Probabilistic Construction of Normal Basis. (Note)

Gudmund S. Frandsen ${ }^{1} 2$
version August 10, 1998

Abstract

Let \mathbf{F}_{q} be the finite field with q elements. A normal basis polynomial $f \in \mathbf{F}_{q}[x]$ of degree n is an irreducible polynomial, whose roots form a (normal) basis for the field extension $\mathbf{F}_{q^{n}}: \mathbf{F}_{q}$. We show that a normal basis polynomial of degree n can be found in expected time $O\left(n^{2+\epsilon}\right.$. $\left.\log (q)+n^{3+\epsilon}\right)$, when an arithmetic operation and the generation of a random constant in the field \mathbf{F}_{q} cost unit time.

Given some basis $B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ for the field extension $\mathbf{F}_{q^{n}}$: \mathbf{F}_{q} together with an algorithm for multiplying two elements in the B representation in time $O\left(n^{\beta}\right)$, we can find a normal basis for this extension and express it in terms of B in expected time $O\left(n^{1+\beta+\epsilon} \cdot \log (q)+n^{3+\epsilon}\right)$.

CR Categories: F.2.1. 1991 Mathematics Subject Classification: Primary 11Y16; Secondary 11 T 30.

Related Work.

[BDS90] give a probabilistic construction of a normal basis for $\mathbf{F}_{q^{n}}: \mathbf{F}_{q}$ for restricted values of q and n. They use that the ground field \mathbf{F}_{q} can have at most $n(n-1)$ elements a for which

$$
g(a)=\frac{f(a)}{(a-\alpha) f^{\prime}(\alpha)} \in \mathbf{F}_{q^{n}}
$$

is not a normal basis element, when f is an arbitrary but fixed irreducible polynomial of degree n over \mathbf{F}_{q} and α is a root of f [Art48, implicit in proof of theorem 28].

Hence, a random $a \in \mathbf{F}_{q}$ leads to a normal basis element $g(a) \in \mathbf{F}_{q^{n}}$ with probability $\geq \frac{1}{2}$ when $q>2 n(n-1)$. By our lemma 1 (last part) an arbitrary $b \in$ $\mathbf{F}_{q^{n}}$ is a normal basis element with probability $\geq \frac{1}{2}$, under the same restriction. Hence, our construction may also be used in the restricted case without loss of efficiency.

Deterministic constructions can be found in [BDS90, Len91].

[^0]
Lemma 1.

Let N denote the number of normal basis polynomials of degree n over \mathbf{F}_{q}. Then

$$
N \geq q^{n} \cdot \frac{1}{n} \cdot\left(1-\frac{1}{q}\right) \cdot \frac{1}{\left(1+\log _{q}(n)\right) e}
$$

Under the restriction $q \geq 2 n(n-1)$, a stronger inequality holds:

$$
N \geq q^{n} \cdot \frac{1}{n} \cdot \frac{1}{2}
$$

Proof.

If $f(x) \in \mathbf{F}_{q}[x]$ and the complete factorisation of $f(x)$ is $f(x)=\prod_{i=1}^{t} f_{i}(x)^{e_{i}}$ (the irreducible factors $f_{i}(x), f_{j}(x)$ are distinct, when $i \neq j$), then define $\Phi(f(x))=$ $q^{n} \prod_{i=1}^{t}\left(1-\frac{1}{q^{n_{i}}}\right)$, where n_{i} is the degree of f_{i}, and n is the degree of f.

The relevance of this concept comes from $N=\frac{1}{n} \Phi\left(x^{n}-1\right)$ (See [LiNi83]).
To get a lower bound for $\Phi(f(x))$, we observe that for a fixed n the minimal value occurs, when $f(x)$ is the product of all distinct irreducible factors of degree $1,2,3, \ldots, k$ (and some of degree $k+1$). Noticing, that $x^{q^{k}}-x$ factors into distinct irreducible factors, each of which have degree at most k, it follows that $k \leq \log _{q}(n)$. Since every irreducible polynomial of degree n_{i} divides $x^{q^{n_{i}}}-x$, there are at most $\frac{q^{n_{i}}-1}{n_{i}}$ distinct factors of degree n_{i} in $f(x)$ (except for the q distinct degree 1 polynomials). Using that

$$
\left(1-\frac{1}{q^{n_{i}}}\right)^{\frac{q^{n_{i-1}}}{n_{i}}} \geq\left(\frac{1}{e}\right)^{\frac{1}{n_{i}}}
$$

we find the lower bound

$$
\begin{aligned}
\Phi(f(x)) & \geq q^{n}\left(1-\frac{1}{q}\right)\left(\frac{1}{e}\right)^{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}+\frac{1}{k+1}} \\
& \geq q^{n}\left(1-\frac{1}{q}\right)\left(\frac{1}{e}\right)^{1+\log (k+1)} \\
& =q^{n}\left(1-\frac{1}{q}\right) \frac{1}{(k+1) e} \\
& \geq q^{n}\left(1-\frac{1}{q}\right) \frac{1}{\left(1+\log _{q}(n)\right) e}
\end{aligned}
$$

which imply the first part of the lemma.
In the remaining part of the proof, we assume that $q \geq 2 n(n-1)$. For $n=1$, we find that

$$
\Phi(f(x)) \geq q^{n}\left(1-\frac{1}{q}\right) \geq q^{n} \frac{1}{2}
$$

For $n=2$, we know that $q \geq 4$ and we get the bound

$$
\Phi(f(x)) \geq q^{n} \cdot\left(1-\frac{1}{q}\right)^{2} \geq q^{n}\left(\frac{3}{4}\right)^{2} \geq q^{n} \frac{1}{2}
$$

For $n \geq 3$, we have that $n \leq(q-1) / 2$ and we get

$$
\Phi(f(x)) \geq q^{n} \cdot\left(1-\frac{1}{q}\right)^{\frac{q-1}{2}} \geq q^{n} \frac{1}{\sqrt{e}} \geq q^{n} \frac{1}{2}
$$

Theorem 2.

Given some basis $B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ for the field extension $\mathbf{F}_{q^{n}}: \mathbf{F}_{q}$ together with an algorithm for multiplying two elements in the B representation in time $O\left(n^{\beta}\right)$, we can find a normal basis for this extension and express it in terms of B in expected time $O\left(n^{1+\beta+\epsilon} \cdot \log (q)+n^{3+\epsilon}\right)$.

Proof.

By lemma 1, a fraction $\Omega\left(\frac{1}{1+\log (n)}\right)$ of the elements in $\mathbf{F}_{q^{n}}$ generate normal bases. Hence, we expect to have to check $O(\log (n))$ random elements in the span of B before finding one that generates a normal basis.

Assume $\alpha=\sum_{i=1}^{n} c_{i} \alpha_{i}, c_{i} \in \mathbf{F}_{q}$, then we may compute the representation of α_{i}^{q} in terms of B for all i in time $O\left(n^{1+\beta} \log (q)\right)$, and hence compute $\alpha^{q^{j}}$ for all j in time $O\left(n^{3}\right)$. We know that $\left\{\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{n-1}}\right\}$ are linearly independent if and only if $\operatorname{det}\left(d_{i j}\right) \neq 0$, where $d_{i j} \in \mathbf{F}_{q}$ is defined by $\alpha^{q^{i}}=\sum_{j=1}^{n} d_{i j} \alpha_{i}$.

Hence, we can check an arbitrary $\alpha \in \operatorname{span}(B)$ for the normal basis property in time $O\left(n^{1+\beta} \log (q)+n^{3}\right)$ from which the theorem follows.

Theorem 3.

A normal basis polynomial of degree n over \mathbf{F}_{q} can be found in expected time $O\left(n^{2+\epsilon} \cdot \log (q)+n^{3+\epsilon}\right)$.

Proof.

There are $\Theta\left(\frac{q^{n}}{n}\right)$ irreducible polynomials of degree n over \mathbf{F}_{q}. Hence, by lemma 1, we expect to have to check $O(\log (n))$ irreducible polynomials before finding a normal basis polynomial. A random irreducible polynomial $f(x)$ can be found in expected time $O\left(n^{2+\epsilon} \cdot \log (q)\right)$ (see [Ben81]).

If α is a root of $f(x)$, then $B=\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ is a polynomial basis for $\mathbf{F}_{q^{n}}: \mathbf{F}_{q}$, and we can multiply any two elements in the B-representation in time $O\left(n^{1+\epsilon}\right)$. Using the proof of theorem 2 , we can check that $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ form a normal basis in time $O\left(n^{2+\epsilon} \log (q)+n^{3}\right)$ from which the theorem follows.

References

[Art48] Artin, E., Galois Theory (Second Edition). Notre Dame Mathematical Lectures. Notre Dame, Indiana, 1948.
[BDS90] Bach, E., Driscoll, J. and Shallit, J., Factor Refinement. Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms (1990), pp. 201-211.
[Ben81] Ben-Or, M., Probabilistic Algorithms in Finite Fields. Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science (1981), pp. 394-398.
[Len91] Lenstra, Jr., H. W., Finding Isomorphisms Between Finite Fields. Mathematics of Computation 56 (1991), pp. 329-347.
[LiNi83] Lidl, R. and Niederreiter, H., Finite Fields. Encyclopedia of Mathematics and its Applications 20, Addison Wesley, 1983.

[^0]: ${ }^{1}$ This research was supported by the ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 (project ALCOM).
 ${ }^{2}$ Department of Computer Science, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark. gsfrandsen@daimi.aau.dk

