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Abstract

We present the implementation of a type inference algorithm for
untyped object-oriented programs with inheritance, assignments, and
late binding. The algorithm significantly improves our previous one,
presented at OOPSLA’91, since it can handle collection classes, such
as List, in a useful way. Also, the complexity has been dramatically
improved, from exponential time to low polynomial time. The imple-
mentation uses the techniques of incremental graph construction and
constraint template instantiation to avoid representing intermediate
results, doing superfluous work, and recomputing type information.
Experiments indicate that the implementation type checks as much
as 100 lines pr. second. This results in a mature product, on which
a number of tools can be based, for example a safety tool, an image
compression tool, a code optimization tool, and an annotation tool.
This may make type inference for object-oriented languages practical.

Keywords: Type inference, implementation, collection classes, tools,
Smalltalk.

∗This paper will also appear in the proceedings of ECOOP’92.
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1 Introduction

The basic purpose of doing type inference for untyped object-oriented pro-
grams is to guarantee that all messages are understood [1].

At OOPSLA’91 we presented a type inference algorithm for an untyped
object-oriented language with inheritance, assignments, and late binding [17].
The algorithm can type check many common programs, including those with
polymorphic and recursive methods. It can not, however, infer types in
programs that use collection classes. A collection class is used to contain dif-
ferent instances in different parts of the program. For example, a class List
may be used as a boolean list in one place, and as an integer list in another
place. Our algorithm from OOPSLA’91 confuses these uses of List. leading
to rejection of many type-safe programs.

This paper presents:

• An improved algorithm that handles collection classes in a useful way;
and

• An implementation of the new algorithm, including two novel tech-
niques for making type inference faster and less space consuming. The
complexity has been reduced from exponential time to low polynomial
time.

The implementation type checks as much as 100 lines pr. second, runs on
Sun3, SPARC Sun4, and HP9000, and is available by anonymous ftp.

The improved algorithm is similar to the previous one in that types are sets
of classes. This is a simple, yet flexible concept that is useful when consider-
ing implementation aspects of object-oriented languages. Together with the
speed and generality of our current implementation it opens new perspectives
on what tools can be provided for untyped object-oriented languages. This
includes tools for doing image compression, code optimization, annotation
of programs, class hierarchy construction, and insertion of dynamic checks
for class memberships. These uses of type inference may turn out to be just
as important as the safety guarantee. In our opinion, type inference is a
promising basis for such sophisticated tools, and our new implementation
techniques may make it practical.
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In the following section we outline the example language, which is exactly
the one of the OOPSLA’91 paper. In section 3 we survey the previous algo-
rithm and explain how to extend it to handle collection classes. In section
4 we demonstrate how the implementation works, and in section 5 we sum-
marize the tools that we either have built or envision, on the basis of our
implementation.

2 The Language

We now outline an example language on which to apply our algorithm. The
language resembles Smalltalk [8], see figure 1, and is taken from our pre-
vious paper [17].

Figure 1: Syntax of the example language.

A program is a set of classes followed by an expression whose value is the
result of executing the program. A class can be defined using inheritance
and contains instance variables and methods; a method is a message selector
(m1 . . . mn ) with formal parameters and an expression. The language avoids
metaclasses, blocks, and primitive methods. Instead, it provides explicit new
and if-then-else expressions (the latter tests if the condition is non-nil). The
result of a sequence is the result of the last expression in that sequence. The
expression “self class new” yields an instance of the class of self. The expres-
sion “E instanceOf ClassId” yields a run-time check for class membership. If
the check fails, then the expression evaluates to niI.
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In the paper [17] we demonstrated how to program the classes True, False,
Natural, and List is this basic language.

Suzuki [24] was the first to address the problem of type inference for such
a language; his algorithm was not capable of checking most common pro-
grams, however. Later, Graver and Johnson [10, 9] provided an algorithm
for a simplified problem, where the types of instance variables must be spec-
ified by programmer so that only the types of arguments are to be inferred.
Recently, Hense [11] addressed the problem of inferring types that are useful
in connection with separate compilation. This means that his algorithm is
not allowed to reconsider the program text when new classes are added to
the program. The comparison in [17] demonstrates that this demand leads
to the rejection of more programs than does our algorithm. It seems unlikely
that imperative features can be easily handled in Hense’s framework.

The basic concept to be used in this paper is that of type:

Terminology:

Type: A type is a finite set of classes.

The idea is to compute type information for all expressions in a concrete
program. The information should be a superset of the classes of all possible
non-nil values to which it may evaluate in any execution of that particular
program. We want the set to be as small as possible; smaller sets are more
precise, lead to the acceptance of more program, and yield more efficient
code generation. Note that our notion of type, which we also investigated in
[19, 17, 18], differs from those used in other theoretical studies of types in
object-oriented programming [3, 7, 2] and related record-calculi [21, 26].

In the following section we show an algorithm to infer such type information.
The algorithm works even for programs with collection classes.

3 The Algorithm

We now review the type inference algorithm presented in [17]. This section
can serve both as a brief summary for those who want to appreciate the
refinements presented in the following section, and as a gentle introduction
for those who want to read the original paper.
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Figure 2: The algorithm.

The general idea is to define a type variable [[E]] for every expression E
occurring in the program [25, 22]. We then generate a collection of constraints
on these variables. Finally, we attempt to solve these constraints. If they
are solvable, then their minimal solution corresponds to the inferred typing;
if not, then the program is not typable. A summary of the entire algorithm
is shown in figure 2.

3.1 Expanding Inheritance

The algorithm starts by expanding away all use of inheritance in the current
program. Thus, we really only perform type inference on the subset of the
example language that does not use inheritance.

This approach is common to all previous algorithms, except the one pre-
sented in [11]. Since an inherited method can be used in completely different
contexts in a subclass, much better typings can be obtained by considering
such a method twice—once for the superclass and once for the subclass. This
results in the duplication of type variables; in general, more type variables
will improve the chances for typability, and the inferred types will be more
precise. The algorithm in [11] pays a price for not expanding inheritance; it
can type fewer programs.

The actual expansion is a simple syntactic transformation on program texts.
It is illustrated in figure 3. Note that methods are duplicated and renamed,
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Figure 3: Expanding inheritance.
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and that care must be taken in connection with self and super. After being
expanded, a program may increase quadratically in size. This worst-case
only occurs when the inheritance hierarchy is a narrow sequence. For a well-
balanced hierarchy the increase in size is much less.

3.2 The Trace Graph

We use the notion of a trace graph as an aid in explaining the constraints that
we shall impose on the type variables. The nodes of the graph correspond
to methods, and the edges correspond to message sends. There is an extra
node corresponding to the main program.

When the graph has been set up, then the constraints are derived from paths
in the graph starting in the main node. Each path is associated with the
trace of an execution of the program. In the following we shall illustrate this
technique on the example program in figure 4.

Figure 4: Example program.
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3.3 Nodes and Local Constraints

Each node of the trace graph corresponds to a particular method which is
implemented in some class in the current program. In fact, we shall have
several nodes for each method implementation. As explained above, it is an
advantage to distinguish between different uses of a method. If possible, they
should be analyzed separately; this gives rise to more type variables, leading
to typability of more programs and better typings.

Figure 5: Trace graph nodes for the example program.

Figure 6: Local constraint rules.

A simple criterion for distinguishing between methods comes from syntactic
message sends. Suppose that the program contains k different syntactic mes-
sage sends with selector, say, m. For every method with the corresponding
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name m we will then generate k copies. A class that previously implemented
a method m will now implement k methods m1, . . . , mk, all with identical
bodies. The i’th syntactic message send with selector m will now use selec-
tor mi. Clearly, this does not change the semantics of the program, but it
does cause the size of the trace graph to be quadratic in the size of the pro-
gram, in the worst case. However, this distinction is instrumental in securing
typability of polymorphic methods.

For the example program we will have the seven trace graph nodes in-dicated
in figure 5. With each node we associate some local constraints which reflect
the semantics of the corresponding method body; these are quite straight-
forward. The general rules are illustrated in figure 6; the local constraints
for the example program are listed in figure 7, organized by trace graph
nodes and with references to the general rules. Note that rule number 2) is
responsible for enforcing the safety guarantee.

Figure 7: Local constraints for the example program.

3.4 Edges, Conditions, and Connecting Constraints

The edges of the trace graph correspond to potential transfers of control.
If a method body contains a message send with selector m, then we have
an outgoing edge to any node corresponding to a method with the name m.
Here the renaming of copies of methods that we mentioned in section 3.3 is
to be taken seriously. Thus, the edges of the trace graph for the example
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program are as illustrated in figure 8.

Figure 8: Trace graph edges for the example program.

With each edge we associate a condition. Consider an edge from a node
N1 to a node N2. The edge will never be traversed during a trace of the
program unless the type of the receiver in N1 contains the class implementing
the method that N2 corresponds to. Thus, we can label an edge with a
condition that must necessarily hold if the edge, and the local constraints that
it leads to, correspond to a possible behavior on run-time. An edge condition
always states that some class constant is contained in a type variable. An
examination of the conditions in figure 8 will show the simplicity of this idea.

With each edge we further associate a collection of connecting constraints,
which reflect the semantics of message sends. They simply state that the
actual argument is assigned to the formal argument, and that the result of a
message send is the result of the body of the invoked method. The connecting
constraints for the example program are listed in figure 9.

3.5 Global Constraints

The construction of the trace graph has now been completed. We are left
with extracting the global constraints, These will be conditional constraints
that arise from paths in the trace graph.

Consider a path starting at the main node. If the conditions on the edges we
encounter all hold, then that path corresponds to a possible execution of the
program. Thus, the local and connecting constraints that of the final node
and edge must hold. We can express this relationship as illustrated in figure
10.
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Figure 9: Connecting constraints for the example program.

Figure 10: Global constraints derived from a single path.

The total collection of global constraints is derived in this manner from all
paths from the main node in the graph. Note that the graph may have
infinitely many paths; however, since the program is finite, we will always
get a finite set of different conditional constraints—for simple combinatorial
reasons.

Note that the global constraints may contain a great amount of recursive
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dependencies. One cannot decide whether a condition holds without consid-
ering the local constraints, which only come into play if their conditions in
turn hold.

For the example program, consider the path originating in node 1, going
through node 2 and 4, and ending in node 6. The global constraints derived
from this path are

A ∈ [[A new]], B ∈ [[e]]1, B ∈ [[temp]] ⇒




[[self]]1 = {B}
[[self]]1 ⊆ {B}
[[temp p]]1 = [[self p]]1

The complete set of global constraints can be found in figure 11.

3.6 Solving the Constraints

A finite set of conditional constraints can be resolved by a single fixed-point
computation over an appropriate lattice. The details of this result are pre-
sented in [17]. Note how this technique can untangle the recursive depen-
dencies mentioned above. In the limit a condition will either hold or not,
and every type variable will attain some value. If no solution exists, then a
special error value will be the result of the computation.

The time for computing a solution is quadratic in the number of global con-
straints.

In [17] we sketched a proof of the soundness of the solution with respect to
a dynamic semantics [4, 5, 20, 14, 12].

The global constraints for the example program are solvable; hence, the ex-
ample program is typable. The minimal solution is shown in figure 12. This
information can be used to annotate the program in various ways. A partic-
ular choice is shown in figure 13. The example program is really too simple
to show the full value of such annotations; however, the appendix contains
several more convincing program annotations obtained automatically from
our implementation.
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Figure 11: Global constraints for the example program.

3.7 Collection Classes

So far, we have described the algorithm in [17] It can find typings for many
different kinds of programs: polymorphic methods, recursive methods, and
late binding pose no problem. It does, however, have a fatal flaw that renders
it next to useless in a practical context: each instance variable has only a
single associated type variable. This means that collection classes cannot be
typed in a useful manner.
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Figure 12: Minimal solution for the example program.

Suppose that we have a class List, which has an instance variable head con-
taining the first element of a list. If we want to use both a list of integers and a
list of booleans, then we could create two separate instances by means of List
new. One instance would only contain integers, and the other only booleans.
In the type analysis, however, we only have a single type variable [[head]]
which will attain the type {Int, Bool}. Consequently, the algorithm will sur-
mise that both List instances contains a mixture of integers and booleans,
and prevent e.g. the sending of a succ message to the head of the integer list.

Fortunately, we can extend the algorithm to handle such cases, also. The
idea is again to obtain more type variables by code duplication. A manual
solution to the above problem would be to define two trivial subclasses of
List, called IntList and BoolList. Through the expansion of inheritance this
would create two new type variables for head. If the rest of the program kept
these separate, then one could attain the type {Int} and the other the type
{Bool}. Our extended algorithm applies this strategy universally throughout
the program. For every syntactic occurrence of C new, we create a copy of
the entire class C. This will produce many more type variables, and in the
worst case cause a further quadratic increase in the size of the program.

This technique allows very liberal typings of collection classes. We have yet
to encounter a useful example where the improved algorithm falls short. In
fact, the distinction between syntactic occurrences of new expressions also
improves typings of many programs that do not relate to collection classes—
or even have instance variables.
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Figure 13: The example program with some annotations.

4 The Implementation

A naive implementation of the type inference algorithm would construct the
possibly large trace graph, then extract an even larger set of type constraints,
and finally compute the minimal solution. The size of the intermediate results
alone makes this impractical; the collection of global constraints is in general
worst-case exponential in the size of the program.

Our approach to efficiently implementing the algorithm embodies three ma-
jor ideas, to be explained in this section. First we show how to combine
the three steps of the algorithm and incrementally compute the graphs the
constraints, and the solution; this avoids representing intermediate results
and unreachable parts of the trace graph. The result is a polynomial time
algorithm. Then we introduce naming schemes and constraint templates to
avoid costly recomputation and storage of local constraints in different nodes
for the same method. Last, we present a data structure that compactly re-
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presents constraints and the minimal solution computed so far. In the final
subsection, we give some performance measurements of our implementation.

4.1 Incremental Graph Construction

We can combine the three steps of the algorithm because of the following
observation.

Observation: Suppose we are given a set of unconditional constraints, one
by one. Suppose also that in each step we compute the minimal so-
lution to the constraints given so far. Then these minimal solutions
will increase monotonically for each step. This implies that if a condi-
tion is satisfied at any point, then it will also be satisfied in the final
solution (if such a solution exists).

This observation justifies an incremental construction of the trace graph, as
follows. Starting in the main node, we only follow edges whose condition
is true. Because true conditions remain true, we never need to “undo” the
decision of following an edge, and we need never record any conditions. Every
inclusion met along the way is inserted into a data structure Solver which
always contains the minimal solution to the inclusions contained in it.

Terminology: A front edge is an unprocessed, outgoing edge emanating
from a visited node. It has not yet been decided if its condition is
satisfied.

The computation stops when no front edges with satisfied conditions are
left. This means that possibly large parts of the trace graph need not be
constructed, let alone traversed, see figure 14.

This would be especially important in a typical Smalltalk environment
which often has a very large number number of glasses, many of which have
methods with the same name. As an example we can look at the trace graph
for the program (Set new) add: 3 in such a typical Smalltalk environment.
It will resemble the structure in figure 15 because of the many different classes
implementing a method add:.

But since the only condition which can be satisfied is Set ∈ [[Set new]] it would
be wasteful to follow all the other edges and generate conditional constraints
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Figure 14: Avoiding unreachable parts of the trace graph.

Figure 15: Part of trace graph for (Set new) add: 3.

which will never come into play. Furthermore, there is no need to visit a
node more than once. Since we no longer generate conditional constraints,
subsequent visits to a node can add nothing new.
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Figure 16: The algorithm rephrased.

Note that the trace graph is only represented through its front edges and
minimal solution. In a later subsection we describe an efficient implementa-
tion of the constraint aspect of this data structure. Using the Solver we can
rephrase the algorithm, see figure 16. This is a polynomial time algorithm,
since every node and edge will be visited at most once, and every visit takes
at most quadratic time, as described below. Recall also that the trace graph
is polynomial in the size of the program.

4.2 Naming Schemes and Constraint Templates

We represent a program as a parse tree augmented with:

• A unique number for each node, called a PTN (Parse Tree Number);
and

• A constraint template for each graph for method node.
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As explained below, this information yields a unique naming of all type
variables and avoids costly recomputation and storage of loyal constraints in
different nodes for the same method.

To uniquely identify type variables, we use the following naming scheme.
Recall that there are as many trace graph nodes representing a method as
there are syntactic message sends to it. Therefore, we can identify a trace
graph node by a pair of PTNs:

(PTN for message send, PTN for method)

Furthermore, recall that each expression needs a fresh type variable in each
copy of the method in which it appears. This means that we can also identify
type variables by a pair of PTNs:

(PTN for message send, PTN for expression)

The only exception is the instance variables which has just one type variable.
To extend the algorithm to handle collection classes, the trace graph nodes
are now represented by a quadruple of PTNs:

(PTN for message send, PTN for new, PTN for method, PTN for new)

The two extra PTNs identify the new expressions that generate new versions
of the original components. The simplicity of this modification shows the
flexibility of the current implementation.

We avoid recomputing the local constraints in different nodes for the same
method by using a constraint template. The template is computed the first
time it is needed, and then merely instantiated later on. Instantiation inserts
the appropriate PTN of the message send into the local constraints of the
corresponding method.

We have described two data structures used by the implementation: the
augmented parse tree and the Solver. The following subsection indicates how
to efficiently implement the constraint aspect of the Solver.
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4.3 Constraint Representation

Our main data structure Solver represents front edges¿ constr nts and their
minimal solution which is continuously updated. There are three operations
on the data structure, see figure 17.

Figure 17: The Solver data structure.

As pointed out before, all of the unconditional constraints can be expressed
with just three different kinds of inclusions: 1) constant ⊆ variable, 2) vari-
able ⊆ constant, or 3) variable1 ⊆ variable2.

To store these inclusions in an efficient way we give them an ordering. This
is achieved by associating the first type of inclusion with the variable on the
right hand side, the second and third type of inclusions with the variable
on the left hand side. Now we can “store” each inclusion together with its
associated type variable.

A type variable is represented by an object of the following form.

assignment : Set of Classes;
constant-constraint : Set of Classes;
variable-constraint : Set of Type Variables;

Instead of storing each constraint individually we use the three components
of the above object to keep track of the effects of the three different types of
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inclusions. The relationship

C1 ⊆ V, . . . , Cn ⊆ V ⇔ C1 ∪ · · · ∪ Cn ⊆ V

shows how to keep track of kind 1) inclusions via the assignment set. That
is, for each kind 1) inclusion the assignment set is updated by assignment :=
assignment ∪ constant.

Likewise
V ⊆ C1, . . . , V ⊆ Cn ⇔ V ⊆ C1 ∩ · · · ∩ Cn

shows how to keep track of kind 2) inclusions via the constant-constraint
set by updating it like constant-constraint := constant-constraint ∩ constant.
Finally to deal with kind 3) inclusions we use the variable-constraint set which
is updated as variable-constraint := variable-constraint ∪ variable2.

Only two things are left to do.

• If the assignment or constant-constraint change, then make sure that
assignment ⊆ constant-constraint. If this is not the case, then the con-
straint system has no solution and the program is not typable.

• If the assignment changes, then propagate the value of assignment to
all the variables in variable-constraint.

The methods of the type variable object consequently look as follows:

method subset-of-constant: class-set
constant-constraint := constant-constraint ∩ class-set;
if (assignment �⊂ constant-constraint) then <couldn’t

type program>

method subset-of-variable: variable
variable-constraint := variable-constraint ∪ variable;
variable superset-of-constant: assignment

method superset-of-constant: class-set
if (class-set �⊆ assignment) then

assignment := assignment ∪ class-set;
if (assignment �⊆ constant-constraint) then <couldn’t
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type program>
foreach variable in variable-constraint do

variable superset-of-constant: assignment

The add-constraint: operation of the Solver can now easily be implemented
using these three methods on type variables.

The sets of classes are implemented as bit vectors for efficiency of set op-
erations. The sets of type variables are implemented as sets of pointers to
type variable objects. The different type variable objects are stored in a
hash table so that when given a type variable name we can quickly locate
the corresponding type variable object.

The functionality of this system bears some resemblance to “trigger func-
tions” in databases in the way that a change in the assignment of a type
variable “triggers” a chain of events which reestablishes the soundness of the
total assignment. In this way the solution to the system of constraints is
always up to date.

This way of implementing the constraint solver has at least two major ad-
vantages. First of all the addition of a constraint to the constraint system
and the solution of the expanded constraint set is very simple and requires
little work. That is, it requires no search through lists or other structures
but has immediate access to the relevant data. Seconds even though a lot of
redundant constraints are created in the first places these have no adverse
effects since the individual constraints are not stored.

4.4 Performance Evaluation

With this implementation we have achieved a dramatic speed-up and realis-
tic running times. Figures 18 and 19 contain some experimental data from a
G++ implementation on a SPARC Sun4 The columns show the name of the
program, its size in number of lines, the total number of paths in the trace
graph, the much smaller number of edges actually used by the implementa-
tion, and the running time in milliseconds.

The implementation is flexible in that the user can selectively specify which
classes should be treated as collection classes; this is done by writing Col-
lection Class rather than just Class in the program text. In figure 18 none
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Figure 18: The basic algorithm.

of the classes are treated as collection classes. This corresponds to running
the previous algorithm from the OOPSLA’91 paper [17]. Note that one of
the programs cannot be type checked with this algorithm. In figure 19 all
classes are treated as collection classes. This gives slower running times, but
better typings; for example, the program “Container class” can now be type
checked. All our programs use laborious encodings of integers and booleans;
if these were replaced by Smalltalk-style primitive classes, then running
times would be vastly improved.

Figure 19: The extended algorithm.

The implementation is available by anonymous ftp at hyperion.daimi.aau.dk in
the directory /pub/palsberg/inference. It contains files checkSparc.Z, check-
Sun3.Z, and checkHP.Z that are compressed executables for the respective
architectures. Some example programs are also available, together with a
README file containing instructions. The appendix shows the analysis of
two programs in our example language. The first is an implementation of the
Peano integers that we have adapted from a Typed Smalltalk program
provided by Ralph Johnson. The second is an adaptation of a program pro-
vided by Justin Graver. It uses collection classes and is typable under the
extended algorithm, but not under the basic one. The analysis recognizes
that the programs are safe, and produces versions with type annotations in
two different styles.
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5 Applications

The present algorithm has perspectives beyond merely type inference in the
traditional sense. A host of useful tools for—among others—the Smalltalk
programmer can be implemented. This section describes how some of these
can be obtained from the basic algorithm with little effort.

5.1 Safety Tool

As mentioned earlier, if a program is typable, then the error message-not-
understood can never occur in any execution. This is an iron-clad guarantee
that would be a useful asset for any finished product. Furthermore, this
guarantee is obtained in a completely automatic fashion, at no cost to the
programmer.

5.2 Image Compression Tool

A Smalltalk image grows over time, and may contain classes defined for
numerous unrelated tasks. This makes it cumbersome for the programmer to
create a stand-alone executable version of a program, where unneeded code is
left out. However, a by-product of the inferred typing information can show
how to discard superfluous code—with a guarantee that nothing essential
will be missing. First of all, any class that does not appear in the value
of some type variable can be discarded. Furthermore, and less obviously,
individual methods in the remaining classes may also be discarded. Consider
any message send with selector m. The inferred type of the receiver mentions
a set of classes that all implement a method named m. These methods are
marked as live. After this has been done for all message sends, then some
unmarked methods will normally remain. These can safely be removed, since
they will never be invoked. Note that this technique of image compression
can also be useful for typed object-oriented languages such as C++ [23] and
Eiffel [16].

24



5.3 Code Optimization Tool

With a safety guarantee, the run-time checks for message-not-understood can
be left out. This simplifies the code for dynamic method lookups. More
significantly, the inferred type of a receiver is a set of classes, which corre-
sponds closely to the information contained in a polymorphic in-line cache
(PIC) employed by Hölzle, Chambers, and Ungar [13] to greatly improve
efficiency. This information approximates the set of classes of all possible
non-nil values to which the receiver expression may evaluate in any execu-
tion of the program. Our inferred types yield sets that are slightly too large.
Using PICs one obtain sets that are slightly too small. Smaller sets will re-
sult in smaller target code, but in the case of a cache-miss the PIC technique
pays the price of dynamic re-compilation or, alternatively, a dynamic lookup.
Our technique avoids cache-misses altogether. Possibly a merge of the two
approaches would be optimal.

5.4 Annotation Tool

As seen in the appendix, the inferred type information can be used to an-
notate the original program. This can improve readability and also serve as
a debugging tool. Various styles of annotation can be based on the current
algorithm. Conversely, the algorithm could accept annotated programs; the
annotation provided by the user would impose further constraints. In this
view, an annotation is a rudimentary correctness predicate that is automat-
ically verified by the algorithm.

5.5 Hierarchy Construction Tool

The analysis of collection classes could lead to suggested changes in the class
hierarchy, e.g. the introduction of classes such as IntList and BoolList. Fur-
thermore, inferred subtype relationships—or the lack of same—may be used
to criticize the class hierarchy suggested by the programmer.
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5.6 Check Insertion Tool

If the bounds of a safety guarantee appear too restrictive in some applica-
tions, then the local constraint 2) can be abandonded. Instead the inferred
type of a receiver can be examined to determine if the message send is safe.
If not, then a dynamic check can be inserted before the method lookup (simi-
larly to the qua checks of Simula [6] and Beta [15]). This selective approach
may greatly reduce the number of required checks, compared to current Sim-
ula and Beta implementations. Note that a dynamic check can either be
inserted implicitly in the compiled code, or explicitly in the program texts
in the manner of a program transformation.

6 Conclusion

We have taken two important steps towards making type inference practical.
First, our previous algorithm has been improved to handle collection classes
in a useful manner; this was formerly its most severe limitation. The current
version of the algorithm is able to handle realistic programs. Second, the
algorithm has been implemented in a quality that promises real-life appli-
cability. A technique of incremental computation has achieved a dramatic
speed-up compared to a naive implementation.

Also, we have indicated that a number of practical tools can be based on our
type inference algorithm. We believe that such tools can form the basis for a
design methodology that supports rapid prototyping as well as the evolution
towards a mature product.

Acknowledgement: This work has been supported in part by the Danish
Research Council under the DART Project (5.21.08.03).
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Appendix: Examples

This appendix shows the programs “Peano integers” and “Container class”,
and the output when they are given to the type inference implementation.
For the peano integers program we have chosen an option so that only method
headings are annotated. For the container class program we have chosen
another option so that also message sends are annotated.

Peano Integers

class Zero

method isZero

True new

method plus: aNumber

aNumber

method minus: aNumber

aNumber negative

method negative

self

method decrementUntilNonzeroWhileIncrementing: negativeInteger

negativeInteger

method plusNegative: negativeInteger

negativeInteger

method plusPositive: positiveInteger

positiveInteger

method differenceFrom: aNumber

aNumber

method incr

(PositiveInteger new) oneMoreThan: self

method decr

(NegativeInteger new) oneLessThan: self

end Zero

class NegativeInteger inherits Zero

var incr

method oneLessThan: aNumber
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incr := aNumber;

self

method isZero

False new

method plus: aNumber

aNumber plusNegative: self

method minus: aNumber

aNumber differenceFrom: self

method negative

(PositiveInteger new) oneMoreThan: (incr negative)

method plusNegative: negativeInteger

(negativeInteger decr) plus: incr

method plusPositive: positiveInteger

(positiveInteger decr) plus: incr

method differenceFrom: aNumber

aNumber plus: (self negative)

method incr

incr

end NegativeInteger

class PositiveInteger inherits Zero

var deer tempn1 tempn2 tempp

method oneMoreThan: aNumber

decr := aNumber;

self

method isZero

False new

method plus: aNumber

aNumber plusPositive: self

method minus: aNumber

aNumber differenceFrom: self

method negative

(NegativeInteger new) oneLessThan: (decr negative)

method decrementUntilNonzeroWhileIncrementing: negativeInteger

tempn1 := negativeInteger incr;

if (tempn1 isZero) isTrue

then decr

else decr decrementUntilNonzeroWhileIncrementing: tempn1
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method plusPositive: positiveInteger

(positiveInteger incr) plus: decr

method plusNegative: negativeInteger

tempn2 := negativeInteger;

tempp := self;

self while1; % Unfortunately we have no loops

if (tempn2 isZero) isTrue then tempp else tempn2

method while1

if ((tempn2 isZero) or: (tempp isZero)) isTrue

then nil

else ( tempn2 := tempn2 incr; tempp := tempp decr; self while1 )

method differenceFrom: aNumber

(aNumber decr) minus: decr

method decr

decr

end PositiveInteger

% Booleans

class Object

end Object

class True

method isTrue

Object new

method not

False new

method and: aBoolean

aBoolean

method or: aBoolean

self

method xor: aBoolean

aBoolean not

end True

class False

method isTrue
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nil

method not

True new

method and: aBoolean

self

method or: aBoolean

aBoolean

method xor: aBoolean

aBoolean

end False

class Main

var n

method go

n := ((Zero new decr) plus: (Zero new incr));

n minus: n negative;

n plus: n;

n decremententUntilNonzeroWhileIncrementing: n

end Main

(Main new) go

Annotated Peano Integers

Time for initializing parsetree: 49.998msecs

Program is typable.

Time for finding solution: 1366.61 msecs

Number of edges used in the graph: 630

class Zero

method differenceFrom: aNumber

{PositiveInteger} −> {PositiveInteger}
{NegativeInteger} −> {NegativeInteger}
method negative

{Zero}
method incr

{PositiveInteger}
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method plusNegative: negativeInteger

{NegativeInteger} −> {NegativeInteger}
method decrementUntilNonzeroWhileIncrementing: negativeInteger

{Zero,NegativeInteger,PositiveInteger} −>
{Zero,NegativeInteger,PositiveInteger}

method plus: aNumber

{Zero,NegativeInteger,PositiveInteger} −>
{Zero,NegativeInteger,PositiveInteger}

method isZero

{True}
method decr

{NegativeInteger}
method plusPositive: positiveInteger

{PositiveInteger} −> {PositiveInteger}
method minus: aNumber

{Zero,NegativeInteger,PositiveInteger} −>
{Zero,NegativeInteger,PositiveInteger}

end Zero

class NegativeInteger

var incr {Zero,NegativeInteger}
method differenceFrom: aNumber

{PositiveInteger} −> {PositiveInteger}
{NegativeInteger} −> {Zero,NegativeInteger,PositiveInteger}

method oneLessThan: aNumber

{Zero,NegativeInteger} −> {NegativeInteger}
method negative

{PositiveInteger}
method incr

{NegativeInteger}
{Zero}

method plusNegative: negativeInteger

{NegativeInteger} −> {NegativeInteger}
method decrementUntilNonzeroWhileIncrementing: negativeInteger

{Zero,NegativeInteger,PositiveInteger} −>
{Zero,NegativeInteger,PositiveInteger}

method plus: aNumber

{Zero,NegativeInteger,PositiveInteger} −>
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{Zero,NegativeInteger,PositiveInteger}
method isZero

{False}
method decr

{NegativeInteger}
method plusPositive: positiveInteger

{PositiveInteger} −> {Zero,NegativeInteger,PositiveInteger}
method minus: aNumber

{Zero,NegativeInteger,PositiveInteger} −>
{Zero,NegativeInteger,PositiveInteger}

end NegativeInteger

class PositiveInteger

var decr {Zero,PositiveInteger}
tempn1 {Zero,NegativeInteger,PositiveInteger}
tempn2 {Zero,NegativeInteger,PositiveInteger}
tempp {Zero,NegativeInteger,PositiveInteger}

method differenceFrom: aNumber

{PositiveInteger} −> {Zero,NegativeInteger,PositiveInteger}
{NegativeInteger} −> {NegativeInteger}

method negative

{NegativeInteger}
method incr

{PositiveInteger}
method plusNegative: negativeInteger

{NegativeInteger} −> {Zero,NegativeInteger,PositiveInteger}
method decrementUntilNonzeroWhileIncrementing: negativeInteger

{Zero,NegativeInteger,PositiveInteger} −>
{Zero,NegativeInteger,PositiveInteger}

method plus: aNumber

{Zero,NegativeInteger,PositiveInteger} −>
{Zero,NegativeInteger,PositiveInteger}

method isZero

{False}
method decr

{Zero,PositiveInteger}
method plusPositive: positiveInteger

{PositiveInteger} −> {PositiveInteger}
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method minus: aNumber

{Zero,NegativeInteger,PositiveInteger} −>
{Zero,NegativeInteger,PositiveInteger}

method while1

{}
method oneMoreThan: aNumber

{Zero,PositiveInteger} −> {PositiveInteger}
end PositiveInteger

class Object

end Object

class True

method and: aBoolean

method isTrue

{Object}
method not

method or: aBoolean

{True,False} −> {True}
method xor: aBoolean

end True

class False

method and: aBoolean

method isTrue

{}
method not

method or: aBoolean

{True,False} −> {True,False}
method xor: aBoolean

end False

class Main
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var n {Zero,NegativeInteger,PositiveInteger}
method go

{Zero,NegativeInteger,PositiveInteger}
end Main

{Zero,NegativeInteger,PositiveInteger}

Container Class

class Natural

method isZero

nil

end Natural

class Boolean

method isTrue

nil

end Boolean

class Container

var x

method put: val

x := val

method get

x

end Container

class Main

var a b

method go
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a := Container new;

a put: Natural new;

(a get) isZero;

b := Container new;

b put: Boolean new;

(b get) isTrue

end Main

(Main new) go

Annotated Container Class

Time for initializing parsetree: 16.666msecs

Program is typable.

Time for finding solution: 16.666 msecs

Number of edges used in the graph: 7

class Natural

method isZero

{}
end Natural

class Boolean

method isTrue

{}
end Boolean

class Container

var x {Natural,Boolean}
method get

{Natural}
{Boolean}

method put: val
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{Natural} −> {Natural}
{Boolean} −> {Boolean}

end Container

class Main

var a {Container}
b {Container}

method go

{}
end Main

{}
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