
Polyvariant Analysis of the Untyped
Lambda Calculus

Jens Palsberg
palsberg@daimi.aau.dk

Michael I. Schwartzbach
mis@daimi.aau.dk

Department of Computer Science, Aarhus University
Ny Munkegade, DK-8000 Arhus C, Denmark

February 1992

Abstract

We present a polyvariant closure, safety, and binding time anal-
ysis for the untyped lambda calculus. The innovation is to analyze
each abstraction afresh at all syntactic application points. This is
achieved by a semantics-preserving program transformation followed
by a novel monovariant analysis, expressed using type constraints.
The constraints are solved in cubic time by a single fixed-point com-
putation.

Safety analysis is aimed at determining if a term will cause an er-
ror during evaluation. We have recently proved that the monovariant
safety analysis accepts strictly more terms than simple type inference.
This paper demonstrates that the polyvariant transformation makes
even more terms acceptable, even some without higher-order poly-
morphic types. Furthermore, polyvariant binding time analysis can
improve the partial evaluators that base a polyvariant specialization
on only monovariant binding time analysis.

1



1 Introduction

Static analysis of untyped higher order functional programs can be based
on either a type analysis [15] or a closure analysis [24]. Both provide basic
behaviors information that can be used in further analyses. Their outputs
differ as follows.

Type analysis: Transforms an untyped program into a typed program. If
this succeeds, then it is guaranteed that constants will not be misused,
for example that succ will not be applied to true.

Closure analysis: For every application point, computes a superset of the
possible lambda abstractions (closures) that may be applied at that
point.

Their treatment of abstractions are fundamentally different, as follows. Type
analysis assumes a “most general” context for an abstraction before doing
the analysis. This implies that once type checked, an abstraction needs never
be reconsidered, even if other parts of the program are modified. Closure
analysis considers only the finitely many contexts in the given program. This
implies that if the program is modified, then the closure analysis must be
redone.

Most traditions approaches to these analyses are similar in merging informa-
tion about contexts. Following Bondorf and Danvy [5], we call such analysis
momovariant. Monovariant type analysis merges information about all con-
ceivable contexts, whereas monovariant closure analysis merges information
about all contexts at hand.

In contrast to the monovariant closure analysis, polyvariant analysis [5] will
treat an abstraction differently in the finitely many different syntactic con-
texts. This means that it will analyze each abstraction afresh at all syntactic
application points. As exemplified later, a polyvariant closure analysis yields
more precise results than a monovariant one.

One use of polyvariant analysis is to obtain better safety checking. Safety
analysis is an essential part of type analysis, as follows.

Safety analysis: Decides if constants will be misused.

An approximative analysis says “unsafe” too often; all analyses must of

2



course be approximative since the problem is inherently undecidable. We
have recently proved that the monovariant safety analysis accepts strictly
more terms than simple type inference. As exemplified later, the polyvari-
ant transformation makes even more terms acceptable, even some without
higher-order polymorphic types.

The imprecision of monovariant analysis is also significant in partial evalu-
ators that perform polyvariant specialization [6]. Polyvariant specialization
lets every application be either unfolded or lead to the generation of a residual
call to a specialized abstraction [12, 13]. If such polyvariant specialization is
based on a monovariant binding time analysis rather than a polyvariant one,
however, then poorer specialized abstractions are obtained. This is because
the monovariant analysis merges the context information of an application
point with that of other points. We believe that polyvariant specialization
should be bred on polyvariant analysis. The purpose of binding time analysis
can be summarized as follows.

Binding time analysis: Decides if the value of an expression is known at
compile time.

The prospects of polyvariant analysis are summarized in figure 1.

Figure 1: Prospects of polyvariant analysis.

This paper presents a polyvariant closure, safety, and binding time analysis
for the untyped lambda calculus. The analysis is applicable to both strict
and lazy higher-order functional languages, including ML [16], Scheme [1],
and Miranda [25]. The basic component is a monovariant closure analysis;
the safety and binding time analyses are developed on top of it. The closure
and binding time analyses appears to be slight improvements of those used
in the partial evaluator Similix [4]; the safety analysis is new. The analysis
is specified using uniform type constraints. Note that we deliberately use the
word “type” to denote any kind of behavioral information about a piece of

3



program text. We use “type variables” to denote unknown such information.
The type constraints are notionally derived using a finite trace graph which
again is obtained directly from the program text. They are then solved in
cubic time by a single fixed-point computation over a finite lattice.

We obtain polyvariant analyses by preceding the monovariant analyses with
one or more semantics-preserving program transformations. In effect we copy
all abstractions as many times as might potentially be needed by a polyvari-
ant specializer. Note that the explicit transformation is merely a conceptu-
alization; this paper presents an algorithm that does it in a lazy, implicit
fashion.

The notion of polyvariant binding time analysis stems from the partial eval-
uator Schism of Consel [7]. Schism treats only a first-order language, how-
ever. The previous approaches to binding time analysis for a higher-order
language are all monovariant. The analyses of Nielson and Nielson [19, 18],
and Mogensen [17] require programs to be typable with simple recursive
types, simple types, or ML-polymorphic types, respectively. The analyses of
Bondorf [4], Consel [8] and Gomard and Jones [11, 10], do not impose any
typing restrictions. Only the analysis of Nielson and Nielson and that of
Jones and Gomard are defined on languages with nested fixed-points. Our
analysis imposes no restrictions and is polyvariant.

The closure, safety, and binding time analyses are performed simultaneously,
yielding fast execution time. Our safety analysis need not be coupled with
the binding time analysis, however. When it is, however, it will guarantee
safety for those operators whose arguments are known at compile-time. For
comparison, Consel [8] showed how to simultaneously perform monovariant
closure and binding time analyses, but not safety analysis, for an untyped
higher-order language. The Similix system of Bondorf and Danvy [4, 5]
performs a number of analyses one by one. The analysis of Gomard [10]
performs both partial type inference and monovariant binding time analysis.

Figure 2 gives an overview of our analysis framework.

In the following section we briefly introduce a small example language L on
which to present our analysis. It is a lambda calculus with constants and
a letrec construct. In section 3 we extend it into a language XL to allow
polyvariant analysis and, potentially, polyvariant specialization. The extra
construct needed is a restricted form of product constants and field selection.

4



Figure 2: Our analysis framework.

This enables us to define the necessary program transformations. There is
a natural embedding E of L into XL. In section 4 we define a monovariant
closure analysis C of the extended language. In section 5 we extend it to
a safety analysis and a binding time analysis. The analyses can then be
made polyvariant by first applying the program transformation P described
in section 6. In section 7 we demonstrate that also the standard treatment
of the polymorphic let can be explained through a program transformation
U . We note that U ◦U = U and that U ◦P = P ◦U . Finally, in section 8 we
give an example of how the closure and safety analyses work.

The treatment of tuples and lists is not given here; it is straightforward to
incorporate.

2 The Language

Figure 3: Syntax of the example language, L.

Our example language is a lambda calculus with boolean and integer con-
stants, and a letrec construct, see figure 3. The semantics can be either strict
or lazy, our analyses will apply in both cases. For example, the language can

5



be seen as abstract syntax for a subset of Scheme. Note that the partial
evaluator Similix [4, 5] accepts Scheme programs written in a subset of our
example language (except for syntactic differences).

3 The Extended Language

Figure 4: Syntax of the extended language, XL.

To be able to perform the program transformations that are needed for poly-
variant analysis and specializations we now extend our example language, see
figure 4. The two new constructs are a “lambda-tuple” and a “select-apply”.
The latter both selects a lambda in a tuple and applies an argument to it.
This of course introduces the possibility of a field-not-present error at run-
time. This is not significant, however, because there is a semantics-preserving
embedding E of the language in the previous section into the extended lan-
guage. Let α0 be a fixed label. We then define E in the obvious way.

• E(x) = x

• E(if E1E2E3) = if E(E1) E(E2) E(E3)

• E(true) = true

• E(false) = false

• E(0) = 0

• E(succ E) = succ E(E)

• E(letrec xj is Ej in E) = letrec xj is E(Ej) in E(E)

• E(E1E2) = E(E1) α0 E(E2)

• E(λx.E) = [α0 : λx.E(E)]

6



We claim the following.

Soundness of Embedding Result: The embedding E is semantics-pre-
serving.
Proof sketch: By induction in the length of executions. ✷

4 Closure Analysis

We now present a monovariant closure analysis of the extended language.
In this context closures will be sets of lambda abstractions. We initially
ensure that all bound variables are distinct; hence, an abstraction λx.E can
be uniquely denoted by the token λx. We denote by lambda the finite set
of all lambda tokens in the current program.

For each (sub)expression E of the program in question we introduce a type
variable [[E]] denoting its (unknown) closure information—a subset of lambda.
The analysis will proceed in two phases. First we derive the necessmy con-
straints on these variables; then we compute the minimal sulution by a globs
least fixed-point derivation. The idea of generating constraints on type vari-
ables from the program syntax is also exploited in [26, 23, 20].

To facilitate the presentation of the constraints, we introduce the concept
of a trace graph. It has a node for each lambda abstraction, denoted by
the corresponding lambda token, and one for the entire expression, denoted
main. The edges will reflect possible applications.

We use the following terminology.

Local node: Consider the parse tree for an expression. We shall call a
parse tree node local, if it can be reached from the root without passing
through a lambda abstraction.

With every trace graph node we associate a set of local constraints. They are
obtained in the following manner.

7



Local constraints:

• For every local if E1E2E3 we have the constraint
[[if E1E2E3]] ⊇ [[E2]] ∪ [[E3]].

• For every local [αi : λxi.Ei] we have the constraint
[[[αi : λxi.Ei] ⊇ {λxi}.

• For every local letrec xj is Ej in E we have the constraints
[[xj]] = [[Ej]].

For example, the first constraint can be read as “the closures produced by
if E1E2E3 must include both those produced by E2 and those produced by
E3.” We write inclusion, rather than equality, to be able to express the
constraints in a uniform manner; however, we obtain the same result, since
we compute the minimal solution.

The outgoing trace graph edges arise from lock applications. For every E1αE2

we have an edge to the trace graph node for any lambda abstraction λx.E
that has an α-label. That is, we have the following picture.

With each trace graph edge we associate a condition and two connecting
constraints. The condition is simply λx ∈ [[E1]]; it states that this edge is only
relevant if the closure of the indicated trace graph node is a possible result
of E1. The connecting constraints reflect the relationship between formal
and actual arguments and resets. They are [[E2]] ⊆ [[x]] and [[E1αE2]] ⊇ [[E]].
Thus, a typical part of the trace graph will now look as follows.

8



The condition is written above the edge, and the connecting constraints
below. A trace graph node corresponds to a lambda abstraction; its body
determines both the outgoing trace graph edges (as indicated in the left-hand
node) and the lock constraints (as indicated in the right-hand node).

From the trace graph we derive a finite set of global constraints. Each of
these is a conditional inclusion of the form

c1 ∈ γ1, . . . , cn ∈ γn ⇒ Q

where the ci’s are closures and the γi’s are type variables. The Q is a closure
set inclusion that looks like one of c ⊆ γ, γ ⊆ c, or γ1 ⊆ γ2. Each path in
the trace graph from the main node give rise to global constraints as follows.
Suppose the path is

The corresponding global constraints are

c1 ∈ γ1, . . . , cn ∈ γn ⇒ local ∪ connect

where local are the local constraints of the final node and connect are the
connecting constraints of the final edge. The trace graph may have infinitely
many paths, but since there are only finitely many closures and variables,
there will only be finitely many different global constraints—for simple com-
binatorial reasons. In the worst case the size of the global constraint set is
exponential in the size of the trace graph, which itself is linear in the size of
the program.

We now claim the following.

9



Soundness of Analysis Result: The global constraints are always satis-
fiable, and any solution will provide sound closure information about the
program.
Proof: The global constraints are satisfiable, since (as yet) no inclusion is of
the form γ ⊆ c. Hence, a (maximal) solution is obtained by assigning the set
lambda to each variable. This corresponds to trivial closure information.
The minimal solution reflects the best information that we can obt n from
the constraints.

In [21] we prove soundness of the closure analysis with respect to both a
strict and a lazy operational semantics. ✷

In appendices A and B we show how to compute the unique minimal solution
of a set of globs constraints. The problem is reduced to computing a least
fixed-point of a monotonic function in an appropriate lattice. With an incre-
mental algorithm, this fixed-point can be computed in time O(n3), where n
is the size of the lambda term.

5 Safety and Binding Time Analysis

We now show how to extend the closure analysis to also perform safety and
binding time analysis. Only new local constraints are needed.

To specify safety constraints, we introduce a set of basic types B = {Bool, Int}.
The idea is that a type variable now denotes a subset of lambda ∪ B. The
type of free variables of the entire expression can be specified by initial con-
straints of the form [[x]] = {Bool}, etc. This corresponds to the initial static
environment in the analysis of Gomard and Jones [11]. We now add the
following local constraints.

10



Additional local constraints:

• For every local if E1E2E3 we add [[E1]] = {Bool}.

• For every local succ E we add [[E]] = {Int} and [[succ E]] = {Int}.

• For every local constants we add [[true]] = [[false]] = {Bool} and [[0]] =
{Int}.

• For every local E1αE2 we add [[E1]] ⊆ lambda.

Soundness of Analysis Result: If the constraints are satisfiable, then no
execution will lee to the misuse of constants.
Proof: In [21] we give a proof of this with respect to both a strict and a lazy
operations semantics. ✷

Note that satisfiability is no longer guaranteed, since we now have inclusions
of the form γ ⊆ c. Thus, conflicting constraints can be phrased; in particular,
the maximal assignment will no longer necessarily be a solution.

Since safety analysis shares an important ambitions with type inference,
namely the avoidance of run-time errors. However, they are bred on rather
different perspectives. We are able to compare the two approaches in a
formal qualitative sense. The basis for comparison will be simple type in-
ference [26]; the extension to type inference in ML is closely paralled by the
U -transformation presented in section 7.

Comparison with Type Inference Result: The set of safe lambda terms
typable in the simply typed lambda calculus is a strict subset of those ac-
cepted by the safety analysis. This is still true if we allow recursive types, as
in the λµ-calculus [2].
Proo: This is also proved in [21]. ✷

In particular, safety analysis accepts two special families of safe terms: those
without constants, and those in normal form.

To specify the binding time analysis, we introduce yet another basic “type”
called Code. It plays the rôle of “unknown” or “dynamic” in other ap-
proaches. It can only be introduced in the initial constraints, and it will
then be propagated automatically by the connecting constraints and some
additional local constraints. We now summarize the definition of local con-

11



straints for all three analyses.

Summary of loyal constraints:

• For every local ifE1E2E3 we have [[E1]] ⊆ {Bool, Code} and
[[If E1E2E3]] ⊇ [[E2]] ∪ [[E3]].

• For every local succ E we have [[E]] = {Int, Code}, Int ∈ [[E]]⇒ {Int} ⊆
[[succ E]] and Code ∈ [[E]]⇒ {Code} ⊆ [[succ E]].

• For every local constants we have [[true]] = [[false]] = {Bool} and [[0]] =
{Int}.

• For every local E1αE2 we add [[E1]] ⊆ lambda ∪{Code} and Code ∈
[[E1]]⇒ {Code} ⊆ [[E1αE2]].

• For every local [αi : λxi.Ei] we have [[[αi : λxi.Ei]]] ⊇ {λxi}.

• For every local letrec xj is Ej in E we have [[xj]] = [[Ej]].

If the constraints are satisfiable, then any expression whose type variable
does not contain Code can be executed at compile time. A formal statement
of soundness must refer to a concrete code generation scheme. Note that
if we summarize the closure and binding time constraints alone, then the
constraints will be satisfiable.

6 The Polyvariant Tansformation

The closure analysis is monovariant; it analyzes each abstraction once. It
can be made polyvariant by preceding it by a program transformation P on
the extended language. The key idea is to give a different analysis of each
lambda abstraction for every syntactic application in the program. To be
able to do this, P generates a copy of each abstraction for every syntactic
application. It is here we need the “lambda-tuple” and “select-apply”: to
collect the different copies and distinguish between them.

The transformation P is a map from programs to programs. We first assign
unique labels β1, . . . , βk to the syntactic applications in the program, i.e.,
every parse tree node which is an application is labeled by a βj. Next, we

12



can define P inductively in the structure of the syntax as follows.

• P(x) = x

• P(if E1E2E3) = if P(E1)P(E2)P(E3)

• P(true) = true

• P(false) = false

• P(0) = 0

• P(succ E) = succ P(E)

• P(letrec xj is Ej in E) = letrec xj is P(Ej) in P(E)

• P(E1αE2) = P(E2)αβjP(E2), where βj is the label of this syntactic
application, and αβj is a concatenated label.

• P([αj : λxi.Ej]) = [αiβj : λxi.P (Ei)]. Here we generate k copies of
each lambda abstraction. Each label is concatenated with β1, . . . , βk.

We now claim the following.

Soundness of Transformation Result: P is semantics-preserving.
Proof sketch: By induction in the length of executions. ✷

The effect of a monovariant analysis of the transformed program is what we
define to be a polyvariant analysis of the origins program. The size of P(E)
can become exponential in the size of E. Each type variable [[E]] now exists in
multiple versions [[E]]1, . . . , [[E]]k. An analysis of the original program could
be obtained by for each expression E to compute the union [[E]]1∪ · · · ∪ [[E]]k
and remove the information that distinguishes the different copies of closures.
However, as we shall see, in the various anayses based on closure analysis the
more detailed information can be used directly.

Note that the P transformation can be applied repeatedly to gain ever more
precise information in a subsequent analysis. However, one cannot obtain
arbitrarily precise information; it appears that the limit of P is decidable.

13



7 The Polymorphic Tansformation

Another transformation that can give more precise closure information is in-
spired by the let-polymorphism of e.g. ML. The idea is to give a different
analysis of each named lambda abstraction for every occurrence of its name.
Note how this criterion differs from that used in the polyvariant transforma-
tion.

• U(x) = x

• U(if E1 E2 E3) = if U(E1) U(E2) U(E3)

• U(true) = true

• U(false) = false

• U(0) = 0

• U(succ E) = succ U(E)

• U(E1αE2) = U(E1) α U(E2)

• U([αi : λxi.Ei]) = [αi : λxi.U(Ei)].

• U(letrec xj is Ej in E) = U(E)[xi ← (letrec xj is U(Ej) in xi)]. Here
free occurrences of the xi’s are beta-substituted by their definitions.

The transformation U is a map from programs to programs, defined induc-
tively in the structure of the syntax. It basically provides a single unfolding
of all letrec-definitions.

We now claim the following.

Soundness of Transformation Result: U is semantics-preserving.
Proof sketch: By induction in the length of executions. ✷

The effect of U(E) is similar to the key idea in ML-style type inference, which
conceptually performs a syntactic expansion of all let-definitions. Note that
the transformed program may become exponentially larger; this relates to
ML type inference being DEXPTIME complete [14].

Properties of Transformation Result: U is idempotent, i.e., U ◦ U =

14



U ; thus, the the polymorphic transformation cannot be iterated. U and P
commute, i.e., P ◦ U = U ◦ P; thus, the polyvariant and the polymorphic
transformations are independent.
Proof sketch: By induction in the size of lambda terms. ✷

8 Examples

We now exemplify the E and P transformations and the closure and safety
analyses.

Consider the following expression:

(λf.if E then f true else succ (f 0))(if E ′ then λx.x else λy.0)

Note that it has neither a higher-order polymorphic type [9, 22] nor an in-
tersection type [3]. (We assume that E and E ′ are harmless.) Nevertheless,
we will demonstrate that our polyvariant safety analysis correctly guarantees
that constants will not be misused when executing the expression.

Choosing α0 as our fixed label and then applying the E embedding yields the
following expression in the extended language:

α0 (if Ē ′ then [α0 : λx.x] else [α0 : λy.x])

If we safety analyze this expression directly, then we will get the answer
“unsafe”. To see this, let us first perform the closure analysis, ignoring
safety and binding time. The result will be that both λx.x and λy.0 can
be applied at the points fα0 true and fα0 0. When introducing the safety
constraints, some of them will say that the type variable for x can contain
both Bool and Int. This is because λx.x can be applied to both true and 0.
Other constraints will then say that the result of applying λx.x can be both
Bool and Int. The analysis conclude that the application fα00 can yield both
a Bool and an Int, so trying to apply succ is an error. Appendix C shows the
trace graph and the global constraints.

Let us now make the polyvariant transformation P before doing the safety
analysis. There are three application points, so let us choose a label for each
of them and call the results of concatenating each of them with α0 for α, β,

15



and γ. Applying P yields:




α : λf1.if Ē then f1 α true else succ (f1 β 0)
β : λf2.if Ē then f2 α true else succ (f2 β 0)
γ : λf3.if Ē then f3 α true else succ (f3 β 0)




γ


if Ē ′ then




α : λx1.x1

β : λx2.x2

γ : λx3.x3


 else




α : λy1.0
β : λy2.0
γ : λy3.0







Applying the closure anaysis to this expression will tell that λx1.x1 and λy1.0
can be applied at the point f3 α true, and that λx2.x2 and λy2.0 can be applied
at the point f3 α 0. The increaced number of abstractions involved makes the
difference in the following. When introducing the safety constraints, some of
them will say that the type variable for x1 can contain Bool. This is because
λx1.x1 can be applied only to true. Other constraints will then say that the
result of applying λx1.x1 can only be Bool. Similar considerations in the re-
maining three cases make the analysis correctly conclude that the expression
is “safe”. Appendix D shows the trace graph, the global constraints, and the
minimal solutions

9 Conclusion

Our polyvariant analysis can improve partial evaluators based on polyvari-
ant specialization, and it also improves standard polymorphic type inference.
The closure and binding time analyses yield information for all lambda terms,
and both them and the safety analysis can be improved by repeated appli-
cation of the polyvariant transformation.

Acknowledgement: The authors thank Flemming Nielson and Torben Amtoft
for helpful comments on a draft of the paper. Bernard Steffen suggested how
to improve the complexity of the fixed-point algorithm. This work has been
supported in part by the Danish Research Council under the DART Project
(5.21.08.03).

16



A Solving Conditional Inequalities

This appendix shows how to solve a finite system of conditions inequalities in
quadratic time. Conditional inequalities generalize the conditional inclusions
used in the analysis.

Definition 1: A CI-system consists of

• a complete lattice D.

• a finite set {γi} of variables.

• a finite set of conditions inequalities of the form

C1, C2, . . . , Ck ⇒ Q

Each Ci is a condition of the form d ≤ γj, where d ∈ D, and Q is an
inequality of the form d ≤ γi, γi ≤ d, or γi ≤ γj.

A solution L of the system assigns to each variable γi an element L(γi) ∈ D
such that all the conditions inequalities are satisfied. ✷

Note that the lattice D need not be finite. In our application, D is either the
lattice of subsets of lambda (the closure analysis), lambda ∪ B (the safety
analysis), or lambda ∪ B ∪ {Code} (the binding time analysis).

Lemma 2: Solutions are closed under greatest lower bound �. Hence, if a
CI-system has solutions, then it has a unique minimal one.
Proof: Consider any conditional inequality of the form C1, C2, . . . , Ck ⇒ Q,
and let {Li} be all solutions. We shall show that �iLi is a solution. If a
condition d ≤ �iLi(γi) is true, then so is all of d ≤ Li(γj). Hence, if all the
conditions of Q are true in �iLi, then they are true in each Li; furthermore,
since they are solutions, Q is also true in each Li. Since, in general, Ak ≤ Bk

implies �kAk ≤ �kBk, it follows that �iLi is a solution. Hence, if thee are
any solutions, then �iLi is the unique smallest one. ✷

Definition 3: Let C be a CI-system with n distinct variables. An assignment
is an element of Dn ∪ {error} ordered as a lattices see figure 5.

If different from error , then it assigns an element of D to each variable. If
V is an assignment, then C̃(V ) is a new assignment, defined as follows. If

17



V = error , then C̃(V ) = error . An inequality is enabled if all of its conditions
are true under V . If for any enabled inequality of the form γi ≤ d we do not
have V (γi) ≤ d, then C̃(V ) = error otherwise, C̃(V ) is the smallest pointwise
extension of V such that

• for every enabled inequality of the form d ≤ γj we have d ≤ C̃(V )(γj).

• for every enabled inequality of the form γi ≤ γj we have V (γi) ≤
C̃(V )(γj).

Clearly, C̃ is monotonic in the above lattice. ✷

Figure 5: The lattice of assignments.

Lemma 4: An assignment L �= error is a solution of a CL-system C iff
C̃(L). If L = C has no solutions, then error is the smallest fixed-point of C̃.
Proof: If L is a solution of C, then clearly C̃ will not equal error and cannot
extend L; hence, L is a fixed-point. Conversely, if L is a fixed-point of C̃, then
all the enabled inequalities must hold. If there are no solutions, then there
can be no fixed-point below error . Since error is by definition a fixed-point,
the result follows. ✷

This means that to find the smallest solution, or to decide that none exists,
we need only compute the lest fixed-point of C̃.

18



Lemma 5: For any CI-system C, the least fixed-point of C̃ is equal to

lim
k→∞
C̃k(⊥,⊥, . . . ,⊥)

Proof: This is a standard result about monotonic functions on complete
lattices. ✷

19



B An Incremental Fixed-Point Algorithm

A näıve algorithm would accept a trace graph, derive the global constraints,
and compute the minims solution by fixed-point iteration. However, the
trace graph for a lambda term of size n may yield O(2n) different global
constraints. Thus, we would get an exponential algorithm.

We now present an algorithm, which computes the minimal solution in time
O(n3). The key idea is to incrementally compute the minimal solution to a
larger and larger set of unconditional constraints. A loyal constraint is only
added when it can be reached from the main node through a path whose
conditions hold in the current minims solution. If some local constraint is
never added, then it need not hold in the global minimal solution. In this
manner, each node and edge is at most visited once.

The algorithm is presented by means of two data structures: the Graph and
the Solver. The former gives access to the trace graph, and the latter main-
tains the current minimal solution.

The state of the Graph is the trace graph, in which some nodes have been
visited. Initially, all nodes are unvisited. The operations are as follows.

data structure Graph:
main-node:

returns the identity of the main node
outgoing-edges(n):

returns the edges from the node n and mark it visited
local-constraints(n):

returns the local constraints for the node n
connecting-constraints(e):

returns the connecting constraints for the edge e
seen-before(n):

decides if n has been visited
destination(e):

returns the destination node of the edge e
end Graph

The state of the Solver is a set of unconditional constraints and their minims
solution. It also maintains a set of trace graph edges called front edges.

20



Initially the set of constrtints is empty, and there are no front edges.

data structure Solver:
add-constraints(c):

add the constraints c and update the current minimal solution
add-front-edges(e):

add the edges e to the set of front edges
get-front-edge:

return a front edge whose conditions holds in the
current minimal solution

more-front-edges:
decides if there are more front edges whose conditions hold

end Solver

Now, the minimal solution is computed as follows.

Solver.add-constraints(Graph.local-constraints(Graph.main-node))
Solver.add-front-edges(Graph.outgoing-edges(Graph.main-node))
while Solver.more-front-edges do

e := Solver.get-front-edge
n := Graph.destination(e)
Solver.add-constraints(Graph.connecting-constraints(e))
if not Graph.seen-before(n) then

Solver.add-constraints(Graph.local-constraints(n))
Solver.add-front-edge(Graph.outgoing-edges(n))

end
end

This algorithm can easily by modifed to implicitly handle polyvariance. The
only change is that seen-before will be more restrictive, and that connecting-
constraints and local-constraints must rename variables appropriately.

We now sketch implementations of the data structures that yield a time com-
plexity of O(n3) for the basic analysis. The Graph has O(n) nodes and O(n2)
edges. Thus, O(n3) time is sufficient to allow a straightforward implementa-
tion of the operations.

21



The interesting aspects relate to the Solver. It is implemented as a dag,
where we have a map from constraint variables to nodes. Each node has
an associated size O(n) bitvector which represents the set of tokens that
all its corresponding variables are assigned in the current minimal solution.
The node for a variable can be found in O(1) time. Edges reflect inclusions
between variables. The conditions of front edges depend on a single variable
and a token; thus, we attach each front edge to the corresponding position
in the bitvector in a dag node. Initially, there is a distinct node for each of
the O(n) variables, the empty bitvector in each node, no front edges, and no
dag edges.

The operation add-constraints does the following for each constraint. If it is
of the form γ1 ⊆ γ2, then the corresponding dag edge is added. If this forms
a cycle, then all the nodes on that cycle are merged. This implies that their
bitvectors are unioned together, their lists of front edges are appended, and
the map from variables to nodes is updated correspondingly. If the constraint
is of the form c ⊆ γ, then c is unioned to the bitvector in the node for γ. In
any case, the dag may now be inconsistent. We must reestablish the inclusion
relationships. Along each dag edge, we maintain O(n) imagined “bit-wires”,
connecting the individual bits in pairs. There can at most be O(n3) bit-wires
in total. When a bit is newly set, we traverse its O(n) outgoing bit-wires,
and set the bits they lead to. In this way, set bits are correctly propagated.

We manage front edges as follows. Those with unsatisfied conditions are
distributed onto individual positions in bitvectors. Those with satisfied con-
ditions are maintained in a list, on which more-front-edges and get-front-edge
operate. When constraints are added, some bits may become set. When
this happens for a particular position in a bitvector in some node, then the
corresponding list of front edges is appended to the list of front edges with
satisfied conditions. The operation add-front-edge first checks if the corre-
sponding bit is set. If so, the edge is appended to the list of front edges with
satisfied conditions. If not, the edge is appended to the list of front edges for
that bit.

To see that we achive O(n3) time for the total of Solver operations, we need
an amortized argument. A total of O(n2) constraints are added. However,
merging dag nodes can be done at most O(n) times. Each merger involves
O(n) nodes, and the union of their bitsets is computed in time O(n2); the
total is time O(n3). New dag edges are inserted O(n2) times, once for each

22



γ1 ⊆ γ2 constraint. Each time the union of two bitvectors is computed in
time O(n); the total is time O(n3). Constant sets are included O(n2) times,
once for each c ⊆ γ constraint. Each time the union of two bitvectors is
computed in time O(n); the total is time O(n3). Each bit-wire is traversed
at most once; the total time is O(n3). Each front-edge is moved at most
twice; the total time is O(n2). All in all, the total time is O(n3).

23



C The Monovariant Example

This appendix shows the trace graph and the global constraints derived from
an expression considered in section 8. We only use the closure and safety
constraints.

Some abbreviations:

lambda = {λf, λx, λy}
w0 = the entire term from section 8 = w1α0w3

w1 = [α0 : λf.w2]
w2 = If Ē then fα0 true else (fα0 0)
w3 = If Ē ′ then [α0 : λx.x] else [α0 : λy.0]

The trace graph has the following structure:

24



The global constraints are presented below. We indicate in the leftmost
column where the inclusions stem from.

local (main)




[[w1]] ⊆ LAMBDA

[[w2]] ⊇ {λf}
[[w3]] ⊇ [[[α0 : λx.x]]] ∪ [[[α0 : λy.0]]]
[[Ē′]] = {Bool}
[[[α0 : λx.x]]] ⊇ {λx}
[[[α0 : λy.0]]] ⊇ {λy}

connecting (main to λf)
[

λf ∈ [[w1]]⇒
{

[[w3]] ⊆ [[f ]]
[[w0]] ⊇ [[w2]]

connecting (main to λx)
[

λx ∈ [[w1]]⇒
{

[[w3]] ⊆ [[x]]
[[w0]] ⊇ [[x]]

connecting (main to λy)
[

λy ∈ [[w1]]⇒
[

[[w3]] ⊆ [[y]]
[[w0]] ⊇ [[0]]

local (λf)




λf ∈ [[w1]]⇒




[[w2]] ⊇ [[f α0 true]] ∪ [[succ(f α0 0)]]
[[Ē]] = {Bool}
[[true]] = {Bool}
[[0]]{Int}
[[f α0 0]] = {Int}
[[succ(f α0 0]] = {Int}
[[f ]] ⊆LAMBDA

connecting (λf to λf)
[

λf ∈ [[w1]] ∧ λf ∈ [[f ]]⇒ · · ·
connecting (λf to λf)

[
λf ∈ [[w1]] ∧ λf ∈ [[f ]]⇒ · · ·

connecting (λf to λx)
[
λf ∈ [[w1]] ∧ λx ∈ [[f ]]⇒

{
[[true]] ⊆ [[x]]
[[f α0 true]] ⊇ [[x]]

connecting (λf to λy)
[
λf ∈ [[w1]] ∧ λy ∈ [[f ]]⇒

{
[[true]] ⊆ [[y]]
[[f α0 true]] ⊇ [[0]]

connecting (λf to λx)
[
λf ∈ [[w1]] ∧ λx ∈ [[f ]]⇒

{
[[0]] ⊆ [[x]]
[[succ(f α0 0)]] ⊇ [[x]]

connecting (λf to λy)
[
λf ∈ [[w1]] ∧ λy ∈ [[f ]]⇒

{
[[0]] ⊆ [[y]]
[[succ(f α0 0]] ⊇ [[0]]

Note that λf ∈ {λf} ⊆ [[w1]]. Using this information to enable conditions,
we further note that λx ∈ [[[α0 : λx.x]]] ⊆ [[w3]] ⊆ [[f ]]. Finally, we conclude
that the constraints are not satisfiable, since this would require:

{Int} = [[succ(f α0 0)]] ⊇ [[x]] ⊇ [[true]] = {Bool}

25



D The Polyvariant Example

This appendix shows the trace graph, global constraints, and minimal so-
lution derived from an expression considered in section 8. The expression
is obtained by applying the polyvariant transformation P to the expression
considered in appendix B. As in appendix B, we only use the closure and
safety constraints.

Some abbreviations:

lambda = {λf1, λf2, λf3, λx1, λx2, λx3, λy1, λy2, λy3}
w0 = the entire term from section 8 = w1γw3

w1 =




α : λf1. If Ē then f1 α true else succ (f1 β 0)
β : λf2. If Ē then f2 α true else succ (f2 β 0)
γ : λf3.w2




w2 = if Ē then f3 α true else succ (f3 β 0)
w3 = if Ē ′ then w4 else w5

w4 =




α : λx1.x1

β : λx2.x2

γ : λx3.x3




w5 =




α : λy1.0
β : λy2.0
γ : λy3.0




The trace graph has the following structure:

26



27



The global constraints are presented below. We indicate in the leftmost
column where the inclusions stem from.

local (main)




[[w1]] ⊆lambda
[[w2]] ⊇ {λf1, λf2, λf3}
[[w3]] ⊇ [[w4]] ∪ [[w5]]
[[Ē′]] = {Bool}
[[w4]] ⊇ {λx1, λx2, λx3}
[[w5]] ⊇ {λy1, λy2, λy3}

connecting (main to λf3)
[

λf3 ∈ [[w1]]⇒
{

[[w3]] ⊆ [[f3]]
[[w0]] ⊇ [[w2]]

connecting (main to λx3)
[

λx3 ∈ [[w1]]⇒
{

[[w3]] ⊆ [[x3]]
[[w0]] ⊇ [[x3]]

connecting (main to λy3)
[

λy3 ∈ [[w1]]⇒
{

[[w3]] ⊆ [[y3]]
[[w0]] ⊇ [[0]]

local (λf)




λf3 ∈ [[w1]]⇒




[[w2]] ⊆ [[f3 α true]] ∪ [[succ(f3 β 0)]]
[[Ē]] = {Bool}
[[true]] = {Bool}
[[0]] = {Int}
[[f3 β 0]] = {Int}
[[succ(f3 β 0]] = {Int}
[[f3]] ⊆ lambda

connecting (λf3 to λf1)
[

λf3 ∈ [[w1]] ∧ λf1 ∈ [[f3]]⇒ · · ·
connecting (λf3 to λf2)

[
λf3 ∈ [[w1]] ∧ λf2 ∈ [[f3]]⇒ · · ·

connecting (λf3 to λx1)
[

λf3 ∈ [[w1]] ∧ λx1 ∈ [[f3]]⇒
{

[[true]] ⊆ [[x1]]
[[f3 α true]] ⊇ [[x1]]

connecting (λf3 to λy1)
[

λf3 ∈ [[w1]] ∧ λy1 ∈ [[f3]]⇒
{

[[true]] ⊆ [[y1]]
[[f3 α true]] ⊇ [[0]]

connecting (λf3 to λx2)
[

λf3 ∈ [[w1]] ∧ λx2 ∈ [[f3]]⇒
{

[[0]] ⊆ [[x2]]
[[succ(f3 β 0)]] ⊇ [[x2]]

connecting (λf3 to λy2)
[

λf3 ∈ [[w1]] ∧ λy2 ∈ [[f3]]⇒
{

[[0]] ⊆ [[y2]]
[[succ(f3 β 0]] ⊇ [[0]]

Excerpts from the minimal solution:

[[w0]] = [[w2]] = [[f3 α true]] = {Bool, Int}
[[w1]] = {λf1, λf2, λf3}
[[w3]] = [[f3]] = {λx1, λx2, λx3, λy1, λy2, λy3}
[[w4]] = {λx1, λx2, λx3}
[[w5]] = {λy1, λy2, λy3}
[[x1]] = [[y1]] = {Bool}
[[x2]] = [[y2]] = [[f3 β 0]] = [[succ(f3 β true)]] = {Int}

28



References

[1] Harald Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, 1985.

[2] Barendregt and Hemerik. Types in lambda calculi and programing
languages. In Proc. ESOP’90, European Symposium on Programming.
Springer-Verlag (LNCS 432), 1990.

[3] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. Journal of Symbolic
Logic, 48:931–940, 1983.

[4] Anders Bondorf. Automatic autoprojection of higher order recursive
equations. In Proc. ESOP’90, European Symposium on Programming.
Springer-Verlag (LNCS 432), 1990.

[5] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science of
Computer Programming, 16:151–195, 1991.

[6] M. A. Bulyonkov. Polyvariant mixed computation for analyzer pro-
grams. Acta Informatica, 21:473–484,1984.

[7] Charles Consel. New insights into partial evaluation: the SCHISM ex-
periment. In Proc. ESOP’88, European Symposium on Programming.
Springer-Verlag (LNCS 300), 1988.

[8] Charles Consel. Binding time analysis for higher order untyped func-
tional languages. In Proc. ACT Conference on Lisp and Functional Pro-
gramming, pages 264–272. ACM, 1990.

[9] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures dans l’arithmétique d’order superieur. PhD thesis, University
of Paris VII, 1972.

[10] Carsten K. Gomard. Partial type inference for untyped functional pro-
grams. In Proc. ACM Conference on Lisp and Functional Programming,
pages 282–287. ACM, 1990.

29



[11] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the un-
typed lambda-calculus. Journal of Functional Programming, 1(1):21–
69,1991.

[12] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. An experiment
in partial evaluation: The generation of a compiler generator. In J.-P.
Jouannaud, editor, Proc. Rewriting Techniques and Applications, pages
225–282. Springer-Verlag (LNCS 202), 1985. .

[13] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: a self-
applicable partial evaluator for experiements in compiler generation.
Journal of LISP and Symbolic Computation, 2:9–50, 1989.

[14] H. G. Mairson. Decidability of ML typing is complete for deterministic
exponential time. In Seventeenth Sympsium on Principles of Program-
ming Languages, pages 382–401. ACM Press, January 1990.

[15] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17, 1978.

[16] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, 1990.

[17] Torben Æ. Mogensen. Binding time analysis for polymorphically typed
higher order languages. In Proc. TAPSOFT’89. Springer-Verlag (LNCS
352), March 1989.

[18] Flemming Nielson and Hanne Riis Nielson. Two-level functional lan-
guages. Draft book. To be published by Cambridge University Press,
1991.

[19] Hanne R. Nielson and Flemming Nielson. Automatic binding time anal-
ysis for a typed λ-calculus. Science of Computer Programming, 10:139–
176,1988.

[20] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type infer-
ence. In Proc. OOPSLA’91, ACM SIGPLAN Sixth Annual Conference
on Object-Oriented Programming Systems, Languages and Applications,
1991.

30



[21] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type
inference. Computer Science Department, Aarhus University. Submitted
fur publication, 1992.

[22] John C. Reynolds. Towards a theory of type structure. In Proc. Colloque
sur la Programmation. Springer-Verlag (LNCS 19), 1974.

[23] Michael I. Schwartzbach. Type inference with inequalities. In Proc.
TAPSOFT’91. Springer-Verlag (LNCS 493), 1991.

[24] Peter Sestoft. Replacing function parameters by global variables. In
Proc. Conference on Functional Programming languages and Computes
Architecture, pages 39–53, 1989.

[25] David A. Turner. Miranda: A non-strict functions language with poly-
morphic types. In Proc. Conference on Funtional Programming Lan-
guages and Computer Architecture, pages 1–16. Springer-Verlag(LNCS
201), 1985.

[26] Mitchell Wand. A simple algorithm and proof for type inference. Fun-
damentae Informaticae, X:115–122, 1987.

31


