
TIGHT BOUNDS ON THE ROUND
COMPARE OF DISTHBUTED

1-SOLVABLE TASKS∗

Ofer Biran
IBM Haifa Research Group

Technion city, Haifa Israel 32000

Shlomo Moran and Shmuel Zaks
Department of Computer Science

Technion, Haifa, Israel 32000

December 3, 1991

Abstract

A distributed task T is 1-solvable if there exists a protocol that
solves it in the presence of (at most) one crash failure. A precise
characterization of the 1-solvable asks was given in [BMZ]. In this
paper we determine the number of rounds of communication that are
required, in the worst case, by a protocol which 1-solves a given 1-
solvable task T for n processors. We define the radius R(T) of T ,
and show that if R(T) is finite, then this number is Θ(lognR(T));

∗This research was supported in pwt by Technic V.P.R. Funds – Wellner Research
Fund and Loewengart Research Fund, and by the Foundation for Research in Eletronics,
Computers and Communications, administrated by the Israel Academy of Sciences and
Humanities, and by the ESPRIT II Basic Research Actions Program of the EC under
contract no. 3075 (project ALCOM). A preliminary version of this paper appeared in
the proceedings of the 4th International Workshop on Distributed Algorithms, Bari, Italy
1990.

1

more precisely, we give a lower bound of log(n−1)R(T), and an upper
bound of 2 + �log(n−1)R(T)�. The upper bound implies, for example,
that each of the following tasks: renaming, order preserving renaming
([ABDKPR]) and binary monotone consensus ([BMZ]) can be solved
in the presence of one fault in 3 rounds of communications. All pre-
vious protocols that 1-solved these tasks required Ω(n) rounds. The
result is also generalized to tasks whose radii are not funded, e.g., the
approximate consensus and its variants ([DLPSW, BMZ]).

1 INTRODUCTION

An asynchronous distributed network consists of a set of processors, con-
nected by communication lines, through which they communicate in order to
accomplish a certain task; the time delay on the communication lines is finite,
but unbounded and unpredictible. In this paper we study the case when at
most one processor is faulty, which means that all of its messages are not
delivered from some point on (fail-stop failure). It was shown in [FLP] that
it is impossible to achieve a distributed consensus for this case. This result
was extended in several directions. In [DLS] the features of asynchrony that
yield the result of [FLP] and related results were analyzed. The possibility
of reaching agreement when restricting the pure asynchrony was studied also
in [ADG, DLS]. In [DLPSW] it was shown that approximate consensus, in
which all processors must agree on values that are arbitrarily close to one
another, is possible in the presence of few faulty processors. In [ABDKPR]
the solvability of two renaming problem (which will be defined later) in the
presence of faults was investigated. In [MW] a class of tasks was shown not to
be solvable in the presence of one fault processor (not 1-solvable). In [BMZ]
we provided a complete characterization of the 1-solvable tasks.

In this paper we are interested in the round complexity of a 1-solvable
task, which is the number of communication rounds that are required, in the
worst case, by any protocol that 1-solves it. us measure attempts to capture
the notion of time complexity for asynchronous, fault tolerant protocols. In
[Fe], a tight bound was given for the specific task of the approximate con-
sensus. Result of the same type in other models were given in [ALS] for the
approximate consensus task in asynchronous shared memory, and in [HT] for
me renaming task in synchronous message passing model.

2

We provide optimal bounds (up to an additive constant) on the round
complexity of a general 1-solvable task. We first consider bounded tasks,
which are tasks that can be 1-solved by protocols that require at most a
constant number of rounds in all possible executions (e.g., the renaming
tasks and the strong binary monotone consensus task [ABDKPR, BMZ]).
Then we generalize our results for unbounded tasks (like the approximate
consensus and its variants [DLPSW, BMZ]).

The outline of our proof is as follows: For a distributed task T , let XT

be the set of possible input vectors for T . First we show, by using the result
in [BMZ], that if T is 1-solvable, hen there is a set RT of radius functions
related to T , where each radius function ρ is a mapping ρ : XT → N , which
maps each input vector �x to a positive integer ρ(�x). We use this set to define
R(T), the radius of the task T , as

R(T) = min
ρ ∈ RT

sup
�x ∈ XT

ρ(�x).

In proving our bounds, we first consider only tasks T for which R(T)
is finite, and show that these are exactly the bounded tasks. We show
that if R(T) is finite then the round complexity of T is Θ(lognR(T)); more
precisely, we give a lower bound of log(n−1)R(T), and an upper bound of
2 + �log(n−1)R(T)�. We then extend the results to arbitrary task T . In the
general case, the round complexity of T is not a constant, but a function of
the input vector. Since there is no natural total order on these functions,
we cannot define the optimal round complexity of T , but only define the set
of minimal round complexity functions of T , in the natural partial ordering
of functions. This set is defined by a correspondence to the set of minimal
radius functions in RT .

The upper bound implies, for example, that each of the following tasks:
renaming with n + 1 new names, order preserving renaming with 2n− 1 new
names ([ABDKPR]), and strong binary monotone consensus ([BMZ]) can be
solved in the presence of one fault in three rounds of communications. All
previous protocols that 1-solved these tasks required Ω(n) rounds. For the
case where R(T) is infinite, we extend the optimal bounds of [Fe] for the
approximate consensus: we show that similar bounds hold for variants of the
approximate consensus that were studied in [BMZ], which are considerably
harder than the (original) approximate consensus.

3

The rest of the paper is organized as follows: In Section 2 we provide
the preliminary definitions. In Section 3 we define standard protocols and
round complexity. In Section 4 we define the radius of a task. The lower and
upper bounds for bided tasks are presented in Sections 5 and 6. In Section
7 we generalize our results for arbitrary tasks and in Section 8 we present
some applications.

2 PRELIMINARY DEFINITIONS AND NO-

TATIONS

2.1 Asynchronous Systems

An asynchronous distributed system is composed of a set P = {P1, P2, · · · , Pn}
of n processors (n ≥ 3), each having a unique identity. We assume that the
identities of the processors are mutually known, and w.l.o.g. it the identity
of Pi is i. Our results are applicable also to the model in which the identities
are not mutually known (or absent, provided that the inputs are distinct).
The processors are connected by communication links, and they communi-
cate by exchanging messages along them. Messages arrive with no error in a
finite but unbounded and unpredictable time; however, one of the processors
might be faulty, in which case messages might not have these properties (the
exact definition is given in me sequel).

2.2 Decision Tasks

Definition: Let X and D be sets of input values and decision values, re-
spectively. A distributed decision task T is a function

T : XT → 2Dn − {∅},

where XT ⊆ Xn. XT is called the input set of the task T . DT , the decision
set of the task T , is the union of the sets T (�x) over all �x ∈ XT . Each
vector �x = (x1, x2, · · · , xn) ∈ XT is called an input vector, and it represents
the initial assignment of the input value xi ∈ X to processor Pi, for i =
1, 2, · · · , n. Each vector �d = (d1, d2, · · · , dn) ∈ DT is called a decision vector,

4

and it represents the assignment of a decision value di ∈ D to processor Pi,
for i = 1, 2, · · · , n.

Thus, a decision task T maps each input vector to a non-empty set of
allowable decision vectors. We assume that all tasks T discussed in this pa-
per are computable, in the sense that the set {(�x, �d) : �x ∈ XT and �d ∈ T (�x)}
is recursive.

Examples:

1. Consensus [FLP]: A consensus task is any task T where XT = Xn for
an arbitrary set X, and such that T (�x) ⊆ {0, (0, · · · , 0), (1, 1, · · · , 1)}
for every input vector �x ∈ XT . Let �0 denote the vector (0, 0, · · · , 0),
and �1 denote the vector (1, 1, · · · , 1). A strong consensus task is a
consens task T , in which there exist two input vectors �u and �v such
that T (�u) = {�0} and T (�v) = {�1}. The main result in [FLP] implies
that a strong consensus task is not 1-solvable.

2. Strong Binary Monotone Consensus [BMZ]: This is probably the
strongest variant of the consensus task which is 1-solvable. To simplify
the definition, assume that n is even: The input is an integer vector
�x = (x1, · · · , xn), and T (�x) consists of all vectors d = (d1, · · · , dn)
where each di is one of the two medians of the multiset {x1, · · · , xn},
and di ≤ di+1 (the “strong” stands for the fact that the two values
must be the medians).

3. Renaming [ABDKPR]: his task is defined for a given integer K, where
K ≥ n. The input set XT is the set of all vectors (x1, · · · , xn) of
distinct integers. For a given input �x, T (�x) is the set of all integer

vectors �d = (d1, · · · , dn) satisfying 1 ≤ di ≤ K and such that for each
i, j, di �= dj. In order to prevent trivial solutions in which Pi always
decides on i, is task assumes a model in which the processors identities
are not known.

4. Order Preserving Renaming (OPR) [ABDKPR]: This task is sim-
ilar to be renaming task, with the additional requirement that for each
i, j, xi < xj implies di < dj.

5. Approximate Consensus [DLPSW]: This task is defined for any
given ε > 0. The input set XT is Qn, where Q is the set of rational

5

numbers, and for a given input �x = (x1, · · · , xn), T (�x) is the set of

all vectors �d = (d1, · · · , dn) satisfying |di − dj| ≤ ε and m ≤ di ≤ M
(1 ≤ i, j ≤ n), where m = min{x1, · · · , xn} and M = max{x1, · · · , xn}.

6. Strong Binary Monotone Approximate Consensus [BMZ]: This
is a harder variant of the approximate consensus task which is still
1-solvable. To simplify the definition, assume that n is even: The
input is the same as for the approximate consensus. For an input
�x = (x1, · · · , xn), T (�x) consists of all vectors �d = (d1, · · · , dn) satisfying:
�d has at most two distinct entries, which lie between the two medics of
the multiset {x1, · · · , xn}, and di ≤ di+1 ≤ di + ε.

2.3 Protocols and Executions

A protocol for a given network is a set of n programs, each associated with
a single processor in the network. Each such program contains operations of
sending a message to a neighbor, receiving a message and processing informa-
tion in the local memory. The local processing includes a special operation
called deciding, which the processor may execute only once; A processor
decides by writing a decisive value to a write-once register.

If the network is initialized with the input vector �x ∈ Xn (i.e., the value
xi is assigned to processor Pi), and if each processor executes its own pro-
gram in a given protocol α, then the sequence of operations performed by the
processors is called an execution of α on input �x. (We assume here that no
two operations occur simultaneously; otherwise, we order them arbitrarily.
For more formal definitions see, e.g., [KMZ]. For the definition of the atomic
step we adapt the model of [FLP].)

Definition: A vector �d = (d1, d2, · · · , dn) is an output vector of α on in-
put �x if there is an execution of α on �x in which processor Pi decides on di,
for i = 1 · · ·n.

6

2.4 Faults and 1-Solvability

Definition: A processor P is faulty in an execution e if all the messages sent
by P during e from some point on are never received (a fail-stop failure; see,
e.g., [FLP]. Also known as crash failure; see, e.g., [NT]).

Definition: A protocol α 1-solves a task T if for every execution of α on
any input �x ∈ XT in which at most one processor is faulty, the following two
conditions hold:

1. All the non-faulty processors eventually decide.

2. If no processor is faulty in the execution, then the output vector belongs
to T (�x).

When such a protocol α exists we say that the ask T is 1-solvable.

The definition above does not require the processors to halt after reach-
ing a decision. However, in the case of a single failure, it is not hard to see
that a processor that learns that n− 1 processors have already decided may
halt. Hence, in this case, reaching a decision by all non-faulty processors is
sufficient to guarantee hating. For this reason, in this paper we shall restrict
the discussion to protocols in which the processors are guaranteed to halt in
every possible execution. (Note that in the case of t > 1 crash failures, there
exist tasks which can be t-solved only by protocols that do not guarantee ter-
mination, e.g, the renaming tasks [ABDKPR]. For more on the termination
requirement for multiple failures see [TKM]).

3 STANDARD PROTOCOLS AND ROUND

COMPLEXITY

In this paper we bound the number of communication rounds that are re-
quired by protocols that 1-solve a given task. This number attempts to cap-
ture the notion of time complexity for asynchrnous fault tolerant protocols.
We model an arbitrary t-resilient protocol that work in rounds of commu-
nications by the notion of standard protocol. The definitions and discussion
below are restricted to the case t = 1.

7

3.1 Standard Protocols

A protocol that 1-solves a task T is standard protocol if it work in rounds of
communications, as follows. In each round a processor broadcast a message
(which includes the round number), which is a function of its state, to all the
processors (including itself), and waits until it receives n−1 messages of this
round (including its own message which is received first; it may wait for less
than n−1 messages if it heard on processors that had already halted). During
this period of waiting, it might receive messages from different rounds. Those
of higher rounds are saved until the processor itself reaches these rounds.
Messages of previous rounds (might be at most one such message per each
previous round) are gathered with the n− 1 messages of this round to form
a set M . Then the processor computes its next state, which is a function of
M and its previous state. The state of a processor includes its write-once
register.

Our notion of scud protocol is similar to the one used in [Fe]. It can be
shown that this notion is general enough for the sake of lower bounds, by
using full information protocols ([Fe, FL]).

Formally, the standard protocol for Pk is as follows:

r ← 0
state ← INIT k
while state<> HALT do

r ← r + 1
BROADCAST (r, MESSAGE FUNCTION k (state))
WAIT until you RFEEIVE (n− 1− [# of known halted processors])
messsages of the form (r,∗)
M ← {m | a message (r′, m), r′ ≤ r was received in the above WAIT,
or a message (r, m) was received in a previous round}
state ← STATE FUNCTION k(state, M)

end

3.2 Round Complexity

Definition: Let T be a task and α a standard protocol that 1-solves T . The
round complexity of α on input �x denoted rcα(�x), is the maximum round

8

number, over all execution of α on input �x that a correct processor reaches.

The round complexity of α, denoted rcα(T) is defined by: rcα(T) =
sup	x∈XT

rcα(�x). The round complexity rc(T) of a task T is defined by:
rc(T) = min{rcα(T) | α 1-solves T}.

Note that rc(T) may be infinite; this is the case only when the input set
XT is infinite, and for any protocol α that 1-solves T and for any constant
C, there is an inputy �x such that rcα(�x) > C.

Definition: A 1-solvable task T is bounded if rc(T) is finite, and is un-
bounded otherwise.

We will first present results for bounded tasks, and then extend them to
results which are applicable for unbounded tasks as well.

4 COVERING FUNCTIONS AND RADII

OF TASKS

We first give some basic definitions from [BMZ] which are needed for this
paper.

4.1 Adjacency Graphsf Partial Vectors, Covering Vec-
tors and i-Anchors

Definition: Let S ⊆ An, for a given set A. Two vectors �s1, �s2 ∈ S are
adjacent if they differ in exactly one entry. The adjacency graph of S,
G(S) = (S, ES), is an undirected graph, where (�s1, �s2) ∈ ES iff �s1 and �s2

are adjacent. For a task T and an input vector �x for T , G(T (�x)) is the deci-
sion graph of �x.

Definition: A partial vector is a vector in which one of the entries is not
specified; this entry is denoted by ‘∗’. For a vector �s = (s1, · · · , sn), �s i de-
notes the partial vector obtained by assigning ∗ to the i-th entry of �s, i.e.,
�s i = (s1, · · · si−1, ∗, si+1, · · · , sn). �s is called an extension of �s i.

9

Definition: Let �x i be a partial input vector and �d i a partial decision vector
of a task T . We say that �d i is a covering vector for �x i if for each extension
of �x i to an input vector �x ∈ XT , there is an extension of �d i to a decision
vector �d ∈ T (�x).

Note that in an execution on input �x in which the messages of Pi are
delayed, the remaining n − 1 processors must eventually output a covering
vector for �x i. If eventually Pi decides too, then the resulted output vector is
an i-anchor, which we define below.

Definition: A vector �d is an i-anchor of an input vector �x if �d ∈ T (�x)

and �d i is a covering vector for �x i.

Example: consider the OPR task (defined in Section 2.2) for n = 3 pro-
cessors and K = 5. For the partial input vector �x 2 = (10, ∗, 30) there is a

unique covering vector �d 2 = (2, ∗, 4), and the input vector �x = (10, 20, 30)

has a unique 2-anchor �d = (2, 3, 4). In the OPR task with n = 3 and K = 6
there are three covering vectors for �x 2 : (2, ∗, 4), (2, ∗, 5), and (3, ∗, 5). Thus,
�x has four 2-anchors: (2, 3, 4), (2, 3, 5), (2, 4, 5) and (3, 4, 5)

4.2 Covering Functions and Radii of Tasks

Definition: A covering function for a given task T is a function that maps
each partial input vector to a corresponding covering vector for it.

Definition: Let T be a task, CF a covering function for T , and �x ∈ XT an
input vector. An anchors tree for �x based on CF is a tree in G(T (�x)) that,
for each i (1 ≤ i ≤ n), includes an i-anchor which is an extension of CF (�x i).

We now reformulate Theorem 3 of [BMZ] to a form suitable to our dis-
cussion:

Theorem [BMZ]: A task T is 1-solvable if and only if there exists a cover-
ing function CF for T , s.t. for each input vector �x ∈ XT , there is an anchors
tree for �x based on CF . ✷

A covering function satisfying the condition of Theorem [BMZ] is termed
a solving covering function for T . As we show in Section 6, such functions

10

may be used to construct protocols that 1-solve T .

Each solving covering function CF defines a radius function ρCF : XT →
N , as follows.

Definition: Let CF be a solving covering function for T , and �x an input
vector in XT . ρCF (�x) is the minimum possible radius of an anchors tree for
�x based on CF .

The set of all radius functions for T is denoted by RT . That is,

RT = {ρCF : CF is a solving covering function for T}.

Definition: R(T), the radius of the task T , is given by:

R(T) = min
ρCF∈RT

sup
	x∈XT

ρCF (�x).

A covering function CF , and the corresponding radius function ρCF , are
optimal for a bounded task T if max	x∈XT

ρCF (�x) = R(T).

Note that R(T) may be infinite; This is the case only when the input set
XT is infinite, and for any radius faction ρCF in RT and for any constant C,
were is an input �x such that ρCF (�x) > C. As we shall show, R(T) is finite
iff T is a bounded task.

Example: Consider the following task T for n = 3 processors, in which
XT contains only 3 input vectors:

�x1 = (50, 20, 30), �x2 = (10, 20, 30) and �x3 = (10, 20, 70).
T (�x1) = { (5, 2, 3) },
T (�x2) = { (1, 2, 3), (1, 4, 3), (5, 4, 3), (5, 4, 6), (7, 4, 6), (7, 5, 6), (7, 5, 8),

(3, 5, 8), (3, 2, 8) }
and
T (�x3) = { (7, 4, 1), (3, 2, 1) }.

Now, in choosing an optimal covering action for T , the only pain input vec-
tors that should be considered are those which mist be extent to more than
one input vector (if �x i might be extended to a unique input vector �x then

any vector �d in T (�x) is an i-anchor of �x so the need to select an i-anchor
does not impose any constraint on the anchors tree). Thus we consider only

11

(∗, 20, 30) and (10, 20,∗), so the only anchors that constrain the anchors tree
are the 1-anchor and the 3-anchor.

Figure 1: A task T with R(T) = 2 (= ρCF1(�x2))

From the decision graphs (see Figure 1), clearly R(T) is determined by
T (�x2), since any anchors tree of the other two input vectors is composed of
a single vertex. Based on the previous discussion, it suffices to consider only
two covering functions, CF1 and CF2, whose values on the two “key” partial

12

vectors are as follows:

CF1((∗, 20, 30)) = (∗, 2, 3), CF1((10, 20,∗)) = (7, 4,∗) and
CF2((∗, 20, 30)) = (∗, 2, 3), CF2((10, 20,∗)) = (3, 2,∗).

In the minimum radius anchors tree based on CF1 (in G(T (�x2))) the 1-
anchor is (1, 2, 3), the 3-anchor is (7, 4, 6), and thus the radius is 2 (a line,
with center (5, 4, 3)). The anchors tree based on CF2 has the same 1-anchor,
its 3-anchor is (3, 2, 8), and its radius is 4. So CF1 is the optimal covering
fbnction, and R(T) = 2.

More examples appear in Section 8.

5 LOWER BOUND

In this section we prove the following theorem.

Theorem 1: Let T a bounded task. Then its rood complexity rc(T) satisfies

rc(T) ≥ log(n−1)R(T).

Proof: Let α be a standard protocol which 1-solves T , and rcα(T) = s. We
will prove that α implies a solving covering function for T, CFα, such that
ρCFα(�x) ≤ (n − 1)s for every input vector �x and thus R(T) ≤ (n − 1)s. To
simplify the presentation, we assume that in all executions of α no processor
halts before round s (and hence that all processors halt in round s). Clearly,
such an assumption does not affect the generality of the proof, since we can
always modify α such that processors that halt in round r < s will continue to
send “dummy” messages in later rounds. Note that this assumption enables
us to assume that in each round, each processor waits for exactly n − 1
messages (including its own message) of this round.

For the proof we construct sequences of executions of α, which first re-
quire some definitions and discussion.

Definition: e is an r-rounds execution of a standard protocol A if e is
the first r rounds of an execution of A. e is an r-rounds i-sleeping execution
if during e, no processor Pj, j �= i, ever receives a message from Pi.

Let e be an r-rounds execution of α, and let 1 ≤ l ≤ r. The l-senders

13

of Pk in e is the set of processors from which Pk receives messages (l,∗) in
the l’th round of e. Note eat the l-senders of Pk always contains Pk, and it
its cardinality is n− 1.

Definition: An r-rounds execution e is an ordered execution if for each
1 ≤ k ≤ n and for each 1 ≤ l ≤ r, each processor Pk receives in round l
exactly all the messages (t,∗), t ≤ l, sent to him by its l-senders, and which
it has not received yet.

All the executions discussed in the rest of this section are ordered exe-
cutions of the protocol α. Observe that an ordered r-rounds execution e is
completely characterized by the inputs to the processors and by specifying
the l-senders of each processor, for l = 1, · · · , r.

The history of a processor in an r-round execution e of α is defined by its
input value, and the messages it receives in each round l from its l-senders,
for l = 1, · · · , r.

Proposition 1: Let f and f ′ be two r-rounds executions of α. Then Pk

has the same history in f and f ′, if (and only if) in both executions it has
the same r-senders, S, and each processor of S has the same history after
the (r − 1)-st round in f and f ′. (Note that Pk belongs to S.) ✷

Next we define the solving covering function CFα. For a given �x and
i, CFα(�x i) is the partial vector �d i output by the processors P − {Pi} in an
s-rounds i-sleeping execution of α on input �x (The validity of this definition
follows from the fact that α 1-solves T in at most s rounds, and thus by
round s the processors P − {Pi} must decide on a covering vector).

We now proceeds to the main construction required for our proof, given
in Lemma 1 below. This construction uses an idea of [Fe]. First we need the
following definition and proposition:

Definition: Two r-roods executions are adjacent if there are at least n− 1
processors, each of which has the same history in both executions.

Proposition 2: Let f and f ′ be two r-rounds executions which are identical
until round r − 1, and assume there are two processors, each of which has
the same r-senders in f and f ′. Then there is a sequence of n − 1 r-rounds

14

executions, CHAIN (f, f ′) = (f = f1, f2, · · · , fn−1 = f ′) s.t. fk and fk+1 are
adjacent for k = 1..n− 2.

Proof: For simplicity, assume that the two processors that have the same
r-senders in f and f ′ are P1 and Pn. Let the r-senders of the processors
P1, · · · , Pn in execution f be Q1, Q2, · · · , Qn−1, Qn (Qi is the r-senders of Pi),
and let the r-senders of the processors in execution f ′ be Q1, Q

′
2, · · · , Q′

n−1 Qn

. Then CHAIN (f, f ′) = (f = f1, · · · , fn−1 = f ′), where for i = 2, · · · , n− 2,
the first r−1 rounds of fi are identical to those of f and f ′, and the r senders
of the processors P1, · · · , Pn in fi are Q1, Q

′
2, · · · , Q′

i−1, Qi, · · ·Qn. ✷

Lemma 1: Let 1 ≤ i < j ≤ n and let �x ∈ XT an input vector. Then
for each r > 0, there exists a sequence Sr = e1, · · · , eDr of Dr = (n − 1)r

r-rounds executions of α, satisfying the following:

(a) e1 is an r-rounds i-sleeping execution on input �x and eDr is an r-rounds
j-sleeping execution on input �x.

(b) The executions ek and ek+1 are adjacent, for k = 1, · · · , Dr − 1.

Proof: The proof is by induction on r. (The base and the first step of the
induction are depicted in Figure 2). For the base, r = 1, e1 is the 1-round
i-sleeping execution on input �x which the 1-senders of Pi is P − {Pj}, and
en−1 is the 1-round j-sleeping execution on input �x in which the 1-senders of
Pj is P −{Pi}. The sequence e1, · · · , en−1 is CHAIN (e1, en−1), which satisfies
the conditions by Proposition 2 (the assumptions of Proposition 2 hold since
Pi and Pj have each the same 1-senders in e1 and en−1).

The induction step: Let Sr−1 = e1, · · · , eDr−1 be a sequence satisfying
the lemma for r− 1 (Dr−1 = (n− 1)r−1). Then for each k = 1, · · · , Dr−1 − 1
there is a set of n − 1 processors, which we denote by Qk, such that each
processor in Qk has the same history in ek and ek+1.

We construct the sequence Sr by replacing each (r−1)-rounds execution
ek in Sr−1 by a sequence of n − 1 r-rounds adjacent execution ek,1, ek,2, · · · ,
ek,n−1. i.e., Sr = e1,1, · · · , e1,n−1, · · · , eDr−1,n−1. It remains to define the exe-
cutions ek,j and to prove that Sr indeed satisfies the lemma.

First, to avoid special end-case treatments, we define Q0 = P −{Pi} and
QDr−1 = P − {Pj}. Now, in ek,1 the first r − 1 rounds are identical to ek. In

15

Figure 2: The construction of the sequence for r = 2 from the sequence for
r − 1 = 1; for i = 4, j = 1

16

round r: The r-senders of each processor in Qk−1 is Qk−1, and the r-senders
of the remaining processor is Qk. In ek,n−1 the first r − 1 rounds are also
identical to ek. In round r: The r-senders of each processor in Qk is Qk, and
the r-senders of the remaining processor is Qk−1. Now by Proposition 2 we
can define the sequence ek,1, · · · , ek,n−1 to be CHAIN (ek,1, ek,n−1).

It remains to show that:

1. e1,1 (i.e., the lefttnost execution in Sr) is an r-rounds i-sleeping exe-
cution and eDr−1,n−1 (i.e., the impost execution in Sr) is an r-rounds
j-sleeping execution. This follows immediately by the induction hy-
pothesis and the construction.

2. Two successive executions in Sr are indeed adjacent. If the two execu-
tions are in the same CHAIN (that is, they are ek,i and ek,i+1 for some
k and i) then this follows from Proposition 2. We now prove that this
holds also in the case that these executions are from different CHAINs,
i.e. they are of the form ek,n−1 and ek+1,1 for some k. By the construc-
tion, until round r− 1 ek,n−1 is identicaI to ek and ek+1,1 is identical to
ek+1. By the induction hypothesis, each processor in Qk has the same
history in ek and ek+1 (and thus has the same history after round r− 1
in ek,n−1 and ek+1,1). By the consuction, the r-senders of each processor
in Qk, in both ek,n−1, ek+1,1 is Qk, and thus, by Proposition 1, each of
these n− 1 processors has the same history in ek,n−1 and ek+1,1. ✷

We now use Lemma 1 to show that R(T) ≤ Ds = (n−1)s. For this, apply
Lemma 1 for r = s. Then each execution ek defines an output vector dk ∈
T (�x) (since α guarantees that each non-fault processor decides by round s).

Statement (a) of the Lemma implies that �d1 is an i-anchor of �x which extends

CFα(�x i), and �dDs is a j-anchor of �x which extends CFα(�x j). Statement (b)

of the lemma implies that for every k, �dk and �dk+1 are either the same vector
or are adjacent. Thus, (�d1, · · · , �dDs) is a path of length at most Ds−1 from an
i-anchor to a j-anchor of �x. Since this holds for every i and j, ρCFα(�x) < Ds.
Since �x is arbitrary, we have that R(T) ≤ Ds. This completes the proof of
Theorem 1. ✷

17

6 UPPER BOUND

6.1 The Protocol

Theorem 2: The round complexity of a bounded task T is at most 2 +
�log(n−1)R(T)�.

Proof: We present a protocol that 1-solves T , and whose round complexity
is 2 + �log(n−1)R(T)�. The protocol is an improvement of the protocol in
[BMZ], whose round complexity is 2 + R(T) (2 + 2R(T) if the number of
processors, n, is 3). Like the protocol in [BMZ], this protocol is based on
a given solving covering function CF . Informally, this protocol differs from
the one in [BMZ] in two ways. First, in each execution of this protocol all
the vectors that may be suggested by the processors as possible decision vec-
tors belong to a single path in the anchors tree based on CF . Second, the
convergence to two adjacent vertices on that path is done by an averaging
process, similar to the one used in approximate consensus protocols, and not
in the step by step fashion of the protocol in [BMZ].

Let CF be an optimal solving covering function of T (i.e., R(T) =
max	x∈XT

ρCF (�x). By the computability of T , it follows that there is an al-
gorithm TREE that on input �x outputs a minimum radius anchors tree
TREE (�x) based on CF , with a center ROOT (�x) as its root. Our protocol
assumes that each processor has a copy of the algorithms CF and TREE
above.

The general outline of the algorithm is as follows: In be first two stages
each processor Pk is trying to find out the input vector �x. For this, it first
broadcasts its input value and receives n − 1 input values (including its
own), which determine a partial input vector �x j (note that j �= k). Then
it broadcasts �x j and waits for n − 1 such pain vectors. At his point, there
are two any of processors: those who know only partial input vector �x j, and
hence also know the index j (note that it is the same j for all these processor),
and those who know the complete input vector �x.

Now, the processors perform a simple averaging approximate consensus,
for �log(n−1)R(T)� rounds, with two kinds of initial values: those who know
�x j start with zero, and those who know �x start with R(T). During these

18

rounds, each of the processors that knows the complete input vector �x and/or
the index j, appends to its messages also these values. After these rounds,
each processor will have a value v in [0, R(T)] s.t. the difference between
the maximal and minimal values is at most 1. If v is equal to zero (in
this case Pk still knows only �x j) then Pk decides on CF (�x j) (deciding on
a (partial) output vector (d1, · · · , dk, · · · , dn) means, in particular, that dk

is the decision value of Pk). Otherwise Pk knows �x (and thus can compute
TREE (�x); actually, it will only have to compute ROOT (�x), or the path in
TREE (�x) from the j-anchor to ROOT (�x). If v is equal to R(T), then Pk

decides on ROOT (�x). Otherwise, Pk knows �x and j. Then, it “normalizes”
the value v to an integer q, which is between 0 and the lenght l of the
path from the j-anchor to ROOT (�x). Since l ≤ R(T), we have that the
difference between the maximal and minimal q values is at most 1. Finally,
each processor decides on the q-th vector on this path. Since the difference
between the q values is at most 1, this ensures that each non-faulty processor
will decide on one out of two adjacent vertices (vectors). This guarantees
that the actual output vector is one of these two vectors, and hence it is in
T (�x). It is worth mentioning here that deciding on two non-adjacent vectors
does not guarantee a legal output vector, and convergence to a single decision
vector is actually an agreement, which is impossible by the result of [FLP].

The protocol for Pk:

A. BROADCAST xk and WAIT until you RECEIVE n− 1 stage-A messages
B. you know x j BROADCAST x j and WAIT until you RECEIVE n− 1 stage-B

messages
C. {approximate consensus stage} if you how only x j then v ← 0 else v ← R(T)

for r = 1 to �log(n−1)R(T)� do
info ← x and / or j (whatever you know of the two)
BROADCAST (r, info, v) and WAIT until you RECEIVE n− 1 messages
of round r
v ← the average of the n− 1 v’s received in this round

end
D. if v = 0 (you know only x j) then DECIDE CF (x j)

else if v = R(T) (you know only x j) then DECIDE ROOT (x)
else (you know x and j) do

Let l be the length of the path in TREE (x) between the j-anchor and
ROOT (x) q ← �vl/R(T)�
DECIDE on the q’th vector of the path in TREE (x) between the j-anchor

and ROOT (x)
(the j-anchor is number 0 in the path, and ROOT (x) number l)

end

19

HALT

6.2 Correctness Proof

It is easy to see that each non-faulty processor eventuallly decides. We now
assume eat all processors are non-faulty, and prove that the output vector is
legal. By the discussion preceding the protocol, it suffices to prove that for
each execution of the protocol in which all processors are non-faulty, there
are two adjacent vectors such that each processor decides on one of them. If
all the processors know the complete input vector �x at the end of stage B,
then all the processors start and finish stage C with v = R(T), and decide at
stage D on ROOT (�x), and we are done. Otherwise there exists a unique j
such that some processors know only �x j at the end stage B (the uniqueness
of j is implied by the fact that n− 1 is a majority).

Denote by vk the value of v that Pk holds after �log(n−1)R(T)� rounds
of approximate consensus in stage C, and by qk the value q it holds after the
normalization in stage D. The difference between the maximum and minimum
values of the vk’s is at most 1 (since the difference between the v values is
initially at most R(T), and it is reduced at least by a factor of n − 1 each
round).

If for all k, vk �= R(T) and vk �= 0, then the each processor Pk com-
putes qk, and decides on the qk-th vector on the path from the j-anchor
to ROOT (�x). Clearly the maximum difference between the qk’s is 1, since
l ≤ R(T). Hence, all processors decide on two adjacent vectors on it path.

Otherwise, there are two cases where some processor Pk decides without
computing qk: One case is when vk = R(T) (and Pk decides on ROOT (�x)).
In this case all the vi’s are in the range [R(T)− 1, R(T)], and the minimum
possible qi is l − 1, which corresponds to a vector adjacent to ROOT (�x)).
The other case is when vk = 0, and hence Pk decides on CF (�x j). In this
case, all the q′is lie in the interval [0, 1], and hence all processors decide on
CF (�x j), or on the j-anchor, or on a vector adjacent to the j anchor. This
case is equivalent to the case where all processors decide on the j-anchor
or a vector adjacent to it, since Pj never decides on CF (�x j) (it knows its
own input xj), and for every processor other than Pj, deciding on CF (�x j) is
equivalent to deciding on the j-anchor. ✷

20

7 GENERALIZATION

In this section we generalize our results for arbitrary tasks. In the general
case, the round complexity of a protocol that 1-solves a (possibly unbounded)
task T is not a constant, but a function on the set of input vectors XT , as
follows.

Definition: Let T be a 1-solvable task. A function f : XT → N is a
round complexity function of T if were exists a protocol α that 1-solves T ,
and for each �x ∈ XT , rcα(�x) ≤ f(�x) (rcα(�x) is defined in Section 3.2).

Since in general there is no natural total order on such functions, we
cannot define the optimal round complexity of a task T , but only define the
set of minimal round complexity functions of T , in the natural partial order
of functions, as follows.

Definition: Let f and g be two functions defined on be same domain X.
Then f is smaller than g if f �= g and for all x ∈ X, f(x) ≤ g(x). A function
g is minimal in a set of function F there is no f ∈ F such that f is smaller
than g.

We define the set of minimal round complexity function of a task T by
a correspondence to the set of minimal radius actions in RT : we show that
for each round complexity function rc there exists a radius action ρCF ∈ RT

s.t. log(n−1)ρCF is smaller (or equal) than rc, and for each radius function
ρCF ∈ RT , 3 + �log(n−1)ρCF � is a round complexity faction of T .

Thus, the set of functions

mRT = {3 + �log(n−1)ρCF � | ρCF is a minimal function in RT}
approximates the set of minimal round complexity functions of T by an ad-
ditive constant of 3, in the following meaning: Each function in mRT is a
round complexity function of T s.t. there is no other round complexity func-
tion of T which improves it by more than the additive constant 3, and for
each minimal round complexity function of T , there is a function in mRT

which is larger by at most 3.

Theorem 1u: Let rc be a round complexity function of a task T . Then,
there exists a radius function ρCF ∈ RT s.t. log(n−1)ρCF (�x) ≤ rc(�x), for each

21

�x ∈ XT .

Proof: Since rc is a round complexity function of T , there exists a pro-
tocol α s.t. rcα(�x) ≤ rc(�x) for each �x ∈ XT . From this point the proof is so
to that of Theorem 1, when s is replaced by rcα(�x), and the radius function
whose existence is proven is ρCFα . ✷

Theorem 2u: Let ρCF be a radius function of a task T . Then, 3 +
�logn−1ρCF � is a round complexity function of T .

Proof: We only need few minor changes in the protocol of Section 6: First,
all occurrences of R(T) are replaced by ρCF (�x). Now, the problem is that
processors that at the beginning of stage C know only �x j, cannot compute
�logn−1ρCF � – the number of approximate consensus rounds. To solve this
problem, we add an initialization round in stage C (this idea is borrowed
from [DLPSW]) in which a processor that receives a message with v = 0 sets
its own v to 0, and a processor that all the n−1v values it receives are 0 (and
thus still knows only �x j), broadcasts a “FINISH” message, and exits stage
C. A processor that receives in the next rounds a “FINISH” message, sets
its v to 0, broadcasts a “FINISH” message and exits stage C. Thus, if some
processor broadcasts “FINISH” message in the initialization round, then all
processors set their v to 0, and it follows that all the v’s will be zero after
stage C. The rest of the correctness proof is similar to the one in Section 6.

✷

8 APPLICATIONS

We present here new optimal bounds on the rood complexity of the 1-solvable
tasks mentioned in the paper. The first three examples deal with bounded
tasks, and provide upper bounds of 3 rounds for the tasks evolved (it can be
shown that 2 rounds are not enough). All previous protocols that 1-solved
these tasks required Ω(n) rounds. The bounds are proved by presenting a
covering function CF for each task T which prove that R(T) ≤ n − 1 (and
hence logn−1R(T) ≤ 1). Actually, each of the covering function presented
will be optimal. The last example deal with the strong binary monotone

22

approximate consensus, and provide a bound of 4 + logn−1(
d−c

ε
), where d

and c are the two medians of the numbers of the input vector. This is
approximately the same bound that is proved optimal in [Fe] for the task
of approximate consensus, which seems to be considerably simpler than the
strong binary monotone approximate consensus. (We note, however, that
the bounds in [Fe] apply to multiple failures.)

The formal definitions of the tasks discussed below are given in Section
2.2.

1. Strong Binary Monotone Consensus : Let �x i = (x1, · · · , xi−1, ∗, xi+1, · · · ,
xn) be a partial input vector for this task. Again, we assume for sim-
plicity that n is even. In this case there is a unique possible covering
function CF , defined by CF (�x i) = (c, · · · , c), where c is the median of
the multiset {x1, · · · , xi−1, xi+1, · · · , xn}.
We now describe anchors trees based on CF . For a given input vector
�x let c and d be the two medians of the multiset {x1, · · · , xn}. If c = d
then the anchors tree consists of the single vertex (c, · · · , c). Otherwise,
it consists of the path [(c, · · · , c, d), (c, · · · , c, d, d) · · · , (c, d, · · · , d)]. In
the first case the radius of the tree is 0, and in The second is n

2
− 1. It

can be shown that this anchor tree is of minimum possible radius, and
hence R(T) = n

2
− 1.

2. Renaming with n + 1 new names: In this task the input to each
processor is its id, and the id’s are not mutually known. Such a task
cannot be modeled as a function from input vectors to output vectors,
since there is no fixed order among the processes. Instead, it is mod-
eled as a action between input sets to allowed output sets [BMZ]. By
adapting the definitions for this model, as done in [BMZ], we get a that
R(T) ≤ n− 1.

3. Order Preserving Renaming with 2n− 1 new names: This task is
order invariant, i.e: T (�x) depends only on the relative order among the
entries of �x.

CF is also order invariant, and we describe CF (�x i) only for the case
that the entries in �x are monotone increasing (i.e., xi < xi+1). The
adaptation of be definition to other order types is straight forward.
In this case, CF (�x i) = (2, 4, · · · , 2i − 2, ∗, 2i, · · · , 2n − 2). A suitable

23

anchors tree of such �x is the path of length 2n− 2 (and hence of radius
n − 1) starting at the 1-anchor (1, 2, 4, · · · , 2n − 2) and ending at the
n-anchor (2, 4, · · · , 2n − 2, 2n − 1), that passes via all the i-anchors.
(e.g., for n = 3 this path is [(1, 2, 4), (1, 3, 4), (2, 3, 4), (2, 3, 5), (2, 4, 5)]).

4. Strong Binary Monotone Approximate Consensus (for a given
ε): The input, and the (unique) covering function CF is the same as
for the binary monutone consensus. The minimal radius anchors tree
based on CF is also similar to the one for the binary consensus, but
this time ε must be taken into account:
For a given input vector �x let c and d be the two medians of the multiset
{x1, · · · , xn}. Assume for simplicity the ε divides d − c. If c = d then
the anchors tree consists of the single vertex (c, · · · , c). Otherwise, it
consists of the path [(c, · · · , c, c + ε), (c, · · · , c, c + ε, c + ε), · · · , (c, c +
ε, · · · , c+ε), (c+ε, · · · , c+ε), · · · , (d−ε, · · · , d−ε, d−ε), · · · , (d, · · · , d−
ε)]. In the first case the radius of the tree is 0, and in the second is
n(d−c

ε
). Thus, the upper aid provided by our results (for beaded tasks)

is at most 5 + logn−1(
d−c

ε
).

References

[ABDKPR] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, R. Reis-
chuk, Achievable cases in an asynchronous environment, Proc. of the
28th FOCS, October 1987, pp. 337–346. A new version in Journal of
the ACM, Vol. 37 no. 3, 1990, pp. 524–548.

[ADG] H. Attiya, D. Dolev and J. Gil, Asynchronous Byzantine consensus,
Proc. of the 3rd PODC, 1984, pp. 119–133.

[ALS] H. Attiya, N. Lynch and N. Shavit, Are wait free algorithms fast ?,
Proc. of the 31th FOCS, 1990, pp. 422–427.

[BMZ] O. Biran, S. Moran and S. Zaks, A combinatorial characterization
of the distributed task which are solvable in the presence of one faulty
processor, Journal of algorithms 11, 1990, pp. 420–440.

24

[DLS] C. Dwork, N. Lynch and L. Stockmeyer, Consensus in the presence
of partial synchrony, Journal of the ACM, Vol. 35 no. 2, 1988, pp.
288–323.

[DLPSW] D. Dolev, N. A. Lynch, S. Pinter, E. Stark and W. Weihl, Reaching
approximate agreement in the presence of faults, Journal of the ACM,
Vol. 33 no. 3, 1986, pp. 499–516.

[Fe] A. D. Fekete, Asynchronous Approximate Agreement, Proc. of the 6th
PODC, 1987, pp. 64–76.

[FL] M. Fisher and N. A. Lynch, A lower bound for the time to assure in-
teractive consistency, Information processing letters 14:4, 1982, pp.
183–186.

[FLP] M. J. Fischer, N. A. Lynch and M. S. Paterson, Impossibility of dis-
tributed consensus with one faulty process, Journal of the ACM, Vol.
32 No. 2 (1985), pp. 373–382.

[HT] M. Herlihy and M. Tuttle, Wait free computation in message-passing
systems, Proc. of the 9th PODC, 1990, pp. 347–362.

[KMZ] E. Korach, S. Moran and S. Zaks, Tight lower and upper bounds for
some distributed algorithm for a complete network of processors, Proc.
of the 3rd PODC, 1984, pp. 199–207.

[MW] S. Moran and Y. Wolfstahl, Extended impossibiliy results for asyn-
chronous complete network, Information Processing Letters, 26,
1987, pp. 145–151.

[NT] G. Neiger and S. Toueg, Automatically increasing the Fault-tolerance
of distributed systems, Proc. of the 7th PODC, 1988, pp. 248–262.

[TKM] G. Taubetield, S. Katz and S. Moran, Initial failures in distributed
computations, Journal of parallel programming 18:4,1989, pp. 255–
273.

25

