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Abstract

Action algebras have been proposed by Pratt [22] as an alternative
to Kleene algebras [8, 9]. Their chief advantage over Kleene algebras
is that they form a finitely-based equational variety, so the essential
properties of ∗ (iteration) are captured purely equationally. However,
unlike Kleene algebras, they are not closed under the formation of
matrices, which renders them inapplicable in certain constructions in
automata theory and the design and analysis of algorithms.

In this paper we consider a class of action algebras called action lat-
tices. An action lattice is simply an action algebra that forms a lattice
under its natural order. Action lattices combine the best features of
Kleene algebras and action algebras: like action algebras, they form a
finitely-based equational variety; like Kleene algebras, they are closed
under the formation of matrices. Moreover, they form the largest sub-
variety of action algebras for which this is true. All common examples
of Kleene algebras appearing in automata theory, logics of programs,
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relational algebra, and the design and analysis of algorithms are action
lattices.

1 Introduction

Iteration is an inescapable aspect of computer programs. One finds a be-
wildering array of formal structures in the literature that handle iteration
in various ways. Many of these are based on the algebraic operator ∗, a
construct that originated with Kleene [12] and has since evolved in various
directions. Among these one finds Kleene algebras [3, 8, 9], ∗-continuous
Kleene algebras [3, 7, 10], action algebras [22], dynamic algebras [7, 21], and
closed semirings (see [1, 17, 10, 15, 6]), all of which axiomatize the essential
properties of ∗ in different ways.

The standard relational and language-theoretic models found in au-
tomata theory [4, 5, 16, 15, 14], program logic and semantics (see [11] and
references therein), and relational algebra [19, 20] are all examples of such
algebras. In addition one finds a number of nonstandard examples in the
design and analysis of algorithms, among them the so-called min,+ algebras
(see [1, 17, 10]) an certain algebra of polygons [6].

Of the three classes of algebra mentioned, the lest restrictive is the class
of Kleene algebras. Kleene algebras have been studied under various defini-
tions by various authors, most notably Conway [3]. We adopt the definition
of [8, 9], in which Kleene algebras are axiomatized by a certain finite set of
universally quantified equational implications over the regular operators +,
;, ∗, 0, 1. Thus the class of Kleene algebras forms a finitely-based equational
quasivariety. The equational consequences of the Kleene algebra axioms are
exactly the regular identities [3, 8, 13]. Thus the family of regular languages
over an alphabet Σ forms the free Kleene algebra on free generators Σ.

A central step in the completeness proof of [8] is the demonstration that
the family of n×n matrices over a Kleene algebra again forms a Kleene alge-
bra. This construction is also useful in several other applications: matrices
over the two-element Kleene algebra are used to derive fast algorithms for
reflexive transitive closure in directed graphs; matrices over min,+ algebras
are used to compute shortest paths in weighted directed graphs; and matrices
over the free monoid Σ∗ are used to construct regular expressions equivalent
to given finite automata (see [1, 17, 10]). Using matrices over an arbitrary
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Kleene algebra, one can give a single uniform solution from which each of
these applications can be derived as a special case.

Besides equations, the axiomatization of Kleene algebra contains the two
equational implications

ax ≤ x ⇒ a∗x ≤ x (1)

xa ≤ x ⇒ xa∗ ≤ x. (2)

It is known that no finite equational axiomatization exists over this signature
[23] (although well-behaved infinite equational axiomatizations have been
given [13, 21]). Pratt [22] argues that this is due to an inherent nonmono-
tonicity associated with the ∗ operator. This nonmonitonicity is handled in
Kleene algebras with the equational implications (1) and (2).

In light of the negative result of [23], it is quite surprising that the essen-
tial properties of ∗ should be captured purely equationally. Pratt [22] shows
that this is possible over an expanded signature. He augments the regular op-
erators with two residuation operators → and ←, which give a end of weak
left and right inverse to the composition operator ;, and identifies a finite
set of equations that entail all the Kleene algebra axioms, including (1) and
(2). The models of these equations are called action algebras. The inherent
nonmonotonicity associated with ∗ is captured by the residuation operators,
each of which is nonmonotonic in one of its arguments. Moreover, all the
examples of Kleene algebra mentioned above have naturally defined resid-
uation operations under which they form action algebras. Thus the action
algebras form a finitely-based equational variety contained in the quasivari-
ety of Kleene algebras and containing all the examples we are interested in.
This is a desirable state of affairs, since one can now reason about ∗ in a
purely equational way.

However, one disadvantage of action algebras is that they are not closed
under the formation of matrices. In Example 3.3 below we construct an
action algebra U for which the 2× 2 matrices over U do not form an action
algebra. Thus one cannot carry out the program of [8] or use action algebra
to give a genera treatment of the applications mentioned above that require
matrices.

In this paper we show that the situation can be rectified by father aug-
menting the signature with a meet operator · and imposing lattice axioms,
and that this step is unavoidable if closure under the formation of matrices
is desired. Specifically, we show that for n ≥ 2, the family of n× n matrices
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over an action algebra A is again an aition algebra if and only if A has finite
meets under its natural order. An action algebra with this property is called
an action lattice. Action lattices have a finite equational axiomatization and
are closed under the formation of matrices; moreover, they form the largest
subvariety of action algebras for which this is true.

In specializing from action algebras to action lattices, we do not lose any
of the various models of interest mentioned above. We have thus identified a
class that combines the best features of Kleene algebras and action algebras:

• like action algebras, action lattices form a finitely-bred equations vari-
ety;

• like Kleene algebras, the n × n matrices over an action lattice again
form an action lattice;

• all the Kleene algebras that normally arise in applications in logics
of programs, automata theory, relations algebra, and the design and
analysis of algorithms are examples of action lattices.

2 Definitions

With so many operators and axioms, it is not hard to become confused. Not
the lest problem is conflict of notation in the literature. For the purposes of
this paper, we follow [22] and use + and · for join and meet, respectively,
and ; for composition ([8, 9, 10] use · for composition).

For ease of reference, we collect all operators, signatures, axioms, and
closes of structures together in four tables. All closes of algebraic structures
we consider will have signatures consisting of some subset of the operators in
Table 1 and axioms consisting of some subset of the formulars of Table 3. The
signatures and closes themselves are defined in Tables 2 and 4, respectively.

The binary operators are written in infix. We normally omit the operator
; from expressions, writing ab for a; b. We avoid parentheses by assigning ∗

highest priority, then ;, then all the other operators. Thus a + bc∗ should be
parsed a + (b(c∗)).

The expression a ≤ b is considered an abbreviation for the equation
a + b = b.
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symbol name arity
+ sum, join, plus 2
; product, (sequential) composition 2
· meet 2
← left residuation 2
→ right residuation 2
∗ star, iteration 1
0 zero, additive identity 0
1 one, multiplicative identity 0

Table 1: Operators

As shown in [22], the two definitions of RES given in Table 4 are equiv-
alent. The first gives a useful characterization of→ and← in succinct terms,
and the second gives a purely equations characterization. With the second
definition, RES and ACT are defined by pure equations.

short name name operators
is idempotent semirings +, ;, 0, 1
ka Kleene algebras is, ∗

res residuation algebras is, ←, →
act action algebras ka, res
al action lattices act, ·

Table 2: Signatures
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a + (b + c) = (a + b) + c (3)

a + b = b + a (4)

a + a = a (5)

a + 0 = 0 + a = a (6)

a(bc) = (ab)c (7)

a1 = 1a = a (8)

a(b + c) = ab + ac (9)

(a + b)c = ac + bc (10)

a0 = 0a = 0 (11)

1 + a + a∗a∗ ≤ a∗ (12)

ax ≤ x ⇒ a∗x ≤ x (13)

xa ≤ x ⇒ xa∗ ≤ x (14)

ax ≤ b ⇐⇒ x ≤ a→ b (15)

xa ≤ b ⇐⇒ x ≤ b← a (16)

a(a→ b) ≤ b (17)

(b← a)a ≤ b (18)

a→ b ≤ a→ (b + c) (19)

b← a ≤ (b + c)← a (20)

x ≤ a→ ax (21)

x ≤ xa← a (22)

(x→ x)∗ = x→ x (23)

(x← x)∗ = x← x (24)

a · (b · c) = (a · b) · c (25)

a · b = b · a (26)

a · a = a (27)

a + (a · b) = a (28)

a · (a + b) = a (29)

Table 3: Axioms
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class name signature defining axioms
US upper semilattices + (3)–(5)
IS idempotent semirings is (3)–(11)
KA Kleene algebras ka IS, (12)–(14)
RES residuation algebras res IS, (15)–(16)
RES residuation algebras res IS, (17)–(22)
RKA residuated Kleene algebras act KA, RES
ACT action algebras act RES, (12), (23), (24)
LS lower semilattices · (25)–(27)
L lattices +, · US, LS, (28), (29)
AL action lattices it ACT, L

Table 4: Algebraic structures

Let C be a class of algebraic structures with signature σ and let A be an
algebraic structure with signature τ . We say that A expands to an algebra
in C if the operators in σ − τ can be defined on A in such a way that the
resulting algebra, restricted to signature σ, is in C.

3 Main Results

3.1 Action algebras are residuated Kleene algebras

We first give an alternative characterization of action algebras that we will
later find useful: action algebras are exactly the residuated Kleene algebra.

Lemma 3.1 ACT = RKA.

Proof. Every action algebra is a residuation algebra by definition. As
shown in [22], every action algebra is a Kleene algebra. This establishes the
forward inclusion.

Conversely, we show that the properties (23) and (24) hold in all residu-
ated Kleene algebra. By symmetry, it will suffice to show (23). The inequality
x → x ≤ (x → x)∗ follows from (12) and the IS axioms. For the reverse
inequality, we have

x(x→ x) ≤ x by (17)
x(x→ x)∗ ≤ x by (14), and

(x→ x)∗ ≤ x→ x by (15).
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3.2 Matrices

Let R be an idempotent semiring and let Mat(n,R) denote the family of
n × n matrices over R, with + interpreted as the usual matrix addition, ;
the usual matrix multiplication, 0 the zero matrix, and 1 the identity matrix.
Under these definitions, Mat(n,R) forms an idempotent semiring. Moreover,
if R is also a Kleene algebra, we define ∗ on Mat(n,R) in the usual way (see
[3, 8, 10]); then Mat(n,R) forms a Kleene algebra [8].

We say that an ordered structure R has finite meets if every finite set
of elements has a meet or greatest lower bond. An upper semilattice (R, +)
has (nonempty) finite meets if and only if it expands to a lattice (R, +, ·);
the operation · gives the meet of its arguments.

Lemma 3.2 Let R = (R, +, ; , 0, 1,←,→) be a residuation algebra. For
n ≥ 2, the indempotent semiring Mat(n,R) expands to a residuation alge-
bra if and only if R has finite meets.

Proof. Suppose first that R has finite meets, and expand R to a lattice
(R, +, ·) accordingly. Using the notation

∑
for iterated + and

∏
for iterated

·, we define the operations → and ← on Mat(n,R) as follows:

(A→ B)ij =
n∏

k=1

(Aki → Bkj) (30)

(B ← A)ij =
n∏

k=1

(Bik ← Ajk) (31)

Then for all n× n matrices X,

AX ≤ B ⇐⇒
∧
ij

(AX)ij ≤ Bij

⇐⇒
∧
ij

(
∑
k

AikXkj) ≤ Bij

⇐⇒
∧
ij

∧
k

AikXkj ≤ Bij

⇐⇒
∧
jk

∧
i

Xkj ≤ Aik → Bij

⇐⇒
∧
jk

Xik ≤
∏
i

Aik ≤ Bij

⇐⇒
∧
jk

Xkj ≤ (A→ B)kj
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⇐⇒ X ≤ A→ B

The property
XA ≤ B ⇐⇒ X ≤ B ← A

follows from a symmetric argument. Thus the residuation axioms (15) and
(16) are satisfied in Mat(n,R) with these definitions.

Conversely, suppose Mat(2,R) expands to a residuation algebra (the
argument is similar for any n > 2). Then with respect to the natural order
≤ in R defined in terms of +, there exist maximum x, y, z, w such that

[
1 0
1 0

] [
x y
z w

]
≤

[
a a
b b

]

componentwise; i. e., x, y, z, w are maximum such that x ≤ a, x ≤ b, y ≤ a,
and y ≤ b. Then x and y are the greatest lower bound of a and b with respect
to ≤. Since a and b were arbitrary, R contains all binary meets, hence all
nonempty finite meets. The empty meet is given by the top element 0→ 0.

✷

Not every residuation algebra has finite meets; we construct a counterex-
ample below. Thus the family of n × n matrices over a residuation algebra
does not in general form a residuation algebra. The same is true for action
algebras. Hence, in order to obtain a subvariety of action algebras closed
under the formation of matrices, we will be forced to account for · explicitly.

Example 3.3 We construct an action algebra that does not have finite
meets. Let U be an arbitrary upper semilattice containing three elements
0, 1, T such that 0 < 1 ≤ u ≤ T for all u �= 0. Let + be the join operation of
U , let the distinguished elements 0, 1 be as given, and define the remaining
action algebra operations as follows:
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ab = ba =




0 if a = 0 or b = 0
b if a = 1
T if both a, b > 1

a∗ =

{
1 if a = 0 or a = 1
T if a > 1

a→ b = b← a =




0 if a �≤ b
1 if 1 < a ≤ b < T
b if a = 1
T if a = 0 or b = T

It is straightforward to check that the resulting structure is an action algebra.
Moreover, U can certainly be chosen without finite meets; for example, let U
consist of the natural numbers, two incomparable elements above the nature
numbers, and a top element. Then the two incomparable elements have no
meet. ✷

We show now that if · is added to the signature of action algebras along
with the lattice equations, we obtain a finitely-based subvariety AL of ACT
closed under the formation of matrices. Moreover, it is the largest subvariety
of ACT with this property, by the direction (←) of Lemma 3.2.

Theorem 3.4 The Kleene algebra Mat(n,A) of n × n matrices over an
action lattice A expands to an action lattice.

Proof. As remarked previously, Mat(n,A) forms a Kleene algebra under
the usual definitions of the Kleene algebra operations +, ;, ∗, , 0, 1 [8]. Let
the residuation operations be defined as in (30) and (31); by Lemma 3.2,
Mat(n,A) is a residuation algebra. Then by Lemma 3.1, Mat(n,A) is an
action algebra. Finally, let · be defined on matrices componentwise. Since
A is a lattice and since + and · are defined componentwise, Mat(n,A) is
also a lattice (it is isomorphic to the direct product of n2 copies of A). Thus
Mat(n,A) is an action lattice. ✷

All the examples given in §1, under the nature definitions of the resid-
uation and meet operators, are easily seen to be examples of action lattices.
Thus we have given a finitely-based variety AL that contains all these natural
examples and is closed under the formation of n× n matrices.

10



4 Conclusions and Open Questions

The Kleene algebras have a natural free model on free generators Σ, namely
the regular sets RegΣ [8]. This structure expands to an action algebra under
the natural definition of the residuation operators

A→ B = {x ∈ Σ∗ | ∀y ∈ A yx ∈ B}
B ← A = {x ∈ Σ∗ | ∀y ∈ A xy ∈ B}

and to an action lattice under the definition

A ·B = A ∩B .

Thus the axioms of action algebras and action lattices do not entail any more
identities over the signature ka than do the Kleene algebra axioms.

One might suspect from this that RegΣ with residuation is the free
action algebra on Σ and RegΣ with residuation and meet is the free action
lattice on Σ, but this is not the case: the identity

a→ (a + ba) = 1

holds in Reg{a,b} but is not a consequence of the axioms of action algebras
or action lattices, as can be seen by reinterpreting a �→ a and b �→ a.

We conclude with some open questions.

1. What is the complexity of the equations theory of action algebras and
action lattices? (The equational theory of Kleene algebras is PSPACE -
complete [18].)

2. Every ∗-continuous Kleene algebra extends universally to a closed semir-
ing in the sense that the forgetful functor from closed semirings to ∗-
continuous Kleene algebras has a left adjoint [9]. In a sense, this says
that it does not matter which of the two classes one chooses to work
with. Is there such a relationship between Kleene algebras and action
algebras, or between action algebras and action lattices?
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