
An Automatically Generated and Provably
Correct Compiler for a Subset of Ada

Jens Palsberg
palsberg@daimi.aau.dk

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

January 1992

Abstract

We describe the automatic generation of a provably correct com-
piler for a non-trivial subset of Ada. The compiler is generated from
an action semantic description; it emits absolute code for an abstract
RISC machine language that currently is assembled into code for the
SPARC and the HP Precision Architecture. The generated code is an
order of magnitude better than what is produced by compilers gener-
ated by the classical systems of Mosses, Paulson, and Wand. The use
of action semantics makes the processable language specification easy
to read and pleasant to work with.

A reformatted version of this report (with only an excerpt of ap-
pendix B) is to be presented at ICCL’92, Fourth IEEE International
Conference on Computer Languages, to be held 20–23 April, 1992, in
San Francisco, California. Citations should refer to the Proceedings.

1

1 Introduction

The purpose of a language designer’s workbench, envisioned by Pleban, is to
drastically improve the language design process. The major components in
such a workbench are:

• A specification language whose specifications are easily maintainable,
and accessible without knowledge of the underlying theory; and

• A compiler generator that generates realistic compilers from such spec-
ifications.

With such a workbench, the language designer can:

• Document design decisions;

• Experiment with the new language after a change has been made; and

• Ship a compiler to programmers immediately after the design is fin-
ished.

This paper introduces another aspect to the notion of a language designer’s
workbench: provable corretness. Proving software correct is difficult in gen-
eral, but if we can prove that compilers are correct, then an important class of
errors is eliminated. We suggest that the compiler generator should produce
compilers that are both realistic and provably correct.

We have taken a major step in this direction. We have designed, imple-
mented, and proved the correctness of a compiler generator, called Cantor,
that accepts action semantic descriptions of programming languages. The
considered subset of action notation, see appendix A, is powerful enough to
allow the specification of a non-trivial subset of Ada [5], called Mini-Ada,
see appendix B. The generated compilers emit absolute code for an abstract
RISC [40] machine language, which easily can be compiled into code for ex-
isting RISC processors. Currently, implementations exist for the SPARC [14]
and the HP Precision Architecture [28].

The development of Cantor was guided by the following principles:

• Correctness is more important than efficiency; and

2

• Specification and proof must be completed before implementation be-
gins.

As a result, on the positive side, the Cantor implementation was quickly pro-
duced, and only a handful of minor errors (that had been overlooked in the
proof!) had to be corrected before the system worked. On the negative side,
the generated compilers emit code that run at least two orders of magnitude
slower than corresponding target programs produced by handwritten compil-
ers. This is somewhat far from the goal of generating realistic compilers, but
is still an improvement compared to the classical systems of Mosses, Paulson,
and Wand where a slow-down of three orders of magnitude has been reported
[11].

Action semantics was designed to allow accessible and maintainable de-
scriptions of realistic programming languages. Our experiments with Cantor
confirm that action semantic descriptions are easy to work with in practice.
Future work on Cantor will attempt to improve speed without sacrificing
provable correctness.

In the following section we examine the major previous approaches to
compiler generation. In section 3 we outline the structure of the Cantor sys-
tem, and we take a closer look at the generated Mini-Ada compiler. Finally,
in section 4 we compare the performance of the generated Mini-Ada com-
piler with the standard C compilers on the SPARC and the HP Precision
Architecture.

This paper summarizes the author’s forthcoming PhD thesis [29], except
the correctness proof. For an overview of our approach to correctness, see
[30].

2 Previous Work

We will examine each of the previous approaches to compiler generation by
focusing on:

• The accessibility and maintainability of the involved specifications;

• The quality of the generated compilers; and

3

• Whether correctness has been proved.

These criteria decide whether a system could be useful in a langauge de-
signer’s workbench.

Common to all of the approaches are that they choose a specific target
language [32]. Ideally, the task is then to write and prove the correctness
of a compiler for the involved specification language. Such a compiler can
then be composed with a language definition to yield a correct compiler for
the language, see figure 1. This approach is usually called semantics-directed
compiler generation.

Figure 1: Semantics-directed compiler generation.

The traditional approach to compiler generation is based on denotational
semantics [37]. Examples of existing compiler generators based on this idea
include Mosses’ Semantics Implementation System (SIS) [17], Paulson’s Se-
mantics Processor (PSP) [31, 32], and Wand’s Semantic Prototyping System
(SPS) [44]. Denotational semantics has achieved much popularity as a ve-
hicle for theoretical studies, but it is also recognized to be neither flexible
nor readable, see for example the discussions by Mosses [19], and Pleban and
Lee [34]. The target programs produced by the classical systems have been
reported to run at least three orders of magnitude slower than corresponding
target programs produced by handwritten compilers [11]. None of these sys-
tems have been proved correct. In particular, even though SIS is based on
a direct implementation of beta-reduction, then the implementation of that
has not been proved correct. We conclude that the classics systems fail on
all three points to be useful in a language designer’s workbench.

4

A number of compiler generators have been built that produce compilers
of a quality that compare well with commercially available compilers. Major
examples are the CAT system of Schmidt and Völler [38, 39], the compiler
generator of Kelsey and Hudak [10], and the Mess system of Pleban and Lee
[33, 12, 35, 11]. These approaches are based on rather ad hoc specification
languages, and, like the classical systems, they lack correctness proofs.

The CAT system is aimed at generating compilers for Pascal, C, Basic,
Fortran, and Cobol. The specification language, called CAT, is a simplifi-
cation of the union of all their syntactic constructs. This makes CAT itself
into a high-level language which has its applicability as specification language
limited to only little more than the five languages under consideration.

The compiler generator of Kelsey and Hudak has been used to generate
compilers for Pascal, Basic, and Scheme. The specification language is a call-
by-value lambda calculus with data and procedure constants and an implicit
store. This makes the approach less general than the classical ones, in that
it is biased towards a specific style of architecture.

Designer of Specification Quality of Correctness
the system language generated compilers Proof

Mosses Denotational Semantics Poor No
Paulson Denotational Semantics Poor No
Wand Denotational Semantics Poor No

Schmidt and Amalgamation of Good No
Völler five languages

Kelsey and Lambda notation with Good No
Hudak implicit store, etc.

Pleban and Lee High-level semantics Good No
Gomard and Jones Denotational Semantics Poor Yes

Figure 2: Existing Compiler Generators.

The Mess system was created as a reaction to the lack of separation
between conceptual analysis and model details that is found in the classical
compiler generators. Instead of denotational semantics, the approach h to
defining languages is high-level semantics. High-level semantics is composi-
tional, but it does not have a standardized core notation, as does denotational
semantics; it is rather a particular style of specification that is advocated.

5

This style involves a notion of actions, akin to and inspired by the actions
found in precursors of action semantics. A high-level semantic definition
involve essentially only compile-time objects; the run-time objects are then
used in the definition of the notation for actions. This separation is the key
to the success of the Mess system. It has been used to generate a compiler
for a non-trivial imperative language.

The three realistic compiler generators trade generality for speed. It it
not at all clear how to prove them correct, however, and in the case of the
Mess system, such a proof must be given afresh for each new language because
new actions often have to be introduced and defined. Work on compiler
correctness does not seem to be of much help because it usually focuses
on denotational semantics [13, 15, 41, 36, 27], algebraic variations hereof
[3, 16, 42, 2, 18], structural operational semantics [6], or natural semantics
[4].

We are aware of only one compiler generator that has been proved cor-
rect: the one obtained by self-application of the partial evaluator mix, see
the paper by Gomard and Jones [7]. Unfortunately, the generated compilers
emit code for the lambda calculus, thus leaving considerable compilation to
be done. It remains to be seen if this approach will lead to the generation of
compilers for conventional machine architectures.

A summary of the examination is given in figure 2. We will now consider
the Cantor system which trades speed for correctness, but still produces
better code than the classical systems of Mosses, Paulson, and Wand.

3 The Cantor System

Our compiler generator accepts action semantic descriptions. Action seman-
tics is a framework for formal semantics of programming languages, developed
by Mosses [19, 20, 21, 24, 25] and Watt [26, 45]. It is intended to allow useful
semantic descriptions of realistic programing languages, and it is composi-
tional, like denotational semantics. It differs from denotational semantics,
however, in using semantic entities called actions, rather than higher-order
functions.

We have designed a subset of action notation which is amenable to com-
pilation and which we have given a natural semantics, by a systematic trans-

6

formation of its structural operational semantics [25]. The syntax of this
subset is given in appendix A together with a brief overview of some the prin-
ciples behind action semantics. Appendix B presents a complete description
of a subset of Ada, called Mini-Ada, featuring static typing, constants, vari-
ables, one-dimensional array-types, functions and procedures with in and in
out (reference) parameters, various control structures, and the usual expres-
sions. Note that the select construct in Mini-Ada can be used as a “case”-
statement, and that also the input-output statements (read and write) are
non-standard Ada. The Mini-Ada specification is a subset of one given by
Mosses in his book [25]. (Readers who are unfamiliar with action seman-
tics are not expected to understand the details in appendix B, despite the
suggestiveness of the symbols used. See [25] for a full presentation of action
semantics.)

In the following, we first give an overview of the structure of Cantor and
the generated Mini-Ada compiler. We then discuss the machine language
used, and finally we take a closer look at how to compile actions in a provably
correct fashion.

3.1 Overview

Figure 3: The Cantor system.

The Cantor system has the structure shown in figure 3. In practice, a
session with Cantor looks as follows on the screen:

cantor syntax semantics compiler

compiler program code

code input output

7

The compiler generator cantor is written in Perl [43], and the generated
compilers are written in Scheme [1]. Examples of a syntax and a semantics are
given in appendix B; it is the LATEX source of the appendix that is processed
by cantor. The generated compiler contains a syntax checker, a program-to-
action transformer, the action compiler described above, and finally a Pseudo
SPARC assembler that currently can emit code for the SPARC and the HP
Precision Architecture. The input file is a sequence of integers, as is the
output file.

3.2 An Abstract RISC Machine Language

The machine language is patterned after the SPARC architecture; it is called
Pseudo SPARC. It contains 14 instructions that operate on a model of the
SPARC machine state, including status-bits, register-windows, main mem-
ory, etc. The only data manipulated are integers, thus making the language
more realistic than those considered in most previous compiler proofs. It
contains two idealizations, however, as follows:

• Unbounded word and memory size: The data values are un-
bounded integers and this requires unbounded word size. We also as-
sume that the program and memory sizes, the number of of registers in
a register window, and the number of register windows me unbounded.

• Read-only code: The program is placed separately, not in ‘memory’.
This implies that code will not be overwritten, and that data will not
be “executed”.

Furthermore, we do not model delay slots. These idealizations simplify the
correctness proof considerably, but they may be removed in future work,
using the technique of Joyce [9, 8].

Figure 4 shows the 14 Pseudo SPARC instructions and how they (ap-
proximately) can be expanded to real SPARC instructions. Pseudo SPARC
instructions can also be expanded to instructions for the HP Precision Ar-
chitecture, though with a little more difficulty.

8

3.3 Compiling Action Notation

The compiler from action notation to Pseudo SPARC machine code proceeds
in two passes:

1. Type analysis and calculation of code size; and

2. Code generation.

For each pass there is a function defined for every syntactic category. Those
defined for ‘Act’ have the following signatures:

a-count :: Act, data-type, symbol-table →
(natural, truth-value, data-type,

truth-value, data-type, block) .

perform ::
Act, data-types, general-register, frozen,
symbol-table, cleanup, cleanup, cleanup,
linenumber, linenumber-complete,
linenumber-escape, linenumber-fail →
(program, general-register, general-register) .

Since action notation contains unusual constructs, the definition of the type
analysis and code generation employ unusual techniques, though not very
difficult. For example, the definition of ‘perform’ requires as argument both
the desired start-address (‘linenumber’) of the code to be generated, but also
addresses of where to jump to, should the performance complete (‘linenumber-
complete’), escape (‘linenumber-escape’), or fail (‘linenumber-fail’). These ad-
dresses are calculated using ‘a-count’ which, in addition to type analysis,
calculates the size of the code to be generated.

As an example of how the compiler works, see the following excerpt from
the compiling specification.

(1) d-count D h d = (n:natural, truth-value-type)
⇒ a-count [[“check” D:Dependent]] h d = ac-state

sum(n, 2, e-size, 12) true () false () empty-list .

9

Pseudo SPARC Real SPARC

skip sub %g0, %g0, %g0

jump Z jmpl Z, Xg0

branchequal Z be Z
branchlessthan Z bneg Z
call jmpl global, %r8

return jmpl %r8+8, %g0

store R1 in R2 Z P st R1, R2 + Z + P
load R1 Z P into R2 ld R1 + Z + P, R2
storeregisters save
load registers restore
move RI to R or %g0, RI, R
move sum R RI to R′ add R, RI, R′

move difference R RI to R′ sub R, RI, R′

compare R with RI subcc R, RI, %g0

Figure 4: The Pseudo SPARC machine language.

(1) d-count D h d = (n:natural, truth-value-type) ;
(2) l′ = sum(l, n) ;
(3) l′′ = sum(l′, 2, e-size) ;
(4) evaluate D h a f d l sum(l′′,6) =

(p:program, r:general-register)
⇒ perform [[“check” D “Dependent”]] h a f d

un ue uf l ln le lf = a-state overlay(
p,
map of sum(l’,0) to (compare r with 0),
map of sum(l’,1) to (branchequal sum(l”,6)),
empty-list-code r sum(l’,2),
putcommit l” 0,
finalize sum(l”,3) un 0 ln,
putcommit sum(l”,6) 0,
finalize sum(l”,9) uf 2 lf)

r a .

10

The first definition calculates the size of the code generated by the secand
definition. It also does the type-checking. The meaning of the action ‘check
D’ is to check whether D evaluates to true or false, and it should then
“complete” or “fail”, accordingly. The generated code first computes the
result of D, and then it does a branchequal, as expected. (We represent true
as 1 and false as 0.) This is not all, however. Because of the generality of
action notation a lot of additional code is also generated. We will not explain
the details, as it requires an intimate knowledge of the semantics of action
notation, but simply note that a commonly found action such as ‘check (it is
true)’ yields 37 lines of code. It should be noted, though, that it is this clear
structure of the code that made the correctness proof manageable.

Our approach to correctness can be summarized as follows:

1. Give a natural semantics to both action notation and the abstract RISC
machine language.

2. Make the compiling of action notation simple; and

3. Use a variation of Despeyroux’s proof technique [4].

All specifications are given using unified algebras, an algebraic specification
framework developed by Mosses [23, 21, 22]. This includes the semantics of
action notation (13 pages), the semantics of the machine language (6 pages),
the compiler (36 pages), and various auxiliary notation (14 pages). The
correctness statement, including various lemmas but without proofs, takes 28
pages. Putting further sophistication into the compiler will add significantly
to these page counts. We feel that the size alone of the specifications calls
for automatic proof checking. Recent attempts to automatically check a
compiler correctness proof are reported by Young [46] and Joyce [9, 8]. For
now, however, we leave the automatic checking of the Cantor correctness
proof to future work and turn to a performance evaluation.

4 Performance Evaluation

The Mini-Ada action semantics in appendix B has been the primary bench-
mark in our experiments with the Cantor system.

11

• Generating the Mini-Ada compiler takes 9 seconds.

We have used this compiler to translate a number of benchmark programs,
described in figure 5. The sieve, euclid, and fib programs contain a main
loop that allows iterating the computation. This will be practical when we
later compare the object code emitted by the Mini-Ada compiler with that
emitted by handwritten compilers.

bubble: Bubblesorts a number of integers (50 lines).

sieve: Performs the sieve of Erathosthenes prime number generator (30
lines).

euclid: Computes the greatest common divisor of two numbers using Eu-
clid’s algorithm (20 lines).

fib: Computes the 56’th Fibonacci number (30 lines).

Figure 5: The Mini-Ada benchmark programs.

The number of Pseudo SPARC instructions emitted for each benchmark
program is given in figure 6. When the Pseudo SPARC code is compiled
to code for the SPARC, then the size is approximately doubled. A slightly
worse blow-up is obtained when compiling to the HP Precision Architecture.

No. of Pseudo SPARC instructions generated:

bubble: 16697 euclid : 7386
sieve : 12096 fib : 9095

Figure 6: Object code size.

Unfortunately, we have no access to an Ada compiler that generates
code for either of the two architectures that we consider. Instead, we have
made comparison with the standard C compiler for those architectures. It is
perhaps unfair to compare Ada and C, but we still believe that using the C
compiler gives a good indication of the capabilities of Cantor. We expect that
the C compilers generates better code than potential Ada compilers. Hence,
when we compute the slow-down compared to C, we will take it as an upper

12

bound of the slow-down compared to Ada. We of course had to rewrite
the Mini-Ada programs slightly to get them accepted by the C compilers.
Since the constructs in C are less general than those in Ada, we expect a
significantly better performance of the C-generated code, than what could
be expected from Ada-generated code.

C Copt Mini-Ada
bubble 1.0 2.2 542
sieve 1.2 2.1 377
euclid 1.1 1.6 136
fib 1.1 1.7 210

Figure 7: Compile times.

Figure 7 shows the compile time in seconds when using the C compiler,
the C compiler with maximal optimization switched on, and the Cantor-
generated Mini-Ada compiler. The timings in this figure were recorded on
the SPARC, as the compilers run almost equally fast on the HP. The timings
indicate that the Cantor system is rather tedious to work with in practice. We
plan to rewrite the action compiler in C instead of Scheme, to get acceptable
compile times.

C Copt Mini-Ada Slow-down
bubble 4.4 2.1 0.9 149

(1000 numbers) (1000 numbers) (37 numbers)
sieve 1.3 0.4 1.2 369

(400 itera.) (400 itera.) (1 itera.)
euclid 5.4 0.9 0.8 148

(30000 itera.) (30000 itera.) (30 itera.)
fib 1.2 0.2 0.8 185

(10000 itera.) (10000 itera.) (36 itera.)

Figure 8: Object code execution time on the SPARC.

Figures 8 and 9 show the object code execution time in seconds for the
benchmark programs. They also show the estimated slow-down when using
the Mini-Ada compiler, compared to the C compiler without optimization.

13

C Copt Mini-Ada Slow-down
bubble 7.2 4.7 4.3 436

(1000 numbers) (1000 numbers) (37 numbers)
sieve 1.2 0.4 4.5 1500

(400 itera.) (400 itera.) (1 itera.)
euclid 4.5 4.4 2.7 600

(30000 itera.) (30000 itera.) (30 itera.)
fib 1.1 0.5 3.9 985

(10000 itera.) (10000 itera.) (36 itera.)

Figure 9: Object code execution time on the HP Precision Architecture.

The slow-down factors were computed by simple extrapolation. The figures
indicate, unsurprisingly, that the Mini-Ada-generated code runs faster on
the SPARC than on the HP. This is because the Pseudo SPARC machine
language was designed to match the SPARC instructions, not the HP instruc-
tions. Thus, more code is generated for each Pseudo SPARC instruction when
compiling to the HP.

The performance of the object code is most fairly compared on the
SPARC. Taking the differences of C and Ada into account, we conclude that
the object code run at least two orders of magnitude slower than correspond-
ing code produced by handwritten Ada compilers.

5 Conclusion

We have taken a step towards the construction of a provably correct imple-
mentation of a practically useful language designer’s workbench. We have
illustrated our approach on a non-trivial subset of Ada, hoping to demon-
strate that such a workbench could have been a helpful tool during the design
of Ada.

While being provably correct, our compiler generator still generates sig-
nificantly better code than the classical systems of Mosses, Paulson, and
Wand. Future work may take four directions:

• Better object code: We will build in more compile time analysis, to

14

improve the code generator.

• Completely realistic target language: We will define and use a
target language without the idealizations discussed in this paper.

• Faster compiler: We will rewrite the action compiler in C instead of
Scheme, to get acceptable compile times.

• Automatic proof check: We will exploit recent advances in auto-
matic proof checking to obtain a very trustworthy system.

We believe that a provably correct and practically useful language designer’s
workbench is a realistic possibility.

Acknowledgement. This work has been supported in part by the Danish
Research Council under the DART Project (5.21.08.03). The author thanks
Peter Mosses and Michael Schwartzbach for helpful comments on a draft of
the paper. The author also thanks Peter Ørbæk for implementing the Cantor
system.

15

A Action Notation

needs: Data Notation/Numbers/Naturals .
introduces: token .
grammar:
Act = “complete” ||| “escape” ||| “fail” |||

“commit” ||| “diverge” ||| “regive” |||
[[“give” Dependent]] ||| [[“check” Dependent]] |||
[[“bind” token “to” Dependent]] |||
[[“store” Dependent “in” Dependent]] |||
[[“allocate” (“truth-value” ||| “integer”) “cell”]] |||
[[“batch-send” Dependent]] ||| [[“batch-receive” “an” “integer”]] |||
[[“enact” “application” Dependent “to” Tuple]] |||
[[“indivisibly” Act]] ||| [[“unfolding” Unf]] ||| [[Act Infix Act]] |||
[[[[“furthermore” Act]] (“hence” ||| “thence”) Act]] .

Unf = [[Act Infix Unf]] ||| [[Unf “or” Act]] ||| “unfold” .
Tuple = “()” ||| Dependent ||| [[Tuple “,” Tuple]] ||| “them” .
Dependent = “true” ||| “false” ||| natural |||

[[“empty-list” “&” “[” Type “]” “list”]] |||
[[“closure” “abstraction” “of” Act “&”
“[” “perhaps” “using” Data “]” “act”]] |||
[[Unary Dependent]] ||| [[Binary “(” Dependent “,” Dependent “)”]] |||
[[Dependent (“is” ||| [[“is” “less” “than”]]) Dependent]] |||
[[“component#” Dependent “items” Dependent]] |||
“it” ||| [[“the” “given” Datum “#” natural]] |||
[[“the” Datum “bound” “to” token]] |||
[[“the” Datum “stored” “in” Dependent]] |||
[[“(” Dependent “)”]]

Infix = [[“and” “then”]] ||| “then” ||| “before” ||| “trap” ||| “or” .
Unary = “not” ||| “negation” ||| [[“list” “of”]] ||| “head” ||| “tail” .
Binary = “both” ||| “either” ||| “sum” ||| “difference” ||| “concatenation” .
Datum = “datum” ||| “cell” ||| “abstraction ” ||| “list” |||

[[Datum ”|||“ Datum]] ||| Type .
Data = “()” ||| Type ||| [[Data “,” Data]] .
Type = “truth-value” ||| “integer” |||

[[“truth+alue” “cell”]] ||| [[“integer” “cell”]] |||
[[“[” Type “]” “list”]] .

16

A.1 Action Principles

Action notation is designed to allow comprehensible and accessible descrip-
tions of programming languages. Action semantic descriptions scale up
smoothly from small example languages to realistic languages, and they can
make widespread reuse of action semantic descriptions of related languages.

Actions reflect the gradual, stepwise nature of computation. A perfor-
mance of an action, which may be part of an enclosing action, either

• completes, corresponding to normal termination (the performance of
the enclosing action proceeds normally); or

• escapes, corresponding to exceptional termination (the enclosing action
is skipped until the escape is trapped); or

• fails, corresponding to abandoning the performance of an action (the
enclosing action performs an alternative action, if there is one, other-
wise it fails too); or

• diverges, corresponding to nontermination (the enclosing action also
diverges).

The information processed by action performance may be classified according
to how far it tends to be propagated, as follows:

• transient : tuples of data, corresponding to intermediate results;

• scoped : bindings of tokens to data, corresponding to symbol tables;

• stable: data stored in cells, corresponding to the values assigned to
variables;

• permanent : data communicated between distributed actions.

Transient information is made available to an action for immediate use.
Scoped information, in contrast, may generally be referred to throughout
an entire action, although it may also be hidden temporarily. Stable infor-
mation can be changed, but not hidden, in the action, and it persists until
explicitly destroyed. Permanent information cannot even be changed, merely
augmented.

17

When an action is performed, transient information is given only on
completion or escape, and scoped information is produced only on comple-
tion. In contrast, changes to stable information and extensions to permanent
information are made during action performance, and are unaffected by sub-
sequent divergence or failure.

Our subset of action notation omits all notation for communication. In-
stead, the ad hoc constructs ‘batch-send’ and ‘batch-receive’ allow a primitive
form of communication with batch-files, as in standard Pascal.

The information processed by actions consist of items of data, organized
in structures that give access to the individual items. Data can include
various familiar mathematical entities, such as truth-values, integers, and
lists. Actions themselves are not data, but they can be incorporated in so-
called abstractions, which are data, and subsequently ‘enacted’ back into
actions.

Dependent data are entities that can be evaluated to yield data during
action performance. The data yielded may depend on the current informa-
tion, i.e., the given transients, the received bindings, and the current state
of the storage and batch-files. Evaluation cannot affect the current informa-
tion. Data is a special case of dependent data, and it always yields itself
when evaluated.

18

B Mini-Ada Action Semantics

B.1 Abstract Syntax

grammar:
Program = [[Declarations Identifier]] .
Declarations = [[Declarations Declarations]] |||

[[Identifier “:” “constant” “:=” Expression “;”]] |||
[[Identifier “:” Nominator “;”]] |||
[[Identifier “:” Nominator “:=” Expression “;”]] |||
[[“type” Identifier “is” “array”
“(” “0” “..” Expression “)” “of” Primitive “;”]] |||
[[“function” Identifier “return” “integer” “is” Block “;”]] |||
[[“function” Identifier “(” Formals-In “)”
“return” “integer” “is” Block “;”]] |||
[[“procedure” Identifier “is” Block “;”]] |||
[[“procedure” Identifier “(” Formals “)” “is” Block “;”]] .

Formals = [[Formal “;” Formals]] ||| Formal .
Formal = [[Identifier “:” “in” “out” “integer”]] .
Formals-In = [[Formal-In “;” Formals-In]] ||| Formal-In .
Formal-In = [[Identifier “:” “integer”]] .
Nominator = Primitive ||| Identifier .
Primitive = “boolean” ||| “integer” .
Statements = [[Statements Statements]] |||

[[“null” “;”]] |||
[[Name “:=” Expression “;”]] |||
[[“if” Expression “then” Statements “end” “if” “;”]] |||
[[“if” Expression “then” Statements
“else” Statements “end” “if” “;”]] |||
[[“select” Alternatives “end” “select” “;”]] |||
[[“select” Alternatives “else” Statements “end” “select” “;”]] |||
[[“loop” Statements “end” “loop” “;”]] |||
[[“while” Expression “loop” Statements “end” “loop” “;”]] |||
[[“exit” “;”]] |||
[[“begin” Statements “end” “;”]] |||
[[“declare” Declarations “begin” Statements “end” “;”]] |||
[[Identifier “;”]] |||

19

[[Identifier “(” Names “)” “;”]] |||
[[“return” “;”]] |||
[[“return” Expression “;”]] |||
[[“write” Expression “;”]] |||
[[“read” Name “;”]] .

Block = [[“begin” Statements “end”]] |||
[[Declarations “begin” Statements “end”]] .

Alternatives = Statements |||
[[“when” Expression “=>” Statements]] |||
[[Alternatives “or” Alternatives]] .

Names = Name ||| [[Names “;” Names]] .
Name = Identifier ||| [[Identifier “(” Expressions ”)”]] .
Expressions = Expression ||| [[Expressions “;” Expressions]] .
Expression = “true” ||| “false” ||| Integer ||| Name |||

[[“(” Expression “)”]] |||
[[“not” Expression]] |||
[[Expression Binary-Operator Expression]] |||
[[Expression Control-Operator Expression]] .

Binary-Operator = “+” ||| “−” ||| “=” ||| “/ =” ||| “<” ||| “<=” |||
“>” ||| “>=”||| “and” ” ||| “or” ” ||| “xor” .

Control-Operator = [[“and” “then”]] ||| [[“or” “else”]] .
Integer = natural ||| [[“−” natural]] .
Identifier = token .

B.2 Semantic Entities

B.2.1 Items

introduces: item , parameter-less-procedure , parameterized-procedure ,
parameter-less-function , parameterized-function ,
non-abstraction , escape-reason , exit , function-return , procedure-return ,
there-is-given-a n-exit , there-is-given-a-return ,
there-is-given-a-procedure-return , err .

item = truth-value ||| integer .
parameter-less-procedure = abstraction .
parameterized-procedure = abstraction .
parameter-less-function = abstraction .

20

parameterized-function = abstraction .
non-abstraction = item ||| cell ||| list .
escape-reason = [integer] list .
exit = list of 0 .
function-return = [integer] list .
procedure-return = list of 2 .
there-is-given-an-exit = (component# 1 items it) is 0 .
there-is-given-a-return =

either((component# 1 items it) is 1 , (component# 1 items it) is 2) .
there-is-given-a-procedure-return = (component# 1 items it) is 2 .
err = commit and then fail .

B.2.2 Closures

introduces: function-return-of , returned-value-of ,
parameter-less-closure ,
parameterized-function-closure , parameterized-procedure-closure .

• function-return-of :: integer → [integer] list .
• returned-value-of :: [integer] list → integer .
• parameter-less-closure :: act → dependent datum .
• parameterized-function-closure :: act → dependent datum .
• parameterized-procedure-closure :: act → dependent datum .
function-return-of i:integer = concatenation(list of 1, list of i) .
returned-value-of l:[integer] list = component# 2 items l .
parameter-less-closure A:act = closure abstraction of A & [perhaps using ()] act .
parameterized-function-closure A:act =

closure abstraction of A & [perhaps using [integer] list] act .
parameterized-procedure-closure A:act =

closure abstraction of A & [perhaps using [integer cell] list] act .

B.3 Semantic Functions

introduces: run , elaborate , actualize-formals , actualize-formal ,
actualize-formals-in , actualize-formal-in ,
allocate-for , allocate-for-primitive ,
execute , execute-block , exhaust ,

21

multi-investigate , investigate ,
multi-evaluate , evaluate ,
the-binary-operation-result-of ,
the-control-operation-completion-of ,
integer-value , id .

B.3.1 Program

• run :: Program → act .
run [[D:Declarations I:dentifier]] =

furthermore elaborate D
hence
enact application (the parameter-less-procedure bound to id I) to () .

B.3.2 Declarations

• elaborate :: Declarations → act .
elaborate [[D1:Declarations D2:Declarations]] = elaborate D1 before elaborate
D2 .
elaborate [[I:Identifier “:” “constant” “:=” E:Expression “;”]] =

evaluate E then bind id I to it .

elaborate [[I:Identifier “:” N :Nominator “;”]] =

allocate-for N then bind id I to it .

elaborate [[I:Identifier “:” N :Nominator “:=” E:Expression “;”]] =

allocate-for N and then evaluate E
then
store the given item #2 in the given cell #1 and then
bind id I to the given datum #1 .

elaborate [[“type” I:Identifier “is” “array”

“(” “0” “..” E: Expression “)” “of” “boolean” “;”]] =
bind id I to parameter-less-closure

22

give empty-list & [truth-value cell] list and then
evaluate E then give sum(it, 1)

then
unfolding

check the given integer #2 is 0 and then
give the given list #1

or
regive and then
allocate truth-value cell

then
give concatenation(list of the given truth-value cell #3, the given list #1)

and then
give difference(the given integer #2, 1)

then
unfold .

elaborate [[“type” I:ldentifier “is” “array”

“(” “0” “.. ” E:Expression “)” “of” “integer” “;”]] =
bind id I to parameter-less-closure

give empty-list & [integer cell] list and then
evaluate E then give sum(it, 1)

then
unfolding

check the given integer #2 is 0 and then
give the given list #1

or
regive and then
allocate integer cell

then
give concatenation(list of the given integer cell #3, the given list #1)

and then
give difference(the given integer #2, 1)

then
unfold .

23

elaborate [[“function” I:Identifier “return” “integer” “is” B:Block “;”]] =

bind id I to parameter-less-closure
execute-block B and then err

trap give returned-value-of the given function-return #1 .

elaborate [[“function” I:Identifier “(” F :Formals-In “)”

“return” “integer” “is” B:Block “;”]] =
bind id I to parameterized-function-closure
furthermore actualize-formals-in F thence

execute-block B and then err
trap give returned-value-of the given function-return #1 .

elaborate [[“procedure” I:Identifier “is” B:Block “;”]] =

bind id I to parameter-less-closure
execute-block B
trap check there-is-given-a-procedure-return .

elaborate [[“procedure” I:Identifier “(” F :Formals “)” “is” B:Block “;”]] =

bind id I to parameterized-procedure-closure
furthermore actualize-formals F thence
execute-block B
trap check there-is-given-a-procedure-return .

B.3.3 Formals

• actualize-formals :: Formals → act .
actualize-formals [[F1 :Formal “;” F2 :Formals]] =

give head the given list #1 then actualize-formal F1

before
give tail the given list #1 then actuaIize=formaIs F2 .

actualize-formals F :Formal =

give head the given list #1 then actualize-formal F .

B.3.4 Formal

• actualize-formals :: Formals → act .
actualize-formals [[I :Identifier “:” “in” “out” “integer”]] =

bind id I to the given integer cell #1 .

24

B.3.5 Formals-In

• actualize-formals-in :: Formals-In → act .
actualize-formals-in [[F1:Formal-In “;” F2:Formals-In]] =

give head the given list #1 then actualize-formal F1

before
give tail the given list #1 then actuaIize-formaIs-in F2 .

actualize-formals-in F :Formal-In =

give head the given list #1 then actualize-formal-in F .

B.3.6 Formal-In

• actualize-formal-in :: Formal-In → act .
actualize-formal-in [[I :Identifier “:” “integer”]] =

bind id I to the given integer cell #1 .

B.3.7 Nominator

• allocate-for :: Nominator → act .
allocate-for P :Primitive = allocate-for-primitive P .
allocate-for I:Identifier =

enact application (the abstraction bound to id I) to () .

B.3.8 Primitive

• allocate-for-primitive :: Primitive → act .
allocate-for-primitive “boolean” = allocate truth-value cell .
allocate-for-primitive “integer” = allocate integer cell .

B.3.9 Statements

• execute :: Statements → act .
execute [[S1:Statements S2:Statements]] = execute S1 and then execute S2 .
execute [[“null” “;”]] = complete .

25

execute [[N :Name “:=” E:Expression]] =

investigate N and then evaluate E
then store the given item #2 in the given cell #1 .

execute

[[“if” E:Expression “then” S:Statements “end” “if” “;”]] =
evaluate E then

check (it is true) and then execute S
or
check (it is false) .

execute [[“if” E:Expression “then” S1:Statements “else” S2:Statements “end”

“if” “;”]] =
evaluate E then

check (it is true) and then execute S1

or
check (it is false) and then execute S2 .

execute [[“select” A:Alternatives “end” “select” “;”]] =
exhaust A
trap
enact application the given abstraction #1 to () .

execute [[“select” A:Alternatives “else” S:Statements “end”

“select” “;”]] =
exhaust A and then

give parameter-less-closure execute S
then escape

trap
enact application the given abstraction #1 to () .

execute [[“loop” S:Statements “end” “loop” “;”]] =
unfolding
execute S and then unfold

trap
check there-is-given-an-exit

or
check there-is-given-a-return and then escape .

26

execute [[“while” E:Expression “loop” S:Statements “end” “loop” “;”]] =

unfolding
evaluate E then

check (it is true) and then execute S and then unfold
or check (it is false)

trap
check there-is-given-an-exit

or
check thereais-given-a-return and then escape .

execute [[“exit” “;”]] = give exit then escape .
execute [[“begin” S:Statements “end” “;”]] = execute S .
execute [[“declare” D:Declarations “begin” S:Statements “end” “;”]] =

furthermore elaborate D hence
execute S .

execute [[I:Identifier “;”]] =

enact application the parameter-less-procedure bound to id I to () .

execute [[I:Identifier “(” N :Names “)” “;”]] =
give the parameterized-procedure bound to id I and then
multi-investigate N

then

enact application the given abstraction #1 to the given list #2 .

execute [[“return” “;”]] = give procedure-return then escape .
execute [[“return” E:Expression “;”]] =

evaluate E then
give function-return-of it then
escape .

execute [[“write” E:Expression “;”]] =

evaluate E then batch-send it .

execute [[“read” N :Name “;”]] =

batch-receive an integer and then investigate N
then store the given integer #1 in the given integer cell #2 .

27

B.3.10 Block

• execute-block :: Block → act .
execute-block [[“begin” S:Statements “end”]] = execute S .
execute-block [[D:Declarations “begin” S:Statements “end”]] =

furthermore elaborate D hence
execute S .

B.3.11 Alternatives

• exhaust :: Alternatives → act .
exhaust S:Statements =

give parameter-less-closure execute S
then escape .

exhaust [[“when” E:Expression “=>” S:Statements]] =
evaluate E then

check (it is true) then
give parameter-less-closure execute S

then escape
or check (it is false) .

exhaust [[A1:Alternatives “or” A2:Alternatives]] =
exhaust A1 and then exhaust A2 .

B.3.12 Names

• multi-investigate :: Names → act .
multi-investigate N :Name =

investigate N then give list of it .

multi-investigate [[N1:Names “;” N2:Names]] =
multi-investigate N1 and then multi-investigate N2

then give concatenation(the given list #1, the given list #2) .

28

B.3.13 Name

• investigate :: Name → act .
investigate I:Identifier =

give the datum bound to id I then
give the given non-abstraction #1 or
enact application the given parameter-less-function #1 to () .

investigate [[I:Identifier “(” E:Expressions “)”]] =

give the datum bound to id I and then
multi-evaluate E

then
give the given list #1 and then
give head the given [integer] list #2

then
give component# sum(the given integer #2, 1) items (the given list #1)

or
enact application (the given parameterized-function #1) to (the given list #2) .

B.3.14 Expressions

• multi-evaluate :: Expressions → act .
multi-evaluate E:Expression = evaluate E then give list of it .
multi-evaluate [[E1:Expressions “;” E2:Expressions]] =

multi-evaluate E1 and then multi-evaluate E2

then give concatenation(the given list #1, the given list #2) .

B.3.15 Expression

• evaluate :: Expression → act .
evaluate “true” = give true .
evaluate “false” = give false .
evaluate i:Integer = give integer-value i .
evaluate N :Name =

investigate N then
give the given item #1 or
give the item stored in the given cell #1 .

29

evaluate [[“(” E:Expression “)”]] = evaluate E .
evaluate [[“not” E:Expression]] = evaluate E then give not it .
evaluate [[E1:Expression O:Binary-Operator E2:Expression]] =

evaluate E1 and then evaluate E2

then give the-binary-operation-result-of O .
evaluate [[E1:Expression O:ControLOperator E2:Expression]] =

evaluate E1 then
check the-control-operation-completion-of O and then
give the given truth-value #1

or
check not the-control-operation-completion-of O then
evaluate E2 .

B.3.16 Binary-Operator

• the-binary-operation-result-of :: Binary-Operator → dependent datum .
the-binary-operation-result-of “+” =

sum(the given integer #1, the given integer #2) .
the-binary-operation-result-of “−” =

difference(the given integer #1, the given integer #2) .
the-binary-operation-result-of “=” =

(the given item #1) is (the given item #2) .
the-binary-operation-result-of “/ =” =

not ((the given item #1) is (the given item #2)) .
the-binary-operation-result-of “<” =

(the given integer #1) is less than (the given integer #2) .
the-binary-operation-result-of “<=” =

not ((the given integer #2) is less than (the given integer #1)) .
the-binary-operation-result-of “>” =

(the given integer #2) is less than (the given integer #1) .
the-binary-operation-result-of “>=” =

not ((the given integer #1) is less than (the given integer #2)) .
the-binary-operation-result-of “and” =

both(the given truth-value #1, the given truth-value #2) .
the-binary-operation-result-of “or” =

either(the given truth-value #1, the given truth-value #2) .
the-binary-operation-result-of “xor” =

not ((the given truth-value #1) is (the given truth-value #2)) .

30

B.3.17 Control-Operator

• the-control-operation-completion-of :: Control-Operator → dependent da-
tum.
the-control-operation-completion-of [[“and” “then”]] =

(the given truth-value #1) is false .

the-control-operation-completion-of [[“or” “else”]] =

(the given truth-value #1) is true .

B.3.18 Integer

• integer-value :: Integer → integer .
integer-value n:natural = n .
integer-value [[“−” n:natural]] = negation n .

B.3.19 Identifier

• id :: Identifier → token .
id k:token = k .

References

[1] Harald Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, 1985.

[2] Rudolf Berghammer, Herbert Ehler, and Hans Zierer. Towards an al-
gebraic specification of code generation. Science of Computer Program-
ming, 11:45–63, 1988.

[3] Rod M. Burstall and Peter J. Landin. Programs and their proofs: an
algebraic approach. In B. Meltzer and D. Mitchie, editors, Machine In-
telligence, Vol. 4, pages 17–43. Edinburgh University Press, 1969.

[4] Joëlle Despeyroux. Proof of translation in natural semantics. In LICS’86,
First Symposium on Logic in Computer Science, June 1986.

31

[5] Jean D. Ichbiah et al. Reference Manuul for the Ada Programming Lan-
guage. US DoD, July 1982.

[6] Anders Gammelgaard and Flemming Nielson. Verification of the level
0 compiling specification. Technical report, Department of Computer
Science, Aarhus University, July 1990.

[7] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the un-
typed lambda-calculus. Journal of Functional Programming, 1(1):21–69,
1991.

[8] Jeffrey J. Joyce. Totally verified systems: Linking verified software to
verified hardware. In Proc. Hardware Specification, Verification und Syn-
thesis: Mathmatical Aspects, July 1989.

[9] Jeffrey J. Joyce. A verified compiler for a verified microprocessor. Tech-
nical report, University of Cambridge, Computer Laboratory, England,
March 1989.

[10] Richard Kelsey and Paul Hudak. Realistic compilation by program
transformation. In Sixteenth Symposium on Principles of Programming
Languages. ACM Press, January 1989.

[11] Peter Lee. Realistic Compiler Generation. MIT Press, 1989.

[12] Peter Lee and Uwe F. Pleban. A realistic compiler generator based on
high-level semantics. In Fourteenth Symposium on Principles of Pro-
gramming Languages, pages 284–295. ACM Press, January 1987.

[13] John McCarthy and James Painter. Correctness of a compiler for arith-
metic expressions. In Proc. Symposium in Applied Mathematics of the
American Mathmatical Society, April 1966.

[14] Sun Microsystems. A RISC tutorial. Technical Report 800-1795-10, re-
vision A, May 1988.

[15] Robert E. Milne and Christopher Strachey. A Theory of Programming
Language Semantics. Chapman and Hall, 1976.

[16] Francis Lockwood Morris. Advice on structuring compilers and proving
them correct. In Symposium on Principles of Programming Languages,
pages 144–152. ACM Press, October 1973.

32

[17] Peter D. Mosses. SIS—semantics implementation system. Technical Re-
port Daimi MD–30, Computer Science Department, Aarhus University,
1979.

[18] Peter D. Mosses. A constructive approach to compiler correctness. In
Proc. Seventh Colloquium of Automata, Languages, and Programming,
July 1980.

[19] Peter D. Mosses. Abstract semantic algebras! In Proc. IFIP TC2 Work-
ing Conference on Formal Description of Programming Concepts II
(Garmisch-Partenkirchen, 1982). North-Holland, 1983.

[20] Peter D. Mosses. A basic abstract semantic algebra. In Proc. Int. Symp.
on Semantics of Data Types (Sophia-Antipolis). Springer-Verlag (LNCS
173), 1984.

[21] Peter D. Mosses. Unified algebras and action semantics. In Proc.
STACS’89. Springer-Verlag, 1989.

[22] Peter D. Mosses. Unified algebras and institutions. In LICS’89, Fourth
Annual Symposium on Logic in Computer Science, 1989.

[23] Peter D. Mosses. Unified algebras and modules. In Sixteenth Symposium
on Principles of Programming Languages. ACM Press, January 1989.

[24] Peter D. Mosses. An introduction to action semantics. Technical Report
DAIMI IR-102, Computer Science Department, Aarhus University, July
1991. Lecture Notes for the Marktoberdorf’91 Summer School.

[25] Peter D. Mosses. Action Semantics. Cambridge University Press, 1992.
To appear, in the series Tracts in Theoretical Computer Science.

[26] Peter D. Mosses and David A. Watt. The use of action semantics. In
Proc. IFIP TC2 Working Conference on Formal Description of Pro-
gramming Concepts III (Gl. Avernæs, 1986). North-Holland, 1987.

[27] Flemming Nielson and Hanne Riis Nielson. Two-level semantics and
code generation. Theoretical Computer Science, 56, 1988.

[28] Hewlett Packard. Precision architecture and instruction. Technical Re-
port 09740–90014, June 1987.

33

[29] Jens Palsberg. Provably Correct Compiler Generation. PhD thesis, Com-
puter Science Department, Aarhus University, 1992. Forthcoming.

[30] Jens Palsberg. A provably correct compiler generator. In Proc. ESOP’92,
European Symposium on Programming, 1992.

[31] Lawrence Paulson. A semantics-directed compiler generator. In Ninth
Symposium on Principles of Programming Languages, pages 224–233.
ACM Press, January 1982.

[32] Uwe F. Pleban. Compiler prototyping using formal semantics. In Proc.
ACM SIG-PLAN’84 Symposium on Compiler Construction, pages 94–
105. Sigplan Notices, 1984.

[33] Uwe F. Pleban and Peter Lee. On the use of LISP in implementing deno-
tational semantics. In Proc. ACM Conference on LISP and Functional
Programming, August 1986.

[34] Uwe F. Pleban and Peter Lee. High-level semantics, an integrated ap-
proach to programming language semantics and the specification of im-
plementations. In Proc. Mathmatical Foundations of Programming Lan-
guage Semantics, April 1987.

[35] Uwe F. Pleban and Peter Lee. An automatically generated, realis-
tic compiler for an imperative programming language. In Proc. SIG-
PLAN’88 Conference on Programming Language Design and Implemen-
tation, June 1988.

[36] Wolfgang Polak. Compiler Specification and Verification. Springer-
Verlag (LNCS 213), 1981.

[37] David A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[38] Uwe Schmidt and Reinhard Völler. A multi-language compiler sys-
tem with automatically generated codegenerators. In Proc. ACM SIG-
PLAN’84 Symposium on Compiler Construction. Sigplan Notices, 1984.

[39] Uwe Schmidt and Reinhard Völler. Experience with VDM in Norsk
Data. In VDM’87. VDM—A Formal Method at Work. Springer-Verlag
(LNCS 252), March 1987.

34

[40] William Stallings. Reduced Instruction Set Computers. IEEE Computer
Society Press, 1986.

[41] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programminq Lanquaqe Theory. MIT Press, 1977.

[42] James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. More on
advice on structuring compilers and proving them correct. Theoretical
Computer Science, 15:223–249, 1981.

[43] Larry Wall and Randal L. Schwartz. Programming Perl. O’Reilly, 1991.

[44] Mitchell Wand. A semantic prototyping system. In Proc. ACM SIG-
PLAN’84 Symposium on Compiler Construction, pages 213–221. Sig-
plan Notices, 1984.

[45] David Watt. Programming Language Syntax and Semantics. Prentice-
Hall, 1991.

[46] William D. Young. A mechanically verified code generator. Journal of
Automated Reasoning, 5:493–518, 1989.

35

