Probabilistic Construction of Normal Basis. (Note)

Gudmund S. Frandsen^{1 2}

version August 10, 1998

Abstract

Let \mathbf{F}_q be the finite field with q elements. A normal basis polynomial $f \in \mathbf{F}_q[x]$ of degree n is an irreducible polynomial, whose roots form a (normal) basis for the field extension $\mathbf{F}_{q^n} : \mathbf{F}_q$. We show that a normal basis polynomial of degree n can be found in expected time $O(n^{2+\epsilon} \cdot \log(q) + n^{3+\epsilon})$, when an arithmetic operation and the generation of a random constant in the field \mathbf{F}_q cost unit time.

Given some basis $B = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ for the field extension \mathbf{F}_{q^n} : \mathbf{F}_q together with an algorithm for multiplying two elements in the *B*-representation in time $O(n^{\beta})$, we can find a normal basis for this extension and express it in terms of *B* in expected time $O(n^{1+\beta+\epsilon} \cdot \log(q) + n^{3+\epsilon})$.

CR Categories: F.2.1.

1991 Mathematics Subject Classification: Primary 11Y16; Secondary 11T30.

Related Work.

[BDS90] give a probabilistic construction of a normal basis for \mathbf{F}_{q^n} : \mathbf{F}_q for restricted values of q and n. They use that the ground field \mathbf{F}_q can have at most n(n-1) elements a for which

$$g(a) = \frac{f(a)}{(a-\alpha)f'(\alpha)} \in \mathbf{F}_{q^n}$$

is not a normal basis element, when f is an arbitrary but fixed irreducible polynomial of degree n over \mathbf{F}_q and α is a root of f [Art48, implicit in proof of theorem 28].

Hence, a random $a \in \mathbf{F}_q$ leads to a normal basis element $g(a) \in \mathbf{F}_{q^n}$ with probability $\geq \frac{1}{2}$ when q > 2n(n-1). By our lemma 1 (last part) an arbitrary $b \in \mathbf{F}_{q^n}$ is a normal basis element with probability $\geq \frac{1}{2}$, under the same restriction. Hence, our construction may also be used in the restricted case without loss of efficiency.

Deterministic constructions can be found in [BDS90, Len91].

 $^{^1{\}rm This}$ research was supported by the ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 (project ALCOM).

²Department of Computer Science, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark. gsfrandsen@daimi.aau.dk

Lemma 1.

Let N denote the number of normal basis polynomials of degree n over \mathbf{F}_q . Then

$$N \ge q^n \cdot \frac{1}{n} \cdot (1 - \frac{1}{q}) \cdot \frac{1}{(1 + \log_q(n))\epsilon}$$

Under the restriction $q \ge 2n(n-1)$, a stronger inequality holds:

$$N \ge q^n \cdot \frac{1}{n} \cdot \frac{1}{2}$$

Proof.

If $f(x) \in \mathbf{F}_q[x]$ and the complete factorisation of f(x) is $f(x) = \prod_{i=1}^t f_i(x)^{e_i}$ (the irreducible factors $f_i(x), f_j(x)$ are distinct, when $i \neq j$), then define $\Phi(f(x)) = q^n \prod_{i=1}^t (1 - \frac{1}{q^{n_i}})$, where n_i is the degree of f_i , and n is the degree of f.

The relevance of this concept comes from $N = \frac{1}{n}\Phi(x^n - 1)$ (See [LiNi83]).

To get a lower bound for $\Phi(f(x))$, we observe that for a fixed *n* the minimal value occurs, when f(x) is the product of all distinct irreducible factors of degree 1, 2, 3, ..., k (and some of degree k + 1). Noticing, that $x^{q^k} - x$ factors into distinct irreducible factors, each of which have degree at most k, it follows that $k \leq \log_q(n)$. Since every irreducible polynomial of degree n_i divides $x^{q^{n_i}} - x$, there are at most $\frac{q^{n_i}-1}{n_i}$ distinct factors of degree n_i in f(x) (except for the q distinct degree 1 polynomials). Using that

$$(1 - \frac{1}{q^{n_i}})^{\frac{q^{n_i} - 1}{n_i}} \ge (\frac{1}{e})^{\frac{1}{n_i}}$$

we find the lower bound

$$\begin{split} \Phi(f(x)) &\geq q^n (1 - \frac{1}{q}) (\frac{1}{e})^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} + \frac{1}{k+1}} \\ &\geq q^n (1 - \frac{1}{q}) (\frac{1}{e})^{1 + \log(k+1)} \\ &= q^n (1 - \frac{1}{q}) \frac{1}{(k+1)e} \\ &\geq q^n (1 - \frac{1}{q}) \frac{1}{(1 + \log_q(n))e} \end{split}$$

which imply the first part of the lemma.

In the remaining part of the proof, we assume that $q \ge 2n(n-1)$. For n = 1, we find that

$$\Phi(f(x)) \ge q^n(1-\frac{1}{q}) \ge q^n\frac{1}{2}$$

For n = 2, we know that $q \ge 4$ and we get the bound

$$\Phi(f(x)) \ge q^n \cdot (1 - \frac{1}{q})^2 \ge q^n (\frac{3}{4})^2 \ge q^n \frac{1}{2}$$

For $n \geq 3$, we have that $n \leq (q-1)/2$ and we get

$$\Phi(f(x)) \ge q^n \cdot (1 - \frac{1}{q})^{\frac{q-1}{2}} \ge q^n \frac{1}{\sqrt{e}} \ge q^n \frac{1}{2}$$

Theorem 2.

Given some basis $B = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ for the field extension $\mathbf{F}_{q^n} : \mathbf{F}_q$ together with an algorithm for multiplying two elements in the *B* representation in time $O(n^{\beta})$, we can find a normal basis for this extension and express it in terms of *B* in expected time $O(n^{1+\beta+\epsilon} \cdot \log(q) + n^{3+\epsilon})$.

Proof.

By lemma 1, a fraction $\Omega(\frac{1}{1+\log(n)})$ of the elements in \mathbf{F}_{q^n} generate normal bases. Hence, we expect to have to check $O(\log(n))$ random elements in the span of *B* before finding one that generates a normal basis.

Assume $\alpha = \sum_{i=1}^{n} c_i \alpha_i$, $c_i \in \mathbf{F}_q$, then we may compute the representation of α_i^q in terms of *B* for all *i* in time $O(n^{1+\beta}\log(q))$, and hence compute α^{q^i} for all *j* in time $O(n^3)$. We know that $\{\alpha, \alpha^q, \alpha^{q^2}, ..., \alpha^{q^{n-1}}\}$ are linearly independent if and only if $\det(d_{ij}) \neq 0$, where $d_{ij} \in \mathbf{F}_q$ is defined by $\alpha^{q^i} = \sum_{j=1}^{n} d_{ij}\alpha_i$.

Hence, we can check an arbitrary $\alpha \in \text{span}(B)$ for the normal basis property in time $O(n^{1+\beta}\log(q) + n^3)$ from which the theorem follows.

Theorem 3.

A normal basis polynomial of degree n over \mathbf{F}_q can be found in expected time $O(n^{2+\epsilon} \cdot \log(q) + n^{3+\epsilon}).$

Proof.

There are $\Theta(\frac{q^n}{n})$ irreducible polynomials of degree n over \mathbf{F}_q . Hence, by lemma 1, we expect to have to check $O(\log(n))$ irreducible polynomials before finding a normal basis polynomial. A random irreducible polynomial f(x) can be found in expected time $O(n^{2+\epsilon} \cdot \log(q))$ (see [Ben81]).

If α is a root of f(x), then $B = \{1, \alpha, \alpha^2, ..., \alpha^{n-1}\}$ is a polynomial basis for $\mathbf{F}_{q^n} : \mathbf{F}_q$, and we can multiply any two elements in the *B*-representation in time $O(n^{1+\epsilon})$. Using the proof of theorem 2, we can check that $\{\alpha, \alpha^q, ..., \alpha^{q^{n-1}}\}$ form a normal basis in time $O(n^{2+\epsilon}\log(q) + n^3)$ from which the theorem follows.

References

- [Art48] Artin, E., *Galois Theory (Second Edition)*. Notre Dame Mathematical Lectures. Notre Dame, Indiana, 1948.
- [BDS90] Bach, E., Driscoll, J. and Shallit, J., Factor Refinement. Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms (1990), pp. 201-211.
- [Ben81] Ben-Or, M., Probabilistic Algorithms in Finite Fields. Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science (1981), pp. 394-398.
- [Len91] Lenstra, Jr., H. W., Finding Isomorphisms Between Finite Fields. Mathematics of Computation 56 (1991), pp. 329-347.
- [LiNi83] Lidl, R. and Niederreiter, H., *Finite Fields*. Encyclopedia of Mathematics and its Applications 20, Addison Wesley, 1983.