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Abstract

This paper provides a link between the formulation of static pro-
gram analyses using the framework of abstract interpretation (popular
for functional languages) and using the more classical framework of
data flow analysis (popular for imperative languages). In particular we
show how the classical notions of fastness, rapidity and k-boundedness
carry over to the abstract interpretation framework and how this may
be used to bound the number of times a functional should be unfolded
in order to yield the fixed point. This is supplemented with a num-
ber of results on how to calculate the bounds for iterative forms (as
for tail recursion), for linear forms (as for one nested recursive call),
and for primitive recursive forms. In some cases this improves the
“worst case” results of [9], but more importantly it gives much better
“average case” results.

1 Introduction

In a recent paper [9] we gave precise bounds on a number k such that
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FIX H = Hk⊥

where

H : (A → B) → (A → B)

is a continuous functional corresponding to some static program analysis (or
abstract interpretation). Here A and B are finite complete lattices and

FIX = λH.
⊔
{Hn⊥ | n ≥ 0}

is the least fixed point operator. The development of [9] was sufficiently
general to apply to imperative languages, where A = B is a natural choice,
as well as functional languages, where A = 2p and B = 2 is a natural choice
for first-order strictness analysis.

In this paper we investigate functionals H of the form

H h = g0 � (G h)
where e.g. G h = g ◦ h ◦ g1

and show that it is often possible to use special properties of g0, g and g1 to
obtain considerably lower bounds than the “worst-case” results of [9]1. Even
for the case of iterative forms, where g = id , this may result in better bounds
than those of [9, Section 4] provided that g1 is sufficiently well-behaved.

However, one of the most interesting aspects of this work is that the kind
of properties (of g0, g, g1) considered in this paper are close to the kind of
properties studied in classical flow analysis [5]; this includes properties like
fastness and k-boundedness. Thus at long last we seem to be able to bridge
the gap between the fixed point techniques of the functions world and the
imperative world! This was left open in [9] and [5, p.129], simply states: “de-
termination of program properties by application of approximating semantics
is often called abstract interpretation; this approach is formally (although
not conceptually) equivalent to the algebraic framework approach presented
[in [5]]”.

1This is not intended to say that the “worst-case” bounds of [9] are wrong but rather
that they may not arise for functionals H of the form considered in this paper.
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Overview of paper

We begin by reviewing the lattice-theoretic notions that we will need (Section
2). Then we formulate the notions of fastness and k-boundedness [5] in the
notation of abstract interpretation and we explore a few of their consequences
(Section 3).

In Section 4 we then study “iterative forms” which are functionals H of the
form displayed above but with g = id . We consider three cases, depending
on whether the functions from A to B are

• total (written A →t B)

• monotone (written A →m B)

• strict and additive2 (written A →sa B)

In short we prove that the functional G is �ϕ(g1)-bounded where ϕ is one of
t, m or sa and where �ϕ is some measure on functions. In practical terms this
means that FIX H = Hk⊥ whenever k ≥ �ϕ(g1); thus only �ϕ(g1) unfoldings
of H are needed.

In Section 5 we then study how to extend these results to “linear forms”
which are functionals H of the form displayed above but where g is not
restrained to be id. A limitation of this development is that g must be strict
and additive for the results of Section 3 to be applicable. We can then show
that G is �ϕ(g)·�ϕ(g1)-bounded in the cases where ϕ is t or m. Unfortunately,
the case where ϕ is sa eludes us.

The applicability of the results on “iterative forms” is further extended in
Section 6. Here we show that the program transformation technique of “accu-
mulator introduction” may often be used to transform a functions in “primi-
tive recursive form” into one in “iterative form”. Fkthermore, if k unfoldings
suffice for the transformed functional then also k unfoldings suffice for the
original functional.

Finally, we compare our results with those of [9] and suggest directions for
further research (Section 7). In the Appendix we characterize the “itera-

2In [5] additivity it is called “distributivity” and complete additivity (which is equvi-
valent to strictness and additivity given the finiteness of A and B) is called “continuity”.
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tive forms”, “linear forms” and “primitive recursive forms” in terms of the
functional programs and analyses for which they naturally arise.

An Extended Abstract appeared as [10].

2 Preliminaries

A finite complete lattice (L,�) is a finite set L, together with a partial order
�, such that each subset Y of L has a least upper bound; since a lest upper
bound is unique (if it exists) it makes sense to write �Y for it. It is customary
to write ⊥ = �∅ for the least element and 
 = �L for the greatest element
of L and to write l1 � l2 for �{l1, l2}. We shall write

l1 ❁ l2 for l1 � l2 ∧ l1 �= l2

and we shall say that a chain

l0 ❁ l1 ❁ · · · ❁ lk

has length k (rather than k + 1). It is convenient to write

C(L) for the cardinality of L

H(L) for the height of L (i.e. the length of the longest chain)

Writing L×L′ for the cartesian product and Ln for the n-fold product (n ≥ 1)
we have C(L × L′) = C(L)· C(L′), C(Ln) = C(L)n, H(L × L′) = H(L)+
H(L′) and H(Ln) = n·H(L). Writing
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we have C(2) = 2 and H(2) = 1.

A function f : L → L′ from a finite complete lattice L = (L,�) to a finite
complete lattice L′ = (L′,�) is monotone if

l1 � l2 ⇒ f(l1) � f(l2)

and is strict if

f(⊥) = ⊥

and is additive if

f(l1 � l2) = f(l1) � f(l2)

Fact 1: A monotone function f between finite complete lattices is continu-
ous, i.e.

f(
⊔
{ln | n ≥ 0}) =

⊔
{f(ln) | n ≥ 0}

whenever ∀n : ln � ln+1. ✷

It is well known that

FIX f =
⊔
{fn(⊥) | n ≥ 0}

denotes the least fixed point of f whenever f is continuous; it thus follows
that if L is a finite complete lattice and f : L → L is monotone then FIX f
is the least fixed point of f .

Fact 2: A strict and additive function f between finite complete lattices is
completely additive, i.e.

f(
⊔

Y ) =
⊔
{f(l) | l ∈ Y }

for all subsets Y . ✷

We shall write L →t L′, L →m L′ and L →sa L′ for the sets of total,
monotone, and strict and additive functions from L to L′, respectively. The
partial order is defined componentwise, i.e.
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f � f ′ if and only if ∀l : f(l) � f ′(l)

and all of L →t L′, L →m L′ and L →sa L′ will be finite complete lattices if
L and L′ are. In all cases

(
⊔

F) = λl.
⊔
{f(l) | f ∈ F}

is the formula for least upper bounds.

Finally, a finite complete lattice L is distributive [4] if

l1 � (l2 � l3) = (l1 � l2) � (l1 � l3)

for all l1, l2, l3 ∈ L. An alternative characterization was given in [9, Lemma
17].

Fact 3: If L and L′ are distributive so are L × L′, Ln, L →t L′, L →m L′

and L →sa L′. ✷

Proof: Except for L →sa L′ the results follow from the componentwise
definition of �; also the results for L →t L′ and L →m L′ do not require the
distributivity of L. In the case of L →sa L′ we do not have a componentwise
definition of � and so instead we use the isomorphism between L →sa L′ and
J (L) →sa L′ where J (L) denotes the non-trivial join-irreducible elements of
L; we refer to [9, Section 3.1] for (some of) the insights needed to prove this.
✷

3 Finiteness conditions on functionals

Let A and B be arbitrary finite complete lattices and consider continuous
(i.e. monotone) functionals

G, H : (A →ϕ B) → (A →ϕ B)

where ϕ is any one of t, m or sa. Throughout this paper we shall assume
that
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H h = g0 � (G h)

but in this section we shall not make any assumptions about the form of
G. We are interested in determining the least fixed point, FIX H, of H
but before doing so we need a few definitions from classical flow analysis (as
surveyed in [5]).

As usual Gi(h) denotes the i-fold iteration of G so that G0(h) = h and
Gi+1(h) = G(Gi(h)) = Gi(G(h)). It is convenient to write Id for the func-
tional defined by Id(h) = h. We then define

Gi(h) =
⊔
{Gj(h) | 0 ≤ j < i}

This is well-defined given the assumptions on A and B and the results of
Section 2. Concerning G[i+1] one may calculate that

G[i+1](h) = h � · · · � Gi(h)

so that G[i+1] = Id � (G[i] ◦ G). We also have

Fact 4: If G is strict and additive then G[i+1] = Id � (G ◦ G[i]). ✷

Fact 5: If G � Id then G[i+1] = Gi � Id ; it follows that we also have
G[i+2] = Id � (G ◦ G[i+1]). ✷

Clearly G � G � Id so that also G[i] � (G � Id)[i] for all i. For equality we
note

Fact 6: G[i] = (G � Id)[i] if G is strict and additive (or if G � Id). ✷

Proof: If G � Id we have G = G � Id and the result is immediate.

If G is strict and additive we have G[0] = ⊥ = (G � Id)[0] and

G[i+1] =
⊔
{Gj | 0 ≤ j ≤ i} = (G � Id)i = (G � Id)[i+1]

and this concludes the proof. ✷

The interest in G[i] can now be motivated by:

Lemma 7: FIX H =
⊔
{(G � Id)[i](g0) | i ≥ 0} ✷

Proof: It is helpful to write G{i} = (G � Id)[i]. We first prove
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• H i(⊥) � G{i+1}(g0)

by numerical induction on i. The base case, i = 0, is immediate and for the
inductive steps i = j + 1, we calculate

Hj+1(⊥) = g0 � G(Hj⊥)
� g0 � G(G{j+1}(g0))
� G{j+1}(g0) � G(G{j+1}(g0))
= (G � Id)(G{j+1}(g0))
= G{j+2}(g0)

where we have used the monotonicity of G, the induction hypothesis and
Fact 5 (with G � Id � Id).

We next prove

• G{i}(g0) � FIX H

It is convenient to take i = 0 and i = 1 as base cases and in both cases
the result is immediate because G{0}(g0) = ⊥ and G{1}(g0) = g0. For the
inductive step, i = j + 2, we calculate

G{j+2}(g0) = (G � Id)(G{j+1}(g0))
� (G � Id)(FIX H)
� (FIX H) � g0 � G(FIX H)
= (FIX H) � H(FIX H)
= FIX H

This ends the proof of the Lemma. ✷

Corollary 8: If G is strict and additive we have

FIX H =
⊔
{G[i](g0) | i ≥ 0}

(This also holds if G � Id .) ✷

Following [5] we shall say that G is k-bounded if

8



∀h ∈ A →ϕ B : G[k+1](h) = G[k](h)

There is a related concept called k-semi-boundedness but for strict (and
additive) functionals it is equivalent to k-boundedness and so will not be
of interest in this paper. The special case of 2-boundedness is known as
fastness ; in [5] this is motivated by the observation that for a fast problem
only one iteration around the loop body will be needed.

Fact 9: If G is k-bounded then G[i](h) = G[k](h) for all i ≥ k and for all
h ∈ A →ϕ B. ✷

Proof: Use induction on i ≥ k. ✷

Turning to the consequences for the least fixed point, FIX H, of H we then
have:

Fact 10: If G is strict and additive then H i⊥ = G[i](g0). ✷

Proof: The equality may be shown by numerical induction on i. Only the
inductive step is non-trivial and here we calculate

H i+1⊥ = g0 � G(H i⊥)
= g0 � G(G[i](g0))
= (Id � (G ◦ G[i]))(g0)
= G[i+1](g0)

where the last step is using Fact 4. ✷

Lemma 11: If G is strict and additive and G is k-bounded then

FIX H = G[k](g0) = Hk(⊥)

The k-boundedness of G may be weakened to G[k+1](g0) = G[k](g0). ✷

For the applicability of the results of the present paper, in particular Lemma
11, it is important that the functional G is

• k-bounded, and

• strict and additive
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We will develop formulae for determining the constant k in Sections 4, 5 and
6.

Here we will conclude with a few examples of how to manufacture strict
and additive functionals. Consider the following definitions of functionals
G : (A →ϕ B) → (A →ϕ B):

• G h = h ◦ g1

• G h = g ◦ h where g is strict and additive
• G = G1 ◦ G2 where G1 and G2 are strict and additive
• G = G1 � G2 where G1 and G2 are strict and additive
• G h = g � h where A →ϕ B is distributive
• G h = tuple(G1 h, G2 h) = λl. < G1 h l, G2 h l >

where G1 and G2 are strict and additive
• G h = g ◦ h ◦ g1 where g is strict and additive
• G h = g◦ tuple(h ◦ g1, g2)

where g is strict and additive in its left
argument, i.e. g(⊥, l) = ⊥ and
g(l1 � l2, l) = g(l1, l) � g(l2, l)

Then G is strict and additive in all cases. We shall use the first and the two
last observations in Sections 4, 5 and 6 respectively.

4 Iterative forms

We now study a functional G : (A →ϕ B) → (A →ϕ B) defined by

G h = h ◦ g1

for g1 ∈ A →ϕ B. Clearly G is continuous (i.e. monotone), strict and
additive; this means that for H defined by H h = g0 � (G h) we will have
FIX H = G[k](g0) = Hk(⊥) whenever G is k-bounded. In this section we
shall define three measures on functions (denoted �t, �m and �sa) and we
shall show that G will be �ϕ(g1)-bounded. This will be illustrated on an
accumulator version of the factorial program.

The first case is where ϕ is t. Here we define
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�t(f, x) = min{k | fk(x) ∈ {x, . . . , ffk−1(x)}, k > 0}

�t(f) = max{�t(f, x) | x ∈ A}

and note

Fact 12: 1 ≤ �t(f, x) ≤ �t(f) ≤ C(A) when f : A →t A and x ∈ A. ✷

We then have

Lemma 13: The functional G : (A →t B) → (A →t B) defined by G h =
h ◦ g1 is �t(g1)-bounded. ✷

Proof: Setting k = �t(g1) we must prove that G[k+1] = G[k] and for this it
suffices to prove Gk � G[k]. So let h ∈ A →t B and w ∈ A be given and note
that

Gk h w = h(gk
1(w))

and that

G[k] h w =
⊔
{h(w), . . . , h(gk−1

1 (w))}

(where we used k > 0). Fkom the definition of k there exists i such that
0 ≤ i < k and gk

1(w) = gi
1(w). Hence

Gk h w = h(gi
1(w))

where i ≤ k − 1 and the result is immediate. ✷

Example 14: An accumulator version of the factorial program may be
written as follows

fac(n,a) = if n = 0 then a else fac(n - 1,n∗a)

where the initial call is fac(n, 1). We shall not go into the details of how
to perform a strictness analysis for this program but simply postulate (or see
the Appendix) that it may be obtained as follows:
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A = 2 × 2
B = 2
g0(n

#, a#) = n# � a#

g1(n
#, a#) = (n#, n# � a#)

where n# � a# denotes the greatest lower bound of {n#, a#}, i.e.

n# � a# =

{
1 if n# = 1 = a#

0 otherwise

Thus G h = h ◦ g1 and H h = g0 � (G h) and we must determine k such that
FIX H = G[k](g0) = Hk⊥.

The results of [9, Section 3] are applicable and ensure that one may take

k = H(A →m B) = C(A) · H(B) = 4 · 1 = 4

Using Lemmas 13 and 11 we may improve this by taking

k = �t(g1) = 2

That �t(g1) = 2 follows easily from the idempotence of g1, i.e. g1 ◦ g1 = g1.

This result is not optimal, however. Tabulating H i⊥w for i ∈ {0, 1, 2} and
w ∈ A = {(0, 0), (0, 1), (1, 0), (1, 1)} one gets

w (0, 0) (0, 1) (1, 0) (1, 1)

H0⊥w 0 0 0 0
H1⊥w 0 0 0 1
H2⊥w 0 0 0 1

and this shows that it is possible to use k = 1 in this example. ✷

The second case is where ϕ is m. Here we first need to define the set LC(Y )
of elements less than (or equal to) some element of Y , i.e.

LC(Y ) = {x ∈ A | ∃x′ ∈ Y : x � x′}
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We then define

�m(f, x) = min{k | fk(x) ∈ LC({x, . . . , fk−1(x)}), k > 0}
�m(f) = max{�m(f, x) | x ∈ A}

Fact 15: 1 ≤ �m(f, x) ≤ �m(f) ≤ C(A) and �m(f) ≤ �t(f) whenever
f : A →m A and x ∈ A. ✷

We then have

Lemma 16: The functional G : (A →m B) → (A →m B) defined by
G h = h ◦ g1 is �m(g1)-bounded. ✷

Proof: Setting k = �m(g1) we must prove that G[k+1] = G[k] and for this it
is sufficient to prove Gk � G[k]. So let h ∈ A →m B and w ∈ A be given and
note that

Gk h w = h(gk
1(w))

and that

G[k] h w =
⊔
{h(w), . . . , h(gk−1

1 (w))}

(where we used k > 0). From the definition of k there exists i such that
0 ≤ i < k and gk

i (w) � gi
1(w). Hence

Gk h w � h(gi
1(w))

where i ≤ k − 1 and the result is immediate. ✷

Example 17: Continuing the previous example we now may take

k = �m(g1) = 1

which is the optimal result. To see that �m(g1) = 1 simply note that g1 is
reductive, i.e. g1 � id . ✷

The third case is where ϕ is sa. Here we define
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�sa(f, x) = min{k | fk(x) �
⊔
{x, . . . , fk−1(x)}k > 0}

�sa(f) = max{�sa | (f, x) | x,∈ A}

and note

Fact 18: 1 ≤ �sa(f, x) ≤ �sa(f) ≤ H(A) and �sa(f) ≤ �m(f) whenever
f ∈ A →sa A and x ∈ A; here we assume that H(A) > 0 is indeed the case.
✷

Proof: The only non-trivial proof is to show that �sa(f, x) ≤ H(A) rather
than e.g. �sa(f, x) ≤ H(A) + 1. For this note that

�sa(f,⊥) = 1

and that if x �= ⊥ then

⊥ ❁ x ❁ (x � f(x)) ❁ · · · ❁ (x � f(x) � · · · � fk−1(x))

is a proper chain when k = �sa(f, x). Hence k ≤ H(A) and this establishes
the result. ✷

We then have

Lemma 19: The functional G : (A →sa B) → (A →sa B) defined by
G h = h ◦ g1 is �sa(g1)-bounded. ✷

Proof: Setting k = �sa(g1) we must prove that G[k+1] = G[k] and for this it
is sufficient to prove Gk � G[k]. So let h ∈ A →sa B and w ∈ A be - given
and note that

Gk h w = h(gk
1(w))

and that

G[k] h w =
⊔
{h(w), . . . , h(gk−1

1 (w))}
= h(

⊔
{w, . . . gk−1

1 (w)})

where we have used that k > 0 and that h is completely additive. From the
definition of k we have
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gk
1(w) �

⊔
{w, . . . , gk−1

1 (w)}

and (by monotonicity of h) the result follows. ✷

From Fact 18 and Lemmas 19 and 11 it follows that

FIX H = Hk⊥ for k = H(A)

in the strict and additive case. It is interesting to note that this is the (tight)
upper bound established in [9, Section 4] for functionals in iterative form.

Example 20: Continuing the previous example we note that

�sa(g1) = 1 = �m(g1);

however, g1 is not additive so the above lemma is not applicable. ✷

Example 21: In certain cases the bound obtained from Lemma 19 will
indeed be better than that obtained from Lemma 16. To illustrate this we
shall consider a detection of signs analysis which is a typical example of an
analysis in the strict and additive framework. The analysis will be based on
the lattice S of signs depicted below:

Here + describes the positive natural numbers, 0 the natural number 0, +0
the non-negative natural numbers etc.

Now consider the function
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f x = if sq x > 100 then x

else f( sq(succ x) - 3∗(succ x) )

The analysis of f will give rise to a functional

H : (S → S) → (S → S)

in iterative form, i.e.

H h = g0 � h ◦ g1

Using the “obvious” interpretation of the primitives sq, >, succ, - and ∗ we
may obtain the following definitions of g0 and g1:

x ⊥ + 0 - +0 +- 0- 

g0(x) ⊥ + ⊥ - +0 +- 0- 

g1(x) ⊥ 
 
 0+ 
 
 
 


We have

�t(g1) = 1 = �m(g1) = 3

so Lemma 16 gives that 3 iterations will suffice for computing the fixed point.
However

�sa(g1) = 2

so Lemma 19 shows than an even better bound can be obtained. ✷

Sometimes simple “algebraic” properties of functions, like idempotency, may
be used to obtain bounds on �ϕ. The following table summarizes some such
results; whenever

• f ∈ A →ϕ A

16



• f satisfies the condition in the left column

the corresponding table entry gives

• an upper bound on �ϕ(f)

ϕ = t ϕ = m ϕ = sa
f = f (worst-case) C(A) C(A) H(A)
f = id (trivial case) 1 1 1
f = f ◦ f (idempotence) 2 2 2
f � id (extensive) H(A) + 1 H(A) + 1 H(A)
f � id (reductive) H(A) + 1 1 1
f ◦ f � f (weak idempotence) C(A) 2 2
f ◦ f � f � id (fast) C(A) C(A) 2
fk = f i for i < k k k k
fk � f i for i < k C(A) k k

fk � f [k] C(A) C(A) k

5 Linear forms

We now increase our level of ambition and study a functions

G : (A →ϕ B) → (A →ϕ B)

defined by

G h = g ◦ h ◦ g1

for g ∈ B →ϕ B and g1 ∈ A →ϕ A. This functional is continuous (i.e.
monotone) if g is monotone.

For the results of Section 3 to be applicable we need G not only to be con-
tinuous but also strict and additive and this holds when g is strict and
additive; then the function H defined by H h = g0 � (G h) will have
FIX H = G[k](g0) = Hk(⊥) whenever G is k-bounded. However, in this
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section we shall not formally assume that g is strict and additive as the
results on k-boundedness of G do not depend on this.

The first case is where ϕ is t. Using the measure �t of the previous section
we have

Lemma 22: The functional G : (A →t B) → (A →t B) defined by G h =
g ◦ h ◦ g1 is �t(g) · �t(g1)-bounded. ✷

Before approaching the proof we need an auxiliary notion. For a function
f ∈ A →t B and an element x ∈ A define

!t(f, x) = max{i | fk(x) ∈ {x, f(x), . . . , fk−i(x)}, k = �t(f, x)}

and note that

1 ≤ !t(f, x) ≤ �t(f, x).

Fact 23: If k ≥ �t(f, x) then fk(x) = fk−�t(f,x)(x). ✷

Proof: We proceed by induction on k ≥ �t(f, x). The case k = �t(f, x)
follows from the definition of !t(f, x). For the induction step we write ! =
!t(f, x) and calculate

fk+1(x) = f(fk(x)) = f(fk−�(x)) = f (k+1)−�(x)

This completes the proof. ✷

Fact 24: If k − n · !t(f, x) ≥ �t(f, x) − !t(f, x) and n ≥ 0 then fk(x) =
fk−n·�t(f,x)(x). ✷

Proof: We write ! = !t(f, x) and proceed by induction on n. The case n = 0
is trivial and for the induction step we assume that k−(n+1)·! ≥ �t(f, x)−!.
Then k − n · ! ≥ �t(f, x) ≥ �t(f, x) − ! and the induction hypothesis gives
the first equality of

fk(x) = fk−n·�(x) = fk−n·�−�(x)

whereas the second equality follows from Fact 23. This completes the proof.
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✷

Proof of Lemma 22: Setting k = �t(g) · �t(g1) we must prove G[k+1] = G[k]

and for this it suffices to prove Gk � G[k]. So assume that h ∈ A →t B and
w ∈ A are given and show that

Gk h w � G[k] h w

It suffices to find k′ such that 0 ≤ k − k′ < k (i.e. 1 ≤ k′ ≤ k) and

Gk h w � Gk−k′
h w

Now let

k′ = !t(g, h(gk
1w)) · !t(g1, w)

We then have

k − k′ = �t(g) · �t(g1) − !t(g, h(gk
1(w))) · !t(g1, w)

≥ !t(g, h(gk
1(w))) · �t(g1, w) − !t(g, h(gk

1(w))) · !t(g1, w)
= !t(g, h(gk

1(w))) · (�t(g1, w) − !t(g1, w))
≥ �t(g1, w) − !t(g1, w)

and similarly

k − k′ ≥ �t(g, h(gk
1(w))) − !t(g, h(gk

1 , w)))

Using Fact 24 we then get

Gk h w = gk(h(gk
1(w)))

= gk−k′
(h(gk

1(w)))

= gk−k′
(h(gk−k′

1 (w)))
= Gk−k′

h w

This proves the lemma. ✷
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The second case is where ϕ is m. Using the measure �m of the previous
section we get

Lemma 25: The functional G : (A →m B) → (A →m B) defined by
G h = g ◦ h ◦ g1 (for g ∈ B →m B and g1 ∈ A →m A) is �m(g) · �m(g1-
bounded. ✷

Again we shall need som auxiliary results before giving the proof. Define

!m(f, x) = max{i | fk(x) ∈ LC({x, f(x), . . . , fk−i(x)}), k =
�m(f, x)}

and observe that

1 ≤ !m(f, x) ≤ �m(f, x)

Fact 26: If k ≥ �m(f, x) then fk(x) � fk−�m(f,x)(x). ✷

Proof: We proceed by induction on k ≥ �m(f, x). The case k = �m(f, x)
follows from the definition of !m(f, x). For the induction step we write ! =
!m(f, x) and calculate

fk+1(x) = f(fk(x)) � f(fk−�(x)) = f (k+1)−�(x)

where we have used the monotonicity of f . ✷

Fact 27: If k − n · !m(f, x) ≥ �m(f, x) − !m(f, x) and n ≥ 0 then fk(x) �
fk−n·�m(f,x)(x). ✷

Proof: We write ! = !m(f, x) and proceed by induction on n. The case n = 0
is trivial and for the induction step we assume that k−(n+1)·! ≥ �m(f, x)−!.
Then k − n · ! ≥ �m(f, x) ≥ �m(f, x) − ! and using the induction hypothesis
and Fact 26 we get

fk(x) = fk−n·�(x) � fk−n·�−�(x)

as required. ✷

Proof of Lemma 25: As in the proof of Lemma 22 we may let h ∈ A →m B
and w ∈ A be given and then show that
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Gk h w � G[k] h w

for k = �m(g) · �m(g1).

For this it suffices to find k′ such that 0 ≤ k − k′ < k (i.e. 1 ≤ k′ ≤ k) and

Gk h w � Gk−k′
h w

Now let

k′ = !m(g, h(gk
1(w))) · !m(g1, w)

As in the proof of Lemma 22 we have

k − k′ ≥ �m(g1, w) − !m(g1, w)
k − k′ ≥ �m(g, h(gk

1(w))) − !m(g, h(gk
1(w)))

Using Fact 27 and the monotonicity of g and h we get

Gk h w = gk(h(gk
1(w)))

= gk−k′
(h(gk

1(w)))

= gk−k′
(h(gk−k′

1 (w)))
= Gk−k′

h w

This completes the proof. ✷

It is now easy to see that Lemma 22 can be strengthened to show that if
G : (A →t B) → (A →t B) is defined by G h = g ◦ h ◦ g1 for g ∈ A →m B
then G is �m(g) ·�t(g1)-bounded. Knowledge of g1 ∈ A →m B cannot be used
because the argument to G need not be monotone.

Example 28: Consider once again the detection of signs analysis of Example
21. The function

f x = if sq x > 100 then x

else sq(f(x - 3))
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gives rise to a functional

H : (S → S) → (S → S)

in linear form, i.e.

H h = g0 � g ◦ h ◦ g1

The functions g0, g and g1 may be defined by

x ⊥ + 0 - +0 +- 0- 

g0(x) ⊥ + ⊥ - +0 +- 0- 

g(x) ⊥ + 0 + +0 + +0 

g1(x) ⊥ 
 - - 
 
 - 


Note that g is strict and additive so that Lemma 11 applies. We get

�t(g) = �m(g) = 2
�t(g1) = �m(g1) = 2

so that both Lemmas 22 and 25 yield a bound of 4 on the number of iterations
needed. This is substantially better than the results of [9] where we obtain
a bound of 9 (when using that the detection of signs analysis is in the strict
and additive framework). ✷

The third case is where ϕ is sa. Here we would like to show that G is
�sa(g) · �sa(g1)-bounded but so far we have been unable to do so. Also we
would like to strengthen Lemmas 22 and 25 to �sa(g)·�t(g1) and �sa(g)·�m(g1),
respectively, provided that g ∈ B →sa B.

6 Primitive recursive forms

We now study a functional G : (A →ϕ B) → (A →ϕ B) defined by

G h = g ◦ tuple(h ◦ g1, g2)
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where g ∈ B × B →ϕ B, g1 ∈ A →ϕ A and g2 ∈ A →ϕ B. As already
noted in Section 3, G is strict and additive if g is strict and additive in its
left argument.

Rather than embarking on a detailed study of the iterands of

H = λh.g0 � (G h)

we shall transform H into another functional H ′, by using the well-known
program transformation technique of “introducing an accumulator” [2, Sec-
tion 6]. The functional H ′ : (A × B →ϕ B) → (A × B →ϕ B) will be in
iterative form and is defined by

H ′ h′ = g′
0 � (G′ h′)

G′ h′ = h′ ◦ g′
1

where g′
0 ∈ A × B →ϕ B and g′

1 ∈ A × B →ϕ A × B are defined by

g′
0 = g ◦ tuple(g0 ◦ fst , snd)

g′
1 = tuple(g1 ◦ fst , g ◦ tuple(g2 ◦ fst , snd))

The formal relationship between H and H ′ is expressed by

Fact 29: Assume that g ∈ B × B →ϕ B satisfies

• g is associative, i.e. g(w1, g(w2, w3)) = g(g(w1, w2), w3), and

• g is strict and additive in its left argument.

Then

H ′i⊥(w, w1) = g(H i⊥w, w1)

holds for all i ≥ 0, w ∈ A and w1 ∈ B. ✷

Proof: We prove the equality by numerical induction on i. The base case,
when i = 0, is immediate as g is strict in its left argument.

For the induction step we calculate
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H ′i+1⊥(w, w1) = g′
0(w, w1) � H ′i⊥(g′

1(w, w1))

= g(g0(w), w1) � H ′i⊥(g1(w), g(g2(w), w1))
= g(g0(w), w1) � g(H i⊥(g1(w)), g(g2(w), w1))
= g(g0(w), w1) � g(g(H i⊥(g1(w)), g2(w)), w1)
= g(g0(w) � g(H i⊥(g1(w)), g2(w)), w1)
= g(H i+1⊥w, w1)

This completes the proof of the equality. ✷

Fact 30: Assume that g ∈ B × B →ϕ B is associative, strict and additive
in its left argument and that

• g has a right-identity w0 ∈ B, i.e. g(w1, w0) = w1.

We then have

• H i⊥w = H ′i⊥(w, w0)

• FIX H w = FIX H ′ (w, w0)

for all i ≥ 0 and w ∈ A. ✷

Proof: Using that w0 is a right identity we get from Fact 29 that

H ′i⊥(w, w0) = g(H i⊥w, w1) = H i⊥w

It then follows that FIX H ′(w, w0) = FIX H w. ✷

Fact 30 relates the fixed points of the two functionals but we shall also be
interested in determining the number of unfoldings needed to compute the
fixed points. We have

Lemma 31: Assume that g is associative, has a right identity and is strict
and additive in its left argument. If k unfoldings suffice for H ′ then also k
unfoldings suffice for H, i.e.

FIX H ′ = H ′k⊥ implies FIX H = Hk⊥
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In particular, FIX H = Hk⊥ if G′ is k-bounded. ✷

Proof: Assume that

FIX H ′ = H ′k⊥

For arbitrary w ∈ A we then calculate

FIX H w = FIX H ′ (w, w0))

= H ′k⊥(w, w0)
= Hk⊥w

where w0 is the right identity of g and we have used Fact 30 twice. For the
final claim we simply use Lemma 11. ✷

A similar result holds for the bounds of the functionals G and G′.

Lemma 32: Assume that g is associative, has a right identity and is strict
and additive in its left argument. Then G and G′ are strict and additive and

G′ is k-bounded implies G is k-bounded. ✷

Proof Sketch: Note that we never made any assumptions about g0, except
g0 ∈ A →ϕ B, and that the definition of G and G′ is independent of g0.
Write

H[h0] = λh. h0 � (G h)
H ′[h0] = λh′. (g ◦ tuple(h0 ◦ fst , snd)) � (G′ h′)

for arbitrary h0 ∈ A →ϕ B. Next assume that G′ is k-bounded.

We then have

(H ′[h0])
k+1(⊥) = G′[k+1](h0)

= G′[k](h0)
= (H ′[h0])

k(⊥)
= FIX (H ′[h0])

using an analogue of Fact 10 and Lemma 11. Using an analogue of Lemma
31 we have
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(H[h0])
k+1(⊥) = (H[h0])

k(⊥) = FIX (H[h0])

and by analogues of Fact 10 we have

(H[h0])
k+1(⊥) = G[k+1](h0)

(H[h0])
k(⊥) = G[k](h0)

It then follows that

G[k+1](h0) = G[k](h0)

for all h0 ∈ A →ϕ B and this shows that G is k-bounded. ✷

Example 33: Consider the factorial function defined by

fac n = if n = 0 then 1 else n ∗ fac(n - 1)

A strictness analysis (along the lines of the Appendix) will give rise to a
functional

H : (2 →m 2) → (2 →m 2)

in primitive recursive form and with

g0(n#) = 1
g1 = g2 = id
g(n#, m#) = n# � m#

To bound the number of iterations needed to compute the fixed point of H
it follows from Lemmas 31 and 16 that we only have to determine �m(g′

1).
We have

g′
1(n

#, m#) = tuple(g1 ◦ fst , g ◦ tuple(g2 ◦ fst , snd))(n#, m#)
= (n#, n# � m#)
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Since g′
1 is reductive we have �m(g′

1) = 1.

This is clearly the optimal result. It is worth observing that it is also better
than the bound of 2 obtainable from [9, Section 2]. Finally we should point
out that the functional H ′ of the present example corresponds rather closely
to the functional H of Examples 17 and 14. (Exact correspondance fails
because g0 is not strict.) ✷

7 Conclusion

We have considered the problem of bounding the number of iterations needed
to compute the fixed point of a continuous functional

H : (A → B) → (A → B)

defined on finite complete lattices A and B. We have considered three defin-
ing forms of H:

• iterative forms: H h = g0 � (h ◦ g1)

• linear forms: H h = g0 � (g ◦ h ◦ g1)

• primitive recursive forms: H h = g0 � (g ◦ tuple(h ◦ g1, g2))

and three classes of functions from A to B:

• total functions

• monotone functions

• strict and additive functions

A related study was conducted in [9]. However, the main difference is that
the bounds of [9] depended on measures of A and B whereas the bounds
established here depend on measures of the functions g1 etc. The results of
the present paper may therefore carry over to the situation where neither A
nor B are finite complete lattices.
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The following table summarizes all the information that can be obtained by
combining the results established here with those of [9]. In the formulae
using min we have arranged it so that the first argument is the result of the
present paper and the second argument is the result from [9].

A →t B A →m B A →sa B

iterative form �t(g1) ≤ C(A) �m(g1) ≤ C(A) �sa(g1) ≤ C(A)
linear form min{�t(g) · �t(g1), min{�m(g) · �m(g1), RJC(A)· H(B)
(g restricted) C(A)· H(B)} C(A)· H(B)}
prim. rec. form Imin{�t(g′1), min{�m(g′1), min{�sa(g′1),
(g restricted) C(A)· H(B)} C(A)· H(B)} RJC(A)· H(B),

H(A)+ H(B)}
no restriction C(A)· H(B) C(A)· H(B)} RJC(A)· H(B)

We should explain that RJC(A) is the number of non-bottom join-irreducible
elements of A; if A is distributive we have RJC(A) = H(A) and in general
H(A) ≤ RJC(A) ≤ C(A). Finally we should remark that the H(A)+ H(B)
entry in the table follows from �sa(g

′
1) ≤ H(A×B) where we use the results

already established for iterative forms.

Thus for the iterative forms the bounds of the present paper will always be
at least as good as those of [9] whereas this need not be the case for linear
forms and primitive recursive forms. However, the main point is that in the
“average” case we expect �t(g1) to be muchless than C(A) etc., so that in
the “average” case we are likely always to get an improvement over [9]. This
suggests studying certain analyses, e.g. corresponding to fast analyses, where
this always can be guaranteed.
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Appendix

In this Appendix we shall claim that the results of the present paper are
widely applicable because the special forms allowed for the functionals H
and G are likely to arise frequently. The general idea is that the functional
H will be

• in iterative form if the function being analysed is tail recursive (corre-
sponding to an iterative loop),

• in linear form if the function being analysed contains only one recursive
call in its defining equation (somewhat analogous to the linear forms
of [3]),

• in primitive recursive form if the function being analysed is primitive
recursive.

To be able to substantiate these claims we must make several assumptions
on how we analyse the various primitives. To this end we shall assume that

• function composition is interpreted as function composition (so that
only forward analyses are considered),

• tupling is interpreted as tupling meaning that the abstraction of a pair
is a pair of abstractions3,

• the conditional given by

cond(p, f1, f2)v =




f1(v) if p(v) = true
f2(v) if p(v) = false
⊥ otherwise

is interpreted as

cond#(p#, f#
1 , f#

2 ) = (f#
1 ◦ p#

true) � (f#
2 ◦ p#

false)

3“No tensor products.”
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where p#
true and p#

false are filters defined from p# so that typically

p#
b w =

{
w if p#(w) is an abstraction of b
⊥ otherwise

Under these assumptions we can validate our claims as illustrated below.

Example A1: A tail recursive function has the general form

f x = if p x then f1 x else f (f2 x)

= cond(p, f1, f ◦ f2) x

The functional H obtained from the analysis will then be

H h = cond#(p#, f#
1 , h ◦ f#

2 )

= (f#
1 ◦ p#

true) � h ◦ (f#
2 ◦ p#

false)

which is in iterative form so that the results of Section 4 apply. ✷

Example A2: For us a linear function has the general form

f x = if p x then f1 x else f2(f(f3 x))

= cond(p, f1, f2 ◦ f ◦ f3) x

The functional H obtained from the analysis is then

H h = cond#(p#, f#
1 , f#

2 ◦ h ◦ f#
3 )

= (f#
1 ◦ p#

true) � (f#
2 ◦ h ◦ (f#

3 ◦ p#
false))

which is in linear form so that the results of Section 5 apply. ✷

Example A3: A primitive recursive function has the general form

f x = if p x then f1 x else f2(f(f3 x), x)

= cond(p, f1, f2 ◦ tuple(f ◦ f3, id)) x

The functional H obtained from the analysis is then
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H h = cond#(p#, f#
1 , f#

2 ◦ tuple(h ◦ f#
3 , id#))

= (f#
1 ◦ p#

true) � (f#
2 ◦ tuple(h ◦ (f#

3 ◦ p#
false), id

# ◦ p#
false))

which is in primitive recursive form so that the results of Section 6 do apply.

✷

The more debatable restriction on the form of the analyses is probably that
for the conditional. One may note that it holds in classical flow analysis [1] as
well as in many instances of abstract interpretation [8]. For simple strictness
analysis [6] over the two point domain it is more common to have

cond′(h, h1, h2)w = h(w) � (h1(w) � h2(w))

Since the lattices of concern are distributive we have

cond′(h, h1, h2)w = (h(w) � h1(w)) � (h(w) � h2(w))

If h1 and h2 are strict we can bring cond′ into the desired form by setting

cond′(h, h1, h2)w = h1(htrue(w)) � h2(hfalse(w))

where

htrue(w) = hfalse(w) =

{
w if h(w) = 1
⊥ otherwise

When h1 and h2 are not strict one may change the analysis to include a new
“artificial” ⊥-element in which all functions are strict. This is similar to the
approach of projection based strictness analysis [12].

Finally we should like to stress that the requirements on the analyses and
functions are sufficient but not necessary in order to apply the results.

Example A4: Consider strictness analysis of the Fibonacci function

fib n = if n ≤ 1 then 1 else fib(n - 1) + fib(n - 2)
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Even though this function is not in “linear form” the corresponding functional
may be simplified to one that is in iterative form. ✷

Example A5: Also the restrictions on the analyses can sometimes be lifted.
In a backward analysis it is often natural to take

h1 ◦# h2 = h2 ◦ h1

cond#(h, h1, h2)w = h1(w) � h2(w) � h(1)

tuple#(h1, h2)(w1, w2) = h1(w1) � h2(w2)

If we apply this analysis to a primitive recursive function we will obtain a
functional in linear form. An example of an analysis satisfying these condi-
tions is the liveness analysis of [11]. ✷
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