
             

Probabilistic Construction of Normal Basis.
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Abstract

Let Fq be the finite field with q elements. A normal basis polynomial
f ∈ Fq[x] of degree n is an irreducible polynomial, whose roots form a
(normal) basis for the field extension Fqn : Fq. We show that a normal
basis polynomial of degree n can be found in expected time O(n2+ε ·
log(q) + n3+ε), when an arithmetic operation and the generation of a
random constant in the field Fq cost unit time.

Given some basis B = {α1, α2, ..., αn} for the field extension Fqn :
Fq together with an algorithm for multiplying two elements in the B-
representation in time O(nβ), we can find a normal basis for this extension
and express it in terms of B in expected time O(n1+β+ε · log(q) + n3+ε).
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Related Work.

[BDS90] give a probabilistic construction of a normal basis for Fqn : Fq for
restricted values of q and n. They use that the ground field Fq can have at
most n(n− 1) elements a for which

g(a) =
f(a)

(a− α)f ′(α)
∈ Fqn

is not a normal basis element, when f is an arbitrary but fixed irreducible
polynomial of degree n over Fq and α is a root of f [Art48, implicit in proof of
theorem 28].

Hence, a random a ∈ Fq leads to a normal basis element g(a) ∈ Fqn with
probability ≥ 1

2 when q > 2n(n−1). By our lemma 1 (last part) an arbitrary b ∈
Fqn is a normal basis element with probability ≥ 1

2 , under the same restriction.
Hence, our construction may also be used in the restricted case without loss of
efficiency.

Deterministic constructions can be found in [BDS90, Len91].

1This research was supported by the ESPRIT II Basic Research Actions Program of the
EC under contract No. 3075 (project ALCOM).

2Department of Computer Science, Aarhus University, Ny Munkegade, 8000 Aarhus C,
Denmark. gsfrandsen@daimi.aau.dk

1



     

Lemma 1.

Let N denote the number of normal basis polynomials of degree n over Fq.
Then

N ≥ qn · 1
n
· (1− 1

q
) · 1

(1 + logq(n))e

Under the restriction q ≥ 2n(n− 1), a stronger inequality holds:

N ≥ qn · 1
n
· 1
2

Proof.

If f(x) ∈ Fq[x] and the complete factorisation of f(x) is f(x) =
∏t
i=1 fi(x)

ei

(the irreducible factors fi(x), fj(x) are distinct, when i 6= j), then define Φ(f(x)) =
qn
∏t
i=1(1− 1

qni ), where ni is the degree of fi, and n is the degree of f .
The relevance of this concept comes from N = 1

nΦ(xn − 1) (See [LiNi83]).
To get a lower bound for Φ(f(x)), we observe that for a fixed n the minimal

value occurs, when f(x) is the product of all distinct irreducible factors of degree
1, 2, 3, ..., k (and some of degree k + 1). Noticing, that xq

k − x factors into
distinct irreducible factors, each of which have degree at most k, it follows that
k ≤ logq(n). Since every irreducible polynomial of degree ni divides xq

ni − x,
there are at most qni−1

ni
distinct factors of degree ni in f(x) (except for the q

distinct degree 1 polynomials). Using that

(1− 1
qni

)
qni−1
ni ≥ (

1
e
)

1
ni

we find the lower bound

Φ(f(x)) ≥ qn(1− 1
q
)(

1
e
)1+

1
2+ 1

3+···+ 1
k+ 1

k+1

≥ qn(1− 1
q
)(

1
e
)1+log(k+1)

= qn(1− 1
q
)

1
(k + 1)e

≥ qn(1− 1
q
)

1
(1 + logq(n))e

which imply the first part of the lemma.
In the remaining part of the proof, we assume that q ≥ 2n(n−1). For n = 1,

we find that
Φ(f(x)) ≥ qn(1− 1

q
) ≥ qn 1

2
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For n = 2, we know that q ≥ 4 and we get the bound

Φ(f(x)) ≥ qn · (1− 1
q
)2 ≥ qn(3

4
)2 ≥ qn 1

2

For n ≥ 3, we have that n ≤ (q − 1)/2 and we get

Φ(f(x)) ≥ qn · (1− 1
q
)
q−1
2 ≥ qn 1√

e
≥ qn 1

2

2

Theorem 2.

Given some basis B = {α1, α2, ..., αn} for the field extension Fqn : Fq together
with an algorithm for multiplying two elements in the B representation in time
O(nβ), we can find a normal basis for this extension and express it in terms of
B in expected time O(n1+β+ε · log(q) + n3+ε).

Proof.

By lemma 1, a fraction Ω( 1
1+log(n) ) of the elements in Fqn generate normal

bases. Hence, we expect to have to check O(log(n)) random elements in the
span of B before finding one that generates a normal basis.

Assume α =
∑n
i=1 ciαi, ci ∈ Fq, then we may compute the representation of

αqi in terms of B for all i in time O(n1+β log(q)), and hence compute αq
j

for all
j in time O(n3). We know that {α, αq, αq2 , ..., αqn−1} are linearly independent
if and only if det(dij) 6= 0, where dij ∈ Fq is defined by αq

i

=
∑n
j=1 dijαi.

Hence, we can check an arbitrary α ∈ span(B) for the normal basis property
in time O(n1+β log(q) + n3) from which the theorem follows.

2

Theorem 3.

A normal basis polynomial of degree n over Fq can be found in expected time
O(n2+ε · log(q) + n3+ε).

Proof.

There are Θ( q
n

n ) irreducible polynomials of degree n over Fq. Hence, by lemma
1, we expect to have to check O(log(n)) irreducible polynomials before finding a
normal basis polynomial. A random irreducible polynomial f(x) can be found
in expected time O(n2+ε · log(q)) (see [Ben81]).
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If α is a root of f(x), then B = {1, α, α2, ..., αn−1} is a polynomial basis for
Fqn : Fq, and we can multiply any two elements in the B-representation in time
O(n1+ε). Using the proof of theorem 2, we can check that {α, αq, ..., αqn−1} form
a normal basis in time O(n2+ε log(q) + n3) from which the theorem follows.
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