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Abstract

The change-making problem is the problem of representing a given
value with the fewest coins possible.

We investigate the problem of determining whether the greedy
algorithm produces an optimal representation of all amounts for a
given set of coin denominations 1 = c1 < c2 < · · · < cm. Chang and
Gill [CG] show that if the greedy algorithm is not always optimal,
then there exists a counterexample x in the range

c3 ≤ x <
cm(cmcm−1 + cm − 3cm−1)

cm − cm−1
.
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To test for the existence of such a counterexample, [CG] proposes
computing and comparing the greedy and optimal representations of
all x in this range.

In this paper we show that if a counterexample exists, then the
smallest one lies in the range

c3 + 1 < x < cm + cm−1,

and these bounds are tight. Moreover, we give a simple test for the
existence of a counterexample that does not require the calculation of
optimal representations.

In addition, we give a complete characterization of three-coin sys-
tems and an efficient algorithm for all systems with a fixed number of
coins. Finally, we show that a related problem is coNP -complete.

1 Introduction

The change-making problem is the problem of representing a given value with
the fewest coins possible from a given set of coin denominations. Unbound-
edly many coins of each denomination are available.

Formally, given a finite system c1 < c2 < · · · < cm = n of positive inte-
gers (the coins) and a positive integer x, we wish to determine non-negative
integer coefficients xi, 1 ≤ i ≤ m, so as to minimize

m∑

i=1

xi (1)

subject to

x =
m∑

i=1

xici . (2)

The sequence of coefficients x1, . . . , xm is called a representation of x. The
quantity (1) that we wish to minimize is called the size of the representation.
A representation is optimal if it is of minimum size. If xi > 0, then we say
that the coin ci is used in the representation. We restrict our attention
here to systems containing a penny (i.e., c1 = 1), so that every x has a
representation.

The change-making problem is a form of knapsack problem. Martello and
Toth devote an entire chapter to it in their text on knapsack problems [MT],
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and a good summary of the state of knowledge can be found there. In general,
the problem is NP -complete when the coin values are large and represented
in binary [L]; however, it can be solved in time polynomial in the number of
coins and the value of the largest coin. In this regard, a number of algorithms
have been investigated, the simplest of which is the greedy algorithm, which
repeatedly takes the largest coin less than or equal to the amount remaining.
Equivalently and more efficiently: for each of i = m, m − 1, . . . , 2, 1 in that
order, let xi be the integer quotient �x/ci� and set x := x mod ci. This
produces the greedy representation in time O(m log n). Note that this is the
unique representation x1, . . . , xm such that for all i, 1 < i ≤ m

i−1∑

j=1

xjcj < ci . (3)

The greedy representation is not necessarily optimal. For example, given
the system 1, 3, 4, the greedy algorithm produces the representation 2, 0, 1
for the number 6; this representation is of size 3, whereas the optimal rep-
resentation is 0, 2, 0 of size 2. For some systems, however, the greedy al-
gorithm always produces an optimal representation for any given value; as
a matter of practical interest, we note that this is the case for the system
1, 5, 10, 25, 50, 100 of American coins and the system 1, 5, 10, 50, 100, 500 of
Israeli coins. The question thus arises: how does one determine whether the
greedy algorithm is always optimal for a given system?

Definition 1.1 Given a system of coins, let o(x) denote the minimum size
over all representations of the number x in that system, and let g(x) denote
the size of the greedy representation of x. Following [MT], we call the system
canonical if g(x) = o(x) for all x. If a system is not canonical, then a value
x for which o(x) < g(x) is called a counterexample for the system. ✷

Example 1.2 For any nonnegative integer k, the system 1, 2, 4, . . . , 2k is
canonical. The Fibonacci system 1, 2, 3, 5, 8, . . . , Fk is canonical, where F k is
the kth Fibonacci number. The system 1, k, k + 1 for k > 2 is not canonical:
the counterexample 2k has optimal representation 0, 2, 0 of size 2, whereas
the greedy representation is k − 1, 0, 1 of size k.

Chang and Gill [CG] show that it suffices to search for a counterexample
among the members of a certain finite set; if no counterexample is found in
this set, then no counterexample exists and the system is canonical. The size
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of the set to be checked is polynomial in the largest coin value. Specifically,

Theorem 1.3 (Chang and Gill [CG]) Let 1 = c1 < · · · < cm be any
system of coins. If o(x) = g(x) for all x in the range

c3 ≤ x <
cm(cmcm−1 + cm − 3cm−1

cm − cm−1

, (4)

then the system is canonical.

In order to check for a counterexample in this set, Chang and Gill propose
computing thy greedy and optimal representations of each element of the set
and comparing their sizes. Martello and Toth comment [MT, p. 142]:

The proof [of Theorem 1.3] is quite involved and will not be re-
ported here. Furthermore, application of the theorem is very
onerous, calling for optimality testing of a usually high number
of greedy solutions.

Example 1.4 Consider the system 1, 2, 4, 8, 10, 16 (this example is taken
from [MT, Example 5.2, p. 143]). In order to test whether this system is
canonical according to the algorithm of Chang and Gill, we must compute
and compare the sizes of the greedy and optimal representations of all 385
values x in the range (4). ✷

In Section 2 below we give two results that simplify the process of testing
for the existence of a couterexample:

• We give tight bounds for Theorem 1.3. Specifically, we show that if a
counterexample exists at all, then the smallest one lies in the range

c3 + 1 < x < cm + cm−1 ,

and these bounds are tight for an infinity of systems. Note that the
upper bound is linear in the largest coin value, whereas (4) is cubic.
Thus in order to cheek the system of Example 1.4, we need only check
a set of size 20.

• We show that it is not necessary to compute optimal representations
for the numbers in the given range as suggested by Chang and Gill.
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There is a much simpler test involving only the sizes of the greedy
representations, which are trivial to compute in time O(n) using the
recurrence

g(x) = 1 + g(x − c) (5)

where c is the largest coin value less than or equal to x.

These results give rise to an O(mn) algorithm for testing whether a given
system of coins is canonical.

In Section 3 we give a characterization of systems of three coins and a
simple O(log n) test for determining when such a system in canonical.

In Section 4 we extend these results to systems with any fixed number of
coins.

In Section 5 we consider the related problem of determining whether the
greedy representation of a given number x in a given system is optimal. We
show that this problem is coNP -complete. It remains open whether there is
an algorithm that is polynomial in m and log n for testing whether a given
system is canonical.

2 Optimal Bounds

In this section we derive optimal bounds for the change-making problem.
Many of our arguments hinge on the following lemma, which describes the
behavior of the function o.

Lemma 2.1 Let 1 = c1 < · · · < cm be any system of coins. For all x
and coins ci ≤ x,

o(x) ≤ o(x − ci) + 1 , (6)

with equality holding if and only if there exists an optimal representation of
x that uses the coin ci.

Proof. Certainly (6) holds, since any optimal representation of x− ci gives
a representation of x of size o(x−ci)+1 by adding one to the coefficient of ci.
If in addition o(x) = o(x − ci) + 1, then the representation of x so obtained
is optimal and uses the coin ci. Conversely, given an optimal representation
of x that uses ci, we can obtain a representation of x− ci of size o(x)− 1 by
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subtracting one from the coefficient of ci, and (6) implies that this represen-
tation is optimal. ✷

Theorem 2.2 Let 1 = c1 < · · · < cm be any system of coins. If there
exists an x such that o(x) < g(x), then the smallest such x lies in the range

c3 + 1 < x < cm + cm−1 . (7)

Moreover, these bounds are tight.

Proof. Certainly o(x) = g(x) for all x < c3, since c1, c2 is a canonical
system. In addition, neither c3 nor c3 +1 provides a counterexample, since in
both cases the greedy representation is optimal. This establishes the lower
bound.

To prove the upper bound, let x ≥ cm + cm−1 and assume inductively
that g(y) = o(y) for all y < x. Let ci be any coin used in some optimal
representation of x. If i = m, then

g(x) = g(x − cm) + 1 by definition of g
= o(x − cm) + 1 by induction hypothesis
= o(x) by Lemma 2.1.

If i < m, then

g(x) = g(x − cm) + 1 by definition of g
= o(x − cm) + 1 by induction hypothesis
≤ o(x − cm − ci) + 2 by Lemma 2.1
≤ g(x − cm − ci) + 2 by definition of o
= g(x − ci) + 1 by definition of g
= o(x − ci) + 1 by induction hypothesis
= o(x) by Lemma 2.1
≤ g(x) by definition of o.

Thus in either case g(x) = o(x).

For k > 2, the systems 1, k, 2k − 2 give an infinity of systems for which
the smallest counterexample is c3 + 2, and the systems 1, k, k + 1 give an
infinity of systems for which the smallest counterexample is cm + cm−1 − 1.
Thus the bounds (7) are tight. ✷
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Our simplified algorithm is based on the observation that we can avoid
computing optimal representations by checking for the existence of witnesses
instead of counterexamples:

Definition 2.3 A witness is an x for which

g(x) > g(x − c) + 1

for some coin c < x. ✷

Lemma 2.4 (i) Every witness is a counterexample.

(ii) If a counterexample exists, then the smallest one is a witness.

Proof.

(i) Suppose x is a witness; thus

g(x − c) + 1 < g(x)

for some coin c. Then

o(x) ≤ o(x − c) + 1 by Lemma 2.1.
≤ g(x − c) + 1 by definition of o
< g(x)

(ii) If x is a counterexample but not a witness, and if c is any coin used
in an optimal representation of x, then x − c is also a counterexam-
ple:

o(x − c) = o(x) − 1 by Lemma 2.1.
< g(x) − 1
≤ g(x − c)

Therefore the smallest counterexample must be a witness.

✷

The converse of Lemma 2.4(i) is false: in the system 1, 4, 5 the value 12 is a
counterexample but not a witness. In this example, the coin 4 is used in the
optimal representation 0, 3, 0 of 12, therefore 8 = 12 − 4 is also a counterex-
ample. It is in fact the smallest counterexample, thus is also a witness.
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Theorem 2.5 For a given system to be canonical, it is necessary and suffi-
cient that there exist no witness in the range (7).

Proof. Immediate from Theorem 2.2 and Lemma 2.4. ✷

Theorem 2.5 implies that to test whether a given system is canonical, it
suffices to check whether

g(x) ≤ g(x − c) + 1

for all x in the range (7) and coins c < x; we need not calculate any optimal
representations. All necessary values of g(x) can be computed in time O(n)
using the recurrence (5); thus the entire algorithm takes time O(mn).

3 A Characterization of Three-Coin Systems

In this section we characterize completely all systems of three coins. This
characterization gives a trivial O(log n) test for determining whether the
system is canonical.

Let 1 < c < d and let q and r be the quotient and remainder, respectively,
obtained from the integer division of d by c. Thus q and r are the unique
integers such that

d = qc + r , (8)

0 ≤ r < c . (9)

Theorem 3.1 The system 1, c, d is not canonical if and only if 0 < r < c−q.

Proof. If 0 < r < c − q, then the value d + c − 1 is a counterexample: the
greedy representation c−1, 0, 1 is of size c > r+q, whereas the representation
r − 1, q + 1, 0 is of size r + q.

Conversely, suppose 1 < c < d is not canonical, and let x be the smallest
counterexample. The greedy representation of x must be of the form e, 0, 1
with 0 < e < c, since d + 1 < x < c + d by Theorem 2.2. Moreover, there
is a unique optimal representation of x of the form 0, k, 0 with k > 0, since
if either the coefficient of 1 or d were nonzero, then by Lemma 2.1 we could
subtract one and get a smaller counterexample. Since x = d + e = kc, we
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have
d = kc − e = (k − 1)c + (c − e)

0 < (d + c) − x = (d + c) − (d + e) = c − e < c ,

and since q and r are unique numbers satisfying (8) and (9), we must have
q = k−1 and r = c−e. Since x is a counterexample, we have that k < 1+e,
thus q = k − 1 < e and 0 < c − e = r, from which the desired inequalities
0 < r < c − q follow. ✷

4 Large Coins

The characterization of the previous section yields a simple O(log n) algo-
rithm for determining whether a given system of three coins is canonical. In
this section we give an algorithm whose time complexity is O(log n) for any
fixed number of coins m. The complexity of the algorithm is O(m22m−1 log n).

Recall that �x/c� and x mod c denote the integer quotient and remainder,
respectively, obtained when dividing x by c. Thus

x = �x/c�c + x mod c

0 ≤ x mod c < c

and �x/c� and x mod c are the unique numbers for which these two state-
ments hold.

Let γi(x) denote the greedy representation of x in the system 1 = c1 <
· · · < ci. Thus

γ1(x) = x
γi(x) = 〈γi−1(x mod ci), �x/ci�〉, i > 1

where 〈α, z〉 denotes the sequence obtained by appending the integer z to
the end of the sequence α.

Define the equivalence relation ≡i
k on integers x ≥ k by:

x ≡i
k y ↔ γi(x) − γi(x − k) = γi(y) − γi(y − k) ,

where – applied to the sequences γi( ) denotes componentwise difference.
Note that x ≡m

cm
y for every x, y ≥ cm. It follows from the observation

g(x) − g(x − c) =
m∑

i=1

(γm(x) − γm(x − c))i
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that if x ≡m
c y for a coin c, then x satisfies the property

g(x) ≤ g(x − c) + 1 (10)

if and only if y does. Thus in order to find a witness, it suffices to check (10)
for one representative x from each ≡m

c -class for each coin c. We will show
below (Theorem 4.2) that for each coin c there are at most 2m−1 ≡m

c -classes,
and representatives can be constructed efficiently.

The formal statement and proof of Theorem 4.2 do not adequately reflect
the intuition behind them, so we preface the formalities with the following
intuitive argument.

Fix k and consider the difference γm(x)−γm(x−k) of the greedy represen-
tations of x and x − k as x increases. The last coefficient of this difference,
namely �x/cm� − �(x− k)/cm�, alternates periodically between two values r
and r +1 (unless k is a multiple of cm, in which case there is only one value).
We can thus think of x as being in one of two states, depending on the value
of this coefficient. The state changes whenever either x or x − k skips over
a multiple of cm. In between the times when this state changes, the next-
to-last coefficient of γm(x) − γm(x − k) alternates periodically between two
states in a similar fashion, but with period cm−1; and so on. Thus each coin
value ci, i ≥ 2, accounts for two states (there is only one state for c1 = 1),
giving 2m−1 global states.

Formally, let x, y, and c be integers, c positive. Define

tc(x, y) = �(x mod c + y mod c)/c� ∈ {0, 1} .

The function tc formalizes the “state” for coin c as described above. The
following lemma establishes some basic properties of this function.

Lemma 4.1 The function tc satisfies the following properties:

(x + y) mod c = x mod c + y mod c − c tc(x, y) (11)

�(x + y)/c� = �x/c� + �y/c� + tc(x, y) (12)

tc(x, y) = 0 ↔ x mod c ≤ (x + y) mod c (13)

tc(x, y) = 1 → tc(y + x,−x) = 0 . (14)

Proof. For (11),
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x mod c + y mod c
= �(x mod c + y mod c)/c�c + (x mod c + y mod c) mod c
= c tc(x, y) + (x + y) mod c .

For (12),

�(x + y)/c�c + (x + y) mod c
= x + y
= �x/c�c + x mod c + �y/c�c + y mod c
= �x/c�c + �y/c�c + ctc(x, y) + (x + y) mod c

by (11), thus
�(x + y)/c� = �x/c� + �y/c� + tc(x, y) .

For (13), if tc(x, y) = 0 then

x mod c = (x + y) mod c − y mod c

≤ (x + y) mod c ,

and if tc(x, y) = 1 then

x mod c = (x + y) mod c + c − y mod c

= (x + y) mod c + (−y) mod c

> (x + y) mod c ,

since (−y) mod c > 0 (otherwise y mod c = 0, which would imply that
tc(x, y) = 0). Finally, for (14), we have by (13) that

tc(x, y) = 1 → y mod c > (x + y) mod c

→ (x + y) mod c < ((x + y) + (−x)) mod c

→ tc(x + y,−x) = 0 .

✷

Define the sets

A1
k = {k}

Ai
k = {�k/ci�ci + u | u ∈ Ai−1

k mod ci
∪ {k + v | v ∈ Ai−1

(−k) mod ci
}, i > 1 .
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Theorem 4.2 The set Ai
k contains the minimum element of each ≡i

k-class.
In other words, for all x ≥ k there exists a y ∈ Ai

k such that

k ≤ y ≤ x (15)

y ≡i
k x . (16)

Proof. The proof is by induction on i. The basis is immediate from the
definition of A1

k and γ1.

For i > 1, let ti = tci
. We break the proof into two cases, depending on the

value of ti(k, x−k). First suppose ti(k, x−k) = 0. Then k mod ci ≤ x mod ci.
By the induction hypothesis, there exists a u ∈ Ai−1

k mod ci
such that

k mod ci ≤ u ≤ x mod ci (17)

u ≡i−1
k mod ci

x mod ci . (18)

Let
y = �k/ci�ci + u ∈ Ai

k .

By (17) and the fact that k ≤ x, we have

k = �k/ci�ci + k mod ci

≤ �k/ci�ci + u (= y)

≤ �x/ci�ci + x mod ci

= x.

This establishes (15). By Lemma 4.1, we also have that ti(k, y−k) = 0, since

k mod ci ≤ u = y mod ci .

By (18) and the fact that ti(k, x − k) = ti(k, y − k) = 0, we have

γi−1(x mod ci) − γi−1((x − k) mod ci)

= γi−1(x mod ci) − γi−1(x mod ci − k mod ci)

= γi−1(u) − γi−1(u − k mod ci) (19)

= γi−1(y mod ci) − γi−1(y mod ci − k mod ci)

= γi−1(y mod ci) − γi−1((y − k) mod ci) .
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Now suppose ti(k, x − k) = 1. By Lemma 4.1, ti(x,−k) = 0, thus
(−k) mod ci ≤ (x − k) mod ci. By the induction hypothesis, there exists a
v ∈ Ai−1

(−k) mod ci
such that

(−k) mod ci ≤ v ≤ (x − k) mod ci (20)

v ≡i−1
(−k) mod ci

(x − k) mod ci . (21)

Let
y = k + v ∈ Ai

k.

By (20) and the fact that k ≤ x, we have

k ≤ k + v (= y)

≤ k + (x − k) mod ci

≤ x .

This establishes (15). We also have that ti(k, y − k) = 1:

k mod ci + (y − k) mod ci = k mod ci + v mod ci

≥ k mod ci + (−k) mod ci

= ci ,

since k mod ci �= 0 by Lemma 4.1(13). By (21) and the fact that ti(k, x−k) =
ti(k, y − k) = 1, we have

γi−1(x mod ci) − γi−1((x − k) mod ci)

= −(γi−1((x − k) mod ci) − γi−1(x mod ci))

= −(γi−1(v) − γi−1(v − (−k) mod ci) (22)

= γi−1(y mod ci) − γi−1((y − k) mod ci) .

Now for either value of ti(k, x−k), we have ti(k, x−k) = ti(k, y−k). Then
by Lemma 4.1,

�x/ci� − �(x − k)/ci� = �k/ci� + ti(k, x − k)

= �k/ci� + ti(k, y − k) (23)

= �y/ci� − �(y − k)/ci� .
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Thus in either case, using (19), (22), and (23), we have

γi(x) − γi(x − k)

= 〈γi−1(x mod ci), �x/ci�〉 − 〈γi−1((x − k) mod ci), �(x − k)/ci�〉
= 〈γi−1(x mod ci) − γi−1((x − k) mod ci), �x/ci� − �(x − k)/ci�〉
= 〈γi−1(y mod ci) − γi−1((y − k) mod ci), �y/ci� − �(y − k)/ci�〉
= 〈γi−1(y mod ci), �y/ci�〉 − 〈γi−1((y − k) mod ci), �(y − k)/ci�〉
= γi(y) − γi(y − k) ,

which establishes (16). ✷

It is easily shown by induction that the set Am
k contains at most 2m−1

elements, and each element of Am
k is less than

m∑

i=1

ci ≤ k + mn.

Moreover, the straightforward method of constructing Am
k according to its

inductive definition takes time O(m2m−1 log n). Thus to check whether the
system is canonical, we need only determine (10) for all coins c and x ∈ Am

c .
There are m2m−1 such x to check, and each check takes time O(m log n).

5 An NP -Completeness Result

Lueker [L] shows that when the coin values are large and represented in
binary, the problem of finding an optimal representation of a given x is NP -
hard. Here we show:

Theorem 5.1 It is coNP-complete to determine, given a system of coins
and a number x represented in binary, whether the greedy representation of
x is optimal.

Proof. The problem is clearly in coNP : we can compute the greedy repre-
sentation of x in liner time, then find a better one if it exists by guessing.

To show coNP -hardness, we will encode the problem of exact cover by
three-sets : given a set X and a family E of three-element subsets of X, can
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X be represented as a disjoint union of elements of E? This problem is known
to be NP -complete (see [GJ]).

Assume without loss of generality that X = {1, 2, . . . , 3n}. Let p = n + 1.
Consider the system of coins

cA = 1 +
∑

i∈A

pi , A ∈ E

cX =
3n∑

i=1

pi

and a penny. Let
x = n + cX .

The greedy algorithm gives a representation of x of size n + 1 consisting of
cX and n pennies. This is optimal unless there is an exact cover, in which
case a better representation is obtained by taking cA for A in the cover. ✷

The problem of Theorem 5.1 differs from the problem of determining
whether a given system of coins is canonical in that in the former, we are
asking whether greedy is optimal for a given x, whereas in the latter, we
are asking whether greedy is optimal for all x. We know by Theorems 2.5
and 5.1 that both problems are in coNP, and the former is complete. The
burning question that we have not succeeded in answering is whether the
latter is complete, or whether there is an algorithm whose time complexity
is polynomial in m and log n.
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