
ApplBuilder - an Object-Oriented
Application Generator Supporting Rapid

Prototyping∗

Kaj Grønbæk Anette Hviid
Randall H. Trigg†

Computer Science Department
Aarhus University, Denmark

October 1991

Abstract

This paper describes an object-oriented application generator, Ap-
plBuilder, currently being developed in the Mjølner beta program-
ming environment. ApplBuilder supports several rapid prototyping
styles as well as final development of beta applications. User interface
objects such as dialogs, menus, and windows are designed using direct
manipulation graphical editors. Actions behind buttons and menu
items are programmed as “scripts” in textual editors activated from
within a graphical editor. The editors reflect changes in the code di-
rectly in an underlying Abstract Syntax Tree (AST) thus saving com-
pilation time. Moreover, generated applications are modularized so
that editing, for instance the script for a button, only requires recom-
pilation of the script itself. An advantage of ApplBuilder compared
to other user-interface design tools such as HyperCard is that Ap-
plBuilder’s scripts are embedded in a general purpose programming

∗To appear in proceedings of the Fourth international conference on software engineer-
ing and its applications, Toulouse, December 9-13 1991.

†Email: kgronbak@daimi.aau.dk, hviidand@daimi.aau.dk, and rtrigg@daimi.aau.dk.

1



language making it possible to avoid calls to external routines written
in another language. In addition, ApplBuilder’s ability to work with
ASTs instead of textual code skeletons supports reverse engineering.

Keywords: Rapid Prototyping, User Interface Design, Application
Generation, Object-Orientation, Graphical Editing, Meta-Programming,
Reverse Engineering.

1 Introduction.

In recent years, prototyping has come to the fore as an essential part of
the system development process (Squires et al, 1982; Boar, 1984; Lantz,
1986; Wilson & Rosenberg, 1988). On the one hand prototyping involves the
construction and modification of partial but operational computer artifacts,
on the other hand the prototypes are used as catalysts in design discussions
with users. Building prototypes requires a computing environment that can
support rapid incremental software development. Furthermore, as argued by
Bødker and Grønbæk (1989) and Grønbæk (1991), it is advantageous to allow
certain modifications to the prototype to be undertaken in the presence of
users. This sort of “cooperative prototyping” extends the demands made on
the computing environment (Grønbæk, 1990). These can be broadly grouped
as follows:

1. A direct manipulation graphical interface is imperative for quickly lay-
ing out complex application interfaces. The graphical editors used to
build the application’s user interface objects (UIOs) must be able to
automatically generate code templates so that these objects may be con-
structed using graphical editing only. The direct manipulation graph-
ical interface also makes it possible to avoid much of the on-the-fly
textual programming characterizing cooperative prototyping sessions
(Bødker and Grønbæk, 1989).

2. An object-oriented programming language is crucial to facilitate stuc-
tured programming and code sharing through inheritance. In this way,
new prototypes can be created by assembling and specializing class def-
initions from existing prototypes and libraries of UIO implementations.
The ability to represent familiar objects directly in a program’s user

2



interface supports the users’ understanding of prototypes and systems.
Thus object-oriented design and programming support the cooperative
prototyping style mentioned above.

3. Support for fine-grained modularization of code and separate compi-
lation is essential in order that the work of modification be localized
at appropriate points in the prototype (for example, in the form of
scripts behind UIOs) and that minimal recompilation overhead be in-
curred. Again, this is especially important if modifications are being
undertaken in the presence of users.

Though prototyping environments exist that meet some of these demands,
we know of none that meets them all. HyperCard1, perhaps the most well-
known prototyping environment on the Macintosh (Goodman, 1987), owes
much of its success to a highly developed graphical interface and a customized
scripting language, HyperTalk. HyperTalk can be used to implement a wide
range of actions “behind” UIOs like windows, fields and buttons However,
HyperCard developers are all too familiar with the “wall” that must be con-
fronted when the limits of HyperTalk are reached. When HyperTalk becomes
insufficient the developers write routines in Pascal or C and call these through
HyperTalk’s XCMD interface (Shafer, 1988).

Another example is PrototyperTM, a Macintosh tool used to generate
code skeletons for simple user interfaces (consisting of menus and windows).2

Unlike HyperCard, the resulting code is in a common high-level programming
language (Pascal or C). A desirable feature of PrototyperTM is its ability to
link UIOs together and preview the resulting interfaces. For example, a
menu entry can be linked to a dialog so that the dialog is displayed when the
entry is selected. However, PrototyperTM is a one-way street. Once a code
template has been modified, PrototyperTM’s graphical editors can no longer
be used to modify it. Furthermore, it lacks the ability to manage scripts
behind specific UIOs.

Other products for the Macintosh like MacApp3 and Allegro Common-
Lisp4 are more properly considered programming environments although

1Copyright Apple Computer, Inc.
2PrototyperTM is written by George R. Cossey and it is a product from SmethersBarnes.

All trade marks are acknowledged.
3A product from Apple Computer. All trade marks are acknuwledged.
4A product from Apple Computer. All trade marks are acknowledged.

3



their functionality overlaps with that outlined above. In order to qualify
as prototyping environments, they would need to support the generation of
significant portions of the target application through graphical editing and
automatic code generation. User interface code written directly would need to
be structured in the form of scripts and locally placed “behind” the relevant
UIOs. The object-oriented visual programming system ProGraph5 should
also be mentioned. It provides graphical editing for both UIOs and appli-
cation code; all programming is done by placing and connecting icons in
windows on the screen. UIOs are designed in graphical editors and the ac-
tions behind the UIOs are specified as calls to methods on objects specified in
the iconic code. For example, a button in a dialog has a ‘Click method’ field
where a name of a method is entered by the ProGraph user when designing
the dialog. The iconic program can be inspected and even edited interac-
tively during program execution. However, standard textual programming is
not supported by ProGraph. We consider this to be a disadvantage for expe-
rienced programmers who are generally intimately familiar with the syntax
of their favourite programming languages.

The Interface Builder on the NeXT computer (NeXT) is yet another en-
vironment that meets some of the demands. It is a graphical environment
for building interfaces incorporating graphics and sounds. Interface Builder
generates code (Objective-C) in textual form. In addition, it supports link-
ing graphical objects on the screen to methods implemented in existing code
modules. This linking is accomplished by means of fully graphical browsers.
As long as the programmer only graphically manipulates instances of exist-
ing classes, Interface Builder manages all the UIO code and keeps it separate
from the rest of the application code. For classes, Interface Builder creates
separate interface and implementation modules. Interface Builder manages
the interface module transparently, whereas the programmer manually fills
in class methods in the skeleton implementation module using a textual edi-
tor. Furthermore, the programmer is responsible for manually updating the
implementation module when changes are made from the graphical editor.

The work described in this paper is aimed at meeting the outlined require-
ments and overcoming most of the disadvantages of existing environments in
a single environment, ApplBuilder. Built on the object-oriented program-
ming language beta (Kristensen et al., 1987 & 1990) and making use of

5A product from Gunakara Sun Systems Limited. All trade marks are acknowledged.

4



the Mjølner beta System’s Meta Programming and Fragment Systems, Ap-
plBuilder supports fast creation of user interface-intensive prototypes and
the incremental expansion of these into complete applications. The current
implementation of ApplBuilder is for the Apple Macintosh only but the
principles are applicable for any kind of user-interface systems like X-windows
etc. Code generation using the Meta Programming System was proposed and
explored in an earlier project by Bjerregaard and Hviid (1990). Those ideas
have been further developed in ApplBuilder.

In what follows, we describe the ApplBuilder environment and the var-
ious kinds of application editing it supports. We then describe the structure
of applications built with ApplBuilder and the ways it may be used in
rapid prototyping. We conclude with a discussion of outstanding problems
and the status of the development.

2 The ApplBuilder Environments

The environment of ApplBuilder is built on the object-oriented Mjølner
beta System as shown in Figure 1. The lines connecting nodes in the figure
denote use relations. In what follows, we describe each of the major compo-
nents of the system.

The Mjølner beta System.

The The Mjøher beta System is designed to support the development of large
industrial systems. It is a highly integrated grammar-based programming en-
vironment supporting object-oriented programming (Bak et al., 1991). The
system is based on a powerful notion of separate compilation that enables
full consistency to be ensured across compilation units; when the program
is changed, only the affected compilation units are re-compiled. All mod-
ularization in ApplBuilder is done using the Fragment System (Mjølner,
1990), one of the grammar-based tools provided by the Mjølner beta Sys-
tem. Fragments are the units of manipulation throughout the system, and
the beta compiler translates beta fragments into native code. The set of
fragments stored on a file are called a fragment group.

The intergation of ApplBuilder’s editors is accomplished using the
Mjølner beta System’s uniform representation of programs; abstract syn-

5



Figure 1: The architecture of the ApplBuilder environment.

tax trees (ASTs). Manipulations of the ASTs are done through the Meta
Programming System (MPS) (Madsen and Nørgaard, 1987). Furthermore,
all editors working on the same AST are informed when the AST changes,
thereby allowing the editors to ensure consistency. We use an extension to
the MPS which makes it possible to decorate the nodes in an AST with prop-
erties. These properties are used to store comments, link information, and
layout information on UIOs to be used by the graphical editors.

The programming language being used both for implementing Appl-
Builder and for the code generated by the code manager is beta. beta
is a block structured, strongly typed and object-oriented language. It is
intended for describing program executions regarded as models of objects and
concepts. The expressiveness of the beta language is achieved by focusing

6



on simplicity, abstraction and orthogonality.6

Editors.

There are two kinds of editors in ApplBuilder: graphical editors and tex-
tual editors. When a piece of the application code is to be edited it is
transformed (“pretty-printed”) from a uniform representation, the AST, into
either a graphical or a textual representation. The AST is represented as text
by means of a conventional pretty-printer which uses a grammar-based spec-
ification to guide the format of the output. Graphical pretty-printing is done
by interpreting special properties attached to the AST. The code manager de-
termines whether the code should be pretty-printed graphically or textually
depending on the user’s editing request. That is, on what level of abstraction
editing is to be done and what kind of code is to be edited. A user interface
object, for instance, may be edited both graphically and textually.

The Code Manager.

Code generation and switching between editors are handled by a code man-
ager. The code manager generates several kinds of code: (1) skeletons for
new applications when starting from scratch, (2) skeletons for UIOs each
time a new one is requested and (3) pieces of code each time the graphical
layout of a UIO is changed.

The Link Manager.

Following Sandvad (1989), ApplBuilder includes a link manager that main-
tains connections between fragments for the fragment browser and links be-
tween the declarations of UIOs and their instantiations. Thus, a designer
viewing a UIO instantiation in a textual editor can immediately bring up

6There is only one single abstraction mechanism in beta called a pattern. A pattern is
a generalisation of the common constructs: class, type, procedure, function, and method.
The result is a uniform treatment of all these concepts. beta also contains virtual pat-
terns which are generalisations of virtual procedures as seen in Simula and C++. Several
other linguistic notations such as nesting and block structure are streamlined. For further
information on beta, see Kristensen et al. (1987 & 1990).

7



its declaration viewed with a graphical editor. In the future we expect to
develop the link manager to provide more general hypertext facilities similar
to those down from powerful hypertext systems like NoteCards (Halasz et al,
1987) etc.

3 Application Editing

To fulfil our vision on application generators, ApplBuilder provides several
types of support for editing programs and automatic code generation. In the
following we consider three ways of editing application code supported by
a variety of integrated editors: configuration editing, graphical editing and
textual editing. Use of the editors is described using figures from a calculator
application developed in ApplBuilder.

3.1 Configuration Editing

An application is organized as a collection of fragments which can be browsed
and edited using a fragment browser. As long as all configuration editing is
done within the fragment browser, ApplBuilder can manage the organi-
zation of the application for the designer. For new applications, a minimal
configuration of fragments is created automatically. If the application already
exists, then selecting one of its fragments in the browser opens a textual editor
on the application code. Figure 2 shows configuration browsing in progress
for the Calculator application.

The current implementation of the fragment browser is based on endows
with scrolling lists. Double clicking an entry from the list causes a textual edi-
tor to be opened on the corresponding fragment. But the fragment browser in
its final form will resemble the graphical object browser of CLOS (Nørmark,
1991) or the hypertext browser of NoteCards (Halasz et al., 1987). Each
fragment will appear as an icon in a browser window connected by arrows
showing their relations. Clicking on an icon will bring up the corresponding
fragment’s code.

8



Figure 2: The fragment browser used for configuration editing. The leftmost
window shows the minimal set of fragment groups for an ApplBuilder ap-
plication under development. The rightmost window shows a list of proper-
ties for the selected fragment group, such as the latent groups being included,
and the fragments in the group.

3.2 Graphical Editing of User Interface Objects

ApplBuilder provides graphical editors for basic UIO types like menu,
endow, and dialog (alert). These graphical editors can be invoked from the
textual editors either to add a new UIO or to inspect an existing UIO. Figures
3-5 show how a graphical dialog editor is used to build a new dialog for a
Calculator. The editor is invoked from a textual editor open on the main
program of the application.

If the name of a UIO is selected in a textual editor the appropriate graph-
ical editor can be opened on its declaration similar to link-following in hyper-
text. (In future implementations we will provide textual editing of the UIO
although the default editor will remain graphical.) In the graphical editor
it is possible to edit the location and image of the UIO and its contents as
well as small pieces of code associated with the UIO, called scripts, which
capture the UIO’s functionality.

To edit a UIO declaration graphically, its AST is interpreted to gener-
ate a graphical image. Information concerning the image of the object is
represented twice: in the application code to be compiled, and in properties

9



Figure 3: Adding the Calculator User Interface Object to the main program
fragment.

attached to the top node of the AST representing the UIO. The properties
in an AST are only visible to ApplBuilder; when compiling or textually
pretty-printing the application the AST properties are ignored. There are,
however, reasons for this duplication: (1) The graphical editor needs static
information to display the objects and this information can easily be stored
in properties. (2) It is impossible in general to gather image information
from the code because we allow textual modification of the generated code.
If the information on the location and image of the UIO on the screen is only
present in the application code it is necessary to interpret the code for the
object to be pretty-printed in the graphical editor. For example, displaying
the image of a UIO may involve dynamic computations if its location and
size depend on screen dimensions at runtime. In that case, static image in-
formation about the location and the size is not present at all in the code.
(3) Reading the properties is also much quicker than scanning the AST for
the specific imormation. When a UIO is to be displayed the properties are
read and interpreted by the graphical pretty-printer and the object displayed
accordingly. Even if some of the image and location information is to be com-
puted dynamically in the application code the properties always hold static
information on all images and locations. Thus, newly opened UIOs appear

10



the way they appeared during the last capital editing session. To make parts
of a UIO be computed dynamically, the UIO’s initialization routines must
be edited textually.

Figure 4: A new CalculatorDialog class inheriting from the general dialog
class is added as the class description for the Calculator object.

The Dialog Editor

An example of a graphical UIO editor is the dialog editor. Items in the
dialog editor window can be placed, moved, resized, and renamed by direct
manipulation just as in PrototyperTM’s or HyperCard’s editors.

Figure 6 shows how a new item is added to a dialog and which properties
of the item can be edited directly from the graphical editor. Similar to
HyperCard each item is associated with a script describing its functionality.
Such scripts can be accessed with a textual editor directly from the properties
dialog as shown in Figure 6.7

7This dialog is invoked the first time through a pop up menu activated from the window
background and later by double clicking the item in the editor window.

11



Figure 5: Adding a new dialog to a program fragment implies the generation
of new fragments and the opening of a graphical dialog editor on an empty
dialog window. Note that code for instantiating (‘: @CalcualtorDialog;’), ini-
tializing (‘Calculator.make;’, ‘Calculator.use;’), and including relevant frag-
ments (see leftmost window) are automatically inserted in the application
code.

The dialog as a whole also has a script which can be invoked from the
‘Objects’ menu when the editor window is selected. In Figure 7 the window
entitled ‘Attributes’ shows an excerpt of the script for the CalculatorDia-
log. In this script three classes of keys for the calculator are declared (‘key’,
‘DyadFkey’ and ‘MonFKey’). Other script editor windows provide examples
of scripts for instances of these classes. Currently we only provide textual
editing for the item classes but in future implementations we expect to pro-
vide a graphical palette for editing both the class and its instances. It is
possible to make specialization hierarchies of both UIOs and items that are
either local to a dialog (cf. Figure 7) or generally accessible to many UIOs.

The graphical dialog editor window can be made larger than the actual
dialog area, and items can be placed in this extra space during edit time (see

12



Figure 6: Adding the display item to the CalculatorDialog.

the ‘New’ button in Figure 7). In any case, all items in the editor endow
are saved along with the dialog. The items in the work-space outside the
dialog area cannot be seen or interacted with directly at runtime, but they
can be called from the program. If the window size of the dialog is calculated
dyamically, then these items may indeed appear in the window in some cases.
This facility could be particularly useful in prototyping where designers could
move items temporarily out of a dialog but still have them available for later
reuse. The scripts of these “outer” items are in the same scope as the rest of
the items, and hence are directly usable inside the dialog.

3.3 Textual editing

The application code, all written in the beta language, can be edited tex-
tually in several ways. From the fragment browser textual editors can be
invoked on arbitrary code fragments regardless of whether they can also be
edited by graphical UIO editors. The beta code is pretty-printed from the
AST and displayed in a text editor window providing the usual text editing
facilities. When the code from an editor window is saved it is automati-

13



Figure 7: Editing ‘CalculatorDialog’ both graphically and textually. The
graphical editor supports editing the placement of buttons, fields, etc. Tex-
tual editing of the dialog is done by invoking script editors on the items or
on the dialog itself.

14



cally parsed and inserted into the AST. Multiple text editor windows can be
open simultaneously displaying various parts of the same code as well as the
contents of separate fragments.

From the graphical UIO editors, textual editors can be invoked on the
scripts of the UIO, for example, on buttons and fields of a dialog. Any
UIO has a number of scripts connected. A button has for instance a script
allowing editing of local declarations and methods. Any script of a UIO may
be opened and edited both from the fragment browser and from the UIO’s
graphical editor.

4 The Structure of Generated Applications

In applications where some of the code is automatically generated by the
system it is important to keep the generated code and the code written
manually apart. Furthermore, in order to support prototyping well it is
necessary to provide maximum separate compilation of pieces of the code that
change frequently during development. For example, scripts behind UIOs can
be changed without re-compilation of any other part of the application code.
This implies certain constraints on the physical organization of applications
generated by ApplBuilder.

As shown in Figure 8, an application is divided into three parts: envi-
ronment, model and user interface. The environment part provides access
to pre-defined system classes and couples the model to the user interface
parts. The model part contains fragments constituting the object-oriented
“model” of real-world objects and concepts. The fragments constituting the
user interface part handle interaction with the user and include any UIOs
required by the application. Each UIO in the user interface part consists of
a main fragment, containing declarations visible from the outside (the “in-
terface” to the UIO), and one or more implementation fragments containing
declarations of UIO items and scripts and the like which are not intended
to be visible to the outside. This allows the contents of UIOs to be changed
without re-compiling patents that use the UIO.

As an example, consider the dialog UIO, GetIntegerDialog, shown in Fig-
ure 9. Among the attributes visible externally are two operations, use and
make. The private attribute is implemented in a separate implementation

15



Figure 8: Structure of a generated application.

fragment and includes declarations of objects like the OK and Cancel buttons
not intended to be visible outside the UIO. These declarations are generated
automatically from the graphical editor while the actions, or scripts, of the
two button items are written by the designer using a textual editor. The
make operation also has a separate implementation fragment which includes
code capturing the locations and sizes of the dialog items.

Designers can choose to start developing either in the model or the user
interface. Often this choice determines the way control is managed between
UIO classes and the model: (1) the model is the active part, invoking oper-
ations on the UIO instances and transferring parameters via the UIO oper-
ations or (2) the UIO is the active part, invoking model operations directly.

Figure 10 shows examples of each control management approach for the
case of GetIntegerDialog. In Figure 10a, the model invokes the dialog through
the use operation. When the dialog is closed, results are retuned to the model
via the use operation’s exit parameters. In Figure 10b, the UIO takes over
some of the control and activates operations in the model. Here, control rests
in the script of the dialog’s OK button. Because model operations need to be
visible in the UIO script, changes to model fragments can force recompilation
of UIO fragments.

The UIOs of generated applications are instances of standard UIO classes
from a large library. Figure 11a shows an excerpt from the classification hi-
erarchy “above” GetIntegerDialog. The WindowItem classification hierarchy
in Figure 11b is a component of the Window class shown in Figure 11a.

16



Figure 9: Structure of a dialog UIO.

5 ApplBuilder and Rapid Prototyping

ApplBuilder is a tool meant primarily for system desirers and developers,
but as mentioned in the introduction, it is also flexible enough to apply in
sessions where users and designers work cooperatively.

Because designers need to have freedom in their choice of approach to

17



application prototyping and development, ApplBuilder does not enforce
one particular style of development on its users. In fact, ApplBuilder sup-
ports at least the following approaches: (1) starting with design of UIOs and
building up a horizontal prototype having only minimal functionality;8 (2)
starting from a “model”, i.e. an implemented description of the function-
ality of a system, but with no UIOs implemented; (3) vertical prototyping,
i.e. implementing the functionality behind a subset of a horizontal prototype
or fully implementing a small subset of a system intended for incremental
extension; (4) simulation of functionality, i.e. adding temporary short cut or
dummy computations to a horizontal prototype to support sample data; and
(5) full application development. In addition, these different ways of using
ApplBuilder can be combined.

As described in the previous section, ApplBuilder modularizes applica-
tion code so that a distinction is made between UIO modules and the modules
constituting the object-oriented “model” of real-world objects and concepts.
The latter correspond to real-world objects and concepts in a recognizable
way. Furthermore, ApplBuilder deals with the application code in a form
which makes it possible to save it, compile it and re-edit it in ApplBuilder.

Approach (1), horizontal prototyping, is supported by requesting Ap-
plBuilder to start from scratch with a new application. In this case code

8Refer to (Floyd 1984) for an explanation of the concept of horizontal and vertical
prototypes.

18



templates for a minimal application are generated, and the empty main pro-
gram is opened in a textual editor. When the designer selects a new name in
the declaration part of a program fragment, ApplBuilder can be requested
to build a new UIO such as a window, a dialog, or a menu with that name
(see Figures 3-5). Code to instantiate the UIO, include the fragments con-
taining the UIO declaration, and the default initialization are automatically
generated to be inserted in the fragment (see Figure 5).9 A graphical ed-
itor is opened with an empty template for that particular kind of UIO. A
hypertext-like link is established between the instantiation of the UIO and
its declaration such that later traversal of the link opens up a capital editor
on the UIO.

UIOs are designed by direct manipulation in a graphical editor and by
writing scripts in a textual editor. Figure 7 shows an example of using a
graphical editor to design a dialog. The scripts of the UIOs can also be
used to link UIOs together. For example, the script of a menu item could
bring up a dialog, pushing a button in a dialog could open a document
window, etc. (This resembles the link feature of Prototyper.) This way
interaction in a new application can be illustrated without programming the
underlying model fragments. Apart from UIO scripts, the only code to be
written is start-up code in the main model fragment. One can then compile
and run the application as a horizontal prototype with little or no underlying
functionality, and thus illustrate the visual appearance of the user interface.

Approach (2), starting from an application with no UIOs, is supported
by opening ApplBuilder on the existing model application code. The
textual editors invoked from the fragment browser can be used to inspect
and modify the application code. In addition, the designer can start adding
UIOs to the code just as in approach (1). It is also possible to open textual
editors on application UIOs that were not generated in ApplBuilder, but
the graphical editors cannot be used on such UIOs. As an example, consider
porting a BETA program from one machine or window system to another.
If the core functionality of the program to port is isolated in a number of
model fragments, these can be moved to the new environment and the UIOs
added with ApplBuilder.

Approach (3), vertical prototyping, is supported by the fact that the fine

9The designer can of course choose to insert the declarations in another fragment if
needed.

19



grained modularization of the application code allows programming of func-
tionality in fragments minimizing the need for re-compilation. For instance,
parts of the functionality can be written in UIO scripts without touching
and thus without re-compiling other parts of the code. A vertical proto-
type, for example, might have functionality behind only two of the menus
appearing in the menu bar. UIO scripts could also include calls to particu-
lar model fragments such that re-compilation is restricted to such fragments
when modifying the vertical prototype.

Approach (4), simulation of functionality behind UIOs is also possible.
The local scripts of the UIOs can be used to store and display sample data
that is supposed to be entered and displayed through the UIO. In this way,
one can simulate the storing of data in a remote database before actu-
ally building the model that handles the database. This is useful for ex-
ploratory prototyping where groups of designers and users envision a new
system (Grønbæk, 1990).

Finally, ApplBuilder can support approach (5), full application devel-
opment. ApplBuilder utilizes the AST representation of the application
code which allows editing and composing manually written and automatically
generated code dynamically throughout the development process. This is in
contrast to application generators that can only generate textual code skele-
tons. And unlike HyperCard and PrototyperTM ApplBuilder is embedded
in a general purpose programming environment, the Mjølner beta System.
It is thus possible to convert prototypes generated by ApplBuilder into
efficient application programs. In addition, one can use ApplBuilder as
an implementation accelerator without building starting from prototypes.

6 Concluding remarks

The design of ApplBuilder provides flexible support for prototyping and
user interface design while being embedded in a general purpose object-
oriented programming environment that also supports full application de-
velopment. Compared to HyperCard we provide similar support for local
UIO scripting, but in ApplBuilder the scripts are written in the beta
language. The fact that beta is used in the scripts means that we do not
have to move to a different environment to write more advanced functional-
ity as is the case with the HyperTalk XCMD interface to C and Pascal. It

20



also means that editing scripts is done in a powerful programming language
which supports ordinary concepts like block-structure, abstractions mecha-
nisms, encapsulation etc. A script is then part of a block-structured program
and not as in HyperTalk where everything is either local or global.

Compared to other application generators such as PrototyperTM and In-
terface Builder we provide similar support for generating UIO code, but in
ApplBuilder the code is generated as ASTs. This means that the code
can be managed with the textual and graphical editors of ApplBuilder
throughout the development process. In contrast, Prototyper generates Pas-
cal code as text files that can only be edited with plain text-editors from the
target programming environment. The designer is forced to leave Prototyper
once the UIO’s skeleton code has been created, because the generated files
can not be read back in to Prototyper.

In Interface Builder, a reverse engineering problem appears when manipu-
lating existing classes. Although the class’s interface module is transparently
maintained through the graphical editor, the implementation module is gen-
erated as a code skeleton in which the programmer implements class methods.
Modifying an existing class with the graphical editor forces an attempt to
generate a new empty skeleton for the implementation module. Unless the
programmer wants to overwrite the old implementation module with a new
skeleton, she must abort the generation and manually copy that part of the
old code which is still applicable into the new skeleton.

Although we claim that the ideas behind ApplBuilder go beyond most
existing application generators, there are certain problems remaning to be
solved. In ApplBuilder we have strived to separate automatically gen-
erated code from the code written by the designer and to ensure minimal
re-compilation of scripts. (Supporting fast modifications to UIO scripts is
crucial in the rapid prototyping process.) The result is that the physical
organization of the application makes the paths to some attributes rather
long. A solution is to provide a future version of the ApplBuilder with
interactive help to insert paths.

A common problem with automatic generation of code is the naming
of classes and objects. Generated names are often either meaningless to
the designer or too long. Hence ApplBuilder makes designers name all
classes and objects. This means the designer is in charge of all names in
the application as well as the names of files, fragments etc. constituting the

21



application.

The Mjølner beta System is still only an industry prototype and thus
certain features like concurrency are not implemented. Other pars of the
environment are still not fully optimized and therefore sometimes present
problems for designers. The current performance of the beta compiler is
also a problem. Slow compilation makes it hard to properly support rapid
prototyping in cooperation with end-users. But the beta compiler is under
ongoing optimization and we hope that future versions of beta will support
our visions of using ApplBuilder in sessions with end-users.

Status of the current prototype

ApplBuilder is currently implemented in a prototype versions (Figures 2-7
in this paper are screen snapshots from the running prototype.) From the
prototype, one can edit all fragments textually, although the text editors
do not yet support syntax-directed programming. UIOs such as windows,
dialogs, and alerts can be edited graphically. However, window type, button
highlighting, and the like are not visible from the editors. These features can
only be inspected from the window property dialog and seen at runtime. It
is in any case possible to generate a full set of beta code skeletons for an
application and then add model fragments and UIOs.

Future work

Future work on ApplBuilder will take place within the framework of a
project called DeVise, concerned with developing and integrating tools
and techniques for experimental system development (Grønbæk & Knud-
sen, 1991). In that context, certain features of the current ApplBuilder
will be moved into independent modules called the fragment browser, hyper-
media link manager, and AST manager. The remainder of ApplBuilder
will become a module called the user interface design tool. In the inte-
grated DeVise environment, user interface designers will have transparent
access to services (in the form of other modules) not currently part of Ap-
plBuilder, including syntax-directed editing and an object-oriented CASE
tool for graphical editing of beta programs (Sandvad, 1990).

22



Acknowledgements

We would like to thank Ole Lehrmann Madsen and Jonathan Grudin for their
comments on earlier versions of this paper. We would also like to acknowledge
Henry Michael Lassen for the effort he put into the programming of the first
prototype of ApplBuilder. This work has been supported by The Danish
Natural Science Research Council, grant no. 11-8385.

References

[1] Bak, L., Nørgaard, C, Sandvad, E., Knudsen, J.L., Madsen, O.L.: An
overview of the Mjølner BETA System. Software Engineering Environ-
ments, Wales, March 1991.

[2] Bjerregaard, B.S, and Hviid, A, The Development of a Graphical Object-
Oriented Prototyping System - GrOOPS. Tech. Rept. 93, IR, Computer
Science Department, Aarhus University, Arhus, Master-thesis, May,
1990.

[3] Boar, B. H. Application Prototyping - A requirements definition strategy
for the 80s, John Wiley and Sons, Inc., New York (1984).

[4] Bødker, S. & Grønbæk, K. Cooperative Prototyping Experiments - Users
and Designers Envision a Dental Case Record System. In John Bow-
ers & Steve Benford (eds.) Proceedings of the first EC-CSCW ’89, UK,
September 1989. Computer Sciences Company.

[5] Goodman, D. The Complete HyperCard Handbook, Bantam Books,
New York (1987).

[6] Grønbæk, K. & Knudsen, J. L. Tools and Techniques for Experimental
System Development. Draft submitted for publication. Computer Sci-
ence Department, Aarhus University, September 1991.

[7] Grønbæk, K. Prototyping and Active User Involvement in System Devel-
opment: Towards a Cooperative Prototyping Approach. Computer Sci-
ence Department, Aarhus University, Ph.D. Thesis, January 1991.

23



[8] Grønbæk, K. Supporting Active User Involvement in Prototyping. Scan-
dinavian Journal of Information Systems 2:(pp. 3-24), 1990.

[9] Halasz, F.G., Moran, T.P., and Trigg, R.H.: NoteCards in a Nutshell.
In Proceedings of the ACM Conference on Human Factors in Computer
Systems (CHI+GI ’87) (Toronto, Ontarion, Apr. 5-9). 1987, pp 45-52.

[10] Kristensen, B.B., Madsen, B.B., Møller-Pedersen, B., and Nygaard, K:
Object-Oriented Programming in the Beta Programming Language. Book
in preparation, January 1990.

[11] Kristensen, B.B., Madsen, B.B., Møller-Pedersen, B., and Nygaard, K:
The BETA Programming Language. In: B. D. Shriver, P. Wegner(eds.),
Research Directions in Object Oriented Programming, MIT Press, 1987.

[12] Lantz, K. E. The Prototyping Methodology, Prentice Hall, Englewood
Cliffs (1986).

[13] Madsen, O.L., Nørgaard, C.: An Object-Oriented Metaprogramming
System. Hawaii International Conference on System Sciences - 21, pp
406-415, January 5-8,1988.

[14] MIA-90-3 Mjølner Informatics Report : The Mjølner BETA Fragment
System - Reference Manual. Mjølner Informatics ApS, Science Park
Aarhus, February 1990.

[15] NeXT reference manual. Chapter 8. Interface Builder.

[16] Nørmark, K.: A Hyperstructure Programming Environment for CLOS.
Fourth International Conference on Technology of Object-Oriented Lan-
guages and Systems. (TOOLS ’91) Paris, March 4-8, 1991.

[17] Sandvad, E. Hypertext in an Object-Oriented Programming Environ-
ment. In: J. Andrew J. Bezivin (eds.): Woodman’89: Workshop on
Object-Oriented Document Manipulation, Rennes May 1989, BIGRE.

[18] Sandvad, E: Object-Oriented Development - Integrating Analysis, De-
sign and Implementation. DAIMI PB-302, Computer Science Deport-
ment, Aarhus University, April 1990.

[19] Shafer, D., HyperTalk Programming, Hayden Books, First edition, Sec-
ond printing 1988.

24



[20] Squires, S. L., Branstad, M., and Zelkowitz, M. (eds) Special Issue
on Rapid Prototyping. Tech. Rept. 5, Software Engineering Notes, Vol
7., ACM SIGSOFT, Baltimore, Working papers from ACM SIGSOFT
Rapid Prototyping Workshop, April 1982.

[21] Wilson, J. & Rosenberg, D. Rapid Prototyping for User Interface Design.
In Helander, M. (ed.) Handbook of Human-Computer Interaction. North-
Holland, Amsterdam, 1988.

25


