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1 Introduction

Linear logic [Gir87, GL87] differs from intuitionistic logic primarily in the
absence of the structural rules of weakening and contraction. Weakening al-
lows us to prove a proposition in the context of irrelevant or unused premises,
while contraption allows us to use a premise an arbitrary number of times.
Linear logic has been galled a “resource-conscious logic”, since the premises
of a sequent must appear exactly as many times as they are used.

In non–commutative linear logic, the structural rule of exchange, which al-
lows one to permute the order of premises, is also discarded. Girard [Gir89]
has stated that,

“ . . . [the Lambeck calculus’] rejection of exchange seem[s] to in-
dicate that, eventually, linear logic should be non–commutative”

and continues in the same article to refer to

“ . . . non–commutative linear logic, which should play a promi-
nent role in the future, but which is still very experimental.”

∗This work has been supported by ESPRIT CEDISYS and CLICS and by the Danish
DART.

1



In this paper, we address this “experimental nature” by presenting a non–
commutative intuitionistic linear logic with several attractive properties. Our
logic discards even the limited commutativity of Yetter’s logic [Yet90] in
which eyelid permutations of formulae are permitted. It arises in a natural
way from the system of intuitionistic linear logic presented in [GL87], and we
prove a cut elimination theorem. In linear logic, the rules of weakening and
contraction are recovered in a restricted sense by the introduction of the ex-
ponential modality (!). This recaptures the expressive power of intuitionistic
logic. In our logic the modality ! recovers the non–commutative analogues of
these structural rules. However, the most appealing property of our logic is
that it is both sound and complete with respect to interpretation in a natural
class of models which we call relational quantales.

Quantales are a generalisation of locales, introduced by Mulvey [Mul86] with
the aim of providing a constructive formulation of the foundations of quantum
mechanics. Interest in quantales has recently been stimulated by the fact that
intuitionistic linear logic can be interpreted in any commutative quantale,
and that commutative quantales constitute a sound and complete class of
models [Yet90].

We study relational quantales, in which the elements are relations on a set
A ordered by inclusion, and the monoid operation is relational composition.
Such structures have been proposed by Hoare and He Jefing [HH87] as mod-
els for the semantics of non-deterministic while programs and for program
specification. Our central result is that relational quantales provide a sound
and complete class of models for our non–commutative intuitionistic linear
logic. The result rests on a representation theorem [BG91] for quantales
which states that every quantale is isomorphic to a relational quantale.

The value of this result is that it provides natural models in which the non–
commutative ⊗ is interpreted by the familiar notion of relational composition
and the exponential !A has a natural interpretation as the largest reflexive
and transitive relation contained in A. In addition, it suggests that non–
commutative linear logic may be a suitable language to describe the struc-
tures proposed by Hoare and He Jefing.
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2 Non–commutative Intuitionistic Linear Logic

In [GL87], Girard and Lafont present the following system of intuitionistic
linear logic.

A � A
(Id)

Γ � A ∆, A � B
Γ, ∆ � B

(Cut)
Γ, A, B, ∆ � C
Γ, B, A, ∆ � C

(Ex)

Γ,0 � A
(0 �)

Γ � 1
(� 1)

Γ � A

Γ, I � A
(I �) � I

(� I)

Γ � A ∆ � B
Γ, ∆ � A⊗B

(� ⊗)
Γ, A, B � C

Γ, A⊗B � C
(⊗ �)

Γ � A

Γ � A⊗B
(� ⊗ l)

Γ, A, B � C

Γ, A⊗B � C
(⊗ � r)

Γ, A � C Γ, B � C
Γ, A⊕B � C

(⊗ �)
Γ, A Γ � B
Γ � A ∧B

(� ∧)

Γ, A � C

Γ, A ∧B � C
(l ∧ �)

Γ, B � C

Γ, A ∧B � C
(r ∧ �)

Γ � A ∆, B � C

Γ, ∆, A � B � C
(��)

Γ, A � B
Γ � A � B

(��)

Non–commutative intuitionistic linear logic (NILL) is obtained by discard-
ing the rule of exchange and making the appropriate modifications to the
remaining rules. The rules of NILL are as follows.

A � A
(Id)

Γ � A ∆, A, ∆′ � B
∆, Γ, ∆′ � B

(Cut)
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Γ,0, ∆ � A
(0 �)

Γ � 1
(� 1)

Γ, ∆ � A

Γ, I, ∆ � A
(I �) � I

(� I)

Γ � A ∆ � B
Γ, ∆ � A⊗B

(� ⊗)
Γ, A, B, ∆ � C

Γ, A⊗B, ∆ � C
(⊗ �)

Γ � A

Γ � A⊗B
(� ⊗ l)

Γ � B
Γ, A⊗B

(� ⊕ r)

Γ, A, ∆ � C Γ, B, ∆ � C
Γ, A⊕B, ∆ � C

(⊗ �)
Γ � A Γ � B

Γ � A ∧B
(� ∧)

Γ, A, ∆ � C

Γ, A ∧B, ∆ � C
(l ∧ �)

Γ, B, ∆ � C

Γ, A ∧B, ∆ � C
(r ∧ �)

Γ � A ∆, B, ∆′ � C

∆, A �r B, Γ, ∆′ � C
(�r�)

Γ, A � B

Γ � A �r B
(��r)

Γ � A ∆, B, ∆′ � C

∆, Γ, A �l B, ∆′ � C
(�l�)

A, Γ � B

Γ � A �l B
(��l)

Non–commutative linear logic differs from linear logic primarily in the ab-
sence of the exchange rule:

Γ, A, B, ∆ � C

Γ, B, A, ∆ � C
(Ex)

Thus in NILL the multiplicative connective ⊗ and the comma of the left
hand side of a sequent are non–commutative. The additive connectives ∧
and ⊕ remain commutative. There are two main consequences of discarding
the exchange rule. Firstly, we replace linear implication by two implications,
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�l and �r, whose rules of introduction and elimination differ subtly. The
following derived theorems illustrate the difference between these two impli-
cations:

A, A �l B � B A �r B, A � B

Secondly, the position of a formula in the left hand side of a sequent becomes
significant, and we must modify certain rules accordingly. Thus the rules
(0 �), (I �), (⊕ �), (⊗ �) (r∧ �), (l∧ �) and (Cut) each have an additional
∆ in their premises and conclusions There are no other modifications.

Remark 2.1 In fact, our cut rule is derivable from the apparently weaker
rule:

Γ � A A � B
Γ � B

(Cut′)

Proof: Suppose that Γ � A and ∆, A, ∆′ � B where ∆ = ∆1, ∆2, . . . , ∆n

and ∆′ = ∆′
1, ∆

′
2, . . . , ∆

′
m. Then by repeated applications of the rule (� ⊗)

we obtain

∆n � ∆n Γ � A
∆n−1 � ∆n−1 ∆n, Γ � ∆n ⊗ A

∆n−1, ∆n, Γ � ∆n−1 ⊗∆n ⊗ A
...

∆, Γ � ∆1 ⊗∆2 ⊗ · · · ⊗∆n ⊗ A ∆′
1 � ∆′

1

∆, Γ, ∆′
1 � ∆1 ⊗∆2 ⊗ · · · ⊗∆n ⊗A⊗∆′

1
...

∆, Γ, ∆′ � ∆1 ⊗∆2 ⊗ · · · ⊗∆n ⊗ A ⊗∆′
1 ⊗ · · · ⊗∆′

m

and by repeated applications of the rule (⊗ �) we obtain

∆1, ∆2, . . . , ∆n, A, ∆′ � B
∆1 ⊗∆2 . . . ∆n, A, ∆′ � B

...

∆1 ⊗∆2 ⊗ · · · ⊗∆n ⊗ A⊗∆′
1 ⊗ · · ·∆′

m � B

and finally we obtain the sequent ∆, Γ, ∆′ � B by applying the rule Cut’ to
the formula ∆1 ⊗∆2 ⊗ · · ·∆n ⊗ A⊗∆′

1 ⊗ · · · ⊗∆′
m. ✷
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In particular, we could have taken the cut rule from the system of Girard
and Lafont. However, it is technically convenient to take our cut rule as
primitive.

3 Cut Elimination

We prove the central logical result, that the cut rule is redundant. We assume
standard definitions of the height h(π) of a proof π and the degree of a formula
[GLT89]. The degree of a cut rule is the degree of the cut formula and the
degree of a proof is the maximum degree of its cut rules.

Lemma 3.1 Let C be a formula of degree d and π, π′ proofs of degree < d of
Γ � C and ∆0, C, ∆1 � B respectively. Then there is a proof of ∆0, Γ, ∆1 � B
of degree < d.

Proof: We proceed by induction on h(π) + h(π′) and consider the possible
last rules r and r′ of π and π′ resnectivelv.

• If r is (id) we use the proof π′.

• If r′ is (id) we use the proof π.

• If r is
Γ1 � D Γ0, D, Γ2 � C

Γ0, Γ1, Γ2 � C
(Cut)

we apply the inductive hypothesis to the proof of Γ0, D, Γ2 � C and π′

to obtain a proof of ∆0, Γ0, D, Γ2, ∆1 � B of degree < d. We then cut
on the formula D which is of degree < d since it is cut on in the proof
π which has degree < d, by the hypotheses of the lemma.

• If r′ is
Γ1 � D Γ0, D, Γ2, C, Γ3 � B

Γ0, Γ1, Γ2, C, Γ3 � B
(Cut)

we apply the inductive hypothesis to π and the proof of Γ0, D, Γ2, C, Γ3 �
B to obtain a proof of Γ0, D, Γ2, Γ, Γ3 � B of degree < d. We then cut
on the formula D which is of degree < d since it is cut on in the proof
π′ which has degree < d, by the hypotheses of the lemma.

6



• If r is (◦ �) for some connective ◦ we apply the inductive hypothesis
where appropriate to π′ and to the proofs πi of the premises of r, and
apply r to the resulting proofs.

• If r′ is (� ◦) for some connective ◦ we apply the inductive hypothesis
where appropriate to π and to the proofs π′

j of the premises of r′, and
apply r′ to the resulting proofs.

The final (and key) case is where r is (� ◦) and r′ is (◦ �) for some connective
◦. We show how to transform each of the possible cases.

∆0,∆1 � C
� I ∆0, I, ∆1 � C ❀ ∆0, ∆1 � C

∆0,∆1 � C

Γ0 � A Γ1 � B ∆0, A, B,∆1 � C Γ1 � B ∆0, A, B,∆1 � C
Γ0,Γ1 � A⊗B ∆0, A⊗B,∆1 � C ❀ Γ0 � A ∆0, A Γ1,∆1 � C

∆0,Γ0,Γ1,∆1 � C ∆0,Γ0,Γ1,∆1 � C

Γ � A ∆0, A,∆1 � C ∆0, B,∆1 � C
Γ � A⊕B ∆0, A⊕B,∆1 � C ❀ Γ � A ∆0, A,∆1 � C

∆0,Γ,∆1 � C ∆0,Γ,∆1 � c

Γ � B ∆0, A,∆1 � C ∆0, B,∆1 � C
Γ � A⊕B ∆0, A⊕B,∆1 � C ❀ Γ � B ∆0, B,∆1 � C

∆0,Γ,∆1 � C ∆0,Γ,∆1 � C

Γ � A Γ � B ∆0, A,∆1 � C
Γ � A ∧B ∆0, A ∧B,∆1 � C ❀ Γ � A ∆0, A,∆1 � C

∆0,Γ,∆1 � C ∆0,Γ,∆1 � C

Γ � A Γ � B ∆0, B,∆1 � C
Γ � A ∧B ∆0, A ∧B,∆1 � C ❀ Γ � B ∆0, B,∆1 � C

∆0,Γ,∆1 � C ∆0,Γ,∆1 � C

Γ, A � B ∆1, A ∆0, B,∆2 � C ∆1 � A Γ, A � B
Γ � A �r B ∆0, A �r B,∆1,∆2 � C ❀ Γ,∆1 � B ∆0, B,∆1 � C

∆0,Γ,∆1,∆2 � C ∆0,Γ∆1,∆2 � C

Γ, A � B ∆1, A ∆0, B,∆2 � C ∆1 � A A,Γ � B
Γ � A �l B ∆0,∆1, A �l B,∆2 � C ❀ ∆1,Γ � B ∆0, B,∆2 � C

∆0,∆1,Γ,∆2 � C ∆0,∆1,Γ,∆2 � C
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The completes the proof. ✷

Theorem 3.2 (Cut Elimination) The Cut rule is redundant.

Proof By a simple inductive argument, it suffices to show that any proof
π of degree d can be replaced by a proof of degree < d. We prove this by
induction on the height of π.

If the last rule r is not a cut rule of degree d then, by the inductive hypothesis,
there exist proofs πi of the premises of r of degree < d; we can apply r to
these πi. If the last rule is a cut rule of degree d then the conditions of
Lemma 3.1 apply and the result follows. ✷

4 The Exponential Modality

In [GL87], Girard and Lafont introduce an exponential modality ! with the
following rules

!A � I
(!1 �)

!A � A
(!2 �)

!A �!A⊗!A
(!3 �)

B � I B � A B � B ⊗B
B �!A

(�!)

The rule (�!) characterises the interpretation of !A in any quantale as the
greatest fixed point of the equation x = I ∧ [[A]] ∧ (x ⊗ x). An important
consequence of introducing ! is that we regain weakening and contraction in
the following form

Γ � B

!A � I
(Weak)

Γ, !A, !A � B
Γ, !A � B

(Con)

as derived rules of the calculus. This fact underlies the existence of the faith-
ful translation of intuitionistic logic into intuitionistic linear logic [Gir87]. An
appealing feature of NILL is that if we introduce the exponential ! with the
same rules (!1 �), (!2 �), (!3 �) and (�!) then we obtain the non–commutative
analogues of weakening and contraction.

Proposition 4.1 The following rules,

Γ � B

Γ, !A, ∆ � B
(Weak)

Γ, !A, !A, ∆ � B
Γ, !A, ∆ � B

(Con)
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are derivable in NILL.

Proof

✷

In fact, these rules are stronger than might have been expected, since a
formula !A can be inserted or contracted upon at an arbitrary position in
a sequent and not just at the end. Observe that the exchange rule cannot
be recovered in this way since, for example, the sequent !A, B � B ⊗ A is
not derivable in NILL, as we shall demonstrate in Section 6. This accords
well with the intuitive notion that the formula !A represents “as many A’s as
one needs” [Gir89], together with the non–commutative insistence that the
position in which these A’s occur is significant.

5 Quantales and NILL

We recall some basic definitions concerning quantales [Ros90].

Definition 5.1 A quantale is a 4-tuple 〈Q,≤,⊗, 1〉 such that

• 〈Q,≤〉 is a complete join semi–lattice,

• 〈Q,⊗, 1〉 is a monoid with unit 1, and

• for any indexing set J ,

p⊗ ∨j∈Jqj = ∨j∈J(p⊗ qj) and (∨j∈Jpj)⊗ q = ∨j∈J(pj ⊗ q).

A quantale is commutative if 〈Q,⊗, 1〉 is a commutative monoid.

Remark 5.2 If 〈Q,≤,⊗, 1〉 is a quantale then 〈Q,≤〉 is a complete lat-
tice, since any complete join semi–lattice is also a complete lattice, (see for
example [Joh82]).
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Example 5.3 The powerset P(M) of a monoid 〈M, +, 0〉 is a quantale with
joins given by unions, the operation ⊗ given by

A⊗B = {a + b | a ∈ A, b ∈ B}

and unit 1 = {0}. 〈P(M),⊆,⊗, {0}〉 is the free quantale on 〈M, +, 0〉.
Definition 5.4 Let 〈Q,≤,⊗, 1〉 and 〈Q′,≤′,⊗′, 1′〉 be quantales. A function
from Q to Q′ is a quantale homomorphism if it preserves the monoid structure
and all joins, and a quantale isomorphism if it is also a bijection.

Remark 5.5 If 〈Q,≤,⊗, 1〉 is a quantale then the functors q−⊗q and q⊗−
have right adjoints �r − and q �l − given by

q �r p = ∨{r | r ⊗ q ≤ p} and q �l p = ∨{r | q ⊗ r ≤ p}

In a commutative quantale these operations coincide.

The following derived operation will also prove useful.

Definition 5.6 Let 〈Q,≤,⊗, 1〉 be a quantale. For any q ∈ Q, let !q be the
element of Q given by:

!q = ∨{p | p ≤ 1 ∧ q ∧ p⊗ p}

We now describe the interpretation of NILL in any quantale and prove sound-
ness and completeness. Yetter [Yet90] has proved similar results for linear
logic and cyclic non–commutative linear logic with respect to quantales with
certain extra structure.

Definition 5.7 A model of NILL is a pair 〈Q, τ〉 where Q is a quantale and
τ is a function from the linear atoms to Q. The interpretation of NILL in
〈Q, τ〉 is a function [[ − ]] from the formulae F of NILL to Q given by:

• [[A]] = τ(A) for each linear atom A,

• [[1]] = �,

• [[0]] = ⊥,

• [[I]] = 1,

• [[A ∧B]] = [[A]] ∧ [[B]],
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• [[A⊕B]] = [[A]] ∨ [[B]],

• [[A⊗B]] = [[A]]⊗ [[B]],

• [[A �r B]] = [[A]] �r [[B]],

• [[A �l B]] = [[A]] �l [[B]], and

• [[!A]] =![[A]]

Definition 5.8 Let 〈Q, τ〉 be a model of NILL. We say that 〈Q, τ〉 entails the
sequence Γ1, Γ2, . . . , Γn � A, denote Γ |=〈Q,τ〉 A, if [[Γ1]]⊗ [[Γ2]]⊗ · · · ⊗ [[Γn]] ≤
[[A]]. In the special case where n = 0, we say that 〈Q, τ〉 entails the sequent
� A if 1 ≤ [[A]]. We write Γ |= A if Γ |=〈Q,τ〉 A for all models 〈Q, τ〉.
We now state and prove soundness and completeness of NILL with respect
to interpretation in quantales. First observe that the interpretation of ⊗ in
any model is monotonic in each argument, that is,

if [[A]] ≤ [[C]] and [[B]] ≤ [[D]] then [[A⊗B]] ≤ [[C ⊗D]].

This follows immediately from fact that, in any quantale, ⊗ is monotonic in
each argument.

Theorem 5.9 (Soundness) Γ � A implies that Γ |= A.

Proof: We proceed by induction on the structure of the proof of Γ � A.
Thus we show soundness with respect to each of the rules of non-commutative
intuitionistic linear logic.

In the case of the rule (Id), we have [[A]] ≤ [[A]] for any formula A.

In the case of the rule (Cut), by inductive hypothesis [[Γ]] ≤ [[A]] and [[∆ ⊗
A⊗∆′]] ≤ [[B]].
By monotonicity of ⊗, we have [[∆⊗ Γ⊗∆′]] ≤ [[B]].

In the case of the rule (0 �), we have [[Γ]] ⊗ ⊥Q ⊗ [[∆]] = ⊥Q ≤ [[A]] for any
formula A.

In the case of the rule (� 1), the proof is immediate since 1 is interpreted by
the top element of the quantale.

In the case of the rule (I �), by hypothesis we have [[Γ]]⊗ [[∆]] ≤ [[A]].
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Since 1 is the unit of ⊗, we have [[Γ]]⊗ 1⊗ [[∆]] ≤ [[A]] and so
[[Γ]]⊗ [[I]]⊗ [[∆]] ≤ [[A]] and so
[[Γ⊗ I⊗∆]] ≤ [[A]] as required.

In the case of the rule (� I), the result is immediate.

In the case of the rule (⊗ �) the result is immediate.

In the case of the rule (� ⊗), by inductive hypothesis [[Γ]] ≤ [[A]] and [[∆]] ≤
[[B]].
By monotonicity of ⊗, we have [[Γ⊗∆]] ≤ [[A⊗B]].

In the case of the rule (� ⊕ l), by inductive hypothesis [[Γ]] ≤ [[A]].

For any formula B we have [[Γ]] ≤ [[A]]∨[[B]] and so [[Γ]] ≤ [[A]]∨[[B]] = [[A⊕B]].

In the case of the rule (� ⊕ r), the proof is similar.

In the case of (⊕ �), by inductive hypothesis [[Γ]]⊗ [[A]]⊗ [[∆]] ≤ [[C]]
and [[Γ]]⊗ [[B]]⊗ [[∆]] ≤ [[C]]. Hence [[Γ]]⊗ ([[A]] ∧ [[B]])⊗ [[∆]] ≤ [[C]] and

[[Γ⊗ (A⊕B)⊗∆]] ≤ [[C]].

In the case of the rule (� ∧), by inductive hypothesis [[Γ]] ≤ [[A]] and [[Γ]] ≤ [[B]]
and thus [[Γ]] ≤ [[A]] ∧ [[B]] = [[A ∧B]].

In the case of the rule (l ∧ �), by inductive hypothesis [[Γ]]⊗ [[A]]⊗ [[∆]] ≤ [[C]],
and so we have [[Γ]]⊗ ([[A]] ∧ [[B]])⊗ [[∆]] ≤ [[Γ]]⊗ [[A]]⊗ [[∆]] for any formula
B. Thus [[Γ]]⊗ ([[A ∧ B]])⊗ [[∆]] ≤ [[C]] by definition of the interpretation of
∧, and so [[Γ⊗ (A ∧B)⊗∆]] ≤ [[C]].

In the case of the rule (r ∧ �) the proof is similar.

In the case of rule (�r�), by inductive hypothesis [[Γ]] ≤ [[A]] and [[∆⊗B ⊗
∆′]] ≤ [[C]].

Now ∨{Y | Y ⊗ [[A]] ≤ [[B]]} ≤ ∨{Z | Z ⊗ [[Γ]] ≤ [[B]]}, since [[Γ]] ≤ [[A]].

Thus [[(A �r B)]]⊗ [[Γ]] ≤ [[B]] and so
[[(A �r B)⊗ Γ]] ≤ [[B]] and so
[[∆⊗ (A �r B)⊗ Γ⊗∆′]] ≤ [[∆⊗B ⊗∆′]] by monotonicity, and so
[[∆⊗ (A �r B)⊗ Γ⊗∆′]] ≤ [[C]].

In the case of the rule (�l�), the proof is similar.
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In the case of the rule (��r), by inductive hypothesis [[Γ⊗A]] ≤ [[B]]. Hence
[[Γ]] ≤ ∨{Y | Y ⊗ [[A]] ≤ [[B]]}, and so [[Γ]] ≤ [[A �r B]].

In the case of the rule (��l), the proof is similar.

In the case of the rule (! �), observe that since

[[!A]] = ∨{B | B ≤ 1 ∧ [[A]] ∧ (B ⊗B)},

it is immediate that [[!A]] ≤ [[I ∧ A ∧ (!A⊗!A)]].

In the case of the rule (� !), by inductive hypothesis [[B]] ≤ [[I∧A∧ (B⊗B)]].
Hence

[[B]] ≤ ∨{Y | Y ≤ 1 ∧ [[A]] ∧ (Y ⊗ Y )},
and so [[B]] ≤ [[!A]].

This completes the proof that linear logic is sound with respect to interpre-
tation in quantales. ✷

In order to prove completeness, we construct a model 〈Q, τ〉 for which Γ |=〈Q,τ〉
A implies that Γ � A. The following lemmas will prove useful.

Lemma 5.10 Γ1, Γ2, . . . , Γn � A if and only if Γ1 ⊗ Γ2 ⊗ . . .⊗ Γn � A.

Proof: Suppose that Γ1, Γ2, . . . , Γn � A. Then by repeated applications of
the rule (⊗ �), we obtain Γ1 ⊗ Γ2 ⊗ . . .⊗ Γn � A.
Conversely, suppose that Γ1 ⊗ Γ2 ⊗ . . . ⊗ Γn � A. Then by repeated appli-
cations of the rule (� ⊗), we obtain Γ1, Γ2, . . . , Γn � Γ1 ⊗ Γ2 ⊗ . . .⊗ Γn, and
then by (Cut) we obtain Γ1, Γ2, . . . , Γn � A. ✷

Lemma 5.11 In NILL, we have the following results:

1. P ⊗ (Q⊗R) �� (P ⊗Q)⊗R,

2. P � Q⊗ I if and only if P � Q,

3. P � I⊗Q if and only if P � Q,

4. P � A ∧B if and only if P � A and P � B,

5. P ⊗Q � R if and only if P � Q �r R,

6. P ⊗Q � R if and only if Q � P �l R, and

Proof:
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1. We prove (P ⊗Q)⊗R � P ⊗ (Q⊗R) as follows:

The proof of the converse is similar.

2. That P � Q ⊗ I is an immediate consequence of the rule (� ⊗). Con-
versely:

3. The proof of 3 is similar to the proof of 2.

4. We prove P � A from P � A ∧B. The proof of P � B is similar.
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5. The rule (��r) suffices to prove the forward implication. For the
converse:

6. The proof of 6 is similar to the proof of 5.

✷

We now begin the construction of the required model.

Definition 5.12 Let F be the set of NILL formulae. A subset I ⊆ F is an
ideal if,

• 0 ∈ I,

• A ∈ I and B � A implies that B ∈ I (that is, I is downwards closed),
and

• A, B ∈ I implies that A⊕B ∈ I.

Notation 5.13 Let S ⊆ F be any subset of F . Define

∨S = ∩{I ⊆ F | S ⊆ I}

where each I is an ideal. Note that ∨S is an ideal since ideals are closed
under intersection.

15



Lemma 5.14 Let A ∈ F . Then ∨{A} = {B | B � A}.
Proof: Evidently {B | B � A} ⊆ ∨{A} as ideals are downwards closed.
However, {B | B � A} is an ideal since 0 � A and if B � A and C � A then
B ⊕ C � A by (� ⊕). Thus ∨{A} ⊆ {B | B � A}. ✷

Lemma 5.15 ∨{A} ⊆ ∨{B} if and only if A � B.

Proof: Suppose that ∨{A} ⊆ ∨{B}. Then by Lemma 5.14, whenever C � A
we have C � B. In particular, since A � A, we have A � B. Conversely,
suppose that A � B and C ∈ ∨{A}. Then C � A and so, by (Cut), C � B
and C ∈ ∨{B}. ✷

Proposition 5.16 Let Q ⊆ P(F) be {∨S | S ⊆ F} and let ⊗ be the
operation given by ∨S⊗∨T = ∨{s⊗ t | s ∈ S, t ∈ T}. Then 〈Q,⊆,⊗,∨{I}〉
is a quantale.

Proof: The ideal ∨(
⋃

j∈J Sj) is an upper bound for {∨Sj | j ∈ J} as

∨(
⋃
j∈J

Sj) =
⋂
{I ⊆ F |

⋃
j∈J

Sj ⊆ I} ⊇
⋂
{I ⊆ F | Sj ⊆ I} for each j

Now suppose that ∨T is another upper bound for {∨Sj | j ∈ J}. Then
∨Sj ⊆ ∨T for each j, which implies that

⋃
j∈J(∨Sj) ⊆ ∨T . However,

⋃
j∈J

(∨Sj) =
⋃
j∈J

(
⋂
{I ⊆ F | Sj ⊆ I}) =

⋂
{I ⊆ F |

⋃
j∈J

Sj ⊆ I} = ∨(
⋃
j∈J

Sj)

and so ∨(
⋃

j∈J Sj) is the least upper bound for {∨Sj | j ∈ J}.
To see that 〈Q,⊗,∨{I}〈 is a monoid, observe first that, by Lemma 5.11.2,
∨S ⊗ ∨{I} = ∨{s ⊗ I | s ∈ S} = ∨{s | s ∈ S} = ∨S and similarly
∨{I} ⊗ ∨S = veeS. Thus ∨{I} is a unit for ⊗. Further, using Lemma
5.11.1,

(∨R⊗ ∨S)⊗ ∨T = ∨{r ⊗ s} ⊗ ∨T = ∨{(r ⊗ s)⊗ t} =
∨{r ⊗ (s⊗ t)} = ∨R⊗ (∨S ⊗ ∨T )

and so ⊗ is associative and 〈Q,⊗,∨{I}〉 is a monoid.
Finally,

∨S ⊗ ∨j∈J(∨Tj) = ∨S ⊗ vee(∪j∈JTj)

= ∨{s⊗ t | s ∈ S, t ∈ ∪j∈JTj}
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= ∨(∪j∈J{s⊗ t | s ∈ S, t ∈ Tj})
= ∨j∈J(∨{s⊗ t | s ∈ S, t ∈ Tj})
= ∨j∈J(∨S ⊗ ∨Tj)

and similarly ∨j∈J(∨Tj)⊗ ∨S = ∨j∈J(∨Tj ⊗ ∨S). ✷

Proposition 5.17 Third exists a model 〈Q, τ〉 such that [[P ]] = ∨{P} for all
P ∈ F .

Proof: Let Q be the quantale constructed in Proposition 5.16 and, for each
atom A, define τ(A) = ∨{A}. We prove by induction on the structure of the
formula P that [[P ]] = ∨{P}.

• [[A]] = ∨{A} by definition, for any atom A.

• [[1]] = �Q = F = {B ∈ F | B � 1} = ∨{1}.

• [[0]] = ⊥Q = {B ∈ F | B � 0} = ∨{0} since every ideal contains 0.

• [[I]] = 1 = ∨{I} by definition.

•
[[A⊗B]] = [[A]]⊗ [[B]]

= ∨{A} ⊗ ∨{B} by the inductive hypothesis
= ∨{A⊗B} by definition

•
[[A ∧B]] = [[A]] ∩ [[B]]

= ∨{A} ∩ ∨{B} by the inductive hypothesis
= {C | C � A and C � B} by Lemma 5.14
= {C | C � A ∧B} by Lemma 5.11.4
= ∨{A ∧B} by Lemma 5.14

•
[[A⊕B]] = [[A]] ∨ [[B]]

= ∨{A} ∨ ∨{B} by the inductive hypothesis
= ∨{A, B}
= ∨{A⊗B} since{A, B} ⊆ I iff A⊕B ∈ I
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•
[[A �r B]] = [[A]] �r [[B]]

= ∨{A} �r ∨{B} by the inductive hypothesis
= ∨{∨S | ∨S ⊗ ∨{A} ⊆ ∨{B}}
= ∨(∪{S | ∨S ⊗ ∨{A} ⊆ ∨{B}}) by Proposition 5.16
= ∨(∪{{C} | ∨{C} ⊗ ∨{A} ⊆ ∨{B}})
= ∨{C | ∨{C} ⊗ ∨{A} ⊆ ∨{B}}
= ∨{C | ∨{C ⊗ A} ⊆ ∨{B}}
= ∨{C | C ⊗ A � B} by Lemma 5.15
= ∨{C | C � A �r B} by Lemma 5.11.5
= ∨(∨{A �r B})
= ∨{A �r B}.

•
[[A �l B]] = [[A]] �l [[B]]

= ∨{A} �l ∨{B} by the inductive hypothesis
= ∨{∨S | ∨{A} ⊗ ∨S ⊆ ∨{B}}
= ∨(∪{S | ∨{A} ⊗ ∨S ⊆ ∨{B}}) by Proposition 5.16
= ∨(∪{{C} | ∨{A} ⊗ ∨{C} ⊆ ∨{B}})
= ∨{C | ∨{A} ⊗ ∨{C} ⊆ ∨{B}}
= ∨{C | ∨{A⊗ C} ⊆ ∨{B}}
= ∨{C | A⊗ C � B} by Lemma 5.15
= ∨{C | C � A �l B} by Lemma 5.16
= ∨(∨{A �l B})
= ∨{A �l B}.

•
[[!A]] = ![[A]]

= !(∨{A}) by the inductive hypothesis
= ∨{∨S | ∨S ⊆ ∨{I} ∩ ∨{A} ∩ (∨S ⊗ ∨S)}
= ∨(∪{S | ∨S ⊆ ∨{I} ∩ ∨{A} ∩ (∨S ⊗ ∨S)}) by Prop. 5.16
= ∨(∪{{C} | ∨{C} ⊆ ∨{I} ∩ ∨{A} ∩ (∨{C} ⊗ ∨{C})})
= ∨{C | ∨{C} ⊆ ∨{I} ∩ ∨{A} ∩ (∨{C} ⊗ ∨{C})}
= ∨{C | ∨{C} ⊆ ∨{I} ∩ ∨{A} ∩ (∨{C ⊗ C}}
= ∨{C | C � I ∩ A ∩ C ⊗ C} by Lemma 5.15
= ∨(∨{!A})
= ∨{!A}.
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This completes the proof. ✷

Theorem 5.18 (Completeness) If Γ |= A then Γ � A

Proof: Consider the quantale constructed in Proposition 5.16. By Lemma
5.10, it suffices to show that the interpretation [[ − ]] of Proposition 5.17 is
such that for all A and B in F , [[A]] ⊆ [[B]] implies that A � B. However,
by Proposition 5.17, for each A in F , [[A]] = ∨{A} and therefore, by Lemma
5.15, [[A]] ⊆ [[B]] if and only if A � B. ✷

6 Relational Models of NILL

An interesting class of quantales comprises those in which the elements are
relations on a set A ordered by inclusion, and the monoid operation is rela-
tional composition. In this section, we prove our central result, that relational
quantales provide a sound and complete class of models for NILL. We obtain
this result by considering quantales which consist of a subset of the relations
on a set A.

Definition 6.1 Let A be a set. A relational quantale on A is a pair 〈Q, I〉
where Q ⊂ P(A× A) and I ∈ Q such that:

• 〈Q,⊆〉 is a complete join semi-lattice,

• 〈Q, ◦, I〉 is a monoid,

• for any indexing set J ,

p ◦ ∨j∈Jqj = ∨j∈J(p ◦ qj) and (∨j∈Jpj) ◦ q = ∨j∈J(pj ◦ q).

where ◦ is relational composition, that is R ◦ S = {〈a, b〉 | ∃c.〈a, c〉 ∈ R and
〈c, b〉 ∈ S}.
Remark 6.2 Note that in a relational quantale, while we have ∪Aj ⊆ ∨Aj,
we du not in general have equality, since ∪Aj may not be an element of Q.

A relational quantale 〈Q, I〉 is commutative if 〈Q, ◦, I〉 is a commutative
monoid. It is immediate that any (commutative) relational quantale is a
(commutative) quantale.
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Example 6.3 Let A be any set and let ∆A be the diagonal relation {〈a, a〉 |
a ∈ A}, Then 〈P(A × A), ∆A〉 is a relational quantale in which joins are
given by unions. Hoare and He Jefing [HH87] use this example to model
non-deterministic while programs.

Example 6.4 Let J be the closed interval [0, 1] of the real line, and let Q
be the set of subsets of J × J of the form,

{〈x, y〉 | y ≤ a · x}

where a ∈ [0, 1]. That is, Q consists of all the shaded areas of the form:

Let I = {〈x, y〉 | y ≤ x}. Then 〈Q, I〉 is a commutative relational quantale,
in which non-empty finite joins are given by unions, and the bottom element
is the set {〈x, y〉 | y = 0}. Relational composition gives:

We now recall the following important result from [BG91].

Theorem 6.5 Every quantale is isomorphic to a relational quantale on its
underlying set.

Proof: (sketch) Let 〈Q,≤,⊗, 1〉 be a quantale. We write

r̂ = {〈p, q〉 | p ≤ r ⊗ q} and Q̂ = {r̂ | r ∈ Q}.

With the above notation, we show that r̂ ⊆ ŝ if and only if r ≤ s. If r ≤ s
and 〈p, q〉 ∈ r̂ then p ≤ r ⊗ q, whence p ≤ s ⊗ q whence 〈p, q〉 ∈ ŝ: thus
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r̂ ⊆ ŝ. Conversely, 〈r, 1〉 ∈ r̂ since r ≤ r ⊗ 1 = r. If r̂ ⊆ ŝ then 〈r, 1〉 ∈ ŝ,
which implies that r ≤ s⊗ 1 = s.
In addition, we show that 〈Q̂,⊆〉 a complete join semilattice with ∨r̂j = ∨̂rj.
By definition, rj ≤ ∨rj for each j, and so r̂j ⊆ ∨̂rjfor each j. Therefore, ∨̂rj

is an upper bound for {r̂j}. If ŝ is another upper bound then r̂j ⊆ ŝ for each
j and rj ≤ s for each j whence ∨rj ≤ s and so ∨̂rj ⊆ ŝ. Thus ∨̂rj is the least
uiper bound of {r̂j}.
Further, observe that ∃q.(p ≤ r ⊗ q and q ≤ s ⊗ p′) if and only if p ≤
(r ⊗ s) ⊗ p′, since if there exists q such that p ≤ r ⊗ q and q ≤ s ⊗ p′, then
p ≤ r ⊗ q ≤ r ⊗ (s⊗ p′) = (r ⊗ s)⊗ p′.
Conversely, if p ≤ (r ⊗ s) ⊗ p′ then, taking q = s ⊗ p′, q ≤ s ⊗ p′ and
p ≤ (r ⊗ s)⊗ p′ = r ⊗ (s⊗ p′) = r ⊗ q.

Therefore, r̂ ◦ ŝ= {〈p, q〉 | p ≤ r ⊗ q} ◦ {〈p, q〉 | p ≤ s⊗ q}
= {〈p, p′〉 | ∃q.(p ≤ r ⊗ q and q ≤ s⊗ p′)}
= {〈p, p′〉 | p ≤ (r ⊗ s)⊗ p′} = r̂ ⊗ s.

Now 〈Q̂, 1̂〉 is a relational quantale on Q as 〈Q̂,⊆〉 is a complete join semi-

lattice, Q̂ is closed under ◦ and 1̂ is the unit of ◦ (since r̂ ◦ 1̂ = r̂ ⊗ 1 = r̂ and

q̂ ◦ r̂ = 1̂⊗ r = r̂) and ◦ distributes over joins on both sides, since

ŝ ◦ ∨r̂j = ŝ ◦ ∨̂rj = ̂s⊗ ∨rj = ̂∨(s⊗ rj) = ∨(ŝ⊗ rj) = ∨(ŝ ◦ r̂j)

and similarly, (∨r̂j) ◦ ŝ = ∨(r̂j ◦ ŝ).

Finally, the function (−̂) from Q to Q̂ mapping r to r̂ is an isomorphism of
quantales. ✷

Corollary 6.6 Every commutative quantale is isomorphic to a commutative
relational quantale on its underlying set.

Proof: Follows from the proof of Theorem 6.5 and the observation that if
〈Q,≤,⊗1〉 is a commutative quantale, then r̂ ◦ ŝ = ŝ◦ r̂, since r̂ ◦ ŝ = r̂ ⊗ s =
ŝ⊗ r = ŝ ◦ r̂. ✷

We now prove the completeness of NILL with respect to interpretation in
relational quantales. Soundness follows from Theorem 5.9 as every relational
quantale is a quantale.
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Notation 6.7 We say that a model 〈Q̂, τ̂〉 is relational if Q is a relational
quantale. We write Γ |=R A if Γ |=〈Q̂,τ̂〉 A for all relational models 〈Q, τ〉.
Proposition 6.8 Γ |= A if and only if Γ |=R A.

Proof: Let Q be a quantale and τ an interpretation of the linear atoms in Q.

Let τ̂ be the function from linear atoms to Q̂ given by τ̂(A) = τ̂(A). It follows
immediately from Theorem 6.5 that Γ |=〈Q,τ〉 A if and only if Γ |=〈Q,τ〉 A.

Thus Γ |=〈Q,τ〉 A for all relational quantales if and only if Γ |=〈Q,τ〉 A for all
quantales. ✷

Corollary 6.9 (Completeness for relational quantales) If Γ |=R A then
Γ � A.

Proof: Follows immediately from Theorem 5.18 and Proposition 6.8 ✷

Remark 6.10 A similar argument implies that intuitionistic linear logic is
complete with respect to interpretation in commutative relatiunal quantales.

As an example, we exhibit a relational quantale with elements a and b in
which !a◦b !⊆ b◦a. It follows, as we mentioned in Section 4, that the sequent
!A, B � B ⊗ A is not derivable in NILL.

Example 6.11 Let A be a 2-element set. Let Q be the set of relations
represented below:

It is readily verified that Q is a relational quantale with lattice structure
given by:

and in which relational composition gives,
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◦ ⊥ a 1 b �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a a b b
1 ⊥ a 1 b �
b ⊥ a b b b
� ⊥ a � b �.

In this quantale we have !a = a and !a ◦ b = a ◦ b = b, while b ◦ a = a. Thus
in this case, the relation !a ◦ b is strictly greater than b ◦ a.

7 Classical Linear Logic

We have described a system of non–commutative intuitionistic linear logic
and proved its completeness with respect to interpretation in relational quan-
tales.

A natural extension of this work is to investigate non–commutative classical
linear logic. In classical linear logic one has an involutive negation ¬ and an
additional connective “par” (✷) satisfying the de Morgan duality A✷B =
¬(¬A⊗ ¬B).

In relational quantales a natural candidate for ✷ is the operation defined by
R✷S = {〈a, b〉 | ∀c.〈a, c〉 ∈ R or 〈c, b〉 ∈ S}. If a relational quantale Q is
closed under the operation of complementation and we define ¬R to be the
complement of R then Q is closed under ✷ and we have R✷S = ¬(¬R◦¬S).
Thus one could model classical linear logic in any relational quantale which
is closed under complementation. However, not all relational quantales are
closed under complementation, and further-more closure under ✷ does not
entail closure under complementation. For example, the relational quantale
of Example 6.4 is closed under ✷, as it satisfies R✷S = R◦S, but is certainly
not closed under complementation. Indeed, the only involutive operation ¬
on this relational quantale satisfying R✷S = ¬(¬R ◦ ¬S) is the identity.

At present, we lack a representation theorem for the quantales with the
additional structure required to interpret classical linear logic. However,
we are hopeful that this problem can be solved and will establish a non–
commutative classical linear logic.
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