
Design, Analysis and Reasoning about Tools:
Abstracts from the First Workshop

Flemming Nielson
(editor)

October 1991

1 Introduction

The first DART workshop took place on September 16th and September 17th
at Aarhus University. It attracted some 26 attendees and 16 halfhour talks
were given. This booklet gives

• a brief introduction,

• abstracts of all talks, and

• a detailed description of the goals of the DART project.

The DART project concerns the “Design, Analysis and Reasoning about
Tools”. It is funded by the Danish Research Councils until early 1994 and
comprises researchers at Aarhus University, University of Copenhagen and
Aalborg University Centre. The research has a strong semantic basis and is
grouped under six main headings:

• Semantics as a Descriptive Tool

• Semantics as an Analytical Tool

• Semantics of Concurrency

1

• Semantics Based Deduction

• Semantics Based Program Manipulation

• Operational Semantics, Types and Language Implementation

A more detailed description of these areas may be found in Section 3 together
with names of contact persons.

From the diversity of the headings it should be clear that despite the focus
on semantics, the DART project comprises several research areas with their
own concepts, methods and tools. To facilitate the interaction within the
projects and the transfer of ideas between different areas, the majority of the
talks were asked to relate to one of the following two themes:

• fixed points

• types

Both themes touched upon more than one area and often the talks managed
to stimulate discussion between areas that otherwise had only little interac-
tion.

Acknowledgements

Finally, thanks to Susanne Brøndberg for arranging the workshop and to
Tove Legaard for arranging the payment of our bills.

2

2 Abstracts of Talks given

Mechanizing Program Verification in HOL

Sten Agerholm
Aarhus University

Proofs of program correctness are usually large and complex. This advocates
mechanical assistance for managing the complexity and details of proofs. In
this talk we present a program verifier based on the HOL system which is an
interactive general-purpose proof-assistant system for conducting proofs in
higher order logic. We describe a formalization of the weakest precondition
predicate transformer semantics of a small programing languages a verifica-
tion condition generator for total correctness specifications, and a number
of simplification tools for proving subparts of verification conditions, auto-
matically. Examples are consiered in order to illustrate the application and
evaluate the usability of the program verifier.

Variables Determining control Flow

Torben Amtoft
Aarhus University

The purpose of partial evaluation (PE) is to do some computations at PE-
time which otherwise would have to be done repeatedly at run time. The
standard view on PE is as follows: some parts (variables) of the input are
known a priori while others are not; from the known parts one attempts
to do as much computation as possible. In this talk an alternative view
is presented: there is no a priori binding time division, instead variables
are classified with respect to how much computation is possible using their
values. More precisely, one takes a look at the algorithmic structure of the
program and for each loop in the flow chart an analysis is made to detect
which variables must be known in order for this loop to be eliminatable. The
result of the analysis can give helpful clues on how the program in question
should be specialized. The analysis can be considered as a backward binding
time analysis, and is as such in some sense resemblant of strictness analysis.

3

Several examples will be given to illustrate the topics. It will be discussed
whether it is possible to put the concept on more solid ground, and related
approaches will be mentioned.

Soundness and Consistency of
The UNITY Logic with Induction

Flemming Andersen
Teleteknisk Forsknings-Laboratorium

It has been discussed whether the UNITY logic, as presented in the book by
Chandy and Misra: Parallel Program Design, A Foundation, is consistent.
One of the questions concerning the logic has been the use of two informally
presented induction principles. The two principles are used to prove theorems
of the progress relation “leadsto” in the logic.

Working with the construction of minims fixed points using the Tarski method,
it was discovered that the implication theorem, satisfied by the construction
of the fixed point, may be used for deriving induction principles for the min-
imal fixed point of boolean recursive functionals.

Assuming the monotonic functional maps the boolean function to be defined
into a disjunction of boolean functions, it is possible to prove that a set of
introduction theorems for the fixed point is automatically given. Further the
implication theorem may be used for proving two induction theorems for the
fixed point satisfied.

In this talk these results are presented and used for defining “leadsto” as a
minimal fixed point solution. It is shown that the “leadsto” relation may be
defined by two different monotony functionals, resulting in the same minimal
fixed point. Hence, four induction theorems are given for the found “leadsto”
definition. Two of these represent the induction principles as described in
the UNITY book. But it turns out that one of the used induction theorems
is slightly different from the formally found.

4

Model Checking and Boolean Graphs

Henrik Reif Andersen
Aarhus University

This paper describes a method for translating a satisfaction problem of the
modal µ-calculus into a problem of finding a certain marking of a boolean
graph. By giving algorithms to solve the graph problem, we present a global
model checking algorithm for the modal µ-calculus of alternation depth one,
which has time-complexity |A||T |, where |A| is the size of assertion and |T | is
the size of the model (a labeled transition system). This algorithm extends
to an algorithm for the full modal µ-calculus which runs in time (|A||T |)ad,
where ad is the alternation depth, improving on earlier presented algorithms.
Moreover, a local algorithm is presented for alternation depth one, which runs
in time |A||T | log(|A||T |), improving on the earlier known algorithms that
are all at least exponential.

Correctness Preserving Transformations on a
Multipass Occam Compiler

Karin Glindtvad
Aarhus University

The verification of a compiler may be a substantial task. However, by in-
troducing correctness preserving program transformations some automated
assistance becomes available. The idea is to specify an initial multipass com-
pilers to verify it in the usual way and then, while preserving the overall
correctness result, to transform it into a more efficient single pass compiler.
This transformation process may be performed using the fold/unfold frame-
work of Burstall and Darlington and automation is provided by the Flagship
Programming Environment. I will illustrate the transformation process on a
compiler for a small subset of Occam.

5

Path Analysis for Lazy Data Structures

Carsten K. Gomard
University of Copenhagen

We describe a method to statistically infer evaluation order information for
data structures in a typed lazy first order functional language. Our goal is to
determine to which extent and in what order the variables and data structures
in the program are evaluated. This information subsumes strictness analysis
but can be used to optimize the implementation of suspensions (or “thunks”)
in such languages.

The evaluation order of the free variables in an expression is described by
variable paths in the style of Bloss and Hudak.

Evaluation order for a data structure is described by a context, or evalua-
tion order type, which is the type of the data structure together with path
sets describing the order of evaluation of its components. For recursively
defined types such as natlist ::= Nil | Cons nat natlist, only uniform
descriptions are allowed: the recursive components (those of type natlist)
must all have the same description.

Given a context in form of an evaluation order type for the result of an
expression, we find the order in which the variables are evaluated. Also from
the context of the expression we find contexts for the free variables. Similarly,
from the evaluation order type of a function application we get evaluation
order information about its parameters.

This work has goes related to those of Bloss and Hudak’s “path analysis”.
It extends their resets because the backwards approach facilitates analysis of
data structures. Moreover, evaluation order types seem to be natural tools
for describing and reasoning with data structure strictness. In particular,
one can characterize head strictness also in the absence of tail strictness.

In the paper we discuss the description of evaluation order and evaluation
order types, describe the analysis method, demonstrate it on several exam-
ples, and discuss its application to optimization of suspensions.

6

Mechanical Verification of Translations
Between Operational Semantics

John Hannan
University of Copenhagen

We address the problem of mechanically verifying the equivalence of two dif-
ferent operational semantics. We consider operations semantics defined as
sets of inference rules axiomatizing a relation between programs p and values
v. A computation in such a semantics is described by a proof of a propo-
sition (p⇓ v). Equivalence between two semantics axiomatizing the same
such propositions can then be demonstrated by providing a bidirectional
translation between proofs (of the same proposition) in the two semantics.
Previously these proofs of equivalence were performed by hand. We demon-
strate how they can be defined in the same logical framework in which the
semantics are specified.

We use the metalanguage Elf, a logic programming language that incorpo-
rates logic definition facilities in the style of LF, to define operations seman-
tics. Unlike other logic programming languages, such as Prolog and λProlog,
Elf provides direct access to the proofs of queries or goals. These proofs are
represented as terms in a dependent typed λ-calculus and can be directly
manipulated by other Elf programs. We provide an example in which two
operational semantics for reduction in the untyped λ-calculus can be proved
equivalent via an Elf program relating the two semantics. We also com-
ment on an extended example in which we relate an operational semantics
using a higher-order abstract syntax and meta-level substitution to perform
β-reduction, with a semantics using a first-order abstract syntax, environ-
ments and closures.

Proving Bisimilarity for Context-Free
Processes

Hans Hüttel
Aalborg University Centre

Recently Baeten, Bergstra, and Klop have proved the remarkable result that

7

bisimulation equivalence is decidable for context-free grammars without use-
less or empty productions. Within process calculus theory these grammars
correspond to normed processes defined by a finite family of guarded re-
cursion equations in the signature of BPA (Basic Process Algebra). These
processes can have infinitely many states (even after quotienting by bisimula-
tion equivalence). Consequently the process calculus approach encompasses
a much richer class of infinite-state systems that are open to automatic tech-
niques normally associated with finite state systems than all those approaches
based on trace or language equivalence.

However, the proof of decidability is not easy as it relies on isolating a pos-
sibly complex periodicity from the transition graphs of these processes. An
alternative, more elegant proof utilizing rewrite techniques has been given
by Caucal. But neither of the proofs reflect how one intuitively would show
that two processes are bisimilar.

In this talk I present a result due to Colin Stirling and myself which gives
a simpler and much more direct decidability proof using a tableau-based
decision method involving goal-directed rules akin to the branching algo-
rithms first investigated by Korenjak and Hopcroft. The decision procedure
yields an upper bound on the depth of a tableau and provides the essential
part of the bisimulation relation between two processes which underlies their
equivalence, a self-bisimulation as in the work of Caucal. From the decision
procedure we also get a sound and complete sequent-based equational theory
for such processes.

Dynamic Typing

Fritz Hengkin
University of Copenhagen

The world of programming languages has historically been divided into stat-
ically (Pascal, Miranda (TM), . . .) and dynamically (Scheme, Prolog, . . .)
typed languages, each camp being populated by advocates that are outspo-
ken, at times ferociously so.

Statically typed programming languages require type declarations — explicit
(Pascal) or implicit (Miranda) — that are checked at compile-time; dynam-

8

ically typed languages conduct type checking at run-time. Both camps have
their proponents: statically typed languages are safer and mostly more ef-
ficient than dynamically typed ones, and they support software engineering
principles such as modularization and information hiding better, it is argued
by one camp. The other camp extols the flexibility and conciseness of dy-
namically typed languages, and their suitability for rapid prototyping and
exploratory software development.

In this talk we present a way of combining both typing disciplines in a single
frameworks called “dynamic typing”, without compromising the benefits of
either. We present an explicit typing discipline with a special type “dynamic”
and operations for type tagging and type checking to, respectively, create and
use values of type dynamic. Type information and tagging/checking opera-
tions may be completely or partially omitted, and a type inference algorithm
is employed to infer the missing type information and type operations.

Apart from integrating seemingly contradictory typing and using characteris-
tics in a single language framework, dynamic typing also bears more immedi-
ate technological promise. The type inference algorithm gives the same result
as Miranda’s type inferencer for statically type correct programs; for type in-
correct ones it produces a typing in which the placement of type operations
localizes the (static) type errors. In a LISP-like language the algorithm can
be used to speed up the execution of programs by eliminating unnecessary
tagging operations.

Typing Interpreters, Compilers and Partial
Evaluators

Neil D. Jones
University of Copenhagen

A symbolic version of an operation on values is a corresponding operation
on program texts. For example, symbolic composition of two programs p, q
yields a program whose meaning is the (mathematical) composition of the
meanings of p and q. Another example is symbolic specialization of a function
to a known first argument value. This operation, given the first argument,
transforms a two-input program into an equivalent one-input program. Com-
putability of both of these symbolic operations has long been established in

9

recursive function theory; the latter is known as Kleene’s “s-m-n” theorem,
also known as partial evaluation.

In additon to computability we are concerned with efficient symbolic opera-
tions, in particular applications of the two just mentioned to compiling and
compiler generation. Several examples of symbolic composition are given,
culminating in nontrivial applications to compiler generation. Partial eval-
uation has recently become the subject of considerable interest. Reasons
include simplicity, efficiency and the surprising fact that self-application can
be used in practice to generate compilers, and a compiler generator as well.

This paper makes three contributions: First, it introduces a new notation to
describe the types of symbolic operations, one that makes an explicit distinc-
tion between the types of program texts and the values they denote. This
leads to natural definitions of what it means for an interpreter or compiler
to be type correct — a tricky problem in a multilanguage context. Sec-
ond, it uses the notation to a clear overview of several earner applications of
symbolic computation. For example, it is seen that the new type notation
can satisfactorily explain the types involved when generating a compiler by
self-applying a partial evaluator. Finally, a number of problems for further
research are stated along the way. The paper ends by suggesting Cartesian
categorical combinators as a unifying framework in which to study symbolic
operations.

Efficient Local Validity-Checking

Kim Guldstrand Larsen
Aalborg University

Automatic verification of parallel systems is a growing research area. In par-
ticular a number of tools and techniques for deciding various behavioural
equivalences between processes and checking satisfiability of processes with
respect to temporal logic formulae has been developed. Most of these tech-
niques share a preprocessing phase in which the total state space of the
processes involved is constructed based on which the equivalence and satisfi-
ability checking is performed. However, the exponential growth of the state
space in the number of parallel components has been identified as the main
limiting factor for these techniques.

10

In contrast, the technique we offer will only explore (and construct) the part
of the state space which is necessary to carry out the verification. We call
this technique a local checking technique. Other researchers (Colin Stirling
and Glynn Winskel) have previously considered similar local checking tech-
niques but in all cases they have exponential worst-case time complexity. Our
technique offers an efficient local checking technique, based on a dynamic
programming technique in order to avoid unnecessary recomputations.

Our local checking technique is developed for a Boolean Equation System
Problem. Here a number of propositional variables x1, . . . , xn are given to-
gether with a defining equation xi = Di for each variable xi, with the defini-
tion Di being the formula tt, the formula ff or a conjunction or disjunction
of propositional variables. The problem is to decide whether

x1 ∈ V

where V is the maximum set of variables such that assigning tt to all vari-
ables in V and ff to all variables outside V validates all equations. In a
local checking of the above we want to consider as few propositions variables
as possible. The algorithm developed has quadratic time complexity in the
number of propositions variables. Finally, it is shown how to translate a
number of process valdating problems (e.g. bisimulation, equivalence, satis-
fiability wrt. ν-calculus) into Boolean Equation System Problems.

Efficient Self-Interpretation in Lambda
Calculus

Torben Æ. Mogensen
University of Copenhagen

This note is in part a follow up to Henk Barendregt’s Theoretical Pearl in
Issue 2 of the Journal of Functional Programming ([Barendregt 1991]), but
contains sufficient new ideas to be interesting in its own right.

We start by giving a compact representation of λ-terms and show how this
leads to an exceedingly small and elegant self-interpreter. We then define
the notion of a self-reducer, and show how this too can be written as a small
λ-term. Lastly, the question “is there a λ-term that reduces to its own rep-
resentation” is asked. We answer this affirmatively by constructing such a

11

term. All the constructions have been implemented on a computer, and ex-
periment runs verify their correctness. Timings show that the self-interpreter
and self-reducer are quite efficient, being about 35 and 50 times slower than
erect execution using a call-by-need reduction strategy.

A Perspective on Types

Flemming Nielson
Aarhus University

We begin by briefly reviewing some of the many “non-standard” uses of types
that may be found in the literature. We then go on to study two of these in
greater detail.

One is the introduction of binding times into the notation for types (and ex-
pressions). There seems to be some consensus on the notation to use whereas
there are many conflicting approaches to the definition of well-formedness.
We demonstrate that indeed different notions of well-formedness are appro-
priate for different purposes but that nonetheless several of the techniques
used have a lot in common. Based on the insights obtained we propose a
general methodology for constructing a B-level language L where B is the
“set” of binding times and L is some typed language.

The other is the introduction of communication abilities into the notation
for types. As a price to be paid for a decidable type system we have to give
up causality. The proposed system is distinctive in character (with respect
to Mobile Processes and similar systems) but allows proving a result along
the lines that “well-formed programs do not go wrong”. Finally, we briefly
mention the possibility of using a B-level version of the language as a me-
talanguage for Denotational Semantics, thus increasing the descriptive power
of Denotational Semantics in the area of concurrency.

12

Bounded Fixed Point Iteration

Hanne Riis Nielson
Aarhus University

In the context of abstract interpretation for languages without higher-order
features we study the number of times a functional need to be unfolded in
order to give the least fixed point. For the cases of total or monotone func-
tions we obtain an exponential bound and in the case of strict and additive
(or distributive) functions we obtain a quadratic bound. These bounds are
shown to be tight in that sufficiently long chains of functions can be shown
to exist. Specializing the case of strict and additive functions to functionals
of a form that would correspond to iterative programs we show that a lin-
ear bound is tight. This is related to the analyses studied in the literature
(including strictness analysis).

The results are presented in H.R. Nielson, F. Nielson: Bounded Fixed Point
Iteration, DAIMI PB-359, Aarhus University. An extended abstract will ap-
pear in the proceedings from POPL92.

Inheritance of Recursive Classes

Michael Schwartzbach
Aarhus University

The semantics of inheritance is commonly explained as a program transfor-
mation that expands class definitions. It is well-known that the simplest
formulation of this yields unsatisfactory results when applied to inheritance
of recursive classes: the recursive structure is not preserved in the subclass.
Modifications such as the “like Current” construct have been suggested, but
they do not generalize in any obvious way to mutually recursive classes. We
present a new program transformation for inheritance that always preserves
the recursive structure. It is based on a representation of classes as regular
trees labeled by gapped, untyped source code. The algorithm analyzes the
so-called program graph which has class definitions as nodes and Is-a and
Has-a edges; it then reflects inheritance as operations on regular equations
systems. A crucial property of this transformation is that it may introduce
new classes in the expanded program.

13

The Compositional Checking of Satisfaction

Glynn Winskel
Aarhus University

This talk described the joint work of Andersen and Winskel. It presents a
compositional method for deciding whether a process satisfies an assertion.
Assertions are formulae in a modal ν-calculus, and processes are drawn from
a very general process algebra inspired by CCS and CSP. Well-known opera-
tors from CCS, CSP, and other process algebras appear as derived operators.
The method is compositions in the structure of processes and works purely
on the syntax of processes. It consists of applying a sequence of reductions,
each of which only take into account the top-level operator of the process.
A reduction transforms a satisfaction problem for a composite process into
equivalent satisfaction problems for the immediate subcomponents. Using
process variables, systems with undefined subcomponents can be defined,
and given an overall requirement to the system, necessary and sufficient con-
ditions on these subcomponents can be found. Hence the process variables
make it possible to specify and reason about what are often referred to as
contexts, environments, and partial implementations. As reductions are al-
gorithms that work on syntax, they can be considered as forming a bridge be-
tween traditional non-compositional model checking and compositional proof
systems.

14

3 Description of the DART project

The acronym DART stands for “Design, Analysis and Reasoning about
Tools”. What follows is an edited excerpt from the application for funds.
It is intended as an overall description of the project and was written in
January of 1991.

3.1 Objective of Project

To conduct research about programs and systems using tools and techniques
that have a strong semantic foundation. Most of these tools and techniques
focus on aspects near the borderline between theory and practice and may in-
volve theoretical as well as experimental components. As a consequence they
have a clear potential for practice applications in all areas where computer
based systems are (to be) used.

3.2 Introduction

The present project brings together leading Danish researchers in the ex-
ploitation and development of formal techniques for a number of issues re-
lated to programming languages. The programming languages include par-
allel and functional features; the language issues include semantics, analysis,
verification and manipulation of programs.

Members of the group share the objective of basing such work on a formal
semantics of programming languages. They complement one another in their
study of functional versus parallel features, in the choice of synthetic versus
analytical methodologies, and in balancing the development of new theories
against the application of existing theories.

While these activities are mainly motivated by considerations of basic re-
search they are strategic in nature, in that virtually all of the considerations
are of potential concern for realistic development of software in a number of
application areas. Based on experience from other countries, including the
cooperation between academia and industry, it seems plausible that several
of the techniques mastered by members of this group will need to be utilized

15

by Danish industry already in this decade, if it is to remain competitive.

To support the basic research nature of the project there will be a steering
committee (entirely internal to the project); this has shown to be a valuable
tool in the ESPRIT Basic Research Actions, which members of this project
are involved in. In an attempt to maintain the strategic focus of the research
there will be a contact committee where members of the steering committee
will discuss the overall direction of the project with external representatives.
To ensure overall coordination there will be a project coordinator (who will
be a member of both committees).

3.3 Applicants Participating in the Project

The project will involve researchers at DAIMI (The Department of Com-
puter Science at Aarhus University), DIKU (The Department of Computer
Science at Copenhagen University) and IESD (The Institute of Electronic
Systems at Aalborg University Centre) and may include researchers at other
institutions when their specialty is considered important for the overall suc-
cess of the project. Each of the applicants listed below will devote at least
two thirds of their research time to activities listed in this proposal.

At DAIMI the group presently consists of:

Uffe Engberg, assistant professor, Ph.D.
Peter Mosses, associate professor, Ph.D.
Hanne Riis Nielson, associate professor, Ph.D.
Fleming Nielson, associate professor, Ph.D., D.Sc.
Michael Schwartzbach, associate professor, Ph. D.
Glynn Winskel, professor, Ph.D.

It is expected that several guests, Ph.D. students, and research assistants will
be involved as well. Possible names include Anders Gammelgaard (RA), Jens
Palsberg, Padmanabhan Krishnan (guest, Ph.D.), Henrik Andersen, Douglas
Gurr (guest, Ph.D.), Carolyn Brown (guest, Ph.D.), Torben Amtoft.

At DIKU the group consists of:

Klaus Grue, associate professor, Ph.D.
Neil Jones, professor, Ph.D.

16

Torben Mogensen, assistant professor, Ph.D.
Mads Rosendahl, assistant professor.
Mads Tofte, expected to become associate professor, Ph.D.

It is expected that several guests, Ph.D. students, and research assistants will
be involved as well. Possible names include Anders Bondorf (RA, Ph.D.),
Ritz Henglein (RA, Ph.D.), John Hannan (guest, Ph.D.), Peter Sestoft,
Carsten Gomard, Hans Dybkjær, Kristoffer Helm, Lars Ole Andersen, Jesper
Jørgensen, Christian Mossin, Nils Andersen (associate professor)

At IESD the group consists of:

Kim Larsen, associate professor, Ph.D.

It is expected that also Arne Skou (associate professor), Anna Ingolfsdottir
(assistant professor) and Hans Hüttel (assistant professor) will be involved.

3.4 Scientific Content

The bulk of the research is organized into a number of designated research
areas:

SDT: Semantics as a Descriptive Tool

SAT: Semantics as an Analytical Tool

SOC: Semantics of Concurrency

SBD: Semantics Based Deduction

SBPM: Semantics Based Program Manipulation

OST: Operational Semantics, Types and Language Implementa-
tion

For each we list its title, likely participants (including a contakt pepson), its
purpose and likely results to be achieved within one or two years. This dis-
tinguishes between the results we hope to achieve with only limited funding
(e.g. perhaps some programming assistance, some travel money and minor
amounts of equipment) and those results that need considerable additional
funding (e.g. guests on extended stays, research assistants, full-time pro-
grammers, expensive equipment).

17

3.4.1 SDT: Semantics as a Descriptive Tool

The main activities in this area center around Action Semantics. This is an
approach to semantics (developed mainly by Peter Mosses) that has its roots
in Denotations Semantics but is designed so as to allow greater modularity
of semantic descriptions. This is done by identifying four important facets of
programming languages (concurrency, binding, functional, imperative) and
by formulating a general set of combinators for expressing these.

During the coming years the main activities will be:

To support the popularization of Action Semantics by producing
a library of polished action semantic descriptions (including Pas-
cal, Modula-3, Standard ML, Beta, Occam-2).

To develop the theory behind Action Semantics: laws, proof tech-
niques, etc.

To develop an environment for editing, browsing, checking and
interpreting action semantic descriptions. This may be based on
the system Mathematica.

Likely participants are Peter Mosses (contact person), Jens Palsberg, Pad-
manabhan Krishnan.

If further funding and manpower is available, other aspects of Action Seman-
tics may be studied: software specification, Action Semantics and language
standardization, relationship to Meta-IV and RAISE etc.

3.4.2 SAT: Semantics as an Analytical Tool

The main activities of this area are concerned with the correct and effi-
cient implementation of lazy functional languages like Miranda or Haskell.
Important ingredients are the systematic construction of abstract interpreta-
tions, the development of (provably correct) implementations for sequential
and parallel abstract machine architectures, and the application of program
transformations to increase the efficiency of various implementation schemes.

18

During the coming years the main activity we be to complete the development
of a two-level framework for describing and reasoning about code generation,
abstract interpretation and their combination. The theoretical part of this
work includes:

a correctness proof for a “simple” translation,

formulation and proof of correctness for abstract interpretations
that may facilitate more efficient code to be generated,

combination of code generation and abstract interpretation and
studies of the correctness problem associated with this.

To complement the theoretical work it is planned to construct and use var-
ious tools to experiments with different approaches. These may include the
HOL system (see the description of Semantics Based Deduction) and the
FLAGSHIP transformation system. More specialized tools may be written
directly in a functional language.

Likely participants are Hanne Riis Nielson (contact person), Flemming Niel-
son, Jens Palsberg, Torben Amtoft.

If further funding and manpower is available, it is planned to combine ideas
from the two-level approach with state-of-the-art techniques used in the im-
plementation of Haskell.

3.4.3 SOC: Semantics of Concurrency

The main activities in this area are concerned with the development of a the-
oretical basis and supporting automatic tools for designing provably correct
distributed/concurrent systems. In particular, theories and tools supporting
modular design and compositional verification are sought; i.e. it should be
possible to relate properties of a complex system to properties of its compo-
nents.

During the coming years the main activity will be to study and develop a
range of specification formalisms for concurrent systems and to investigate to
what extent the specification formalisms support compositions verification.
The theoretical part of this work includes:

19

study of the compositionality question for a modal µ-calculus,

study of the compositionality question for extensions of the modal
µ-calculus allowing explicit representation of timing constraints
and properties of probabilistic behaviour of a concurrent system,

study of the compositionality question for true concurrent speci-
fication formalisms.

To complement the theoretical work it is planned to design and (prototype)
implement a range of automatic tools supporting the design methodology.
These tools may be implemented directly in a functional language, in a logic
programming language (similar to the implementation of the existing TAV -
system) or in the HOL system (see the description of Semantics Based Deduc-
tion). Also, an evaluation of the design methodology (and of the associated
tools) through practice experiments is planned.

Likely participants are Uffe Engberg, Kim Guldstrand Larsen (contact per-
son), Glynn Winskel, Henrik Andersen, Arne Skou, Anna Ingolfsdottir and
Hans Hüttel.

If further funding and manpower is available an efficient implementation of
a programming environment integrating the various tools is planned.

3.4.4 SBD: Semantics Based Deduction

On October 1-2, 1990 the Computer Science Department of Aarhus Uni-
versity hosted the Third International HOL, Users Meeting, attended by
around 40 people from as far afield as California, Vancouver and Canberra,
Australia. HOL is a higher-order-logic theorem prover originally developed
at Cambridge University. It is becoming widely accepted as one of the most
important tools in the area of automated proof and is being applied by uni-
versities and industry in the verification of safety-critical hardware and soft-
ware as well as in the automated proof of standard mathematics. The siting
of the meeting at Aarhus was in part a recognition and encouragement of
the promising work being done there by several M.Sc. students under the
direction of Glynn Winskel. However, securing and directing this expertise
requires careful planning and funding.

The goals of this activity require substantial funding and are

20

the establishment of a site of HOL expertise open to a variety of
applications by universities and industry, in teaching, consultancy
and research,

a broadening of this expertise to other related theorem provers
especially Coquand’s Calculus of Constructions and Paulson’s Is-
abelle. Such type theories are non-trivial and warrant theoretical
study,

the development of tools for automated proof. In particular it
is planned to investigate automated support for transformations
in functional programming languages (possibly based on recent
ideas of Abramsky).

Although it is not yet the case that HOL or similar systems are being
widely used by Danish industry (HOL is used by Teleteknisk Forsknings-
Laboratorium, however), the growing importance of automated verification
is well recognized outside Denmark. We have contact with researchers in the
area at AT & T Labs. (New Jersey), SRI and TopExpress (Cambridge) and
DEX (Palo Alto). These and links with other European universities through
our ESPRIT Basic Research Actions will be an advantage in establishing
machine verification as an area of expertise in Denmark, in anticipation of a
fruitful interchange with Danish industry over the next decade.

Likely participants include Glynn Winskel (contact person), Douglas Gurr,
and Sten Agerholm.

3.4.5 SBPM: Semantics Based Program Manipulation

This area has three highly intertwined threads:

Partial evaluation, an automatic technique for program op-
timization by specializing a program to partially known input
data. Self-application of a partial evaluator can be used to gen-
erate program generators, a notable example being to transform
a programming language interpreter into a compiler.

Abstract interpretation, concerns techniques for static pro-
gram analyses; their goal is to extract information about a pro-
gram’s runtime behaviour without actually executing it. Central

21

concerns are safety: correctness of the analysis; computability
by means of terminating algorithms; precision of the behavioural
description.

Implementation of functional languages. Efficient imple-
mentation techniques for two closes of functional languages: strict:
(Standard ML FP, . . .) and lazy (Miranda, Haskell, . . .).

Following are some specific research goes:

to extend partial evaluation to handle larger languages and to
improve efficiency,

to find problem areas to which partial evaluation can profitably
be applied,

to find static analyses and program transformations to obtain
better results during partial evaluation,

to complete a distribution version of a system (Similix) for the
partial evaluation of a higher-order subset of Scheme; currently
pre-releases are being used at European and American universi-
ties,

to investigate design decisions for functional language implemen-
tation, e.g. tagged versus tagless data and heap versus stack
based control,

to design and implement static program analyses that gather in-
formation useful in generating efficient code, e.g. storage usage,
variable lifetimes, and linearity,

to develop highly parallel graph reduction machines, to experi-
ment with simple versions of the proposed implementation tech-
niques, and to obtain statistics relating their efficiency to pro-
grams in e.g. the programming language C,

to better understand backwards abstract interpretation of func-
tional languages, and to relate forwards and backwards analyses,

techniques to combine abstract interpretations, for example us-
ing attribute grammars as a descriptive language to set up an
abstract interpretation implementation framework,

22

to better relate abstract interpretation to types, e.g. to compare
the former’s fixpoint based techniques with the deductive and
inferential techniques used for types,

a complexity theory about the speedups seen in partial evalua-
tion (computerized prediction methods are essential to the fully
automatic use of partial evaluation).

The participants are expected to include Neil Jones (contact person), Klaus
Grue, Mads Tofte, Mads Rosendahl, and Torben Mogensen. In addition,
some ESPRIT researchers (Anders Bondorf, Ritz Henglein) and M.Sc. and
Ph.D. students (C. Gomasd, L.O. Andessen, J. Jørgensen, C. Mossin, Peter
Sestoft).

If sufficient funding and manpower is available, we would do some of the
following:

implement partial evaluators for full or almost full versions of
commercially available and widely used languages (examples could
be Scheme, Prolog or Miranda),

realize a parallel graph seduction machine. Presently at DIKU,
5 transputers implementing a graph seduction machine (as yet
unoptimized) can deliver one tenth of the computational power
as a SPARC station programmed in C,

develop a prototype system using attribute grammars to imple-
ment and apply abstract interpretation to a wide spectrum of
programming languages.

3.4.6 OST: Operational Semantics, Types and Language Imple-
mentation

Operational Semantics is a simple and powerful mathematical framework for
defining the semantics of psogsamming languages. The programming lan-
guage Standard ML is defined using the method (see Milner, Tofte, Harper:
The Definition of Standard ML, MIT Press 1990). Also, operational seman-
tics allows precise analysis of the defined language. One can investigate the
mathematics properties of the language and study problems that are essential

23

for a good implementation in a precise setting (see Milner, Tofte: Commen-
tary on Standard ML, MIT Press 1990) Finally, it has become apparent that
it is highly helpful to use the formal semantics for a manual translation into
a set implementation. This direction is being explored by Mads Tofte to-
gether with Nick Rothwell and David Turner of Edinburgh University in the
so-called ML Kit. The ML Kit is a highly modular piece of software where
the individual pasts are so clearly separated that they can be put togethes
in different ways for different purposes and combined with new modules de-
pending on what kind of analysis or translation one wants the Kit to perform.
At present the Kit can be assembled to form two different compilers and two
different interpreters for a considerable subset of ML.

The work of the proposed project will be practical and theoretical. This is
illustrated by three of the areas that will be addressed:

(Theoretical) The semantics of higher-order functors in ML, in-
cluding sharing, enrichment and contravariance in functor signa-
ture matching. Do principal signatures exist?

(Theoretical and practical) Can one use (non-standard) type check-
ing to determine good run-time storage allocation?

(Practical) The further development, maintainance and docu-
mentation of the ML Kit.

Of these, the last point which is a case study in modular programming in ML
as much as it is the development of a particular tool which we need, should
clearly be of interest to software developers. In particular, Danish industry
would probably have some interest in this, considering that our practice
experience so far has convinced us completely that a type secure module
system is of immense significance for the productivity of programmers, both
when they work as individuals and when they work in teams. In the history
of ML, there is already a tradition of fruitful cooperation between language
designers and industrial partners who build ML compilers or systems based
on ML. With increased knowledge about the semantics and implementation
of the language available in Denmark, one word hope that this tradition could
be established in Denmark as well.

The participants include Mads Tofte (contact person) and Neil Jones.

24

3.4.7 Special Topics

It has often been said that the best research is the unexpected research. With
a view to this we want to keep the project open for research topics not singled
out in the headings or descriptions above. These may arise in the course of
the project whereas others (detailed below) can be foreseen from the outset.
It will not, however, be our intent to use major funding in this area.

We foresee work on the study of (explicit and implicit) type systems for im-
perative programming languages, both traditional and object-oriented. The
presence of assignments in combination with various type features (recur-
sive types, multiple inheritance, parametric polymorphism, classes) requires
different techniques from those applied to purely functional languages. We
investigate a class of automata-based methods that are already proved use-
ful in many contexts. This work is manly to be conducted by Michael
Schwartzbach.

We also foresee work on Map Theory. The purpose of this activity is to
combine set theory and λ-calculus into one theory which can handle all of
classical mathematics as well as algorithmic and computes science seasoning.
The constructive past of map theory constitutes a functional programming
language. It would seem that map theory is suited to formalization of meta-
mathematics and the handling of large proofs. To this end map theory will
be compared to more established branches of mathematics such as category
theory and type theory. This work is mainly to be conducted by Klaus Grue.

The contact person for research under this heading is the project coordinator.

3.5 Pattern of Cooperation

While it is true that the research areas have been defined so as to correspond
to well-established patterns of cooperation among participants in this project,
we would like to open up for additional cooperation.

Currently these is alseady some contact between the groups on Semantics as
a Descriptive Tool, Semantics as an Analytical Tool and Semantics Based
Program Manipulation; this takes place within a grant on Formal Implemen-
tation, Transformation and Analysis of Programs awarded by the Danish

25

Natural Science Research Council. (This grant has now terminated due to
the commencement of the DART project.) Within the group on Seman-
tics of Concurrency these are already many contacts between researchers at
DAIMI and IESD. Finally, both DAIMI and DIKU run frequent research
seminars involving, amongst others, all project members at the particular
site.

During this project we will make additional efforts to increase the possibil-
ity of cooperation, not least between groups at different sites. In the area
of Semantics as a Descriptive Tool, Semantics as an Analytical Tool and
Semantics Based Program Manipulation cooperation is expected to be facil-
itated by the participation in the continuation of the Semantique ESPRIT
Basic Research Action. Similarly, the cooperation between the sites within
Semantics of Concurrency and Semantics Based Deduction (6.4) is expected
to be facilitated by the participation in the continuation of the ESPRIT Ba-
sic Research Actions on Concurrency and the CLICS Basic Research Action.
Finally, we intend to arrange annul meetings within the entire project where
the results of the different research areas will be presented and discussed.

3.6 Managerial Structure

The project is intended to be a “rammeprogram” and will be managed by a
steering committee, a project coordinator and a contact committee.

Members of the steering committee will be the senior researchers involved in
the research areas of the project: Klaus Grue, Neil Jones, Kim Larsen, Peter
Mosses, Hanne Riis Nielson, Flemming Nielson, Mads Tofte, Glynn Winskel.
The charter of the steering committee is to overview the scientific progress,
to discuss its relation to potential users, to influence the future evolution of
the project, and to encourage and plan for cooperation between the sites.

For each research area, one member of the steering committee is designated
as a contact person. It is the duty of this person to coordinate the responsi-
bilities of the steering committee as concerns the particular research area.

The project coordinator is Flemming Nielson. The duties of the project co-
ordinator is to monitor the project, not least the expenditure of the budget.
Resources for this role have been included in the total budget. Responsibili-

26

ties for mini-budgets within the overall budget may be delegated to members
of the steering committee.

The contact committee is responsible for securing links with outside users.
The internal members of the contact committee are Neil Jones, Flemming
Nielson and Glynn Winskel. The external members of the contact committee
are Ove Færgemand (from TFL), Søren Prehn (from CRI), and Anders Ravn
(from the Department of Computer Science at The Technical University of
Denmark). It also has a formal role in monitoring the progress of the project.

3.7 Relevance for Danish Industry

Though oriented towards basic research, this project is strategic in nature.
There are several areas of application in which the expertise and techniques
to be furthered by this project are likely to be important in the future de-
velopment of software and hardware in Denmark.

For example, formal methods are essential in the development of safetycritical
systems and are increasingly recognized as worthwhile from an economic
viewpoint. This attitude is becoming prevalent in the UK and USA where
many companies regard verification or formal development of software as
effort well-spent because of the time and money it saves in the long run
through avoiding system or network crashes, or other disasters.

We believe that techniques possessed or to be developed by members of
this group will be usefd for enhancing the techniques of software construc-
tion and validation in Denmark. Presently, Teleteknisk Forsknings Laborato-
rium (TFL) is working with such techniques originating from members of the
group. (We are currently exploiting with TFL the possibility of joint work
in Concurrency and on HOL.). To further the flow of ideas between mem-
bers of this project and industry we intend arranging “open days” where our
work and the goals of the project will be presented through tutorials, more
advanced talks and discussions. The first such arrangement is likely to take
place in 1992.

27

