
A Sweepline Algorithm for Generalized
Delaunay Triangulations∗

Sven Skyum

November 1991

Abstract

We give a deterministic O(n log n) sweepline algorithm to con-
struct the generalized Voronoi diagram for n points in the plane or
rather its dual the generalized Delaunay triangulation. The algorithm
uses no transformations and it is developed solely from the sweepline
paradigm together with greediness. A generalized Delaunay triangu-
lation can be based on an arbitrary strictly convex Minkowski dis-
tance function (including all Lp distance functions for 1 < p < ∞) in
contrast to ordinary Delaunay triangulations which are based on the
Euclidean distance function.

1 Introduction

The Voronoi diagram for a set of points, called sites, in the plane, divides the
plane into Voronoi regions, one for each site. The Voronoi region for a site
is the set of points in the plane which are as close to the site as to any other
site in the set. It is well known how to construct a Voronoi diagram in time
O(n log n). See [1] for an overview. Applications such as solving various

∗This research was (partially) supported by the ESPRIT II Basic Research Actions
Program of the EC under contract No. 3075 (project ALCOM).

1

proximity problems are most effectively done by using Voronoi diagrams.
Also in the area of motion planning, Voronoi diagrams can be applied [12].

Many generalizations of Voronoi diagrams have occurred in the literature.
One way of generalizing is to allow sites to be other objects than points —
eg disks, line segments etc. A natural generalization is to base the construc-
tion on other distance functions than the Euclidean one. Time O(n log n)
methods for general Voronoi diagrams for Lp norm 1 ≤ p ≤ ∞ and more
general distance functions also exist [2, 8, 9].

A recent generalization has been proposed by Klein [5] and followed up by
others [11, 6]. Here the concept of distance has been exchanged with the
notion of bisecting curves for pairs of sites. A bisecting curve J(p, q) for sites
p and q divides the plane into a p-region and a q-region. The abstract Voronoi
region for a site p is then the intersection of the various p-regions w.r.t. other
sites q. Given a suitable set of conditions on the family of separating curves
randomized O(n log n) algorithms for the construction of abstract Voronoi
diagrams are given in [11, 6].

The dual graph to a Voronoi diagram, ie the Delaunay triangulation is defined
to be the graph where the sites are the nodes and an edge between site p
and q exists if and only if the boundaries of the Voronoi regions for p and
q intersect. It is well known that apart from the abstract Voronoi diagrams
mentioned above this is equivalent to saying that there is a circle through
p and q for which the corresponding open disk does not contain any sites.
Thus generalized Delaunay triangulations can be characterized by empty
disks without referring to Voronoi diagrams and only the shape of the disks
is of importance. This has the advantage that there are no problems involved
in dealing with bisecting curves and their intersections.

Most algorithms for construction of Voronoi diagram and Delaunay trian-
gulations are either incremental or use the divide and conquer paradigm.
Fortune has presented [4] a sweepline algorithm for the Euclidean distance
function. He uses a clever but rather artificial transformation ∗ of the plane
to delay events for new points to be included. For the L1 and L∞ norms a
sweepline algorithm for the generalization of a Delaunay triangulation has
been given in [14]. It has been open whether there exist sweepline algorithms
for other distance functions and whether there exists one for the Euclidean
case without introducing a transformation like the one in Fortune’s paper.

2

We present an algorithm which constructs generalized Delaunay triangula-
tion (and generalized Voronoi diagrams) w.r.t. arbitrary Minkowski distance
functions (see [7] for an introduction to distance functions) defined by fami-
lies of pseudo disks. We follow the line taken in [2, 3] and define pseudo disks
from a given convex unit disk. This is slightly different from the notion used
in [10]. We define our notion of pseudo disks in the next section and some of
their fundamental properties are proven. In Section 3 we prove a number of
Lemmas on which the correctness and the time analysis of the algorithm, to
be presented in Section 4, are based.

2 Pseudo disks and their properties

In this section we define our notion of pseudo disks and prove a number of
their fundamental properties. First some basic notation.

(x(p), y(p)) denotes the coordinates of a point p ∈ �2.

For three points p, q, r ∈ �2, LT (p, q, r), (RT (p, q, r))is true if p, q and r form
a left (right) turn. That is

LT (p, q, r) ≡ (

∣
∣
∣
∣
∣
∣
∣

x(p) y(p) 1
x(q) y(q) 1
x(r) y(r) 1

∣
∣
∣
∣
∣
∣
∣

> 0)

and

RT ((p, q, r) ≡ (

∣
∣
∣
∣
∣
∣
∣

x(p) y(p) 1
x(q) y(q) 1
x(r) y(r) 1

∣
∣
∣
∣
∣
∣
∣

> 0)

For two distinct points p, q ∈ �2, Hl(p, q) and Hr(p, q) denote the half planes
defined by p and q:

Hl(p, q) = {r ∈ �2 | LT (p, q, r)}

and
Hr(p, q) = {r ∈ �2 | RT (p, q, r)}

For a set M in �2, ∂M denotes the boundary of M .

3

Finally pq denotes the line segment between two points p and q in �2.

In [10] a compact (closed and bounded) set in �2 with smooth boundary of
positive curvature is called an oval. A family D of ovals is called a family
of pseudo disks if and only if for every three non-colinear points there is a
unique oval D ∈ D which has these three points on its boundary.

We define a family of pseudo disks slightly differently, namely by defining a
pseudo unit disk U with centre in (0, 0) and then the family of pseudo disks
to consist of all sets which are scaled translations of U . A pseudo disk in our
notation is also a pseudo disk in the sense of [10], but not necessarily vice
versa.

Definition 2.1 (pseudo disks) A pseudo unit is with centre (0, 0) is a
compact strictly convex set U with smooth boundary such that (0, 0) is an
internal point of U . The family of pseudo disks given by a pseudo unit disk
U is {c + R · U | c ∈ �2, R ∈ �}. The pseudo disk c + R · U is said to have
centre c and radius R.

The Minkowski distance between p and q (d(p, q)) is the radius of the pseudo
disk with centre p and q on its boundary. That is q ∈ ∂(p + d(p, q)U). Note
that d(·, ·) is not necessarily symmetric.

Remarks
The set of Lp disks is for each 1 < p < ∞, a family of pseudu disks while
the set of L1 or L∞ disks are not, since they are neither strictly convex nor
smooth.

Lemma 2.1 For two different disks D1 and D2 with centres c1 and c2,
|∂D1 ∩ ∂D2| ≤ 2.

Proof Let D1 = c1 + R1U and D2 = c2 + R2U be two disks.
If c1 = c2, then either D1 and D2 are identical or the boundaries of D1 and
D2 do not intersect.
If c1
= c2, then let for i ∈ {1, 2} and t > 0, D

(t)
i = ci + tRiU . We will show

that for all t > 0, |∂D
(t)
1 ∩∂D

(t)
2 | ≤ 2. For sufficiently small ε, D

(ε)
1 ∩D

(ε)
2 = ∅.

Now let a > 0 be minimal such that D
(a)
1 ∩D

(a)
2
= ∅. Then, if p and q are two

different points of intersection, pq ⊂ ∂D
(a)
1 ∩ ∂D

(a)
2 in contraction with the

disks being strictly convex. Thus |∂D
(a)
1 ∩ ∂D

(a)
2 | = 1 and ∂D

(a)
1 and ∂D

(a)
2

have a common tangent la in the point of intersection. Consequently for

4

small ε, ∂D
(a+ε)
1 and ∂D

(a+ε)
2 will intersect in two points, since the common

tangent la above does not separate the disks any more.
If for some t > a, |∂D

(t)
1 ∩ ∂D

(t)
2 | ≥ 2, let b > a be the minimal such that

|∂D
(b)
1 ∩ ∂D

(b)
2 | ≥ 2. Let lb be the common tangent of a new point p of

intersection. lb must separate c1 from c2 because otherwise either the line
through c1 and p would intersect ∂D

(b)
1 in more than two points or the line

through c2 and p would intersect ∂D
(b)
2 in more than two points. Finally, since

∂D
(b)
1 and ∂D

(b)
2 intersect in at least two more points, lb cannot separate ∂D

(a)
1

from ∂D
(a)
2 . Hence lb must intersect either ∂D

(a)
1 or ∂D

(a)
2 in more than two

points. ✷

Existence of a disk D with three given non-colinear points p, q and r on its
boundary follows from smoothness, which together with Lemma 2.1 implies
the following fundamental properties of pseudo disks on which all Lemmas
of Section 3 and the algorithm in Section 4 are based.

Property 2.1

1. For a pseudo disk D und a line l, l intersects ∂D in zero, one or two
points.

2. For three non-colineur points p, q and r there is a unique pseudo disk
Dpqr with p, q und r on its boundary ∂Dpqr.

3. For two pseudo disks D1 and D2 with p, q ∈ ∂D1 ∩ ∂D2 (p
= q) the
following two statements are equivulent

D1 ∩ Hl(p, q) ⊆ D2 ∩ Hl(p, q)

D1 ∩ Hr(p, q) ⊇ D2 ∩ Hr(p, q)

4. For a pseudo disk D, p, q ∈ ∂D (p
= q) and r ∈ Hl(p, q) the following
statements are equivulent

r ∈ D
D ∩ Hl(p, q) ⊇ Dpqr ∩ Hl(p, q)
D ∩ Hr(p, q) ⊆ Dpqr ∩ Hr(p, q)

5

3 Analysis of the problem

Let a family of pseudo disks be fixed in the following. When we refer to
distance, disk, cocircular, they will among other things, always refer to the
given set of pseudo disks. For simplicity all figures will be for the Euclidean
case.

More notation is needed before we state the Lemmas.

Notation

For s ∈ �, ls denotes the line {(x, y) | y = s} and Below s denotes the closed
half plane {(x, y) | y ≤ s}.
For three different non-colinear points p, q, r ∈ �2, cpqr denotes the centre of
Dpqr, Rpqr denotes the radius, and tpqr denotes the unique point in Dpqr with
maximal y-coordinate.

For a set of points S in �2, M a subset of S and D a disk, EmptyS(D, M, s)
is stating that M is a subset of ∂D, D \ ∂D contains no points from S, and
D is below ls. Formally

EmptyS(D, M, s) ≡ (M ⊂ ∂D) ∧ ((D \ ∂D) ∩ S = ∅) ∧ (D ⊂ Below s).

Usually it is clear from the context what the set of points S is, so the subscript
S will be omitted.

All graphs involved in this paper will be planar. Hence the notion graph will
be used to mean both an undirected graph in the normal sense and a straight
line embedding of it.

As usual we will make some assumptions on the set of points S. They are all
easy to overcome and the algorithm to be presented is not sensitive to them,
but the Lemmas in this section will be simpler to state.

Assumption 1 No four points in S are cocircular.

A generalized Delaunay triangulation is defined as follows:

Definition 3.1 For a set of points S = {p1, p2, · · · , pn} in �2, the generalized
Delaunay triangulation of S is the graph G = (S, E), where E = {{pi, pj} |
there is a disk D where Empty(D, {pi, pj},∞)}.

6

As for the ordinary Delaunay triangulation of S, the generalized Delaunay
triangulation is indeed a triangulation of the convex hull of S. It is the
triangulation for which it holds that for all triangles �pqr in the triangulation,
Empty(Dpqr, {p, q, r},∞) (Figure 1). Edges in the Delaunay triangulation
will be called Delaunay edges.

Figure 1: Delaunay triangulation and empty disks.

The algorithm to be presented in Section 4 is based on Definition 3.1. The
paradigm on which it is based is, apart from the sweepline paradigm, that
the algorithm is greedy.

The sweepline will be horizontal and will be moved upwards. The goal is for a
specific sweepline ls to have found all the edges between pairs of points below
ls which are known to be a Delaunay edge. In other words, all pairs of points
{p, q} in S∩Below s for which there is a disk D such that Empty(D, {p, q}, s),
should have been identified. The sweepline status will then naturally contain
information on pairs of points {p, q} from S ∩ Below s which are not yet
known to be a Delaunay edge, but which might be. That is equivalent to
saying that there is a corresponding disk Dpq where Empty(Dpq, {p, q},∞)

7

but ∂Dpq intersects the sweepline ls in two points.

Thus an algorithm could be like the following (the sites are supposed to be
sorted according to increasing y-coordinates):

add{p1, p2} to E;
for i := 3 to n do

addedges {pj, pk}, j, k ≤ 2 for which there exists a disk D
where Empty(D, {pj, pk}, y(pi));

od ;
add edges {pj, pk} for which there is a disk D where

Empty(D, {pj, pk}∞)

The rest of this section contains of a number of Lemmas which enable us
to efficiently implement the above algorithm. The main results are that
for each new point pi to be added to the structure, we can find in time
O(log n) a point q in S ∩ Belowy(pi) such that there is a disk D where
Empty(D, {pi, q}y(pi)) (Lemmas 3.1 through 3.4) and that the only disks
Dpq with Empty(Dpq, {p, q},∞) (see above) we have to deal with, are among
those given by three consecutive points on the outer region of the planar
graph which has been constructed (Lemma 3.5).

Figure 2: The disks Dvd
pq , Ds

pq and the v-distance.

First some more useful notations.

Assumption 2 No two points in S have the same y-coordinate.

Definition 3.2 Let p and q be two distinct points in �2. The disk D, with
p, q ∈ ∂D and horizontal tangent in p if y(p) > y(q) and q otherwise, is
denoted Dvd

qp (Figure 2).

8

The v-distance between two points p, q ∈ �2 is the radius of Dvd
pq .

If s > max{y(p), y(q)}, Ds
pq denotes the disk where p, q ∈ ∂Ds

pq, ls is tangent
to ∂Ds

pq in t and t /∈ Hr(p, q).

Figure 3: The line segment on ls closer to p than to q w.r.t the v-distance.

Definition 3.3 Let p, q ∈ �2 and s > y(p) > y(q). The left end right end
points of the line segment {r ∈ ls | v − d(r, p) ≤ v − d(r, q)} (Figure 3) are
denoted tsqp and tspq.

Remark In general, if s > max{y(p), y(q)}, tspq is the point on ∂Ds
pq with

maximal y-coordinate and LT (p, q, tspq).

For the rest of this section, we analyse a static situation where s ∈ �, S =
{p1, p2, · · · , pm}, and y(p1) < y(p2) < · · · < y(pm) < s.

Lemma 3.1 The graph Gs = (S, Es) where Es = {{pi, pj} | there is a disk
D such that Empty(D, {p1, p2}, s)}, is connected and planar.

Proof See Figure 4. For pi, 1 < i ≤ m, let qi be the point among {p1, p2, · · · ,
pi−1} of minimal v-distance to pi. Then Empty(Dvd

piqi
, {pi, qi}, s) so from all

points pi in S, 1 < i ≤ m, there is an edge between pi and a point pj with
j < i. Therefore, Gs = (S, Es) is connected.

For planarity we have to prove that if {p, p′}, {q, q′} ∈ Es then they can have
only end points in common.

Let Dpp′ be a disk such that Empty(Dpp′ , {p, p′}, s) and let Dqq′ be defined

9

Figure 4: The connectedness and planarity of Gs (Lemma 3.1).

similarly. If Dpp′ ∩ Dqq′ = ∅ then the statement holds since rr′ ⊂ Drr′ , for
r ∈ {p, q}. Assume now that ∂Dpp′ ∩ ∂Dqq′ consists of two points r and r′.
Then p and p′ are situated on ∂Dpp′ outside Dqq′ \∂Dqq′ and q and q′ situated
on ∂Dqq′ outside Dpp′ \∂Dpp′ . Hence the open line segments from p to p′ and
q to q′ are separated by the line through r and r′. ✷

Assumption 3 For no points a, b, c ∈ S, y(tabc) = s.

Lemma 3.2 For a, b ∈ S, Empty(Ds
ab, {a, b}, s) if and only if a and b are

consecutive points on the outer region of Gs in clockwise order. (See Figure
6.)

Figure 5: Disks involved in the proof of Lemmas 3.2 and 3.3.

Proof See Figure 5(a). For the if part, let a and b be consecutive points

10

on the outer region of Gs in clockwise order and Dab a disk such that
Empty(Dab, {a, b}, s). Such a disk exists since {a, b} is in Es. Now if Ds

ab

contains other points from S than a and b, let D be a disk such that it con-
tains a, b and a one more point c from S. Then since c ∈ (Ds

ab∩Hl(a, b)), (D∩
Hl(a, b)) ⊂ Ds

ab and (D ∩ Hr(a, b)) ⊂ Dab. Hence Empty(D, {a, b, c}, s) and
{a, c} and {b, c} are in Es in contradiction with a and b being consecutive
points on the outer region of Gs in clockwise order.

Figure 6: The disks Ds
ab (Lemma 3.2).

With Assumption 3 the only if part is obvious. ✷

Let p1 = q1, q2, · · · , qk = p1 be the points on the boundary of the outer
region in clockwise order. Note that there can be several instances of points
from S in the sequence.

Lemma 3.3 x(tsqi−1qi
) < x(tsqiqi+1

) for 1 < i < k.

Proof By Assumption 3, x(tsqi−1qi
)
= x(tsqiqi+1

). Assume that x(tsqiqi+1
) <

x(tsqi−1qi
). Let p be the point on ∂Ds

qiqi+1
∩∂Ds

qi−1qi
with maximal y-coordinate.

Such a p exists since qi ∈ ∂Ds
qiqi+1

∩ ∂Ds
qi−1qi

. (See Figure 5(b))

By the remark following Definition 3.3, we have that tsqiqi+1
is the top point of

∂Ds
qiqi+1

and LT (qi, qi+1, t
s
qiqi+1

). By Lemma 3.2 we have that Empty(Ds
qi−1qi

,
{qi−1, qi}, s). Therefore qi+1 must be on the part of ∂Ds

qiqi+1
between p and

tsqiqi+1
(in anti clockwise order). See Figure 5. Similarly it follows that qi−1

11

must be on the part of ∂Ds
qi−1qi

between p and tsqi−1qi
(in clockwise order). It

follows that x(qi+1) < x(qi−1), y(qi+1) > y(qi). Since i /∈ {1, k}, qi−1, qi and
qi+1 cannot occur as consecutive points on the boundary of the outer region
of Gs in clockwise order. ✷

Lemma 3.4 Let p, q ∈ �2 and s > max{y(p), y(q)}. r ∈ ls is then to the left
of tspq on ls (x(r) < x(tspq)) if and only if LO(p, q, r), where
LO(p, q, r) ≡

[(y(p) < y(q)) ∧ LT (p, q, r) ∧ (v − d(r, p) < v − d(r, q))]∨
[(y(p) > y(q)) ∧ (RT (p, q, r) ∨ (v − d(r, p) < v − d(r, q)))]

Proof Straightforward observation (Figure 3).

The preceding Lemmas demonstrate that if the sequence q1, q2, · · · , qk on
the boundary of the outer region of Gs is also organized in a balanced tree
scheme, then for a point r on ls we can find in time O(log n) the instance qi of
a point such that x(tsqi−1qi

) < x(r) < x(tsqiqi+1
) which implies that v − d(r, qi)

is minimal over {q1, q2, · · · , qk}.
We now turn to the problem of identifying pairs of points {p, q} in S for
with there is a disk D such that empty(D, {p, q},∞) but for no disk D,
Empty(D, {p, q}, s). The reason why Empty(D, {p, q}, s) does not hold for
disks with p and q on the boundary is the presence of the other points from
S. Therefore we shall be looking for triples of points {p, q, r} in S such that
Empty(Dpqr, {p, q, r},∞) bit not Empty(Dpqr, {p, q, r}, s).
The set of those triples is denoted Tripless below. It turns out that the triple
of points from S where the corresponding disk has minimal y-coordinate for
the top point is to be found among triples of consecutive points on the outer
region (BTRIPLES s below). This is the subject of Lemma 3.5.

Tripless = {(a, b, c) ∈ S3 | Empty(Dabc, {a, b, c},∞) and |∂Dabc ∩ ls| = 2}

BTRIPLES s = {(qi−1, qi, qi+1)|1 < i < k and LT (qi−1, qi, qi+1)}

Lemma 3.5 If (a, b, c) minimizes y(tabc) over Tripless and (qi−1, qi, qi+1)
minimizes y(tqi−1qiqi+1

) over BTRIPLES s then {a, b, c} = {qi−1, qi, qi+1}.
Proof Assume first that {a, b, c} minimizes y(tabc) over Tripless. Assume
wlog that a, b and c occur in anti clockwise order on ∂Dabc (see Figure 7(a)).

12

Figure 7: (a) Disks corresponding to BTRIPLES s. (b) Disks involved in the
proof of Lemma 3.5.

We show that Empty(Ds
ab, {a, b}, s). This follows since S∩ (Dabc \∂Dabc) = ∅

and if Ds
ab ∩ (S \Dabc)
= ∅ then for a d ∈ Ds

ab ∩ (S \Dabc), {a, d, b} ∈ Tripless

and y(tabd) < y(tabc) contradicting the minimality of y(tabc). Thus {a, b} is in
Es. Similarly for {b, c}. Therefore it follows by Lemma 3.2 that a, b and c are
consecutive points on the outer region of Gs. LT (a, b, c) since a, b and c occur
on ∂Dabc in anti clockwise order so we conclude that (a, b, c) ∈ BTRIPLES s.
If (qi−1, qi, qi+1) minimizes y(tqi−1qiqi+1

) over BTRIPLES s then by a com-
pletely analogous argument we get that Empty(tqi−1qiqi+1

, {qi−1, qi, qi+1},∞)
such that (qi−1, qi, qi+1) ∈ Tripless from which the Lemma follows. ✷

4 The Algorithm

The time requirements in what follows are dependent on the time for com-
puting various quantities listed below. The numerical computations involved
are not dealt with here.

Assumption 4

1. For three distinct non-linear points p, q, r ∈ �2, y(tpqr) can be computed

13

in constant time.

2. For two points p, q ∈ �2, v − d(p, q) can be computed in constant time.

The algorithm uses three data structures (and pointers between them) sup-
porting various operations:

For s ∈ �, let Ss = {p ∈ S | y(p) < s} and Gs = (Ss, Es).

• GRAPH contains the straight line embedding of the graph Gs. Add-
Edge(p, q) adds edge {p, q} to GRAPH in constant time. Note, that
only edges on the the boundary are added. p might be a new point.

• BOUNDARY is a structure over the points on the outer region of Gs.
It supports the following operations: (note that there can be several
instances of the same point from S in BOUnDARY)

– before[q] and next[q], which for an instance q on the outer region
give in constant time the instances before and after q in clockwise
order.

– ClosestPointTo(pi), which for a new point pi in time O(log n) finds
the instance q of the closest point among Ss w.r.t. the v-distance,

such that x(t
y(pi
before[q]q) < x(pi) < x(t

y(pi
q next[q]q). This is possible

because of Lemmas 3.1 through 3.4

– InsertNewOnBoundary(p, q), which in time O(log n) inserts a new
point p by replacing instance q with q, p, q (adding the edge {p, q}).

– UpdateOnBoundary(q), which in time O(log n) removes q (adding
the edge {before[q], next[q]}).

• TRIPLES is a structure over points q on the outer region of Gs for
which LT (before[q], q, next[q]), supporting the operations: (like above
there can be several instances of the same point from S in TRIPLES)

– MinTop, which in constant time finds the minimal y-coordinate of
any top point tbefore[q] q next[q] of instances q in TRIPLES . If there
are no points in TRIPLES , then MinTop = ∞.

– GetPointCorrToMinTop, which in constant time finds the instance
q in TRIPLES corresponding to MinTop.

14

– DeleteFromTriples(q), which in time O(log n) deletes q from TRIP-
LES (if it is there).

– InsertInTriples(q), which in time O(log n) inserts q in TRIPLES .

There are two kinds of event points.
The first is point events, {y(p) | p ∈ S}. We assume that the points in
S = {p1, p2, · · · , pn} are sorted in increasing y-coordinates.
The second is top point events, y-coordinates for top points of the disks
corresponding to points in TRIPLES . These event points are exactly points
where Assumption 3 is violated so this assumption is not supposed to hold.
If a point event and a top point event coincide then the top point event is
handled first.

Apart from the above listed operations three procedures are used:

Initialize(p) sets up the structures for one point p.

Add(p)To(q) adds a new point p to the structures by adding the edge {p, q}
(q is on the boundary). See Figure 8.

Figure 8: Adding a new point to the structure.

15

Add(p)To(q):
AddEdge(p,q);
InsertNewOnBoundary(p,q);
DeleteFromTriples(q);
if LT(before[before[p]], before[p], p) then

InsertInTriples(before[p]);
if LT(p,next [p], next [next [p]]) then

InsertInTriples(next[p]);

Note, that before[p] and next[p] above are different instances of q.

Update(q). q is on the boundary and the edge {before[q], next[q]} is added
to the structure because y(tbefore[q]qnext[q]) = s. See Figure 9.

Figure 9: Adding a new edge on the boundary.

Update(q);
bq :=before[qj; nq :=next[q];
AddEdge(bq, nq);
UpdateOnBoundary(q);
DeleteFromTriples(bq);

16

DeleteFromTriples(q);
DeleteFromTriples(nq);
if LT(before[bq], bq, nq) then

InsertInTriples(bq);
if LT(bq, nq, next[nq]) then

Insert InTriples(nq);

The algorithm is not explicitly presented as event driven, but in lines 9 and
10 point events are handled while top point events are handled in lines 5, 6,
13 and 14.:

Algorithm Delaunay

0 : Initialize(p1);
1 : Adq(p2)To(p1);
2 : for i := 3 to n do
3 : if MinTop ≤ y(pi) then
4 : repeat
5 : q := GetPointCorrToMinTop;
6 : Update(q)
7 : until MinTop > y(pi);
8 : fi;
9 : q := ClosestPointTo(pi);

10: Add(pi)To(q);
11: od;
12: repeat
13: q := GetPointCorrToMinTop;
14: update(q)
15: until MinTop = ∞

The complexity of the algorithm, is with Assumption 4, easily seen to be
O(n log n).
Correctness is an easy exercise using invariant techniques. The appropriate
invariants between lines l and l + 1 are for a small enough ε:

17

0, 1 : Gy(p1)+ε is constructed.
1, 2 : Gy(p2)+ε is constructed.
2, 3 : Gy(pi−1)+ε is constructed.
3, 4 : GMinTop−ε is constructed.
4, 5 : GMinTop−ε is constructed.
5, 6 : Gy(tbefore[q]qnext[q])−ε is constructed.

6, 7 : GMinTop−ε is constructed.
7, 8 : Gy(pi)−ε is constructed.
8, 9 : Gy(pi)−ε is constructed.
9, 10 : Gy(pi)−ε is constructed.

and Empty(Dvd
piq

, {pi, q}, y(pi)).
10, 11: Gy(pi)+ε is constructed.
11, 12: Gy(pn)+ε is constructed.
12, 13: GMinTop−ε is constructed.
13, 14: Gy(tbefore[q]qnext[q])−ε is constructed.

14, 15: GMinTop−ε is constructed.
15 : G∞ is constructed.

To construct the generalized Voronoi diagram for S we only have to change
the procedures Add(·)Edge(·) and Update(·) slightly.
For the construction of Delaunay triangulations, only the shape of the disks
is of importance, not where the centres are situated. To be able to construct
the Voronoi diagram we need to know the centres and the bisecting curves
derived from the distance function. (See Figure 10.)

Observe that cbefore[q]qnext[q] where q is an argument to Update in lines 6 and
14 is a Voronoi node and that all Voronoi nodes are met that way. If we just
represent bisecting curves by giving their end points and the two sites the
bisect, then we only have to be able to compute cpqr in constant time, given
sites p, q and r, to turn algorithm Delaunay into an algorithm constructing
a generalized Voronoi diagram in time O(n log n).

Conclusions

We have presented a very general sweepline algorithm for construction of gen-
eralized Delaunay triangulations and generalized Voronoi diagrams without

18

Figure 10: An example of a bisecting curve.

using any transformations. Although the analysis might not seem simple, the
algorithm is so and is derived in a natural way from the sweepline paradigm
together with greediness.

The reason for introducing the transformation ∗ in Fortune’s paper [4] was to
prevent updating of the structure to take place below the sweepline. There
is no need for that as long as we can handle the events and operations in
the right order as demonstrated in this paper. If we apply our algorithm
to Euclidean disks and move the centres to the top points then the con-
structed Voronoi diagram is exactly the transformed diagram in Fortune’s
paper. Moving the centre to the top point of the disk precisely prevents new
Voronoi nodes to be added below the sweepline.
If wanted, the centre could be moved even outside the disks and we could
still construct a corresponding Voronoi diagram.

We can also drop the requirement that disks should be strictly convex and

19

smooth. Convexity is enough. Uniqueness and existence of circles through
three non-colinear points are the problem. The problem with uniqueness
can be overcome by approximating the disks by strictly convex ones. The
problem with non-existence implies that the Delaunay triangulation might
not be a triangulation of the convex hull of S. For instance L∞ disks can be
approximated by Lp disks for p → ∞. This enables us to define a canonical
L∞ disk through three given points if it exists. This suffices for the algorithm
to be applicable.

Finally the method can be generalized to higher dimensions. This will be
the topic of a forthcoming paper.

References

[1] Aurenhammer, F. Voronoi Diagrams - A survey Tech. Rep. 263, In-
stitute for Information Processing, Graz Technical University (1988)

[2] Chew, L.P. & Drysdale III, R.L.(Scot) Voronoi Diagrams based
on Convex Distance Functions Proc. of Computational Geometry (1985)
1, 235–244

[3] Drysdale III, R.L.(Scot) A Practical Algorithm for Computing the
Delaunay Triangulation for Convex Distance Functions Proc. of Discrete
Algorithms (1990) 1, 159–168

[4] Fortune, S. A Sweepline Algorithm for Voronoi Diagrams Algoritmica
(1987) 2, 153–174

[5] Klein, R. Concrete and Abstract Voronoi Diagrams Lecture Notes in
Computer Science, Vol 400, Springer Verlag, Berlin

[6] Klein, R. & Mehlhorn, K. & Meiser, St On the Construction
of Abstract Voronoi Diagrams, II Proc. SIGAL Symp. on Algorithms,
Tokyo (1990). Lecture Notes in Computer Science, Vol. 450, Springer
Verlag, Berlin

[7] Lay, S. R. Convex Sets and their Applications Wiley, New York (1972)

20

[8] Lee, D.T. Two-Dimensional Voronoi Diagrams in the Lp-Metric
JACM (1980) 27, 604–618

[9] Lee, D.T. & Drysdale R.L. Generalizations of Voronoi diagrams in
the plane Siam J. Comput., (1981) 10, 73–87

[10] Matous̆ek, J. & Seidel, R. & Welzl, E. How to Net a Lot with
Little: Small ε-Nets for Disks and Halfspaces Proc. of Computational
Geometry (1990) 6, 16–22

[11] Mehlhorn, K. & Meiser, St. & Ó’Dúnlaing On the Construction
of Abstract Voronoi Diagrams Discrete and Computational Geometry
(1991) 6, 211–224

[12] Ó’Dúnlaing, C. & Sharir, M. & Yap, C.K. Retraction: A new
approach to Motion-Planning STOC (1983) 15, 207–220

[13] Sharir, M. Intersection and closest-pair problems Siam J. Comput.,
(1985) 14, 448–468

[14] Shute, G.M. & Deneen, L.L. & Thomborson, C.D. An O(n log n)
Plane-Sweep Algorithm for L1 and L∞ Delaunay Triangulation Algorit-
mica (1991) 6, 207–221

21

