
Coloured Petri Nets
Extended with Channels

for Synchronous Communication

Søren Christensen
Niels Damgaard Hansen

Computer Science Department, Aarhus University
Ny Munkegade, Bldg. 540

DK-8000 Aarhus C, Denmark
Phone: +45 89 42 31 88

Telefax: +45 89 42 32 55
E-mail: schristensen@daimi.aau.dk, ndh@daimi.aau.dk

Abstract

This paper shows how Coloured Petri Nets (CP-nets) can be extended to support
synchronous communication. We introduce coloured communication channels
through which transitions are allowed to communicate complex values. Small
examples show how channel communication is convenient for creating compact and
comprehensive models.

The concepts introduced in this paper originate from the practical use of Petri nets for
modelling, and they are formally defined in such a way that they preserve the basic
properties of CP-nets. We show how a CP-net with channels can be transformed into
a behaviourally equivalent CP-net. This allows us to deduce properties of CP-nets
with channels from well-known properties of CP-nets. As an example, we extend the
concept of place invariants to cope with CP-nets with channels and show how place
invariants can be found. This is done without transforming the CP-nets with channels
into their equivalent CP-nets.

The reader is assumed to be familiar with the notion of CP-nets.

Keywords:
Coloured Petri nets, synchronous communication, channels, modular specifications, re-usable
models, invariant analysis.

The work presented in this paper has been supported by a grant from the Danish Research Programme for Informatics—grant

number 5.26.18.19.

Introduction
During our involvement in modelling projects using hierarchical CP-nets [HJS90],
[Jen91], [Jen92], it has become clear that it would be valuable to include constructs mak-
ing it easy to model synchronisation and synchronous communication. Without such con-
structs it is necessary to model explicitly the synchronous communication through addi-
tional places and transitions often resulting in a complex net structure. This means that
the modeller has to devote much attention to the model, instead of focusing on the prob-
lem being modelled. We propose to extend CP-nets to support communication through
channels. The concept of channels is influenced by CCS, CSP and communication con-
structs found in high level programming languages, e.g., [Hoa85] and [Mil89]. For the
sake of simplicity we show how to extend CP-nets and not hierarchical CP-nets. It should,
however, be obvious that the extension can be generalised to hierarchical nets.

Other Petri net models have used the notation of communication channels, e.g.,
[HT91], but the concept has, to the best of our knowledge, never been formally defined
before and never fully integrated into the Petri net framework.

The paper is organised as follows: first, the new constructs are informally introduced.
Then we show how CP-nets with channels can be formally defined and transformed into
behaviourally equivalent CP-nets. In section 3 we show how analysis methods—especially
place invariants—can be extended to cope with CP-nets with channels without having to
transform the models into the equivalent CP-nets. Finally, we present a number of small
examples illustrating the convenience of CP-nets with channels for modelling.

In this paper we have left out the technical details of some of the proofs. The detailed
proofs can be found in [CD92].

1. Informal Introduction to CP-nets with Channels
In this section we introduce CP-nets with channels. We informally describe the new con-
cepts by means of small examples. These examples illustrate how channels may be used
for widely different purposes.

Extending CP-nets with channels allow transitions to communicate through named and
coloured communication channels. Transitions, which use channel communication, are
called communication transitions and for each channel they are divided into !?-transitions
and ?!-transitions. A communication between two transitions is only possible if one of the
transitions is a !?-transition and the other is a ?!-transition—and they use the same chan-
nel. No direction of communication is intended, this is the reason for using !? and ?! in-
stead of just ! and ? used in CSP. !? and ?! is merely used to divide the transitions into
two groups and it would make no difference if all !? were exchanged by ?!.

An example of a CP-net with channels is shown in Fig. 1.1. The inscriptions next to
the communication transitions Send and Receive are called communication expressions
specifying the channel and the actual value communicated through the channel.

We explicitly declare the colour set, i.e., the type, of the communication channel. This
makes static type checking of the communication expressions possible, since we, based on
the net-inscriptions, are able to determine if the communication expressions evaluate to
values of the same type as the associated communication channel.

Intuitively, a communication through a channel ch is enabled if and only if there exist
two communication transitions t1 and t2 with communication expressions expr1 and expr2

and two bindings b1 and b2 such that:
• transition t1 is enabled for the binding b1 and t2 is enabled for the binding b2, i.e.,

there are sufficient tokens of the correct colours on the input places,
• t1 has a communication expression of the form expr1 !? ch,
• t2 has a communication expression of the form expr2 ?! ch,
• expr1 <b1> = expr2 <b2>, i.e., expr1 and expr2 evaluate to the same value when they

are evaluated in the bindings for which the two transitions occur.

Figure 1.1: CP-net with two communication transitions using a channel

Please note that although most of the examples in this paper show transitions communi-
cating on one channel only, our formalism are able handle transitions communicating on
multiple channels.

The semantics of a CP-net with channels may be illustrated by constructing the be-
haviourally equivalent CP-net. Fig. 1.2 shows the behaviourally equivalent CP-net of the
CP-net with channels shown in Fig 1.1. Intuitively the equivalent CP-net is constructed by
merging the !?-transition and the ?!-transition so that the arcs of the merged transition are
the union of the arcs of the original transitions. The guard of the merged transition is
formed by the conjunction of the original guards and an expression stating that the com-
munication expressions must evaluate to the same value. Section 2.3 describes this trans-
formation in more detail.

Figure 1.2: Equivalent CP-net of the CP-net with channels in Fig. 1.1

It should be noted that information during a communication may be passed in both direc-
tions, i.e., from a !?-transition to a ?!-transition, or vice versa. In the example above the
variable x appears in the input arc expression of Send, while the variable y appears in the
output arc expression of Receive. This means that the colour of the input token of Send
determines the colour of the output token of Receive, and thus information is sent
(through the channel) from Send to Receive. In the general case, two communication
transitions may have communication expressions specifying bi-directional exchange of in-
formation. Throughout this paper we have chosen to use the !?-transition to denote the
communication transition determining the value communicated through the associated

channel. This convention can of course not always be used, e.g., when the communication
is bi-directional.

If we extend the CP-net of Fig. 1.1 to consist of two producers and two consumers we get
the CP-net with channels presented in Fig. 1.3. Often, we would fold the producers and
consumers into a single structure and distinguish the processes by means of the associated
colours—but let us assume that all four processes have internal structures that make it
difficult to make this folding. All processes communicate using the channel called ch. In
this way each producer is able to send to any of the consumers ready to receive data.

Figure 1.3: Producer-consumer modelled using CP-nets with channels

Fig. 1.4 illustrates that the behaviourally equivalent CP-net becomes rather complex. If
we have n !?-transition and m ?!-transition for a given channel we will need n∗m transi-
tions to model the same patterns of communication. This observation illustrates a reason
why the introduction of channels may result in a dramatic simplification of the net struc-
ture. When applied to nodes in a single net, e.g., in Fig. 1.3, channel communication is
mainly a drawing convenience allowing the user to avoid too many crossing arcs. Fig. 1.4
illustrates that this is a valuable quality. Channel communication becomes a strong de-
scription primitive of its own right especially when it is combined with structured net de-
scriptions such as hierarchical CP-nets, where a model is described as a set of related
subnets, e.g., drawn on separate pages.

Figure 1.4: Equivalent CP-net of the CP-net with channels in Fig. 1.3

The example of Fig. 1.3 also illustrates one of the differences between channel communi-
cation and transition fusion described in [HJS90] and [CP92]. When we compare the con-
cept of channel communication to the concept of transition fusion we find two major dif-
ferences: first, the bindings of transitions involved in a channel communication are inde-
pendent except for the restrictions expressed in the communication expressions. This is in
contrast to transition fusion where the transitions share a common binding. Secondly, the
occurrence of a transition fusion set always involves all members of the fusion set. For a
CP-net with channels an occurrence involves pairs of !?-transitions and ?!-transitions.
This means that some communication transitions using a given channel may occur without
involving the other communication transitions using the same channel. So, if we would
model channel communication by means of transition fusion, we would need to create a
transition fusion set for each possible pattern of communication, i.e., to express the com-
munication of the example of Fig. 1.3 we would need to create 4 transition fusion sets.
Although this means that the behaviour of a CP-net with channels can be expressed by
means of transition fusion, this is often not feasible from a modelling point of view.
Transition fusion in [CP92] is defined to facilitate the discussion of modular analysis of
CP-nets while CP-nets with channels are defined to ease modelling. The main advantage
of CP-nets with channels is the possibility to create and analyse independent and re-usable
sub-models.

The model shown in Fig. 1.3 is structured in such a way that the producers and the
consumers are described in separate nets, while the channel defines the interface between
the otherwise independent sub-models. It is possible, e.g., to add another consumer or
change the internal description of a consumer independently of the other descriptions—as
long as the channel specifying the interface between the descriptions is not changed.

Until now, we have only considered data communication. It is, however, also easy to
model communication without exchange of data, i.e., mere synchronisation. This can be
done by using an elementary channel colour E = {e} containing only one possible value.
It is analogous to the way in which we handle tokens carrying no information in their
colour.

In the last example of this section we use CP-nets with channels to model an abstract data
type. We use the term abstract data type to stress that the internal representation of the
information is accessed through a fixed interface. Abstract data types may in a CP-net be
expressed as a colour set having a number of operations. It can, however, also be conve-
nient to model data types through small subnets allowing us to reason about the net
structure, e.g., to use invariants.

In Fig. 1.5, we describe a queue and its operations. This queue could for instance be
inserted between the producers and the consumers describing that items from the produc-
ers are buffered before arriving at the consumers.

Figure 1.5: CP-net with channels describing a queue with operations

We have introduced a channel for each of the basic operations: Insert, Remove and
Length. The queue itself is a token on the Queue place consisting of a list with the
buffered elements. Initially the queue is empty as indicated by []. Elements are inserted at
the end of the list using ^^ for list concatenation. The list constructor :: is used to split the
list into its head element and tail.

The communication transition modelling an operation is enabled by communicating
through the associated channel, e.g., the Insert transition is enabled by communicating an
item through the Insert channel.

An alternative way of implementing the queue would be to use only one channel and
communicate both operation and data through the channel to let the queue implementation
distinguish the operations. Similar to this we could implement multiple queues without
duplicating the net structure simply by extending the channel communication to contain
information on the queue we want to access.

If we want to add a queue between the producers and the consumers we just have to
change their use of channels, see Fig 1.6.

Figure 1.6: Producer and consumer using a queue

The producer uses the QueueInsert channel to insert an element into the queue, whereas
the consumer uses the QueueRemove channel to obtain an element from the queue. In this
example we do not use the Length operation.

2. Formal Definition of CP-nets with Channels
In this section we formalise how channel communication can be added to CP-nets. The
notation used in this chapter is consistent with the one used in [Jen91] and [Jen92]. First
we recall the definition and notation for multi-sets.

A multi-set m, over a non-empty set S, is a function m ∈[S → N]. The non-negative inte-
ger m(s) ∈N is the number of appearances of the element s in the multi-set m. We usually
represent the multi-set m by a formal sum:

∑
s ∈S

 m(s)`s

By SMS we denote the set of all multi-sets over S. The non-negative integers {m(s)  s ∈S}
are called the coefficients of the multi-set m, and the number of appearances of s, m(s),
is called the coefficient of s. An element s ∈S is said to belong to the multi-set m iff
m(s) ≠ 0 and we then write s ∈m.

2.1 Definition of CP-nets with Channels

We recall the definition of non-hierarchical CP-nets:

Definition 2.1 ([Jen92], Def. 2.5)
A CP-net is a tuple CPN = (Σ, P, T, A, N, C, G, E, I) satisfying the requirements be-
low:
(i) Σ is a finite set of types, called colour sets.
(ii) P is a finite set of places.
(iii) T is a finite set of transitions.
(iv) A is a finite set of arcs such that:

• P ∩ T = P ∩ A = T ∩ A = Ø.
(v) N is a node function. It is defined from A into P × T ∪ T × P.
(vi) C is a colour function. It is defined from P into Σ.
(vii) G is a guard function. It is defined from T into boolean expressions such that:

• ∀t ∈T: [Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ].
(viii) E is an arc expression function. It is defined from A into expressions such that:

• ∀a ∈A: [Type(E(a)) = C(p(a))MS ∧ Type(Var(E(a))) ⊆ Σ]
where p(a) is the place of N(a).

(ix) I is an initialization function. It is defined from P into closed expressions such
that:
• ∀p ∈P: [Type(I(p)) = C(p)MS].

A detailed explanation of the requirements of this definition can be found in [Jen91] and
[Jen92]. For an arc, a, we use p(a), t(a), s(a) and d(a) to denote the place, transition,
source and destination respectively. For a node x we use A(x) to denote the set of arcs
connected to x. We furthermore use B to denote the boolean type containing the elements
{false, true} and having the standard operations from propositional logic.

We use the set ∆ = {!?, ?!} to denote the two relations a communication transition can
have to a channel. Moreover, we use Var(expr) to denote the variables appearing in an
expression expr and we use Type(v) and Type(expr) to denote the type of a variable v
and an expression expr, respectively. For more information about the use of types,
expressions and variables in CP-nets see [Jen91] or [Jen92]. We are now ready to give a
formal definition of CP-nets with channels. A short explanation is given below the
definition. It is recommended to read this explanation in parallel with the definition.

Definition 2.2
A CP-net with channels is a tuple CCPN = (CPN, CS) satisfying the requirements below:
(i) CPN is a non-hierarchical CP-net (Σ, P, T, A, N, C, G, E, I).
(ii) CS is a channel specification (CH, CT, CE)
(iii) CH is a finite set of channels such that:

• (P ∪ T ∪ A) ∩ CH = Ø.
(iv) CT is a channel type function. It is defined from CH into Σ.
(v) CE is a communication expression function. It is defined from T into finite

sets of communication expressions. All elements of CE(t) are triples (expr, #, ch)
where expr is an expression, # ∈∆ and ch ∈CH such that:
• ∀t∈T: ∀(expr,#,ch)∈CE(t):

[Type(expr) = CT(ch) ∧ Type(Var(expr)) ⊆ Σ].

(i) CPN is a CP-net, see Def. 2.1.

(ii) The channel specification is a triple containing a set of channels, a channel type
function and a channel expression function.

(iii) CH is a finite set of channels, which can be distinguished from the net elements of
the CP-net. In Fig. 1.1 we have: CH = {ch}.

(iv) The channel type specifies the kind of information that can be passed through a
given channel. In Fig. 1.1 we have: CT(ch) = ITEMS.

(v) The expression of a communication expression must have a type identical to the
type of the channel. Moreover, all variables must be of a known type. In Fig. 1.1
we have: CE(Producer) = {}, CE(Consumer) = {}, CE(Send) = {(x, !?, ch)} and
CE(Receive) = {(y, ?!, ch)}. We could generalise the communication expression
function to return multi-sets of communication expressions, but since it is not im-
portant for the results shown in this paper we have chosen to use plain sets.

For t ∈T, # ∈∆ and ch ∈CH we use Expr(t,#,ch) to denote the set of communication ex-
pressions connecting t and ch in direction #:

Expr(t,#,ch) = {expr'  (expr',#,ch)∈CE(t)}.

We generalise the expression function E to handle channel expressions. E(t,#,ch) denotes
the multi-set sum of all expressions in Expr(t,#,ch):

E(t,#,ch) = ∑
expr∈Expr(t,#,ch)

 1`expr.

The multi-set sum in E is well-defined since all expressions of a given channel evaluate to
value of the channel type.

2.2 Behaviour of CP-nets with Channels

Having defined the static structure of CP-nets with channels we are now ready to consider
their behaviour. Adding communication to a given transition constrains its enabling, but
does not change the effect of an occurrence.

First we re-define the set of variables for a transition so that it also includes the vari-
ables of the communication expressions:

∀t ∈T: Var(t) = {v | v ∈Var(G(t)) ∨
∃a ∈A(t): v ∈Var(E(a)) ∨
∃(expr,#,ch)∈CE(t): v ∈Var(expr)}.

Our definitions of bindings, B(t), token elements, TE, binding elements, BE, markings,
M, and steps, Y, are identical to the definitions given in [Jen92], which except for techni-
cal details are identical to those of [Jen91]. However, the enabling rule of CP-nets must be
extended to take into account the communication expressions.

Definition 2.3
A step Y ∈Y is enabled in a marking M ∈M iff the following properties are satisfied:

(i) ∀p ∈P : ∑
(t,b) ∈Y

 E(p,t) ≤ M(p).

(ii) ∀ch ∈CH: ∑
(t,b)∈Y

 E(t,!?,ch) = ∑
(t,b)∈Y

 E(t,?!,ch).

If Y fulfils (ii) it is said to be communication enabled.

(i) This is the enabling rule of CP-nets, See [Jen91] Def. 2.6 or [Jen92] Def 2.8.

(ii) For each channel we demand that the multi-set of values obtained by evaluating the
!?-expressions must match the multi-set of values obtained by evaluating the
?!-expressions. This means that a step is enabled iff all binding elements are enabled
and the communication can take place.

Our definitions of occurrence, occurrence sequence and reachability are identical to those
of [Jen91] and [Jen92].

2.3 Behaviourally Equivalent CP-net

In this section we show, that although adding channels to CP-nets increases the possibility
for creating compact and comprehensive models it does not increase the computational
power. We show that a large class of CP-nets with channels, which we call well-formed,
can be transformed into behaviourally equivalent CP-nets. By a behaviourally equivalent
CP-net, we mean a CP-net without channels behaving like the original CP-net with chan-
nels—that is, there is a one to one correspondence between markings and enabled steps of
the two models (see Theorem 2.5). The existence of an equivalent CP-net is extremely
useful, because it tells us how to generalise the basic concepts and the analysis methods of
CP-nets to CP-nets with channels. We simply define these concepts in such a way that a
CP-net with channels has a given property iff the equivalent CP-net has the
corresponding property. It is important to understand that we never make the
transformation for a particular CP-net with channels. When we describe a system we
directly use CP-nets with channels without constructing the equivalent CP-net. Similarly,
we directly analyse a CP-net with channels without constructing the equivalent CP-net.

In Def. 2.3 we defined the enabling rule of CP-nets with channels. This definition
gives an operational semantics that is easy to understand and use. In this section we show
how to transform the restrictions imposed by the additional enabling restriction into a
structural property of the resulting CP-net. The formal proof involves a number of def-
initions and mathematical proofs. In this paper we have chosen to give the intuition be-
hind the transformation and only the most central definitions and proofs. The formal
definitions and proofs are found in [CD92].

The basic idea behind the transformation of a CP-net with channels to an equivalent
CP-net is illustrated in Fig. 1.2 and Fig. 1.4: all transitions involved in a channel com-
munication are merged together so that the arcs of the merged transition are the union of
the arcs of the original transitions and the guard of the merged transition is formed by
the conjunction of the original guards and an expression stating that the communication
expressions must evaluate to the same value.

Since the bindings of the communication transitions involved in a channel communica-
tion are independent except for the restrictions expressed in the communication expres-
sions we need to make sure that set of variables of the involved communication
transitions are disjoint before we merge the transitions. Therefore, for each transition, t,
we replace each variable v∈Var(t) with a new variable vt, of the same type as v. We
assume that the names of the new variables are different.

Since the transformation is based only on the net structure and does not take the in-
scriptions into account, the transformation obviously fails to be finite if the communica-
tion contains cycles. A simplified example of a net with a cyclic communication is shown
in Fig. 2.1. The t1 transition initiates the communication by sending an integer value on
channel ch1. If the value is negative t2 just receives the value. Otherwise t3 sends the

decremented value on ch2. t4 just retransmits on ch1 the value received on ch2. The
transformation of this net fails to be finite because it is not possible from the net structure
alone to determine how many instances of t3 and t4 should be merged. It depends on the
actual value of the variable v, e.g., if v=3 the transformation would include one instance
of t1 and t2, but 3 instances of t3 and t4.

Figure 2.1: Cyclic channel communication

In the rest of this paper we only consider what we call well-formed CP-nets with chan-
nels. We say that a CP-net with channels is well-formed iff the channel communication
has no directed cycles. Well-formed CP-nets with channels have behaviourally equivalent
CP-nets. It should be noted that not well-formed CP-nets with channels may have a rea-
sonable meaning—although they are forbidden in order to be able to transform CP-nets
with channels to CP-nets.

In the definition of the equivalent CP-net we need to define which transitions are merged
together. We define the term transition groups. Intuitively a set of transitions form a
transition group iff they fulfil:

• if the transition is an ordinary transition it constitutes a transition group of its own,
• for each channel involved in the communication between transitions in the set, we

must have exactly one !? and one ?!-transition,
• the transition group is minimal. That is, a transition group contains only one ordi-

nary transition or the communicating transitions involved in one specific communi-
cation. Since a communication transition may communicate on several channels a
transition group may include transitions communicating on a number of channels.

In Fig. 1.3 we have eight communication groups: one for each of the ordinary
transitions, i.e., the producer and consumer transitions and four groups consisting of the
possible communication paths, i.e. {Send1, Receive1}, {Send1, Receive2}, {Send2,
Receive1} and {Send2, Receive2}.

For each transition group, we are now able to define the conditions that communication
enables the transitions. The communication guard function CG is defined from the
set of transition groups, TG, into boolean expressions:

∀T" ∈TG: CG(T") = ∧ch∈CH [E(T",!?,ch) = E(T",?!,ch)].

Having this notion of transition groups and communication guard, we are now able to
define the transformation from CP-nets with channels into a behaviourally equivalent
CP-nets:

Definition 2.4 (Def. 2.8 in [CD92])
Let a CP-net with channels CCPN = (CPN, CS) be given, where CPN = (Σ, P, T, A, N,
C, G, E, I) and CS = (CH, CT, CE). Then we define the equivalent CP-net to be
CPN* = (Σ*, P*, T*, A*, N*, C*, G*, E*, I*) where:
(i) Σ* = Σ.
(ii) P* = P.

(iii) T* = TG.
(iv) A* = {(a,t*) ∈A×T*  t(a)∈ t*}.
(v) ∀ a*=(a, t*) ∈A*:

[s(a)∈P ⇒ Ν*(a*) = (p(a),t*) ∧
s(a)∈T ⇒ Ν*(a*) = (t*,p(a))].

(vi) C* = C.
(vii) ∀ t*∈T*: G*(t*) = ∧t∈t* G(t) ∧ CG(t*).
(viii) ∀ a*=(a,t*) ∈A*: E*(a*) = E(a).
(ix) I* = I.

(i) The set of colour sets is unchanged.
(ii) The set of places is unchanged.
(iii) We have a transition for each of the transition groups. We recall that transitions,

which do not communicate, are represented as singleton transition groups, i.e., by
communication groups containing only a single transition.

(iv) The arcs are duplicated such that for an arc, a, we get a copy of a for each com-
munication group having the transition of a as a member.

(v) The node function is changed to match (iv).
(vi) The colour function is unchanged.
(vii) The guard consists of two independent parts: the conjunction of the guards in the

original transitions and the communication guard defined above.
(viii) The arc expression function is changed to match (iv).
(ix) The initialization expression function is unchanged.

The equivalent CP-net has a set of steps that is different from the CP-net with channels.
This is because each binding element in the equivalent CP-net by definition fulfils the
guard. Thus we only have a binding element when the involved communication expres-
sions have matching values. A similar property is not satisfied for the CP-net with chan-
nels, where bindings of the communication transitions may be defined in such a way that
the values of the communication expressions do not match. A step with such bindings will
of course not be enabled—but the binding elements do exist. All concepts with a star re-
fer to CPN*, while those without refer to CCPN.

Theorem 2.5 (Theorem 2.9 in [CD92])
Let CCPN be a CP-net with channels and let CPN* be the equivalent CP-net. Then we
have the following properties:
(i) M = M* ∧ M 0 = M 0*.
(ii) There exists a bijective function, ϕ, which maps communication enabled steps of
CCPN onto steps of CPN*.
(iii) ∀ M1,M2 ∈M ∀ Y ∈Y:

M1 [Y›CCPN M2 ⇔ M 1 [ϕ(Y)›CPN* M2

Proof: The proof (shown in [CD92]) can be derived from the previous definitions.

3. Analysis of CP-nets with Channels
It is important that our extension do not invalidate the analysis methods already known
for CP-nets. In practice, it is not sufficient to be able to map a CP-net with channels into

a behaviourally equivalent CP-net. We must also be able to perform analysis directly on
the CP-nets with channels. The present section discusses how this can be done. We con-
sider simulation, occurrence graphs and place invariants.

3.1 Simulation and Occurrence Graph Analysis

The main problem of computer support for simulation of CP-nets with channels is to find
a good way to represent the channel communication to the user. Especially the represen-
tation of locally enabled transitions that are restricted by their communications, can be
difficult to present. However, if a simulator can handle CP-nets we see no major concep-
tual problems in extending it to handle CP-nets with channels.

In occurrence graphs we usually only consider steps containing a single binding element,
i.e., a single transition, with a single binding. For CP-nets with channels this is not suffi-
cient, because we need at least two binding elements to have a communication. Thus we
must instead consider steps corresponding to transition groups in the equivalent CP-net.
However, again we see no conceptual problems.

3.2 Place Invariants

In this section we show how the concepts of place invariant and place flow can be ex-
tended to CP-nets with channels. Place invariants can be used in the proofs of properties
of a CP-net, e.g., absence of dead markings. In this paper, we focus on the concepts of
place invariants and place flows more than on the use of invariants and flows in the proof
of properties of CP-nets. For an introduction to invariants for CP-nets see [Jen81],
[Jen86], [Jen91] and [Jen92].

3.2.1 Formal Definition of Place Invariants for CP-nets

In the following, we formally define the concepts of place invariants and place flows for
CP-nets. Before doing this it is necessary to define the notion of weighted set.

A weighted set over a non-empty set S, is defined in exactly the same way as a
multi-set—except that we now also allow negative coefficients. This means that we can
always subtract two weighted sets over the same set S, from each other, and it also means
that scalar-multiplication with negative integers is allowed. The set of all weighted sets
over S is denoted by SWS. Weighted sets have properties that are analogous to those of
multi-sets. In particular, we say that a function W ∈[AWS → BWS] is linear iff:

W(w1 + w2) = W(w1) + W(w2)

for all weighted-sets w1,w2 ∈AWS. The set of linear functions in [AWS → BWS] is denoted
by [AWS → BWS]L.

Definition 3.1
Let CPN = (Σ, P, T, A, N, C, G, E, I) be a CP-net. We then define:
(i) W is a place weight function, with range R ∈Σ:

∀p ∈P: W(p) ∈[C(p)WS → RWS]L.
(ii) For each marking M the place weight function W determines W(M) ∈RWS:

∀M ∈M: W(M) = ∑
p ∈P

 W(p)(M(p)).

(iii) The place weight function W determines the place invariant W(M) = W(M0) iff
the weighted marking is constant for all reachable markings:

∀M ∈[M0›: W(M) = W(M0).
(iv) The place weight function W is a place flow iff:

∀(t,b) ∈BE: ∑
p ∈P

 W(p)(E(p,t)) = ∑
p ∈P

 W(p)(E(t,p)).

We use WP to denote the set of all place weight functions, while we use WPF ⊆ WP and
WPI ⊆ WP to denote the set of those place weight functions that are place flows and
which determine place invariants.

All weights are linear functions. This means that any linear combination of two place
flows is a place flow, e.g., if W1 and W2 are place flows, with identical range, and z1,
z2 ∈Z then z1∗W1 + z2∗W2 is a place flow. A zero weight is a function mapping any
weighted-set to the empty set. The weight function assigning zero weights to all places is
always a place flow. We say that a place p is included in W if W(p) is a non-zero func-
tion. Similar remarks apply to place invariants. The main reason for introducing place
flows is the difficulty to check place invariants on the total set of reachable states whereas
a place flows is a static property, which can be checked on the structure of the CP-net.

The following theorem describes the relationship between place invariants and place
flows. A binding element is said to be dead when it can never occur.

Theorem 3.2
Let a CP-net be given. We then have:
(i) WPF ⊆ WPI.
(ii) No dead binding elements ⇒ WPF = WPI.

Proof: The theorem is part of the classical theory for invariant analysis. For CP-nets a
proof of (i) can be found in [Jen81] and [Jen86]. The proof of (ii) is straightforward. ♦

3.2.2 Extending Place Invariants to CP-nets with Channels

For CP-nets with channels we define place weight functions, weighted markings, place
invariants, WP and WPI in exactly the same way as we did for CP-nets. Moreover, we de-
fine place/channel weight functions and place/channel flows as follows:

Definition 3.3
Let CCPN = (CPN, CS) be a CP-net with channels, where CPN = (Σ, P, T, A, N, C, G,
E, I) and CS = (CH, CT, CE). We then define:
(i) W is a place/channel weight function, with range R ∈Σ:

∀p ∈P: W(p) ∈[C(p)WS → RWS]L ∧ ∀ch ∈CH: W(ch) ∈[CT(ch)WS → RWS]L.
(ii) For each marking M the place/channel weight function W determines W(M) ∈RWS:

∀M ∈M: W(M) = ∑
p ∈P

 W(p)(M(p)).

(iii) The place/channel weight function W determines the place invariant W(M) =
W(M0) iff the weighted marking is constant for all reachable markings:

∀M ∈[M0›: W(M) = W(M0).

(iv) The place/channel weight function W is a place/channel flow iff:
∀(t,b) ∈BE:

∑
p ∈P

 W(p)(E(p,t)) + ∑
ch ∈CH

 W(ch)(E(t,!?,ch)) =

∑
p ∈P

 W(p)(E(t,p)) + ∑
ch ∈CH

 W(ch)(E(t,?!,ch)).

We use WPC to denote the set of all place/channel weight functions, while we use
WPCF ⊆ WPC and WPCI ⊆ WPC to denote the set of those place/channel weight func-
tions that are place/channel flows and which determine place invariants.

The domain of a weight function is extended to cover both places and channels, i.e., each
place and each channel are mapped into a weight. A weight of a place is a linear function
from weighted sets over the colour set of the place to weighted sets over R. A weight of a
channel is a linear function from weighted sets over the channel type to weighted sets
over R. A place/channel weight function determines a place/channel flow if the weighted
sum of the tokens consumed together with the values of the !?-expressions are equal to the
weighted sum of the tokens produced together with the values of the ?!-expressions. This
is the only non-symmetric use of !? and ?!. We have chosen to group !?-expressions with
the input arcs, and ?!-expressions with the output arcs. We could just as well do the op-
posite. The definition of place invariants is equivalent to the definition given for CP-nets.

For a weight function W∈WPC we use W P to denote its restriction to P and we use
WPCI P to denote {(W P)  W∈WPCI}. This means WPCI P = WPI.

In the following we show how the concepts of place invariant and place/channel flow of
CP-nets with channels match the corresponding concepts for CP-nets. A star is used to
indicate that a symbol refers to the equivalent CP-net. As an example we use W*∈W*

P to
denote a place weight function of CPN*.

Theorem 3.4
Let CCPN be a CP-net with channels, having CPN* as the equivalent CP-net. We then
have:
(i) WPCF P ⊆ W*

PF.
(ii) WPCF ⊆ WPCI.

Proof:

Property (i): This property is shown by reformulating the place/channel flow of Def.
3.3 (iv) in terms of the behaviourally equivalent CP-net using the transformation speci-
fied in Def. 2.4. The proof can be found in [CD92].

Property (ii): We have that WPCF P ⊆ W*
PF ⊆ W*

PI. The first inclusion follows from
Th. 3.4 (i) and the second from Th. 3.2 (i). We conclude the proof of the property by
noting that any extension of W*

PI to cover channels is a place/channel invariant. ♦

As we will illustrate by the examples in Sec. 4 it is possible to determine the interesting
place invariants of a CP-net with channels from the place/channel flows, it is however the
case that certain use of channel communication can make it impossible to find
place/channel invariants corresponding to all place invariants.

In the example of Fig. 3.1 and 3.2 we can specify three weight functions which de-
termines place invariants:

W1: P1(A + B)
W2: P2(A + B)
W3: Id(A + B).

W1 and W2 specifies that the multi-set sum of the projection of the two places is constant
for all reachable markings. W3 specifies that the multi-set sum of the markings of the two
places are constant. It can be verified from fig. 3.2 that W1, W2 and W3 are place flows
of the behaviourally equivalent CP-net.

Figure 3.1: CP-net with channel communication

Figure 3.2: Behaviourally equivalent CP-net

It is possible to find place/channel flows which corresponds to W1 and W2:

W1: P1(A + B) + Id(ch1)
W2: P2(A + B) + Id(ch2).

But it is not possible to find any weights of ch1 and ch2 corresponding to W3.

4. Examples of CP-nets with Channels
In this section we illustrate the modelling convenience of CP-nets with channels by means
of small examples. We focus on how channels can be used to glue together different
sub-models into larger models.

The straightforward use of CP-nets with channels is to describe the synchronous
communication between separate processes. Channels are then used to define the interface
through which the processes communicate by means of communication transitions. This
approach has a number of advantages. The most obvious advantage is that it is possible to
structure the model into communicating sub-models in such a way, that you can change
parts of the model without changing other parts of the model as long as the interface
specified by means of channels is not changed.

4.1 A Resource Sharing Example
In the following we show how the resource allocation system in Fig. 4.1, [Jen92], can be
re-structured using channel communication. The resource allocation example has a set of
processes that share a common pool of resources. There are two different kinds of pro-
cesses, called p-processes and q-processes, and three different kinds of resources, called
r-resources, s-resources and t-resources. Each process is cyclic and during the individual
parts of its cycle, the process needs to have exclusive access to a varying amount of re-
sources. For each process, we have an integer value counting the number of process cy-
cles. We use the following definition of colours: P = {p,q}, I = Integer, U = P×I and
R = {r,s,t}. We use a variable x of type P and a variable i of type I. The p-processes can

be in four different states, while q-processes can be in five different states. In the initial
state, there are 2 p-processes, 3 q-processes, 1 r-resource, 3 s-resources and 2
t-resources. The CP-net is presented in Fig. 4.1 is so small, that we would not decompose
it in practice, but it can still be used to illustrate the convenience of CP-nets with chan-
nels.

Figure 4.1: Resource allocation modelled with CP-nets

The idea is to re-structure the CP-net model of Fig. 4.1 into three separate sub-models
communicating through channels—sub-models describing the p-processes, the q-processes
and the resource allocation respectively. We use channels instead of ordinary arcs to re-
serve and release resources. Hereby the model is broken up into three separate submodels
with interface described by means of channels. The sub-models are shown in Fig. 4.2.

The resource allocation sub-model consists of the resource place and two communica-
tion transitions GetResource and PutResource communicating through channels called Re-
serve and Release. The channel type of Reserve and Release is multi-sets over the colour
set R and res is a multi-set variable over the colour set R.

In the subnets modelling the processes we replace the transitions normally connected
to the resource place with communication transitions. Transitions reserving a resource
are replaced with communication transitions using the Reserve channel and transitions
releasing a resource are replaced with communication transitions using the Release chan-
nel.

Note that we allow a multi-set to be communicated through a channel, but we do not
allow a multi set from one sender to be split up into pieces received by different re-
ceivers.

Given the model of Fig. 4.2 consisting of three separate sub-models, it is now possible to,
e.g., redefine the resource allocation strategy without changing the process descriptions.

On the other hand the figure also illustrates that breaking a small example into
sub-models by replacing some of the arcs with channels does not always enhance the
readability of the model. The real advantage of CP-nets with channels will be gained
when modelling large systems where it is impossible to model the whole system on a sin-
gle page.

Figure 4.2: Resource allocation modelled with channels

Before we look at the place/channel flows of the CP-net with channels shown in Fig. 4.2
we look at the place flows of the CP-net in Fig. 4.1: We use the following notation for
weight functions: places having a zero weight are simply left out, the identity function is
implicit, the Pr (Projection) function maps multi-sets of pairs of P×I into multi-sets of P,
the Ig (Ignore colour) function maps a multi-set of size s into s`e, the indicator functions
Ir, Is, It map multi-sets of resources into the size of the respective resources, i.e., Ir(2`r +
1`s + 3`t) = 2`e, Is(2`r + 1`s + 3`t) = 1`e and It(2`r + 1`s + 3`t) = 3`e. Finally, we use the
names of the places to refer to the marking of the place, e.g., we write Bp instead of
M(Bp). For the example in Fig. 4.1 we then have the following five place weight func-
tions. By checking that the weighted sum of tokens consumed by each binding for each
transition is equal to the weighted sum of tokens produced it can easily be shown that the
weight functions are place flows and therefore determine place invariants.

W1: Pr(Bp + Cp + Dp + Ep)
W2: Pr(Aq + Bq + Cq + Dq + Eq)
W3: Ir(R) + Ig(Bq + Cq)
W4: Is(R) + Ig(Bq) + 2∗Ig(Cp + Dp + Ep + Cq + Dq + Eq)
W5: It(R) + Ig(Dp + Eq) + 2∗Ig(Ep).

We can construct other place flows, but all of the above place flows can easily be inter-
preted in terms of the CP-net: as an example, W1 shows that all the p-processes are in one
of the states represented by Bp, Cp, Dp or Ep. W3 shows that the r resources are either
free (i.e., in state R) or occupied by a q-process in state Bq or Cq. Using the information
from the five place flows above, it is straightforward to prove that the system is deadlock
free and similar behavioural properties.

Lets now consider the place/channel flows of the CP-nets with channels in Fig. 4.2. A
place/channel weight function is a place/channel flow if the weighted sum of the tokens
consumed together with the values of the !?-expressions are equal to the weighted set of
tokens produced together with the values of the ?!-expressions. Therefore the weight
functions, W1 and W2, which do not involve the resources are unchanged, whereas the
other weight functions, W3, W4 and W5, are extended to include the Reserve and Release
channels.

W1: Pr(Bp + Cp + Dp + Ep)
W2: Pr(Aq + Bq + Cq + Dq + Eq)
W3: Ir(R + Reserve + Release) + Ig(Bq + Cq)
W4: Is(R + Reserve + Release) + Ig(Bq) + 2∗Ig(Cp + Dp + Ep + Cq + Dq + Eq)
W5: It(R + Reserve + Release) + Ig(Dp + Eq) + 2∗Ig(Ep).

4.2 Protocol Modelling

Although ordinary Petri nets has shown to be very useful in the area of protocol specifi-
cation, CP-nets with channels may be used in this area with advantage. Often protocols
are divided into a number of layers like, e.g., the OSI model, where each layer communi-
cates only with the layer above and below. Using CP-nets with channels each layer is then
modelled separately and the interfaces between the layers are modelled by means of chan-
nels. Hereby it is possible to model each layer independently and possibly at different ab-
straction levels. At the lowest level of details a layer can be modelled by means of two
communication transition as shown in Fig. 4.3, where each communication transition
handles the communication in one direction. At this abstraction level, the layer is trans-
parent—messages are sent unchanged to the layers above and below. If it is later on de-
cided to detail the description of this protocol layer, the communication transitions are
just replaced with a subnet describing the internal behaviour of the layer at an appropri-
ate level of abstraction.

Figure 4.3: Transparent protocol layer

Using channels to describe the interface between two layers furthermore eases the de-
scription of, e.g., an unreliable communication. If we want to describe that data may be
lost on the channel ‘ToLayer2’ in Fig 4.3 we do not need to change the original model,
but just add a single transition occasionally removing data transmitted via the channel, as
illustrated in Fig. 4.4.

Figure 4.4: Modelling data loss on a channel

In this section we have illustrated how CP-nets with channels provide useful concepts for
generating structured net models. We have illustrated how channels are useful to describe
synchronous communication between separate sub-models and to glue separate
sub-models together into larger models with extended functionality.

5. Conclusion
In this paper we have shown how the concept of synchronous communication channels
can be introduced in the framework of CP-nets. CP-nets with channels facilitates the
creation of compact and comprehensive models of systems with synchronous communica-
tion.

Channel communication is a valuable concept for structuring net models. Defining the
interface between different subnets by means of communication channels makes it easy to
create expandable and tailorable sub-models, where all dependencies between sub-models
are expressed in the communication expressions. The advantage of such a modular ap-
proach has been known in the area of traditional programming languages for a long time,
and has resulted in a number of different concepts, e.g., abstract data types and modules.
CP-nets with channels have been developed to support similar efforts inside the area of
Petri nets.

CP-nets with channels are highly influenced by needs originating from practical use of
hierarchical CP-nets for modelling, and we have shown how CP-nets with channels fit
nicely into the Petri net framework. We have shown that each CP-net with channels can
be mapped into an equivalent CP-net, i.e., a CP-net with identical behaviour. We have
defined place flows and place invariants for CP-nets with channels, in such a way that
they have similar properties as in CP-nets.

Acknowledgement
We would like to thank Kurt Jensen for valuable discussions and Peter Huber, Mogens
Nielsen and Laura Petrucci for many helpful comments on earlier versions of this paper.

References
[CD92] S. Christensen, N. Damgaard Hansen: Coloured Petri nets extended with

channels for synchronous communication. Daimi PB–390, ISSN 0105–
8517, April 1992. Available as: Daimi PB–390, ISSN 0105–8517, April 1992.

[CP92] S. Christensen, L. Petrucci: Towards a modular analysis of coloured
Petri nets. In: K. Jensen (ed.): Application and Theory of Petri Nets 1992.
Lecture Notes in Computer Science, vol. 616, Springer-Verlag, 1992, 113-
133.

[HT91] T. Hildebrand and N. Trèves: S-CORT: A method for the development
of electronic payment systems. In: G. Rozenberg (ed.): Advances in Petri
Nets 1989, Lecture Notes in Computer Science vol. 424, Springer-Verlag
1990, 262-280.

[Hoa85] C. A. R. Hoare: Communicating sequential processes ISBN 0-13-
153289-8, Prentice Hall, 1985.

[HJS90] P. Huber, K. Jensen and R. M. Shapiro: Hierarchies in coloured Petri
nets. In: G. Rozenberg (ed.): Advances in Petri Nets 1990. Lecture Notes in
Computer Science, vol. 383, Springer-Verlag, 1990, 342-416. Also in [JR91],
215-243.

[Jen81] K. Jensen: Coloured Petri nets and the invariant method. Theoretical
Computer Science 14 (1981), Springer-Verlag 1981, 317-336.

[Jen86] K. Jensen: Coloured Petri nets. In: W. Brauer, W. Reisig and
G. Rozenberg (eds.): Petri Nets: Central Models and Their Properties, Ad-
vances in Petri Nets 1986 Part I, Lecture Notes in Computer Science, vol. 254,
Springer-Verlag 1987, 248-299.

[Jen91] K. Jensen: Coloured Petri nets: A high level language for system
design and analysis. In: G. Rozenberg (ed.): Advances in Petri Nets 1990.
Lecture Notes in Computer Science, vol. 383. Springer-Verlag, 1990, 342-
416. Also in [JR91], 44-119.

[Jen92] K. Jensen: Coloured Petri nets. Basic concepts, analysis methods and
practical use. Volume 1: Basic concepts. EATCS monographs on Theo-
retical Computer Science, Springer-Verlag 1992.

[JR91] K. Jensen and G. Rozenberg (eds.): High-level Petri nets: theory and
application. Springer-Verlag 1991. ISBN 3-540-54125-X/0-387-54125-X.

[Mil89] R. Milner: Communication and concurrency. ISBN 0-13-114984-9,
Prentice Hall, 1989.

