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Introduction

The study of separation of complexity classes with respect to random oracles
was initiated by Bennett and Gill [1] and continued by many authors.

Wilson [5, 6] defined relativized circuit depth and constructed various
oracles A for which P4 # NC#4, NCi # NCi.., ACy # ACi.., ACi &
NCiL,_. and NC;' € AC;., for all positive rational k and e, thus separating
those classes for which no trivial argument shows inclusion. In this note
we show that as a consequence of a single lemma, these separations (or
improvements of them) hold with respect to a random oracle A.

The results

Let 3 = {0,1} and let log n denote log, n. Recall the following definitions
by Wilson [4, 5, 6].
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Definition 1 A bounded fan-in oracle circuit C' is a circuit containing nega-
tion gates of indegree 1, and and or gates of indegree 2 as well as of unspecified
oracle gates of various indegrees, giving a single boolean output. Given an
oracle A, i.e. a subset of ¥*, C* denotes the circuit, where each oracle gate
of indegree m in C has been replaced by a gate computing xa : X™ — X,
where xa(x) is 1 if © € A and 0 otherwise. The depth of an oracle gate with
n inputs is [log n]. The size of an oracle gate with n inputs is n — 1. The
boolean gates have size and depth 1. The size of an oracle circuit is the sum
of the sizes of its gates. The depth of a path in the circuit is the sum of the
depths of the gates along the path. The depth of the circuit is the depth of its
deepest path.

Definition 2 An unbounded fan-in oracle circuit C' is defined as in the
bounded fan-in case, except that and and or gates of arbitrary indegree are
allowed, and each oracle gate is only charged a depth of 1. The depth of an
unbounded fan-in circuit is thus simply the length of its longest path.

Definition 3 DEPTH{%O' (d) is the class of functions f so that for infinitely
many integers n a bounded fan-in oracle curcuit C, with n inputs of depth
at most d exists, so that C(x) = f(x) for all x € X", where CA(x) denotes
the output of C4 when x is given as input.

Let k be a positive rational number. NC“,;1 is the class of functions f for
which a logspace-uniform family of polynomial size, O(Iog® n)-depth bounded
fan-in curcuits C, with n inputs ezists, so that CA(z) = f(zx). AC3 is the
class of functions f for which a logspace-uniform family of polynomial size,
O(log’l‘C n)-depth unbounded fan-in circuits C,, with n inputs exists, so that

Col(x) = f(2).

Let A be an oracle. Let t7,...,{ be the n lexicographically first strings
of length [log n]. Let fA : {0,1}* — {0,1}" be the function f(z) =
xa(@ty)xa(aty) - - xalwty).

Lemma 4 Let n and d be positive integers. Let C be a fixed oracle cur-
cuit with n boolean inputs and n boolean outputs containing at most s =
2272108 45 oracle gates of indegree exactly n+ [log n] so that no path in C
contains more than d oracle gates of indegree exactly n+ [log n| (no restric-



tions is made on gates of other indegrees). Then, for a random oracle A, the
probability that C4 computes (f2)4+1, i.e. the composition of f2 with itself
d+ 1 times, is at most 2723 .

Proof Let us call the oracle gates of indegree n + [log n| for interesting.
We partition the gates of C' into d levels 0,1,...,d — 1, such that no path
exists from the output of any interesting gate at level ¢ to the input of any
interesting gate at level j if 7 < i. The idea of the proof is to show that
with high probability, (f2)!(x) is not computed before level i. Given an
oracle A and a vector z € X", let (i) denote the set of strings y for which
some string ¢ of length [log n| exists, so that yt is given as input to some
interesting gate at level 7, when C'4 is given z as an input. For convenience,

let I(d) = {C*(x)}.
Consider the following procedure for finding an z so that C4(x) # (f)4+?

1. L:=0.
2. if ¥ C L then abort, we were not successful.
3. select any x € X"\ L.
4. xo9 = x.
5. fori:=0to d do
6. compute I7}(i) by simulating the necessary parts of the circuit.
7. L:=LUIA®G) U {x;}.
8. Tiv1 = fMwy).
9. if x;,1 € L then goto 2.
10. od.

11. return =z.

Let us first observe that the protocol indeed returns an x with the desired
property in case it does not abort. This is so, because x4, = (f2)4*(x), and



the algorithm makes sure that z4,; ¢ L at a time when I7(d) C L and by
definition C4(z) € IA(d). Let us then estimate the probability of abortion.
We will first give an upper bound on the probability of leaving the for-loop
at line 9. For convenience, let us assume that the membership of a string in
A is not determined until the algorithm asks for it. It is easy to see that the
protocol makes sure that no bit of the value of f7!(x;) has been determined
previous to line 8. Hence, all 2" values are equally likely. Of these values, |L|
causes the algorithm to leave the for-loop in the next line. Hence, each time
line 9 is encountered, the probability of leaving the loop is exactly |2£n| If we
assume that m values of = has been tried so far (including the current value),
an upper bound of this is m(s';l“) < 3%’7?3. Thus, each time the for-loop
is executed, an upper bound of the probability of leaving it prematurely is
(d+ 1)% < 6d22,’]“. Since the algorithm will try different values of = at least
until this upper bound is 1 and the above argument applies to all of them,
we have that for any positive integer k:
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Putting k = [2%], we get:

w3

Pr(abortion) < 27%2.

O

Theorem 5 For a < 1, P ¢ DEPTHfO.(an) for a random oracle A with
probability 1.

Proof Let d, = |an]. The family of functions g2 = (f2)4*1 is clearly
in P4. Fix n and let C be a fixed bounded fan-in oracle circuit of depth
d,. It is easy to see that the size of C is at most 2nd”, so by the lemma,
the probability that C4 computes g7 is at most 272%. There are at most
22+ b hunded fan-in oracle circuits of depth d,,, so the probability that
some such circuit computes g/ with A as oracle is at most 920"+ 9—2% which
is less than 27" for sufficiently large n. Thus, for fixed IV, the probability
that for some n greater than N, g2 has A-circuits of depth at most an, is
at most 300 27" = 27N+ The probability that for all N, an n greater
than N exists, so that g7 has circuits of depth at most an, is thus at most

4



infy 27 ¥+ = 0. O

The theorem is an improvement of Wilson’s result [5] that oracles A ex-
ists, so that P4 # NC“. Since every function has unrelativized depth at
most n + o(n), the result is optimal, up to a multiplicative constant of 2 + €.
Similar results about circuit size were obtained by Lutz and Schmidt [3] who
showed that for small a and a random oracle A, NP* ¢ SIZE?O.(QC“”) and

by Kurtz, Mosey and Royer [2], who proved NP* Z co — NS]ZE? o (297).

Theorem 6 For rational k > 0 and ¢ > 0, AC;* € NCi.,_. for random A
with probability 1.

Proof Let d, = [log" n] and g/ = (fA)%+'. ¢4 is in AC;. It is suffi-
cient to prove that with probability 1, g2 is not computed by a family of
bounded fan-in circuits C,, of depth O(log"™“n). Fix an n and a circuit C,,
within this bound. Observe that C,, can not contain a path with more than
O(log"™“n) oracle gates of indegree n + [log n] and that C, satisfies the size
bound of the lemma. Thus, the probability that C' computes g2 is at most
2725 Now proceed as in the previous proof. O

It is easy to see from the proof that we actually get the stronger result that
there are functions in ACf which can not be computed in depth o(longr1 n)
by bounded fan-in A-circuits.

Theorem 7 For rational k > 0 and € > 0, NCi € AC3., for random
A with probability 1.

Proof The proof is bred upon the idea behind the corresponding oracle
k

construction by Wilson [6]. Let d, = Llolgglog”nj, m, = [log® n] and let

gMwixy . ) = (fAN S (212y .. 2y,,). g2 is in NC3, since we are only

charged depth O(log log n) for computing fnfn. The probability that g2 is

computed by a specific circuit of size O(n), depth O(log" ¢ n), even with

log n
2

mn

unbounded fan-in, is, by the lemma, at most 27272" < 27" . Now proceed
as in the previous proofs. O

The proof actually gives us functions in NCj which require superpolynomial
size to be computed in depth o(log” n/log log n) with unbounded fan-in A-



circuits. This is optimal, since standard techniques provide a simulation of
NC# by polynomial size, depth O(log® n/log log n), unbounded fan-in A-
circuits.

Corollary 8 For rational k > 0 and € > 0, NC{ # NC’?Jre and AC3 #
AC’?Jre for random A with probability 1.
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