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Introduction

The study of separation of complexity classes with respect to random oracles
was initiated by Bennett and Gill [1] and continued by many authors.

Wilson [5, 6] defined relativized circuit depth and constructed various
oracles A for which PA �= NC A, NC A

k �= NC A
k+ε, AC A

k �= AC A
k+ε, AC A

k �⊆
NC A

k+1−ε and NC A
k �⊆ AC A

k−ε for all positive rational k and ε, thus separating
those classes for which no trivial argument shows inclusion. In this note
we show that as a consequence of a single lemma, these separations (or
improvements of them) hold with respect to a random oracle A.

The results

Let Σ = {0, 1} and let log n denote log2 n. Recall the following definitions
by Wilson [4, 5, 6].

∗This research was partially supported by the ESPRIT II Basic Research actions Pro-
gram the EC under contract No. 3075 (project ALCOM).
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Definition 1 A bounded fan-in oracle circuit C is a circuit containing nega-
tion gates of indegree 1, and and or gates of indegree 2 as well as of unspecified
oracle gates of various indegrees, giving a single boolean output. Given an
oracle A, i.e. a subset of Σ∗, CA denotes the circuit, where each oracle gate
of indegree m in C has been replaced by a gate computing χA : Σm → Σ,
where χA(x) is 1 if x ∈ A and 0 otherwise. The depth of an oracle gate with
n inputs is �log n	. The size of an oracle gate with n inputs is n − 1. The
boolean gates have size and depth 1. The size of an oracle circuit is the sum
of the sizes of its gates. The depth of a path in the circuit is the sum of the
depths of the gates along the path. The depth of the circuit is the depth of its
deepest path.

Definition 2 An unbounded fan-in oracle circuit C is defined as in the
bounded fan-in case, except that and and or gates of arbitrary indegree are
allowed, and each oracle gate is only charged a depth of 1. The depth of an
unbounded fan-in circuit is thus simply the length of its longest path.

Definition 3 DEPTH A
i.o. (d) is the class of functions f so that for infinitely

many integers n a bounded fan-in oracle curcuit Cn with n inputs of depth
at most d exists, so that CA

n (x) = f(x) for all x ∈ Σn, where CA
n (x) denotes

the output of CA
n when x is given as input.

Let k be a positive rational number. NC A
k is the class of functions f for

which a logspace-uniform family of polynomial size, O(Iogk n)-depth bounded
fan-in curcuits Cn with n inputs exists, so that CA

n (x) = f(x). AC A
k is the

class of functions f for which a logspace-uniform family of polynomial size,
O(logk n)-depth unbounded fan-in circuits Cn with n inputs exists, so that
CA

n (x) = f(x).

Let A be an oracle. Let tn1 , . . . , t
n
n be the n lexicographically first strings

of length �log n	. Let fA
n : {0, 1}n → {0, 1}n be the function fA

n (x) =
χA(xtn1 )χA(xtn2 ) · · ·χA(xtnn).

Lemma 4 Let n and d be positive integers. Let C be a fixed oracle cur-
cuit with n boolean inputs and n boolean outputs containing at most s =
2

n
2
−2 log d−5 oracle gates of indegree exactly n + �log n	 so that no path in C

contains more than d oracle gates of indegree exactly n+ �log n	 (no restric-
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tions is made on gates of other indegrees). Then, for a random oracle A, the
probability that CA computes (fA

n )d+1, i.e. the composition of fA
n with itself

d + 1 times, is at most 2−2n
2 .

Proof Let us call the oracle gates of indegree n + �log n	 for interesting.
We partition the gates of C into d levels 0, 1, . . . , d − 1, such that no path
exists from the output of any interesting gate at level i to the input of any
interesting gate at level j if j ≤ i. The idea of the proof is to show that
with high probability, (fA

n )i+1(x) is not computed before level i. Given an
oracle A and a vector x ∈ Σn, let IA

x (i) denote the set of strings y for which
some string t of length �log n	 exists, so that yt is given as input to some
interesting gate at level i, when CA is given x as an input. For convenience,
let IA

x (d) = {CA(x)}.
Consider the following procedure for finding an x so that CA(x) �= (fA

n )d+1

(x).

1. L := ∅.

2. if Σn ⊆ L then abort, we were not successful.

3. select any x ∈ Σn \ L.

4. x0 := x.

5. for i := 0 to d do

6. compute IA
x (i) by simulating the necessary parts of the circuit.

7. L := L ∪ IA
x (i) ∪ {xi}.

8. xi+1 := fA
n (xi).

9. if xi+1 ∈ L then goto 2.

10. od.

11. return x.

Let us first observe that the protocol indeed returns an x with the desired
property in case it does not abort. This is so, because xd+1 = (fA

n )d+1(x), and
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the algorithm makes sure that xd+1 /∈ L at a time when IA
x (d) ⊆ L and by

definition CA(x) ∈ IA
x (d). Let us then estimate the probability of abortion.

We will first give an upper bound on the probability of leaving the for-loop
at line 9. For convenience, let us assume that the membership of a string in
A is not determined until the algorithm asks for it. It is easy to see that the
protocol makes sure that no bit of the value of fA

n (xi) has been determined
previous to line 8. Hence, all 2n values are equally likely. Of these values, |L|
causes the algorithm to leave the for-loop in the next line. Hence, each time
line 9 is encountered, the probability of leaving the loop is exactly |L|

2n . If we
assume that m values of x has been tried so far (including the current value),

an upper bound of this is m(s+d+1)
2n ≤ 3dms

2n . Thus, each time the for-loop
is executed, an upper bound of the probability of leaving it prematurely is
(d+1)3dms

2n ≤ 6d2ms
2n . Since the algorithm will try different values of x at least

until this upper bound is 1 and the above argument applies to all of them,
we have that for any positive integer k:

Pr(abortion) ≤
� 2n

6d2ms
�∏

m=1

6d2ms

2n
≤ (

6d2ks

2n
)k.

Putting k = �2n
2 	, we get:

Pr(abortion) ≤ 2−2n
2 .

✷

Theorem 5 For α < 1
2
, PA �⊆ DEPTH A

i.o.(αn) for a random oracle A with
probability 1.

Proof Let dn = �αn�. The family of functions gA
n = (fA

n )dn+1 is clearly
in PA. Fix n and let C be a fixed bounded fan-in oracle circuit of depth
dn. It is easy to see that the size of C is at most 2dn , so by the lemma,

the probability that CA computes gA
n is at most 2−2

n
2 . There are at most

22dn+o(dn)
bounded fan-in oracle circuits of depth dn, so the probability that

some such circuit computes gA
n with A as oracle is at most 22αn+o(n)

2−2
n
2 which

is less than 2−n for sufficiently large n. Thus, for fixed N , the probability
that for some n greater than N , gA

n has A-circuits of depth at most αn, is
at most

∑∞
n=N 2−n = 2−N+1. The probability that for all N , an n greater

than N exists, so that gA
n has circuits of depth at most αn, is thus at most
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infN 2−N+1 = 0. ✷

The theorem is an improvement of Wilson’s result [5] that oracles A ex-
ists, so that PA �= NC A. Since every function has unrelativized depth at
most n + o(n), the result is optimal, up to a multiplicative constant of 2 + ε.
Similar results about circuit size were obtained by Lutz and Schmidt [3] who
showed that for small α and a random oracle A, NPA �⊆ SIZEA

i.o.(2
αn) and

by Kurtz, Mosey and Royer [2], who proved NPA �⊆ co − NSIZEA
i.o.(2

αn).

Theorem 6 For rational k ≥ 0 and ε > 0, AC A
k �⊆ NC A

k+1−ε for random A
with probability 1.

Proof Let dn = �logk n� and gA
n = (fA

n )dn+1. gA
n is in AC A

k . It is suffi-
cient to prove that with probability 1, gA

n is not computed by a family of
bounded fan-in circuits Cn of depth O(logk+1−εn). Fix an n and a circuit Cn

within this bound. Observe that Cn can not contain a path with more than
O(logk−εn) oracle gates of indegree n + �log n	 and that Cn satisfies the size
bound of the lemma. Thus, the probability that CA

n computes gA
n is at most

2−2n
2 . Now proceed as in the previous proof. ✷

It is easy to see from the proof that we actually get the stronger result that
there are functions in AC A

n which can not be computed in depth o(logk+1 n)
by bounded fan-in A-circuits.

Theorem 7 For rational k > 0 and ε > 0, NC A
k �⊆ AC A

k−ε for random
A with probability 1.

Proof The proof is bred upon the idea behind the corresponding oracle

construction by Wilson [6]. Let dn = � logk n
log log n

�, mn = �log2 n	 and let

gA
n (x1x2 . . . xn) = (fA

mn)dn+1(x1x2 . . . xmn). gA
n is in NC A

k , since we are only
charged depth O(log log n) for computing fA

mn
. The probability that gA

n is

computed by a specific circuit of size O(nl), depth O(logk−ε n), even with

unbounded fan-in, is, by the lemma, at most 2−2mn
2 ≤ 2−n

log n
2 . Now proceed

as in the previous proofs. ✷

The proof actually gives us functions in NC A
k which require superpolynomial

size to be computed in depth o(logk n/log log n) with unbounded fan-in A-
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circuits. This is optimal, since standard techniques provide a simulation of
NC A

k by polynomial size, depth O(logk n/log log n), unbounded fan-in A-
circuits.

Corollary 8 For rational k ≥ 0 and ε > 0, NC A
k �= NC A

k+ε and AC A
k �=

AC A
k+ε for random A with probability 1.
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