net be given and let W be a weight function.

(i) W is a place flow ⇒ W determines a place invariant.

(ii) If no binding elements are dead:
W is a place flow ⇔ W determines a place invariant.

Proof: The theorem can be proved similarly to Theorem 5.1.3, we just need to
consider place groups and transition groups instead of places and transitions.

�

5.3 How to find Place Invariants of Modular CP-nets

In the examples presented in section 2 and 3, we have shown some compo-
sitions of place invariants and place flows, using either place fusion only or

24



transition fusion only.

We use the term “global” weight function for a weight function of the
entire modular CP -net, while we use the term “local” weight function for
weight functions of a single module. In the present section, we state and
prove a number of theorems specifying how local place flows and local place
invariants are related to global place flows and global place invariants.

We use S(x) to denote the module containing the node x.

Definition 5.3.1
Let MCPN = (S,PF ,TF ) be a modular CP -net.
(i) A set of loyal weight functions {Ws}s∈S of the modules is consi-

stent iff they have the sue range and assign the same weights to
all members of each place group:
∀p′ ∈ PG : ∀p1, p2 ∈ p′ : WS(p1)(p1) = WS(p2)(p2)

(ii) A global weight function W of MCPN determines a consistent
set of local weight functions {WS}s∈S of the modules:
∀p ∈ P : WS(p)(p) = W ([p])

(iii) A consistent set of loyal weight functions {Ws}s∈S of the modules
of MCPN determines a global weight unction W :
∀p′ = [p] ∈ PG : W (p′) = WS(p)(p).

Note that the construction of (ii) and (iii) will yield valid weight functions
and that the construction fulfils: if W a determines {Ws}s∈S and {Ws}s∈S

determines W b then W a = W b.

Definition 5.3.2
Let MCPN = (S,PF ,TF ) a module CP -net and let {Ws}s∈S be a consi-
stent set of local weight functions of the modules which determine the
global weight function. Then we have:

∀s ∈ S : [Ws is a place flow of Ts] ⇒.
W is a place flow of MCPN .

Proof: The theorem follows directly from the observation that all positions of
the individual modules are flow preserving, i.e., we know that each member
of a transition group is flow preserving. This is a much stronger demand that
the transition group being flow presuming as a group. �

Note that we cm find plate flows of the total system which cannot be

25



expressed as place flows of the individual modules.

Definition 5.3.3
Let MCPN = (S,PF ,TF ) a module CP -net without place fusion, and
let {Ws}s∈S be a consistent set of local weight functions of the modules
which determine the global weight function W . Then, we have

∀s ∈ S : [Ws determines a place invariant of module s] ⇒
W determines a place invariant of MCPN .

Proof: From the definition of enabling for Modular CP -nets, we know that
a transition group will only be enabled if all transitions of the group are
enabled. This means that the set of reachable states for the modular CP -net
is covered by the reachable states of the local modules. �

Note that we can find place invariants of the total system which cannot
be expressed as place invariants of the individual modules.

Definition 5.3.4
Let MCPN = (S,PF ,TF ) a module CP -net without place fusion, and
let W be a global weight function of MCPN which determines a set of
local weight functions {Ws}s∈S. Then, we have

W is a place flow of MCPN ⇒
∀s ∈ S : [Ws is a place flow of Ts].

Proof: Since transition fusion is not used we know that all transition groups
have exactly one member. This means that each individual transition is flow
preserving. �

From definition 5.3.1 and theorem 5.3.4 we know that we can find all place
flows of the total system from the place flows of the individual modules. This
is an important result which can be applied directly to hierarchical CP -nets
since these use hierarchical concepts built on place fusion only.

Definition 5.3.5
Let MCPN = (S,PF ,TF ) a module CP -net and let W be a global weight
function of MCPN which determines a set of local weight functions
{Ws}s∈S. Then, we have:

26



W is a place flow of the Modular CP -net ⇒
∀s ∈ S : [Ws is a place flow of IT s] ∧ ∀tf ∈ TF : [tf is flow preserv-

ing for W ].

Proof: In this proof, it is sufficient to establish a correspondence between
the transition groups and the union of the set of internal transitions and
the set of fusion sets. If a transition group contains exactly one transition
it corresponds to an internal transition and otherwise it corresponds to a
transition fusion set. �

Theorem 5.3.5 is the main result presented in this paper. All place flows of
a modular CP -net can be determined from consistent sets of weight functions
which are place flows of the internal transitions IT and are place preserved
by all transition fusion sets. The theorem has been shown for place fusion
only in [NV85]. When the two results are compared, please note that place
flows in our terminology comespond to place invariants in [NV85].

To illustrate how we envision the use of the results from this section, we
describe how a place flow could be found for a modular CP -net. We will
assume that a modular CP -net has mainly internal, i.e., non-fused, transi-
tions and places, and the main work is to check that the internal transitions
are flow preserving. When you perform place invariant analysis you can be
interested either in all possible flows of the system or in a few but descriptive
place flows. If you want to calculate all possible place flows, theorem 5.3.5
allows you to do this in a modular way. Calculate all flows of the internal
transitions and combine the ones which are consistent, and finally check the
transition fusion sets.

If you want to use an interactive process where you gradually add weights
of places the result of the theorem is also attractive. You start with a single
module and specify weights that are flow preserved by all internal transitions.
After this, you can use the weights of the module to restrict the rest of the
weight functions. You can use both place fusion sets and transition fusion
sets. We know that the weight functions must be consistent and this means
that all places of a place fusion set must have the same weight. We also
know that the transition fusion sets must be flow preserving and if only one
of the surrounding places needs a weight that can be calculated directly from
the known weights. After these restrictions have been applied the internal
transitions of the next module can be checked. In the end, it is necessary to
check that all transition fusion sets are flow preserving.

27



5.4 An example of a Modular Approach to Place In-
variants

We have tried to use the results from section 5.3 to find place flows of the hi-
erarchical CP -net described in [CJ91]. This is a model describing a detailed
design of the Network Management System of the RcPAX X.25 wide area
network. It consists of 30 pages, many of these having up to 7 instances due
to the reuse of pages. The modular approach made it easy to find the place
invariants needed in the proof of properties which were local to few pages.
The modular approach also made it possible to compose place flows of the
individual page instances into place flows of the total system. An example
of a property which could be proved directly by means of a place invariant
and which involved many pages was the preservation of packages in the sys-
tem. The handling of packages was relatively complex and involved grouping
packages into larger logical units. By adding extra places which would keep
a log of the information passed on the network, it was possible to investi-
gate how messages could be lost and check that the information which was
re-established either matched the original message, or the originating sender
would be notified. The work on modular place invariants was performed af-
ter the design of the model was done, and not as an integrated part of the
modelling process. It should also be noted that the work on the examples
was done by hand. Tool support will be necessary if place invariants should
be used as part of the development of large descriptions. It is our impression
that a similar approach could easily be applied to other hierarchical CP -net
models, e.g., the ISDN Basic Rate Interface described in [HP91].

We have not investigated how a modular approach can be used for large
systems related by means of transition fusion since we have no models of
this nature at our disposal. From our own experiments with small systems
it seems to be possible to use a modular approach for larger ones too.

In this section, we have formally defined place invariants for CP -nets.
Then, we have extended this definition to modular CP -nets in such a way
that place invariants of a module CP -net correspond to place invariants of
the equivalent CP -net. We have also shown how place flows of the modular
CP -net can be determined from place flows of the individual modules. It is
possible to obtain the dual results of place invariants for transition invariants,
but we omit this.

28



6 Conclusion

In this paper, we have presented a framework for modular analysis of CP -
nets. We have considered sets of individual CP -nets related by transition fu-
sion and by place fusion. Transition fusion can be used to model synchronous
actions, while place fusion can be used to model shared data. Modular CP -
nets form a simple but yet very general framework to discuss analysis of
structured net models.

We also introduced analysis of modular CP -nets by means of place flows.
It allows us to determine place flows of the modular CP -net from the individ-
ual modules, only transition fusion needs to be checked globally. This means
that it is not necessary to recompute all place flows when a single module is
modified.

The intention of modular CP -nets is to provide a theoretical framework
to discuss the analysis of structured net models. The formal relation between
pages of a Hierarchical CP -net [Jen91] can be represented as modular CP -
nets using place fusion only. The communication primitives of Channel CP -
nets [CD92] can be represented as modular CP -nets using transition fusion
only.

It would be possible to use a modular approach for other Petri net models.
As an example, some kinds of Petri nets with algebraic specifications, see
e.g. [DHP91], [Rei91] and [BDM91], use transition fusion. From [BPR91],
we know that OBJSA nets ([BDM91]) can be translated into algebraic nets
schemes. And it would be straightforward to apply the modular approach to
other kinds of Petri Nets in order to obtain modular algebraic nets schemes,
with similar results as modular CP -nets.

Another approach to modularity and nets, which consists in automatically
decomposing a flat net into modules, is presented for Place/Transition nets
in [FJP91]. As the decomposition method only relies on the net structure, it
is also valid for CP -nets.

A work to construct occurrence graphs of modular CP -nets is ongoing, see
[HJJJ86] and [Jen91] for information about occurrence graphs of CP -nets.
But several difficult problems arise, similar to those pointed out in [Val90]
and [FP91]. Since the state spaces of systems tend to grow exponentially
in the number of processes of the system ([Val90]), a modular approach to
occurrence graphs would be of very large interest.

29



Acknowledgements

Many thanks to Kurt Jensen for the fruitful discussions we held on the sub-
ject. We would also like to acknowledge Gérard Berthelot, Niels Damgaard
Hansen, Mogens Nielsen and the anonymous referees whose comments helped
us to improve our paper.

References

[BDM91] E. Battiston, F. De Cindio, G. Mauri: OBJSA nets systems: a
class of high-level nets having objects as domains. In: G. Rozen-
berg (ed.): Advances in Petri Nets 1988. Lecture Notes in Computer
Science, vol 340. Springer-Verlag, 1988, pp. 20–43. Also in [JR91], pp.
189–212.

[BPR91] E. Battiston, L. Petrucci, L. Rapanotti: Establishing a relation-
ship between OBJSA nets systems and algebraic nets schemes.
DEMON Esprit BRA n◦ 3148, Technical Report 185, 1991.

[CD92] S. Christensen, N. Damgaard Hansen: Coloured Petri nets ex-
tended with channeIs for synchronous communication. Daimi
PB-390, ISSN 0105-8517, April 1992.

[Che91] G. Chehaibar: Use of reentrant nets in Modular analysis
of coloured Petri nets. In: G. Rozenberg (ed.): Advances in Petri
Nets 1991. Lecture Notes in Computer Science, vol 524. Springer-Verlag,
1991, pp. 58–77. Also in [JR91], pp. 596–617.

[CJ91] S. Christensen, L. O. Jepsen: Modelling and simulation of a
network management system using hierarchical coloured Petri
nets. In Erik Mosekilde (ed.): Proceedings of the 1991 European Sim-
ulation Multiconference. ISBN 0-911801-92-8, pp. 47–52. An extended
version available as: Daimi PB-349, ISSN 0105-8517, April 1991.

[DHP91] C, Dimitrovici, U. Hummert, L. Petrucci: Semantics, compo-
sition and net properties of algebraic high-level nets. In: G.
Rozenberg (ed.): Advances in Petri Nets 1991. Lecture Notes in Com-
puter Science, vol 524. Sponger-Verlag, 1991, pp. 93–117.

30



[FJP91] A. Finkel, C. Johnen, L. Petrucci: Decomposition of Petri nets
for parallel analysis. CEDRIC Research Repour November 1991.

[FP91] A. Finkel, L. Petrucci: Avoiding state explosion by composition
of minimal covering graphs. Proceedings of the 3rd Computer-Aided
Verifiation Workshop, Ålborg, Denmark, July 1991, pp. 224–237. To
appear in Lecture Notes in Computer Science.

[HJJJ86] P. Huber, A. M. Jensen, K. Jensen, L. O. Jepsen: Reachability
trees for high-level Petri nets. Theoretical Computer Science n◦45,
1986, pp. 261–292. Also in [JR91], pp. 319–350.

[HJS90] P. Hubert K. Jensen and R. M. Shapiro: Hierarchies in coloured
Petri nets. In: G. Rozenberg (ed.): Advances in Petri Nets 1990. Lec-
ture Notes in Computer Science, vol 383. Springer-Verlag, 1990, pp.
342–416. Also in [JR91], pp. 215–243.

[HP91] P. Hubert V. O. Pinci: A formal, executable specification of
the ISDN basic rate interface. Proceedings of the 12th International
Conference on Application and Theory of Petri Nets, Aarhus, Denmark,
1991, pp. 1–21.

[Jen81] K. Jensen: Coloured Petri nets and the invariant method.
Theoretical Computer Science n◦14, 1981, pp. 317–336.

[Jen86] K. Jensen: Coloured Petri nets. In: G. Rozenberg (ed.): Advances
in Petri Nets 1986, Part I. Lecture Notes in Computer Science, vol 254.
Springer-Verlag, 1986, pp. 248–299.

[Jen91] K. Jensen: Coloured Petri nets: A high level language for
system design and analysis. In: G. Rozenberg (ed.): Advances in
Petri Nets 1990. Lecture Notes in Computer Science, vol 383. Springer-
Verlag, 1990, pp. 342–416. Also in [JR91], pp. 44–119.

[Jen92] K. Jensen: Coloured Petri nets. Basic concepts, analysis
methods and practical use. Volume 1: Basic concepts. To ap-
pear in EATCS monographs on Theoretical Computer Science, Springer-
Verlag 1992.

31



[JR91] K. Jensen and G. Rozenberg (eds.): High-level Petri nets: the-
ory and application. Spinger-Verlag 1991. ISBN 3-540-54125-X/0-
387-54125-X.

[NV85] Y. Narahari, N. Viswanadham: On the invariants of coloured
Petri nets. In: G. Goos and J. Hartmanis (eds.): Advances in Petri
Nets 1985. Lecture Notes in Computer Sciences vol 222. Springer-Verlag,
1985, pp. 330–341.

[Rei91] W. Reisig: Petri nets and algebraic specifications. Theoretical
Computer Science n◦80, 1991, pp. 1–34. Also in [JR91] pp. 137–170.

[Val90] A. Valmari: Compositional state space generation. Proceedings
of the 11th iterations Conference on Application and Theory of Petri
Nets, Paris, France, June 1990, pp. 43–62.

32


