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Abstract

The verification of a compiler may be a substantial task. However,
by introducing correctness preserving program transformations some
automated assistance becomes available. The idea is to specify an
initial multipass compiler, to verify it in the usual way and then,
while preserving the overall correctness result, to transform it into
a more efficient single pass compiler. This transformation process
may be performed using the fold/unfold framework of Burstall and
Darlington and automation is provided by the Flagship Programming
Environment. We illustrate this transformation process on a compiler
for a subset of Occam.

1 Introduction

The compilation of an object program into target code is a rather compli-
cated process in which many aspects have to be considered. To obtain an
efficient compiler, it is often important that all aspects are treated in a single
pass. Unfortunately, this may cause the correctness proof to be extremely
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complicated. However, if the compiler is split into several passes, each han-
dling one specific aspect, then the correctness proof may become manageable.
Having proved each pass correct, the goal is to transform the composition of
the passes into a single pass compiler while preserving the overall correctness
result.

We illustrate this transformation process for a small subset of Occam
[In88a]. The initial compiler consists of four different passes whose purposes
are

e to replace variables by addresses,

e to assign temporary addresses to subexpressions,

e to generate code for the transputer [In88b], and

e to compute the space required to execute the code on a transputer.

We transform this four pass compiler into a single pass compiler using the
fold /unfold framework of Burstall and Darlington [BuDa77]. The Flagship
Programming Environment [Flag90] can be used to automate this process.
In addition to supporting the fold /unfold framework, the Flagship Program-
ming Environment has facilities for composing and guiding the transforma-
tion steps by goal oriented scripts, and by different kinds of higher order
transformation rules. Detailed knowledge of the transformation process is
required to specify the scripts whereas the higher order transformation rules
are fairly easy to use but more limited in their applicability.

The structure of the paper is as follows. In Section 2 we illustrate the
idea behind the fold /unfold framework by transforming the expression part
of the Occam subset. Then the Flagship Programming Environment is intro-
duced and in Section 3 we demonstrate how the same transformation may be
performed automatically by presenting a goal oriented script for this. With
this gentle introduction behind us, the transformation of the compiler for the
considerably larger Occam subset PLg is described in Section 4; full details
are given in the appendices. Finally, in Section 5 we give some concluding
remarks.



2 A Simple Example of Fold /Unfold

To illustrate the concepts of the fold/unfold framework we give an example
showing how the four pass compiler for the expression language can be trans-
formed into a single pass compiler. Considering the automation later on, the
compiler is given as a Hope+ program [Perry89].

The syntax of the expressions is given by the type definition

data exp.0 == con 0 num ++ var. 0 id ++ exp_ 0 add_0 exp.O;

To perform the compilation we need an environment, being a list of coherent
identifiers and addresses:

data v_env == list(id # adr);
Assuming that the environment contains addresses for all free variables of
the expression the first step is to eliminate the environment by moving the
information from the environment to an intermediate datatype, exp_1:
data exp_-1 == con_1 num ++ adr_1 adr ++ exp_1 add.1 exp.1;
This is ensured by the function:

dec E.1 : expO # v_env — > exp_1;

defined in Table 1. The next step is to introduce temporary addresses for
the computation of expressions. To do that the datatype exp_2 is introduced:

data exp 2 == push 2(num # adr)
++ fetch 2(adr # adr)
++ add 2 (adr # adr # adr)
++ trip 2(exp.2 # exp 2 # exp.2);

The result of this pass is a program specified as a sequence of register oper-
ations. The pass is specified by the function:

dec E22 : exp.l # adr — > exp_2;



defined in Table 1. The second parameter contains information about the
next free address to be used. In the third pass the sequence of register opera-
tions is translated into a sequence of abstract transputer instructions [In88b.
We define:

data instr == LDC(num) ++ LDL(adr) ++ STL(adr) ++ ADD;
and the pass is specified by the function:

dec EL3 : exp.2 — > list instr;

of Table 1. Finally, in the fourth pass the required workspace is computed
as expressed by the function:

dec E4 : exp.0 — > num;
also defined in Table 1.

The result of applying E.1, E2 and E_3 to an object program is the
translation of the object program into target code, as specified by the defi-
nition of E_trans:

dec E_trans : exp O # v_env # adr -> list instr;

--- E_trans(e,en,t) <= E_3(E_2(E_1(e,en),t));

The translation of the object program and the computation of required
workspace is captured in the definition of E_comp:

dec Ecomp : exp O # v_env # adr -> (list instr # num);

--- E_comp(e,en,t) <= (E_trans(e,en,t)),E4 e);



E.1 (con O c,en) <= con_1 c;
E.1 (var_0 x,en) <= adr_1 lookup(x,en);
E.1 (el add_0 e2,en) <= E_1(el,en) add_1 E_1(e2,en);

E2 (con_1 c,t) <= push 2(c,t);
E.2 (adr_1 a,t) <= fetch 2(a,t);
E.2 (el add_1 e2,t) <= trip2(E_2(el,t),E 2(e2,t+1),

add 2(t,t+1,t));

E 3 (push 2(c,t)) <= [LDC ¢,STL t];
E. 3 (fetch 2(a,t)) <= [LDL a,STL t];
E 3 (add_2(t1,t2,t3)) <= [LDL t1,LDL t2,ADD,STL t3];
E 3 (trip 2(el,e2,e3)) <= E3 el<>(E3 e2<>E 3 e3);

E4 (con 0 c) <= 1;
E4 (var_0 x) <= 1;
E.4 (el add 0 e2) <= max(E_4 el,E_4(e2)+1);

Table 1: The expression compiler.

2.1 The Transformation Process

The purpose of the transformation process will be to transform the four pass
compiler of Table 1 into a single pass compiler. This means that we want a
definition of E_comp that may call itself recursively, but neither calls E_1, E_2,
E_3, E_4 nor E_trans, as shown in Table 2. The above definition of E_comp
will be considered as the basis of the transformation process; in the terminol-
ogy of the fold/unfold framework it is called a Eureka definition. In order to
obtain the new definition of the present Eureka definition, each instance of
the Eureka definition is transformed separately like a kind of case analysis.
The specification of the current instance to be transformed is done by instan-
tiation, that is by introducing a substituting instance of the Eureka definition.

However, in order to transform E_comp the definition of E_trans should
be transformed first. Therefore the transformation will be performed in two
stages; first the E_trans stage and next the E_comp stage.



E_comp(con O c,en,t)
<= ([LDC ¢,STL t], 1)
E comp(var 0 x,en,t)
<= ([LDL lookup(x,en),STL t], 1)
E_comp(el add 0 e2,en,t)
<= let (cl,wl)==E comp(el,en,t) in
let (c2,w2)==E_comp(e2,en,t+1) in
(c1<>(c2<>[LDL t,LDL t+1,ADD,STL t]),
max (wl,w2+1))

Table 2: The single pass compiler, E_comp, as produced manually.

2.1.1 The E_trans Stage

The transformation of E_trans(con_0 c,en,t) is given as a sequence of steps
starting with the instantiation of E_trans followed by the unfolding of each
of the compilation functions, E_1,..,E.3. To unfold is to rewrite the left
hand side of the definition by the right hand side of it. The transformation
of the instance E_trans(var_ 0 x,en,t) is performed by a similar sequence
of transformation steps, whereas the transformation of the last instance of
E_trans is more complex. As in the two previous cases the three compilation
functions are unfolded, but the result still contains calls of the compilation
functions. However, this problem is solved by folding against E_trans. To
fold is to recognize a subterm as the right hand side of the definition and
rewrite the subterm by the left hand side. Finally the remaining call of E_3
is removed by unfolding E_3 once more and now E_trans has reached the
desired form. The transformation of E_trans(e,en,t) is shown in Table 3.

2.1.2 The E comp Stage

The transformation of E_comp(con 0 c,en,t), is given as a sequence of steps
starting with the instantiation of E_comp followed by the unfolding of the
compilation functions, E_trans and E_.4. The transformation of the instance
E comp(var 0 x,en,t) is performed by an equivalent sequence of transfor-
mation steps, whereas the transformation of the last instance of E_comp is
more tricky. As in the two previous cases the two compilation functions



are unfolded. However, the result still contains unwanted applications. By
abstraction, that is by introducing a let clause, it is possible to obtain a
situation where E_comp may be folded and then E_comp has reached the de-
sired form. This combination of abstraction and folding is often referred to

E_trans(con. 0 c,en,t)
<= E_3(E_2(E_1(con_0 c,en),t))) (inst)
<= E_3(E_2(con_1 c,t)) (unf E_1)
<= E_3(push_2(c,t)) (unf E_2)
<= [LDC c,STL t] (unf E_3)
E_trans(var_0 x,en,t)
<= E_3(E22(E_1(var_0 x,en),t)) (inst)
<= E_3(E2(adr_1 lookup(x,en),t)) (unf E_1)
<= E_3(fetch 2(lookup (x,en),t)) (unf E_2)
<= [LDL lookup(x,en),STL t] (unf E_3)
E_trans(el add_0 e2,en,t)
<= E3(E2(E_.1(el add 0 e2,en),t)) (inst)
<= E3(E2((E_1(el,en) add_1 E_1(e2,en)),t)) (unf E_1)
<= E3(trip 2(E2(E_1(el,en),t), (unf E_2)
E2(E_1(e2,en),t+1),add 2(t,t+1,t)))
<= E_3(E.2(E_.1(el,en),t)) (unf E_3)
<>(E_3(E2(E_1(e2,en),t+1))
<>E_3(add_2(t,t+1,t)))
<= E_trans(el,en,t)<>(E_trans(e2,en,t+1) (fold)
<>E_3(add 2(t,t+1,t)))
<= E_trans(el,en,t)<>(E_trans(e2,en,t+1) (unf E_3)
<>[LDL t,LDL t+1,ADD,STL t])

Table 3: The manual transformation of E_trans.

as forced folding [BuDa77]. The transformation of E_comp(e,en,t) is shown
in Table 4. The result of this transformation process is a function, E_comp,
which implements a correct single pass compiler for the expression language,
assuming that the original compilation functions are correct. The complete



function is like the one shown in Table 2.

E_comp(con O c,en,t)

<=(E_trans(con.0 c,en,t),E_4(con0 c)) (inst)
<=([LDC ¢,STL t],E_4(con.0 c)) (unf)
<=([LDC c,STL t],1) (unf)

E_comp(var 0 x,en,t)

<=(E_trans(var_0 x,en,t),E_4(var_0 x)) (inst)
<=([LDL lookup(x,en),STL t],E 4(var 0 x)) (unf)
<=([LDL lookup(x,en),STL t],1) (unf)

E_comp(el add 0 e2,en,t)
<=(E_trans(el add.0 e2,en,t),E4(el add 0 e2)) (inst)
<=(E_trans(el,en,t)<>(E_trans(e2,en,t+1) (unf)
<>[LDL t,LDL t+1,ADD,STL t]),
E_4(el add.0 e2))
<=(E_trans(el,en,t)<>(E_trans(e2,en,t+1) (unf)
<>[LDL t,LDL t+1,ADD,STL t]),
max(E 4 el,E 4(e2)+1))
<= let (c1,wl)==(E_trans(el,en,t),E 4 el) in (abst)
let (c2,w2)==(E_trans(e2,en,t+1),E4 e2) in
(c1<>(c2<>[LDL t,LDL t+1,ADD,STL t]),
max (wl,w2+1))
<= let (cl,wl)==E comp(el,en,t) in (fold)
let (c2,w2)==E comp(e2,en,t+1) in
(c1<>(c2<>[LDL t,LDL t+1,ADD,STL t]),
max (wl,w2+1))

Table 4: The manual transformation of E_comp.

During this transformation process, most of the transformation rules of
the fold /unfold framework have been used, the only exception is the appli-
cation of laws.



3 Automation of the Simple Example us-
ing Scripts

One of the features of the Flagship Programming Environment is the ability
to specify a transformation process in detail using the so-called scripts of
the transformation language. Basically the language contains two kinds of
constructions:

e control structures, specifying when and where to apply the transforma-
tion, and

e transformation operations like fold, unfold, abstract, and
replace.

The scripts used to transform the two subdefinitions E_trans and E_comp are
shown in Tables 5 and 8, and the structures and operations involved will be
explained in detail below.

3.1 The Language of Scripts

To control the transformation process, we use three control structures:

e choose_eqns specifies the Eureka definition and transformation opera-
tions to be applied,

e branch ensures that every instance of the Eureka definition is trans-
formed, and

e compose specifies a sequence of transformation operations to be applied
to every instance of the Eureka definition.

To transform the Eureka definitions we use four transformation operations:
e unfold, which is equivalent to the unfold rule,
e fold, which is equivalent to the fold rule,

e replace, which may be viewed as a generalization of the application
of laws, and



trans_script <=
choose_eqns[
(egspec "E_trans e",
branch [
compose [
unfold(any term,eqspec "E_1 e"),
unfold(any term,eqspec "E 2 e"),
unfold(any_term,eqspec "E_3 e"),
fold(all terms,eqgspec "E trans e"),
unfold(any term,eqspec "E3 ¢")11)];

Table 5: A script transforming E_trans.

e abstract, which may be viewed as a specialization of the abstraction
rule.

The unfold and fold operations take two parameters. The first deter-
mines whether several occurrences of an application, possibly with different
arguments, are allowed or not. In the example of Table 5 the entire Eureka
definition is subject to transformation implying that no exact context specifi-
cation is required. Therefore, it is sufficient to use the two subterms any_term
and all _terms. Any term means that only one occurrence is allowed in the
program, whereas all_terms means that several occurrences are permitted.
The second parameter specifies the function to be unfolded/folded by the use
of eqspec "f x". If the unfold and fold operations cannot be performed,
they correspond to a noop operation. This means that, whenever only these
operations are used, it suffices to develop a script for the most complicated
transformation of an instance of the Eureka definition. For the E_trans func-
tion this means that Table 3 is the guide to the definition of the script in
Table 5. The control structure branch will ensure that all instantiations are
considered. Therefore, contrary to the original framework, instantiation does
not exist as an independent transformation operation. This is illustrated in
Table 5 with the transformed program shown in Table 6.

The replace operation takes two parameters. The first one is a subterm
specifying two Hope_patterns to be exchanged and the context for the re-
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E trans(con 0 v_zl,y zl,x z1)
<= [LDC v_z1,STL x_z1];
E trans(var 0 uzl,y zl,x z1)
= [LDL lookup(u.-zl,y.z1),STL x. zl];
E_trans(Z_zl add 0 Y zl,y zl,x zl)
<= E_trans(Z.zl,y zl,x z1)<>(E_trans(Y_zl,y zl,x z1+1)
<>[LDL x_z1,LDL(x_z1+1),ADD,STL x_z1]);

Table 6: E_trans.

placement. The second parameter verifies that the replacement is correctness
preserving. In the current version of the system! the last parameter is ig-
nored and thus cannot be used to ensure correctness. Therefore, this burden
will rest on the user of the system. In this paper we shall use the second
component as a “comment”.

forced_fold E context <=

compose [

abstract sbterm("E_ 4 x", context),

abstract sbterm("E_trans(x,x1,x2)",context),

replace(sbterm(
"(let pl==el in let p2==E 4 e2 in e3," <>
" let (pl,p2)==(el,E 4 e2) in e3)",any),

"tupling"),
fold(all terms,eqspec "E comp e")];

Table 7: Forced folding.

The abstract operation takes one parameter that determines which sub-
term to abstract and it introduces a unique variable to replace each occur-
rence of this particular subterm. This means that only applications with

!Flagship Programming Environment version May 31, 1991.
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common arguments are abstracted. If multiple applications with different
arguments occur, as in E_comp, then each application must be abstracted
separately by giving the appropriate context information.

To encapsulate the abstraction needed in the transformation of E_comp,
we introduce a user defined forced_fold macro, as shown in Table 7. To ac-
complish the correct combination of the let-clauses, it is necessary to specify
the application of E_4. Note that the replace operation used in this macro
is correctness preserving.

Unlike unfold and fold, the abstract and replace operations must
always be applicable and so do not have the option of corresponding to noop
operations. Therefore, the transformation of each instance of E_comp must
be explicitly specified. In the present version of the Flagship Programming
Environment a script transforming E_comp is as shown in Table 8. Here we
use the branch operation corresponding to the transformation illustrated in

Table 4.

comp_script <=
choose_eqns[
(eqgspec "E_comp e",
branch[
compose [
unfold(any term,eqspec "E trans((el add 0 e2),en,t)"),
unfold(any term,eqspec "E 4 e"),
forced fold E (context_match
("--- E_comp(x add 0 _,_, )<=r")),
forced fold E any ],
compose [
unfold(any term,eqspec "E trans(con O c,en,t)"),
unfold(any term,eqspec "E 4 e")],
compose [
unfold(any_term,eqspec "E_trans(var O x,en,t)"),
unfold(any term,eqspec "E 4 e")]]1)];

Table 8: A script transforming E_comp.
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3.2 Application of Scripts

A script is applied to a Eureka definition by the use of a metafunction,
apply_script. Bearing the separation of the Eureka definition in mind, the
transformation process may be expressed by:

‘‘doublepass’’:=apply_script(trans_script, ‘ ‘multipass’’)
‘‘singlepass’’:=apply_script(comp_script, ‘ ‘doublepass’’)
Here the Hope+ module ¢ ‘multipass’’ contains the Eureka definitions and
the contents of Table 1. The contents of the module singlepass is shown
in Table 9. Note the close correspondance between the single pass compiler
E_comp of Table 9 and the result of the manual transformation as shown in
Table 2.

E_comp(con 0 V. zl,y zl,x z1)
<=([LDC V_z1,STL x z1],1);
E_comp(var 0 U.=zl,y zl,x zl)
<=([LDL lookup(U z1,y z1),STL x z1],1);
E comp(Z_z1 add 0 Y zl,y zl,x z1)
<= let (Y z2,X z2)==E comp(Y zl,y zl,x z1+1) in
let (S_z1,R.z1)==E comp(Z zl,y zl,x zl1) in
(Szl<> (Y z2<>
[LDL x_z1,LDL(x_z1+1),ADD,STL x.z1]),
max(R.z1,X z2+1));

Table 9: E_comp as produced by the Flagship Programming
Environment.

4 Transforming the PL; Compiler

The expression language described in the previous section is a small subset of
the PLg language presented by [LevJen89] which is itself a subset of Occam
[In88a]. A PLy program is a sequential process that may interact with the
environment using two predefined channels, in and out. Apart from this,
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PLy is quite similar to Dijkstra’s language of Guarded Commands [Dijk75].
To specify the addresses of the channels, a channel environment is defined as:
data c_env == adr # adr;
and the necessary information is then contained in:
data env == v_env # c_env,;
where v_env is defined as in Section 2. The PL, language contains the syn-

tactic categories program, block, process, guard and expression as described
by the BNF grammar:

P ::=Db
b x:int;b | sp

sp = SKIP | STOP | x:=e | ch? x | ch! e |
SEQ(spl,...,spn) | IF(gl,...,gn) | WHILE(e,sp)

g ::=e —> sp

e = c | x | TRUE | FALSE | mop e | el dop e2

where mop € {—, NOT}, and
dop € {+,—,%,/, REM, = <> > < > < AND, OR}

For each syntactic category we specify four compilation functions. The pur-
pose of the program compiler is to provide an initial environment specifying
the channels to be used in the object program and to activate the block com-
piler. The block compiler will then update the current variable environment
and activate the process compiler. The process compiler provides some of the
compilation of the object program, and activates the guard compiler and the
expression compiler. The initial function specifications are given in Appendix
A.2. The relationship between translation of the object program into target
code and computation of required workspace is captured by the following
specifications:

14



C_comp (prog)
B_comp(block,en)

E_comp(exp,en,t)

Given these FEureka definitions the transformation process using scripts is
very similar to the one performed in Section 3. However, a couple of inter-

esting points arise.

4.1 A Strategy for the Transformation

When considering the transformation of the increased number of Eureka def-
initions it should be clear that we need a strategy depending on the structure
of the initial compiler. The structure of the compilation functions is similar
for all four passes, and the calling structure of each pass in the compiler may
be characterized as a kind of hierarchy of functions as displayed in Figure 1

for the composition functions.

C_co

B_co

P_co

E_co

Figure 1: The hierarchy of definitions

In order to specify a strategy for transforming this hierarchy of definitions,

mp

mp

mp

mp

1)
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<= (C.3(C_2(C_1 prog)),C 4 prog)

<= (B_3(B_2(B_1(block,en))),B_4 block)
P_comp(proc,en,t) <= (P_3(P_2(P_1(proc,en),t)),P 4 proc)
G_comp(guard,en,t) <= (G_.3(G2(G_1(guard,en),t)),G 4 guard)
<= (E_3(E2(E_1(exp,en),t)),E4 exp)

G_comp



a number of issues should be discussed. The first issue is whether the mutual
recursion of P_comp and G_comp may prevent transformation. Fortunately,
only instances of the Eureka definitions are transformed during the transfor-
mation process leaving the Eureka definition itself unchanged, so whenever
the righthand side of a Eureka definition is recognized, a fold operation may
be applied regardless of whether this Eureka definition has been subject to
transformation or not. This ensures that both P_comp and G_comp may be
transformed, and it also implies that e.g. B_comp may be transformed before
E comp. When the transformation process has terminated, the original Eu-
reka definitions have become redundant and they may be removed from the
result of the transformation.

The next issue is how to separate the transformation process into stages.
The obvious way is to split each definition into two subdefinitions X_trans
and X_comp. Unfortunately, such a separation will introduce restrictions upon
the transformation order because for each X, the X_trans stage must be
carried out before the corresponding X_comp stage. However, as explained
above the definitions of the five syntactic categories can be transformed in
any order. This means, for example, that E_trans must be transformed be-
fore E_comp, G_trans before G_comp but G_comp may be transformed before
E_trans. Therefore, some kind of control of the transformation order is nec-
essary.

Taking the above issues into account, an appropriate strategy will be:

e To divide the transformation process in two stages specified by X_trans
and X_comp,

e to transform the X _trans stage before the X_comp stage,
e to transform each stage bottom up starting with E_, G_,..., C_, and

e to remove the original Eureka definitions, which are now redundant.

4.2 The Pattern of Scripts

The first step of the strategy above is to split each Eureka definition into two
subdefinitions of the following forms:

16



X_trans( obj_prog, ... )
<= X.3(X_2(X_1( obj_prog,.. ),..))

and

X_comp( obj_prog,... )
<= ( X_trans(obj_prog,...), X4 obj_prog )

and then transform each stage separately.

4.2.1 The X trans Stage

When the separation of the Eureka definitions has been done the next step of
the strategy is to transform the X_trans stage. The X_trans Eureka defini-
tions are, as shown above, specified by the composition of three compilation
functions. The only difference between the forms of these five definitions is
the number of arguments they take (see Appendix B.1.1). This implies that
scripts used to transform these definitions may have some common struc-
tures, and specifying these in a tactic may help to derive a general pattern
for the scripts. The tactic for transforming an X_trans definition is given by
the following three steps:

e Unfold the functions used in the definition, always starting with the
innermost application,

e fold against the Eureka definition, and

e unfold certain functions to remove additional and unwanted applica-
tions of functions, or fold against other Eureka definitions.

The first two steps are often referred to as the composition or fusion tactic
[Fea87]. The last step is needed for two problem specific reasons: Because of
the hierarchical structure of the compiler it may be necessary to fold against
other Eureka definitions and because of the special structure of E_3 and exp_2
it will be necessary to perform extra unfolding as we saw in Sections 2 and 3.
Therefore this last step may vary, depending on the structure of the functions
used in the present Eureka definition.
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When transforming the X_trans definitions, only unfold and fold oper-
ations are necessary which means that the transformation may be performed
using implicit instantiation only. Furthermore, the number of arguments that
a definition takes is unimportant in this connection. Hence the general pat-
tern for a script transforming an X_trans definition using the above tactic is
of the form given in Table 10. Considering the script of Table 10, it is obvious

trans_script <=
choose_eqns|[

(egspec "X_trans x",

branch [
compose [
unfold(any term,egspec "X_1 x"),
unfold(any_term,eqspec "X 2 x"),
unfold(any term,eqspec "X.3 x"),
fold(all terms,eqspec "X _trans x"),
unfold(all terms,eqspec "Xn x"),

fold(all_terms,eqspec "Y_trans y")
1D7;

Table 10: A pseudo trans_script.

that the trans_script of Section 3 is an instance of this general pattern. In
fact, even though some of the scripts shown in Appendix B.1.2 may appear
to contain an unexpected large number of fold operations against other def-
initions, they are all instances of the general script pattern of Table 10.

The abundance of fold operations in some of the scripts is due to the
implicit instantiation where each instance of a given Eureka definition is
transformed using one particular script. Therefore, every operation neces-
sary at some state in the transformation process must be present in the script,
implying that not all parts of the script will be used when transforming any
single instance of the Eureka definition. As shown in Appendix B.1.2, the
five scripts are aggregated into one script performing the first stage of the
transformation process. The result of the first tranformation stage is shown
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in Appendix B.1.3.

4.2.2 The X_comp Stage

According to our strategy, the next step is to transform the X_comp stage. The
X_comp Eureka definitions are, as previously shown, specified by the tupling
of two compilation functions and the only difference between the forms of
these five definitions is the number of arguments each definition takes (see
Appendix B.2.1). Therefore, a tactic for transforming the X_comp definitions
may be specified by the following three steps:

e Unfold the functions used in the definition,
e forced fold against the Eureka definition, and
e forced_fold against other Eureka definitions.

The first two steps are often referred to as the tupling tactic [Fea87]. As in
the previous stage the last step is due to the hierarchical structure of the
compilation functions.

The abstraction needed in the forced_fold steps uses the two operations
abstract and replace. This implies that for each instance of X_comp the
first argument must be explicitly specified in the script, whereas the last
two arguments are unimportant. Therefore, the general pattern for a script
performing this stage for one X_comp definition is as shown in Table 11.

The first step must be performed whereas the last two steps may be ap-
plied several times or not at all. Considering the script of Table 11, it is easy
to see that the comp_script of Section 3 is an instance of this general pat-
tern. As shown in Appendix B.2.2, the scripts for the X_comp definitions are
aggregated into one script performing the second step of the transformation
process, and the result is shown in Appendix B.2.3.

The forced_fold operations used in the last two steps are encapsulated in
forced_fold macros which may also be described by a general pattern, as
illustrated in Table 12. Notice, that in order to achieve the correct combina-
tion of the let-clauses introduced by the abstract operations, parts of the
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comp_script <=
choose_eqns[
(eqgspec "X_comp x",
branch [
compose [
unfold(any term,eqspec "X trans(inst_1 x,en,t)"),
unfold(any term,eqspec "X 4 x"),
forced_fold X,
forced_foldyY, ... 1,
compose [
unfold(any term,eqspec "X trans(inst 2 x,en,t)"),
unfold(any term,eqspec "X 4 x"),
forced_fold X,
forced foldy, ... ],

compose [

unfold(any_term,eqspec "X trans(instn x,en,t)"),
unfold(any term,eqspec "X 4 x"),

forced_fold X,

forced foldyY, ... 1)];

Table 11: A pseudo comp_script.

Hope patterns used in the replace operations must be explicitly specified.
Considering the macro of Table 12, it is easy to see that the macro of Section
3 is an instance of this general pattern. The macros used in the transforma-
tion of the X_comp definitions are shown in Appendix B.2.2.

4.2.3 Application of Scripts

The procedure for applying these scripts is as described in Section 3.2. This
means that trans_script is applied first and then comp_script which is
concordant with the transformation strategy. The single pass compiler for
PLy is shown in Appendix B.2.3.
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forced_fold X context <=

compose [

abstract sbterm ("X_4 x",context),

abstract sbterm ("X_trans x",context),

replace(sbterm(
"(let pl==el in let p2==X4 e2 in e3,"<>
" let (p1,p2)==(el,X 4 e2) in e3 )", any),

"tupling" ),
fold( all terms, egspec "X_comp x" ) 1];

Table 12: A pseudo forced_fold macro.

4.3 The Problem of Multiple Arguments

When specifying the process compiler an interesting problem arises. The SEQ
and IF constructors take an arbitrary number of arguments rather than some
fixed number. The obvious way to specify compilation functions for these
constructors is therefore to use a general map function, as briefly illustrated
by:

P_1(seq 0 plist,en)
<= seq-1(map(lambda x => P_1(x,en)end)plist);
P 2(seq.1 plist,t)
<= seq-2(map(lambda x => P_2(x,t)end)plist);
where map is defined by:

map f nil <= nil;
map f(p::ps) <= (f p)::(map f ps);

Consider now the Eureka definition:
P ex(plist,en,t) <= P_2(P_1(plist,en),t)
Instantiation gives:
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P_ex(seq.0 p::plist,en,t)
<= P 2(P_1(seq 0 p::plist,en),t)

Following the tactic of Section 4.2.1, the innermost application must be un-
folded:

<= P_2(seq-1(map(lambda x => P_1(x,en)end)p::plist),t)
And unfolding the map function then gives:

<= P_2(seq.-1(P_1(p,en)::
map (lambda x => P_1(x,en)end)plist),t)

Unfolding P_2 gives:

<= seq-2(map(lambda x => P_2(x,t)end)
(P_1(p,en)::
map(lambda x => P_1(x,en)end)plist)))

Unfolding map then gives:

<= seq2(P2(P_1(p,en),t)::
(map(lambda x => P_2(x,t)end)
(map(lambda x => P_1(x,en)end)plist)))

Then it is possible to fold the head of the list against P_ex:

<= seq-2(P_ex(p,en,t)::
(map(lambda x => P_2(x,t)end)
(map(lambda x => P_1(x,en)end)plist)))

When trying to fold applications in the tail of the list, the problem be-
comes obvious. In order to fold map(lambda x => P_1(x,en) end) plist
against P_1, the constructor seq_1 is required. Obviously, this conctructor is
no longer available and we cannot perform the operation. The same prob-
lem arises when trying to fold the second application of the map function
against P_2, so the tail of the list will never be folded against P_ex. There-
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fore, although the semantics of both P_1 and P_2 is correct the transformation
process will not succeed and P_ex will still be a “two pass compiler”.

At first sight one may think that the problem is due to the use of higher-
order functions. However, this is not the case. The problem arises because a
recursive datatype (e.g. a list of processes) is encapsulated by a constructor
(e.g. seq). When a recursive function is applied to a value of the recursive
datatype, one will loose track of the constructor after the first unfolding and
the transformation process is stuck. There are at least two solutions to the
problem; to rewrite the datatype or to rewrite the functions.

We shall choose the latter and introduce a number of specialized map
functions, thereby moving the necessary information from the constructors
to the map functions. In the example above it would imply that two map
functions M_1 and M_2 are introduced and P_1 and P_2 are redefined to:

P_1(seq.0 plist,en) <= seq.-1 M_1(plist,en);
P 2(seq-1 plist,t) <= seq2 M 2(plist,t);

where M_1 and M_2 are specialized map functions:

M_1 (nil,en) <= nil;
M1 (p::plist,en) <= P_1(p,en)::M_1(plist,en);

M2 (nil,t) <= nil;
M2 (p::plist,t) <= P2(p,t)::M2(plist,t);

The relationship between the specialized map functions is the same as be-
tween the compilation functions and given the definition:

M_ex(plist,en,t) <= M 2(M_1(plist,en),t)
the transformation of P_ex (seq.0 p::plist,en,t) may now be performed
as shown in Table 13. When the transformation has terminated, the num-

ber of map functions as well as the number of compilation functions has
decreased.
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P_ex(seq 0 p::plist,en,t)
<= P.2(P_1(seq.0 p::plist,en),t) (inst)
<= P 2(seq.1(M_1(p::plist,en)),t) (unf)
<= P_2(seq-1(P_1(p,en)::M_1(plist,en)),t) (unf)
<= seq2(M2(P_1(p,en)::M 1(plist,en)),t) (unf)
<= seq2(P2(P_1(p,en),t)::M2(M_1(plist,en),t)) (unf)
<= seq 2(P_ex(p,en,t)::M2(M 1(plist,en),t) (fold)
<= seq 2(P_ex(p,en,t)::Mex(plist,en,t)) (fold)

Table 13: Transformation of P_ex.

To transform the entire PLy compiler four specialized map functions are
needed, and specifications of these functions are given in Appendix A.2. As
for the compilation functions, the relationship between the map functions
may be described by a Eureka definition:

M_comp(plist,en,t) <= (M.3(M.2(M_1(plist,en),t)), M4 plist)

This Eureka definition is of the same form as the definitions given in Section
4.1. Therefore, it may be transformed using the same strategy and the same
general script patterns as used in Section 4.2. This means that the four map
functions are reduced to one, just like the four pass compiler is reduced to a
single pass compiler. The expansion of the hierarchy of Eureka definitions is
shown in Figure 2.

5 Conclusion

Using the fold/unfold framework and the Flagship Programming Environ-
ment, we have succesfully transformed a correct multipass compiler for an
Occam subset into a correct single pass compiler. In connection with this
transformation process the language of Scripts has shown to be a powerful
tool for controlling and performing program transformations. Developing a
script requires detailed knowledge of the transformation process so it will
be an advantage if a higher level of transformation rules is available. One
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C_trans/comp
B_trans/comp

M_trans/comp ; P_trans/comp %E G_trans/comp

E_trans/comp

Figure 2: The extended hierarchy of definitions

approach to a more abstract level of transformation rules is to introduce
tactics [Fea87]. Tactics are provided for transformation of classes of Eureka
definitions.

The Flagship Programming Environment does supply a number of prede-
fined general tactics including both the composition and the tupling tactics.
However, these tactics are not sufficient to transform the PLg compiler en-
tirely. Therefore, in order to reduce the amount of details necessary for
developing goal oriented scripts, the transformation process is separated fur-
ther by specifying subgoals depending on the predefined tactics. This makes
the ability to combine tactics and scripts rather important. Unfortunately,
the tactics in the version of the Flagship Programming Environment we have
used are not fully developed so we have not been able to apply them to the
P Ly multipass compiler.

We should also like to mention that only a few of the facilities of the Flag-
ship Programming Environment have been described in this paper. Several
kinds of higher order transformation rules and transformation methods are
included and we understand that more are planned for later versions of the
system.
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The main issue of the present paper has been the elimination of interme-
diate data structures arising in a multipass compiler. A similar development
has been performed by Feather [Fea82] for a smaller language in the ZAP
system. However, due to the larger complexity of our language PLy we need
more complicated nested data structures for representing programs and this
is the source of the intricate problems discussed in Section 4. Also the use
of tupling does not arise in Feather’s work. The general problem of elimi-
nating intermediate data structures has been discussed in various contexts.
In [Wad84, Wad85] and [Wad88], Wadler gives algorithms for eliminating
intermediate lists and trees for a restricted domain of functional programs.
Ganzinger and Giegerich [GaGie84| are concerned with the composition of
passes of a multipass compiler and show how the so-called attribute coupled
grammars can be used to specify the individual passes and subsequently fa-
cilitate the elimination of intermediate data structures.

A more general perspective on program transformations is taken in projects
as e.g. CIP [Partsch84] and ProSpecTra [Krieg86]. Program transformations
are here used in the development of programs from specifications, in pro-
gram optimization and in program implementation. We anticipate that a
development similar to ours can be performed in these settings as well.
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A The Initial PLy Compiler

This appendix contains the Hope+ definitions of the datatypes and functions
used to implement the PLy multipass compiler.

Al

module aux;

pubtype v_env,c_env,env,id,adr,label;

pubfun max,maxelm,length,chanin,chanout,noofchan,
initenv,nextfree,lookup,update;

Auxiliary Functions

type id == list char;

type adr == num,;

type label == list char;

type v_env == list(id # adr);

type c_env == adr # adr;

type env == v_env # c_env;

dec max : num # num -> num;
dec maxelm list num -> num;
dec length list alpha —-> num;
dec initenv T env;

dec chanin :oenv -> adr;
dec chanout T env -> adr;
dec noofchan : num;

dec nextfree : env -> num;
dec lookup id # env -> adr;
dec update : env # id # adr -> env;
dec updatev_env : v_env # id # adr -> v_env;

max(x,y) <= if(x>y) then x else y;

maxelm(n: :ns) <= max(n,maxelm ns);

maxelm nil

length nil

<= 0;

<= 0;

length(x::xs) <= 1 + length xs;
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--- initenv <= (nil,(1,2));

--- chanin(s, (i,0)) <= i;

--— chanout (s, (i,0))<= o;

--- noofchan <= 2;

--- nextfree(s, (i,0)) <= length(s) +(noofchan + 1);

-—- lookup(x, (nil, (i,0)))
<= if (x ="in") or (x = "out")
then error [(1,"predefined channame")]
else error [(2,"undefined identifier")];
--- lookup(x, ((y,a)::s,(i,0)))
<= if(x = y) then a
else lookup(x, (s, (i,0)));

-—- update((s, (i,0)),x,a) <=(updatev_env(s,x,a),(i,0));

--- updatev_env(nil,x,a) <= [(x,a)];
--- updatev_env((y,b)::s,x,a)
<=1if x =y
then(x,a)::s
else(y,b)::updatev_env(s,x,a);
end;

A.2 The Multipass Compiler

module multipass;

uses aux;

pubtype exp_0,exp_1,exp_2,proc_0,proc_1,proc_2,
guard_0,guard_1,guard_2,block_0,block_1,block_2,
prog_O,prog_1,prog_2,instr;
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pubconst dop_0,

stop_
blk_O

false_

if_1
dop_2

out_2,

IN,QU
LOOP,

pubfun E_1,E_2,
M_1,M_2

infix dop_0 :
data exp_0 ==
++

infix dop_1

data exp_1 ==

data exp_2 ==

data proc_0;
data guard_O0 =

data proc_1;
data guard_1 =

data proc_2;
data guard_2 =

data proc_0 ==
++
++

mop_0,con_0O,var_0,true_0,false_0,skip_0O,
0,assign_0,seq_0,in_0O,out_0,if_O,while_O,
,pro_0,gc_0,dop_1,mop_1,con_1,adr_1,true_1,
1,skip_1,stop_1,assign_1,seq_1,in_1,out_1,

,2while_1,pro_1,gc_1,push_2,fetch_2,bool_2,

,trip_2,mop_2,tup_2,gc_2,assign_2,seq_2,in_2,
stop_2,skip_2,if_2,while_2,pro_2,LDC,LDL,STL,
T,TESTERR, STOPERR,DOP,MOP,STOP,BLOCK,DEF,CJ, J,
NOT,EXIT;

E 3,E_4,P_1,P_2,P_3,P_4,G_1,G_2,G_3,G_4,
,M_3,M_4,B_1,B_2,B_3,B_4,C_1,C_2,C_3,C_4;

1
true_0 ++ false_0 ++ con_0 num
var_0 id ++ mop_0 exp_0 ++ exp_0 dop_0 exp_O;

1;
true_1 ++ false_1 ++ con_1 num
adr_1 adr ++ mop_1 exp_1 ++ exp_1 dop_1 exp_1;

push_2(num # adr) ++ fetch_2(adr # adr)
bool_2(num# adr) ++ mop_2(adr # adr)

dop_2(adr # adr # adr) ++ tup_2(exp_2 # exp_2)
trip_2(exp_2 # exp_2 # exp_2);

= gc_0(exp_0 # proc_0);

= gc_1(exp_1 # proc_1);

gc_2(exp_2 # proc_2);
skip_0 ++ stop_0 ++ assign_0(id # exp_0)
in_0 id ++ out_0 exp_0 ++ seq_0 list proc_0

if_0 list guard_O ++ while_O(exp_0 # proc_0);
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data proc_1 == skip_1 ++ stop_1 ++ assign_1(adr # exp_1)
++ in_1(adr # adr) ++ out_1(exp_1 # adr)
++ seq_1 list proc_1 ++ if_1 list guard_1
++ while_1(exp_1 # proc_1);

data proc_2 == skip_2 ++ stop_2
++ assign_2(adr # exp_2 # adr)
++ in_2(adr # adr) ++ out_2(exp_2 # adr # adr)
++ seq_2 list proc_2 ++ if_2 list guard_2
++ while_2(exp_2 # proc_2);

data block_0 == blk_0(id # block_0)
++ pro_0 proc_0;

data block_1 == pro_1(adr # proc_1);

data block_2 == pro_2 proc_2;

type prog_0 == block_0;
type prog_1 == block_1;
type prog_2 == block_2;

data instr == LDC(num) ++ LDL(adr) ++ STL(adr)
++ IN ++ OUT ++ TESTERR ++ STOPERR ++ STOP
++ BLOCK(list instr) ++ DEF(label) ++ CJ(label)
++ J(label) ++ LOOP(list instr) ++ NOT ++ EXIT
++ MOP ++ DOP;

dec E_1 : exp_0 # env -> exp_1;

dec E_2 : exp_1 # adr -> exp_2;

dec E_3 1 exp_2 -> list instr;
dec E_4 : exp_0 -> num;

dec G_1 : list guard_O # env —> list guard_1;
dec G_2 : list guard_1 # adr -> list guard_2;
dec G_3 : list guard_2 -> list instr;
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dec
dec
dec
dec
dec
dec
dec
dec
dec
dec
dec
dec
dec
dec
dec
dec
dec

G_4 : list guard_O -> list num;
P_1 : proc_O # env -> proc_1;

P_2 : proc_1 # adr -> proc_2;

P_3 : proc_2 -> list instr;
P_4 : proc_0 —-> num;

M_1 : list proc_0 # env -> list proc_1;
M_2 : list proc_1 # adr -> list proc_2;
M_3 : list proc_2 -> list instr;
M_4 : list proc_0 -> list num;
B_1 : block_O # env -> block_1;
B_2 : block_1 -> block_2;
B_3 : block_2 -> list instr;
B_4 : block_0 -> num;

c_1 : prog_0 -> prog_1;

C_2 : prog_1 -> prog_2;

C_3 : prog_2 -> list instr;
C_4 : prog_0 -> num;
E_1(true_0,en) <= true_1;
E_1(false_0,en) <= false_1;

E_1(con_0 c,en) <= con_1 c;

E_1(var_0 x,en) <= adr_1 lookup(x,en);
E_1(mop_0 e,en) <= mop_1 E_1(e,en);

E_1(el dop_0 e2,en)

E_2(true_1,t)
E_2(false_1,t)
E_2(con_1 c,t)
E_2(adr_1 a,t)
E_2(mop_1 e_1,t)

<=

E_2(el_1 dop_1 e2_1,t)<=

E_3(bool_2(bool,t))
E_3(push_2(con,t))
E_3(fetch_2(a,t))
E_3(mop_2(t1,t2))
E_3(tup_2(el_2,e2_2))

E_1(el,en) dop_1 E_1(e2,en);

bool_2(1,t);

bool_2(0,t);

push_2(c,t);

fetch_2(a,t);

tup_2(E_2(e_1,t) ,mop_2(t,t));

trip_2(E_2(e1_1,t),E_2(e2_1,t+1),
dop_2(t,t+1,t));

<= [LDC bool,STL t];

<= [LDC con,STL t];

<= [LDL a,STL t];

<= [LDL t1,MOP,STL t2];
<= E_3 el _2<>E_3 e2_2 ;
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E_3(dop_2(t1,t2,t3)) <= [LDL t+1,LDL t2,D0OP,STL t3];
E_3(trip_2(el_2,e2_2,e3_2))<= E_3 el_2

E_4(true_0)
E_4(false_0)
E_4(con_0 c)
E_4(var_0 x)
E_4(mop_0 e)

<>(E_3 e2_2<>E_3 e3_2);

N
1]
=

<= 1;
<= E_4 e;

E_4(el dop_0 e2)<= max(E_4 el,E_4(e2)+1);

G_1((gc_0(b,p):
G_1(nil,en)
G_2((gc_1(b,p):
G_2(nil,t)

G_3(gc_2(b,p)::

G_3 nil

G_4(gc_0(b,p)::
G_4 nil

:gs),en)<= gc_1(E_1(b,en) ,P_1(p,en))::
G_1(gs,en);
<= nil;

:gs),t) <= gc_2(E_2(b,t),P_2(p,t))::
G_2(gs,t);
<= nil;

gs) <= [BLOCK
([TESTERR]<>(E_3 b<>
([STOPERR,CJ("fail")]<>
(P_3 p
<>[J("exitif"),DEF("fail")]))
<>(G_3 gs<>[DEF("exitif")1)))1;
<= [STOP];

gs) <= max(E_4 b,P_4 p)::G_4 gs;
<= nil;

M_1(nil,en) <= nil;
M_1(p::ps,en) <= P_1(p,en)::M_1(ps,en);

M_2(nil,t) <= nil;
M_2(p::ps,t) <= P_2(p,t)::M_2(ps,t);

M_3 nil <= nil;
M_3(p::ps) <= P_3 p<>M_3 ps;
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M_4 nil <= nil;
M_4(p::ps) <=(P_4

P_1(skip_0,en)
P_1(stop_0,en)
P_1(assign_0(x,e),en)
P_1(in_0 x,en)
P_1(out_0 e,en)
P_1(seq_0 ps,en)
P_1(while_0(b,p),en)
P_1(if_0(gs) ,en)

P_2(skip_1,t)
P_2(stop_1,t)
P_2(assign_1(a,e),t)
P_2(in_1(a,i),t)
P_2(out_1(e,0),t)
P_2(seq_1 ps,t)
P_2(while_1(b,p),t)
P_2(if_1 gs,t)

P_3(skip_2)

P_3(stop_2)
P_3(assign_2(a,e,t))

P_3(in_2(a,i))
P_3(out_2(e,0,t))

P_3(seq_2 ps)
P_3(while_2(b,p))

P_3(if_2(gs))

p)::(M_4 ps);

<= gkip_1;
<= stop_1;

<= assign_1(lookup(x,en),E_1(e,en));

<= in_1(lookup(x,en),chanin en);
<= out_1(E_1(e,en),chanout en);
<= seq_1 M_1(ps,en);
<= while_1(E_1(b,en),P_1(p,en));
<= if_1 G_1(gs,en);

<= skip_2;

<= stop_2;

<= assign_2(a,E_2(e,t),t);

<= in_2(a,i);

<= out_2(E_2(e,t),0,t);

<= seq_2 M_2(ps,t);

<= while_2(E_2(b,t),P_2(p,t));
<= if_2 G_2(gs,t);

<= [];

<= [STOP];

<= [TESTERR]
<>(E_3 e

<>[STOPERR,LDL t,STL al);
<= [LDC a,LDC i,IN];
<= [TESTERR]<>(E_3 e<>
[STOPERR,LDC t,LDC 0,0UT]);
<= M_3 ps;
<= [LOOP
([TESTERR]<>(E_3(b)
<>([STOPERR, NOT,
CJ("cont") ,EXIT,
DEF("cont")]
<>P_3(p))))IT;
<= G_3 gs;
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-—- P_4(skip_0) <= 0;

--- P_4(stop_0) <= 0;

--- P_4(assign_0(x,e)) <= E_4 ¢;

-—— P_4(in_0 x) <= 0;

-—— P_4(out_0 e) <= max(E_4 e,1);

--- P_4(seq_0 ps) <= maxelm(M_4 ps);
-—- P_4(while_0(b,p)) <= max(E_4 b,P_4 p);
-—- P_4(if_0 gs) <= maxelm(G_4 gs);

-—- B_1(blk_0(x,b),en) <= B_1(b,update(en,x,nextfree(en)));
--- B_1(pro_0 p,en) <= pro_1(nextfree(en),P_1(p,en));

--- B_2(pro_1(a,p)) <= pro_2 P_2(p,a);

--- B_3(pro_2 p) <= P_3 p;
--- B_4(blk_0(x,b)) <=1+ (B_4 b);
--- B_4(pro_0 p) <= P_4 p;

-—- C_1 p <= B_1(p,initenv);
-—— C_2 p <= B_2 p;
--— C_3 p <= B_3 p;

--- C_4 p <= noofchan + (B_4 p);

B The Transformation Process

This appendix contains the specifications, the scripts and the result of the
transformation process using the Flagship Programming Environment. As
described in Section 4 there are two stages in the transformation process; the
first is described in Appendix B.1 and the second in Appendix B.2.
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B.1 The First Stage
B.1.1 The Eureka Definitions

module transdef;
uses aux,multipass;
pubfun E_trans,P_trans,G_trans,M_trans,B_trans,C_trans;

dec E_trans : exp_0 # env # adr -> list instr;
-—— E_trans(e,en,t) <= E_3(E_2(E_1(e,en),t));

dec G_trans : list guard_O # env # adr —-> list instr;
--- G_trans(g,en,t) <= G_3(G_2(G_1(g,en),t));

dec P_trans : proc_O # env # adr -> list instr;
--- P_trans(p,en,t) <= P_3(P_2(P_1(p,en),t));

dec M_trans : list proc_O # env # adr -> list instr;
--- M_trans(p,en,t) <= M_3(M_2(M_1(p,en),t));

dec B_trans : block_O # env —-> list instr;
-—— B_trans(b,en) <= B_3(B_2(B_1(b,en)));

dec C_trans : prog_0 -> list instr;
-—- C_trans p <= C_3(C_2(C_1 p));
end;

B.1.2 The Script

module transscript;

pubfun trans_script;

uses scripts,aux,multipass,transdef;
dec trans_script : script;
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--— trans_script
<= choose_eqns[
(eqspec "E_trans e",
branch [
compose [unfold(all_terms,eqspec "E_1 e"),
unfold(all_terms,eqspec "E_2 e"),
unfold(all_terms,eqspec "E_3 e"),
fold(all_terms,eqspec "E_trans e"),
unfold(all_terms,eqspec "E_3 e")]1]),
(eqspec "P_trans p",
branch [
compose [unfold(any_term,eqspec "P_1 p"),
unfold(any_term,eqspec "P_2 p"),
unfold(any_term,eqspec "P_3 p")

fold(all_terms,eqspec "P_trans p"),
fold(all_terms,eqspec "M_trans m"),
fold(all_terms,eqspec "G_trans g"),
fold(all_terms,eqspec "E_trans e")]]),

(eqspec "G_trans g",
branch[
compose [unfold(any_term,eqspec "G_1 g"),
unfold(any_term,eqspec "G_2 g"),
unfold(any_term,eqspec "G_3 g"),
fold(all_terms,eqgspec "G_trans g"),
fold(all_terms,eqspec "P_trans p"),
fold(all_terms,eqspec "E_trans e")]]),
(egspec "M_trans m",
branch[
compose [unfold(any_term,eqspec "M_1 m"),
unfold(any_term,eqspec "M_2 m"),
unfold(any_term,eqspec "M_3 m"),
fold(all_terms,eqspec "M_trans m"),
fold(all_terms,eqspec "P_trans p")]1]1),
(egspec "B_trans b",
branch[
compose [unfold(any_term,eqspec "B_1 b"),
unfold(any_term,eqgspec "B_2 b"),
unfold(any_term,eqgspec "B_3 b"),
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fold(all_terms,eqspec "B_trans b"),
fold(all_terms,eqgspec "P_trans p")]1]),
(egspec "C_trans c",
branch[

compose [unfold(any_term,eqspec "C_1 c"),
unfold(any_term,eqgspec "C_2 c"),
unfold(any_term,eqspec "C_3 c"),
fold(all_terms,eqspec "B_trans c")]1)];

end;

B.1.3 The Result of the First Stage

module newtrans;
pubfun B_trans,C_trans,E_trans,G_trans,M_trans,P_trans;
uses aux,multipass;
dec B_trans : block_0 # env -> list(instr);
dec C_trans : prog_0 -> list(instr);
dec E_trans : exp_0 # env # adr -> list(instr);
dec G_trans : list(guard_0) # env # adr -> list(instr);
dec M_trans : list(proc_0) # env # adr -> list(instr);
dec P_trans : proc_0 # env # adr -> list(instr);
--- B_trans(pro_0 T_zl,r_zl)
<= P_trans(T_zl,r_z1,nextfree r_z1);
--- B_trans(blk_0(y_z2,x_z2),r_z1)
<= B_trans(x_z2,update(r_zl,y_z2,nextfree r_z1));
-—— C_trans t_z1
<= B_trans(t_z1,initenv);
--- E_trans(z_z3 dop_0 y_z3,y_z1l,x_z1)
<= E_trans(z_z3,y_z1,x_z1)<>(E_trans(y_z3,y_z1,x_z1+1)
<>[LDL x_z1,LDL(x_z1 + 1),DOP,STL x_z1]);
--- E_trans(mop_0 X_z3,y_zl,x_z1)
<= E_trans(X_z3,y_z1,x_z1)<>[LDL x_z1,MOP,STL x_z1];
--- E_trans(var_0 Y_z3,y_zl,x_z1)
<=[LDL lookup(Y_z3,y_z1),STL x_z1];
--- E_trans(con_0 Z_z3,y_zl,x_z1)
<=[LDC Z_z3,STL x_z1];
--- E_trans(false_0,y_zl,x_z1)
<=[LDC 0,STL x_z1];
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--- E_trans(true_0,y_z1,x_z1)
<=[LDC 1,STL x_z1];
--- G_trans(gc_0(w_z2,v_z2) :: u_z2,v_zl,u_zl)
<=[BLOCK( [TESTERR]<>(E_trans(w_z2,v_zl,u_z1)<>
([STOPERR,CJ "fail"]<>(P_trans(v_z2,v_zl,u_z1)<>
[J "exitif",DEF "fail"]l))
<>(G_trans(u_z2,v_zl,u_z1)
<>[DEF "exitif"1)))1;
-—— G_trans(nil,v_zl,u_zl)
<=[STOP] ;
-—— M_trans(Y_z2 :: X_z2,V_z1,U_z1)
<= P_trans(Y_z2,V_z1,U_z1)<>M_trans(X_z2,V_z1,U_z1);
--- M_trans(nil,V_z1,U_z1)
<= nil;
-—— P_trans(while_0(r_z2,W_z2),Y_z1,X_z1)
<=[LOOP([TESTERR]<>(E_trans(r_z2,Y_z1,X_z1)<>
([STOPERR,NQOT,CJ "cont",EXIT,DEF "cont"]<>
P_trans(W_z2,Y_z1,X_z1))))];
-—— P_trans(if_0 V_z2,Y_z1,X_z1)
<= G_trans(V_z2,Y_z1,X_z1);
--- P_trans(seq_0 s_z2,Y_z1,X_z1)
<= M_trans(s_z2,Y_z1,X_z1);
--- P_trans(out_0 t_z2,Y_z1,X_z1)
<=[TESTERR]<>(E_trans(t_z2,Y_z1,X_z1)<>
[STOPERR,LDC X_z1,LDC chanout Y_z1,0UT]);
-—— P_trans(in_0 R_z2,Y_z1,X_z1)
<=[LDC lookup(R_z2,Y_z1),LDC chanin Y_z1,IN];
--- P_trans(assign_0(T_z2,S_z2),Y_z1,X_z1)
<=[TESTERR]<>(E_trans(S_z2,Y_z1,X_z1)<>
[STOPERR,LDL X_z1,STL lookup(T_z2,Y_z1)1);
--- P_trans(stop_0,Y_z1,X_z1)
<=[STOP] ;
-—— P_trans(skip_0,Y_z1,X_z1)
<= nil;
end;
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B.2 The Second Stage
B.2.1 The Eureka Definitions

module compdef;
uses aux,multipass,newtrans;
pubfun E_comp,P_comp,G_comp,M_comp,B_comp,C_comp;

dec E_comp : exp_0 # env # adr -> list instr # num;
--- E_comp(e,en,t) <=(E_trans(e,en,t),E_4 e);

dec G_comp : list guard_O # env # adr —-> list instr # list num;
--- G_comp(g,en,t) <=(G_trans(g,en,t),G_4 g);

dec P_comp : proc_O # env # adr -> list instr # num;
-—- P_comp(p,en,t) <=(P_trans(p,en,t),P_4 p);

dec M_comp : list proc_O # env # adr -> list instr # list num;
--- M_comp(p,en,t) <=(M_trans(p,en,t),M_4 p);

dec B_comp : block_0O # env -> list instr # num;
--- B_comp(b,en) <=(B_trans(b,en),B_4 b);

dec C_comp : prog_0 -> list instr # num;
-—— C_comp p <=(C_trans p,C_4 p);
end;

B.2.2 The Script

module compscript;

pubfun comp_script;

uses scripts,aux,multipass,newtrans,compdef;
dec comp_script : script;

dec forced_fold_B : script;

dec forced_fold_E : context -> script;

dec forced_fold_G : script;

dec forced_fold_M : script;

dec forced_fold_ P : script;
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—-—-- comp_script
<= choose_eqns[
(egspec "E_comp e",
branch [
compose [
unfold(any_term,eqspec "E_trans((el dop_0 e2),en,t)"),
unfold(any_term,eqspec "E_4 e"),
forced_fold_E context_match
"-—— E_comp(x dop_0 _,_,_) <= 1",
forced_fold_E any],
compose [
unfold(any_term,eqspec "E_trans((mop_0 e),en,t)"),
unfold(any_term,eqspec "E_4 e"),
forced_fold_E any],
compose [
unfold(any_term,eqspec "E_trans(false_O,en,t)"),
unfold(any_term,eqspec "E_4 e")],
compose [
unfold(any_term,eqspec "E_trans(true_0,en,t)"),
unfold(any_term,eqspec "E_4 e")],
compose [
unfold(any_term,eqspec "E_trans(con_0O c,en,t)"),
unfold(any_term,eqspec "E_4 e")],
compose [
unfold(any_term,eqspec "E_trans(var_0 x,en,t)"),
unfold(any_term,eqspec "E_4 e")]1]),
(egspec "P_comp p",
branch [
compose [
unfold(any_term,eqspec "P_trans(while_O(e,p),en,t)"),
unfold(any_term,eqspec "P_4 p"),
forced_fold_P,
forced_fold_E any],
compose [
unfold(any_term,eqspec "P_trans(if_O glist,en,t)"),
unfold(any_term,eqspec "P_4 p"),
forced_fold_G],
compose [
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unfold(any_term,eqspec "P_trans(seq_0 plist,en,t)"),
unfold(any_term,eqspec "P_4 p"),
forced_fold_M],
compose [
unfold(any_term,eqspec "P_trans(out_0O ex,en,t)"),
unfold(any_term,eqspec "P_4 p"),
forced_fold_E any],
compose [
unfold(any_term,eqspec "P_trans(in_O x,en,t)"),
unfold(any_term,eqspec "P_4 p")],
compose [
unfold(any_term,eqspec "P_trans(assign_0O(a,ex),en,t)"),
unfold(any_term,eqspec "P_4 p"),
forced_fold_E any],
compose [
unfold(any_term,eqspec "P_trans(stop_0,en,t)"),
unfold(any_term,eqspec "P_4 p")],
compose [
unfold(any_term,eqspec "P_trans(skip_0,en,t)"),
unfold(any_term,eqspec "P_4 p")]11),
(egspec "G_comp g",
branch [
compose [
unfold(any_term,eqspec "G_trans((g::glist),en,t)"),
unfold(any_term,eqspec "G_4 g"),
forced_£fold_G,
forced_fold_P,
forced_fold_E any],
compose [
unfold(any_term,eqspec "G_trans(nil,en,t)"),
unfold(any_term,eqspec "G_4 g")1]1),
(egspec "M_comp m",
branch [
compose [
unfold(any_term,eqspec "M_trans((p::plist),en,t)"),
unfold(any_term,eqspec "M_4 p"),
forced_fold_M,
forced_fold_P],
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compose [
unfold(any_term,eqspec "M_trans(nil,en,t)"),
unfold(any_term,eqspec "M_4 p")11),
(egspec "B_comp b",
branch [
compose [
unfold(any_term,eqspec "B_trans (blk_0(x,b),en)"),
unfold(any_term,eqspec "B_4 b"),
forced_fold_B],
compose [
unfold(any_term,eqspec "B_trans (pro_0 p,en)"),
unfold(any_term,eqspec "B_4 b"),
fold(all_terms,eqgspec "P_comp p")1]1),
(egspec "C_comp c",
branch [
compose [
unfold(any_term,eqspec "C_trans c"),
unfold(any_term,eqspec "C_4 c"),
fold(all_terms,eqspec "B_comp b")]11)];

--- forced_fold_B
<= compose[
abstract fn "B_4",
abstract fn "B_trans",
replace(sbterm(" (let pl==el in let p2==e2 in e3,"<>
" let (pl,p2)==(el,e2) in e3)",any),
"tupling"),
fold(all_terms,eqspec "B_comp b")];

-—- forced_fold_E context
<= compose[

abstract sbterm("E_4 x",context),

abstract sbterm("E_trans(x,x1,x2)",context),

replace(sbterm("(let pl==el in let p2==E_4 e2 in e3,"<>
" let (pl,p2)==(el,E_4 e2) in e3)",any),

"tupling"),
fold(all_terms,eqspec "E_comp e")];
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--- forced_fold_G
<= compose [

abstract fn "G_4",

abstract fn "G_trans",

replace(sbterm("(let pl==el in let p2==G_4 e2 in e3,"<>
" let (pl,p2)==(el,G_4 e2) in e3)",any),

"tupling"),
fold(all_terms,eqspec "G_comp m")];

--- forced_fold_M
<= compose[

abstract fn "M_4",

abstract fn "M_trans",

replace(sbterm(" (let pl==el in let p2==M_4 e2 in e3,"<>
" let (pl,p2)==(el,M_4 e2) in e3)",any),

"tupling"),
fold(all_terms,eqspec "M_comp m")];

-—- forced_fold_P
<= compose[
abstract fn "P_4",
abstract fn "P_trans",
replace(sbterm(" (let pl==el in let p2==P_4 e2 in e3,"<>
" let (pl,p2)==(el,P_4 e2) in e3)",any),
"tupling"),
fold(all_terms,eqspec "P_comp p")];
end;

B.2.3 The Result of the Second Stage

module newcomp;

pubfun B_comp,C_comp,E_comp,G_comp,M_comp,P_comp;

uses aux,multipass,newtrans;

dec B_comp : block_0 # env -> list(instr) # num;

dec C_comp : prog_O -> list(instr) # num;

dec E_comp : exp_O # env # adr -> list(instr) # num;

dec G_comp : list(guard_0) # env # adr -> list(instr) # list(num);
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dec M_comp : list(proc_0) # env # adr -> list(instr) # list(num);
dec P_comp : proc_O # env # adr -> list(instr) # num;
-—— B_comp(pro_0 z_z2,r_z1)
<= P_comp(z_z2,r_z1l,nextfree r_z1);
-—- B_comp(blk_0(x_z2,T_z1),r_z1)
<= let(T_z5,u_zb)==
B_comp(T_z1,update(r_zl,x_z2,nextfree r_z1))
in (T_z5,1+u_z5);
--- C_comp t_z1
<=(B_trans(t_z1,initenv) ,noofchan + B_4 t_z1);
-—- E_comp(r_z3 dop_0 W_z3,y_zl,x_z1)
<= let(x_z8,t_z7)==E_comp(W_z3,y_zl,x_z1 + 1)
in let(v_z6,R_z5)==E_comp(r_z3,y_z1l,x_z1)
in (v_z6<>(x_z8<>[LDL x_z1,LDL(x_z1 + 1),DOP,
STL x_z1]) ,max(R_z5,t_z7 + 1));
-—- E_comp(mop_0 t_z3,y_z1,x_z1)
<= let(w_z6,S_z5)==E_comp(t_z3,y_zl,x_z1)
in (w_z6<>[LDL x_z1,MOP,STL x_z1],S_z5);
-—- E_comp(var_0 z_z4,y_z1,x_z1)
<=([LDL lookup(z_z4,y_zl1),STL x_z1],1);
-—- E_comp(con_0 x_z4,y_z1,x_z1)
<=([LDC x_z4,STL x_z1],1);
--- E_comp(false_0,y_z1l,x_z1)
<=([LDC 0,STL x_z1],1);
--- E_comp(true_0,y_z1,x_z1)
<=([LDC 1,STL x_z1],1);
-—- G_comp(gc_0(V_z2,U_z2) :: w_z2,v_zl,u_zl)
<= let(V_z8,U_z8)==E_comp(V_z2,v_z1l,u_z1)
in let(S_z7,r_z7)==P_comp(U_z2,v_zl,u_z1)
in let(y_z6,U_z5)==G_comp(w_z2,v_zl,u_z1)
in ([BLOCK([TESTERR]<>(V_z8<>([STOPERR,
CJ "fail"]1<>(S_z7<>[J "exitif",
DEF "fail"]))<>(y_z6<>
[DEF "exitif"])))],
max(U_z8,r_z7) :: U_zb);
-—- G_comp(nil,v_z1l,u_z1)
<=([STOP] ,nil);
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-—— M_comp(Z_z2 :: Y_z2,V_z1,U_z1)
<= let(R_z7,W_z7)==P_comp(Z_z2,V_z1,U_z1)
in let(x_z6,w_z5)==M_comp(Y_z2,V_z1,U_z1)
in (R_z7<>x_z6,W_z7 :: w_zb);
-—- M_comp(nil,V_z1,U_z1)
<=(nil,nil);
-—— P_comp(while_0(t_z2,s_z2),Y_z1,X_z1)
<= let(T_z7,s_z7)==E_comp(t_z2,Y_z1,X_z1)
in let(z_z6,V_z5)==P_comp(s_z2,Y_z1,X_z1)
in ([LOOP([TESTERR]<>(T_z7<>([STOPERR,NOT,
CJ "cont",EXIT,DEF "cont"l<>z_z6)))],
max(s_z7,V_z5));
-—— P_comp(if_0 S_z2,Y_z1,X_z1)
<= let(X_z6,W_z5)==G_comp(S_z2,Y_z1,X_z1)
in (X_z6,maxelm W_z5);
-—- P_comp(seq_0 x_z3,Y_z1,X_z1)
<= let(Y_z6,r_z5)==M_comp(x_z3,Y_z1,X_z1)
in (Y_z6,maxelm r_z5);
-—- P_comp(out_0 z_z3,Y_z1,X_z1)
<= let(Z_z6,s_z5)==E_comp(z_z3,Y_z1,X_z1)
in ([TESTERR]<>(Z_z6<>[STOPERR,LDC X_z1,
LDC chanout Y_z1,0UT]) ,max(s_z5,1));
-—— P_comp(in_0 Y_z3,Y_z1,X_z1)
<=([LDC lookup(Y_z3,Y_z1),LDC chanin Y_z1,IN],0);
--- P_comp(assign_0(v_z3,u_z3),Y_z1,X_z1)
<= let(u_z6,t_z5)==E_comp(u_z3,Y_z1,X_z1)
in ([TESTERR]<>(u_z6<>[STOPERR,LDL X_z1,
STL lookup(v_z3,Y_z1)]1),t_z5);
-—— P_comp(stop_0,Y_z1,X_z1)
<=([STOP],0);
-—- P_comp(skip_0,Y_z1,X_z1)
<=(nil,0);
end;
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