
Reuse of Invariants in Proofs of
Implementation

Anders Gammelgaard
Department of Computer Science, Århus University, Ny Munkegade,

DK-8000 Århus C, Denmark

July 1991

Abstract

In this paper we describe a technique to inherit safety properties
from abstract programs to their implementations. With this technique
repetition of many proofs can be avoided.

Let P be a concurrent program and P ′ its implementation. The
basic idea is taken from [9]: establish a map α from the state space of
P ′ to the state space of P , and map all reachable atomic transitions
(s′, t′) of P ′ to pairs of states, (α(s′), α(t′)), in the state space of P ;
if each pair can be demonstrated to be either an atomic transition of
P or the empty transition, α(s′) = α(t′), then any safety property
of P invariant to arbitrary repetition of states induce a similar safety
property of P ′.

For many programs some of the unreachable transitions in P ′ do
not map this way; hence it may be necessary to characterise the reach-
able states of P ′ in advance of the above demonstration. We prove
that the properties we want to inherit can safely be used for this.
The main purpose of the paper is to demonstrate the utility of such a
result.

The theoretical results in the paper are worked out into gradually
more powerful techniques for inheriting safety properties. These proof
techniques are illustrated with examples.

1

1 Introduction

Refining a concurrent shared variable program is difficult. The properties of
such a program may vanish when more interleavings are introduced in the
process of refinement, And this may happen even by splitting a single atomic
action into a few actions. Thus a refmement to part of the program can
affect the whole program; in general it must be treated as a refinement to all
of the program.

As consequence it is difficult to adopt well-known techniques from se-
quential programming for making structured development of programs along
with their correctness proofs. In lack of such techniques, the whole correct-
ness proof is often repeated in each step of the refinement process; at best a
former proof is used as a guide how to make the next proof in the refinement
process. For two examples of this, see [5] and [7].

In this paper we describe a technique to avoid the repetition of proofs of
safety properties. A traditional proof is replaced by a set of relatively simple
checks which utilise the already proven properties.

The basis of the technique is an observation made by Lamport in [9] and
worked out in [8], [10], and [1]. Let P be a program and let P ′ be its im-
plementation. Usually state transitions in P will split into more transitions
in P ′. For instance a transition from state s0 to state s1 in P may be im-
plemented by the sequence of state transitions s′0, . . . , s

′
n. Now, if repetition

of states is ignored, executions of P ′ may be considered as executions of P
– we just have to map states of P ′ to states of P such that exactly one of
the n state transitions (s′i, s

′
i+1) map to the state transition (s0, s1); the other

transitions just map to repetitions of states.

Some states in P ′ may not be reachable, however. Transitions from such
states need not and usually do not map to P -transitions or empty transitions.
To restrict attention to only reachable transitions we need a characterisation
of the reachable states in P ′. This can be attained by proving invariants in
P ′. But sometimes such invariants are not orthogonal with the properties
we want to inherit. They may even coincide with inherited invariants. Then
the basic technique does not seem to be useful: Before the inheritance the
invariant must anyway be proven true in P ′ by traditional means.

2

In this paper we prove two theorems to cope with such cases. We show
that it is possible to use inherited properties as characterisations of the reach-
able states. Furthermore a property of P ′ may be used as characterisation
if it can be proven relatively invariant, i. e. invariant under the assumption
that inherited properties hold in P ′.

The basic simulation idea is taken from Lamport ([9], [8], [1], [10]). In
his terminology the map from states of P ′ to states of P is called a refinement
mapping.

Similar ideas have also been put forward by other authors. For instance
Lynch and Tuttle [11] prove a low level description of an arbiter correct by
treating it as an implementation of a high level description. In their approach
two levels must be related by a so-called possibilities mapping which corre-
sponds to a refinement mapping except that each low level state is mapped
to a set of high level states instead of just a single high level state. In or-
der to prove that a map h is a possibilities mapping one must roughly show
that for each s0 ∈ h(s′0) such that s′0 is a reachable low level state and s0

is a reachable high level state if (s′0, s
′
1) is a low level transition, then either

s0 ∈ h(s′1) or there is an s1 such that s1 ∈ h(s′1) and (s0, s1) is a high level
transition. Because of the restriction to reachable high level states they are
able to reuse already proven high level invariants much as in the present pa-
per. But because both the high and the low level reachable states must be
found independently, they are not able to use high level invariants in proofs
of the relative invariance of low level properties. Furthermore Lynch and
Tuttle do not present the possibility of reusing high level properties as an
ability to inherit properties in advance of the proof.

Another approach is presented by Jonsson in [6]. Instead of a function
mapping low level states to (sets of) high level states Jonsson requires that
a relation R between the two levels be defined. The obligation then roughly
is to show that if relation s′0Rs0 holds and (s′0, π, s′1) is a low level transition
with label π, then there exists a high level state s1 and a high level transition
(s0, π, s1) such that s′1Rs1 holds. (If pi is an “invisible” label, then the
high level transition could just be repeating the state since such repetition
is always allowed by Jonssons machine descriptions.) When using functions
mapping from low level states to (sets of) high level states the low level
reachable states must be characterised by invariants. When using relations
these invariants can instead be expressed by restricting the domain of the

3

relations. This means that in Jonssons implementation proof one also proves
low level invariants: For each pair s′0Rs0 and transition (s′0, π, s′1) one of
the requirements is to find an s1 such that relation s′1Rs1 holds, that is one
must show that s′1 belongs to the domain of R. The reuse of already proven
high level invariants seems not to be present in Jonssons work. But it is
probably just a small change to allow the same amount of reuse as in Lynch
and Tuttle’s work.

The structure of the paper is as follows. In section 2 some basic concepts
and some notation is introduced. Section 3 is devoted to the basic idea of
inheriting safety properties. In section 4 we go on to the main result of the
paper. We prove two theorems which show that it is possible, in implemen-
tation proofs, to use inherited properties to derive characterisations of the
reachable low level states. The results are summed up into an inheritance
technique. In section 5 we illustrate with examples how to use the technique
The aim is a work out of the technique which is both simple and widely
applicable. In section 6 a further extension of the technique is presented. It
is more powerful but may also be more difficult to master technically. Sec-
tion 7 contains a discussion of the completeness of the technique presented in
section 6. Finally, in section 8, we discuss the applicability of the technique
and we discuss the possibility of further extensions to the technique.

2 Sequences, properties, and program execu-

tions.

We introduce notation to describe sequences and sets of sequences.

In the following let Σ = {s, t, . . .} be some set of states. Σ+ denotes the
set of finite non-empty – Σω the set of infinite sequences over Σ. For φ ∈ Σ+

and ψ ∈ Σ+∪Σω the concatenation of φ and ψ is written φ∗ψ; the last state
of φ is denoted by φ•; hence (φ ∗ s)• = s holds for any state s ∈ Σ (we treat
Σ as a set of single element sequences). The natural prefix ordering between
sequences is denoted by the symbol �.

Any subset Γ ⊆ Σ+ ∪ Σω is called a property ; sequences Γ are said to
have property Γ. Γ is prefix closed if ψ ∈ Γ and φ � ψ implies φ ∈ Γ for
non-empty φ; and Γ is ω-complete if the least upper bound of any chain

4

φ1 � φ2 � . . . is an element in Γ provided each approximation φi is in Γ.

In this paper we study a class of properties called safety properties.
Following [2] and [3] a safety property stipulates that no bad thing ever
happens. It is implicit that the bad thing is some event occurring within
finite time: if no bad thing ever happens in any prefix of a sequence, then
the entire sequence is accepted. So safety properties are ω-complete.

We furthermore have ([2] [3]) that an occurrence of a bad thing is ir-
remediable; any extension of a bad sequeuce remains bad. In other words
if a sequence has some safety property, then all its prefixes also have this
property. So safety properties are prefix closed.

Γ ⊆ Σ+ ∪ Σω is a safety property iff Γ is ω-complete and prefix
closed.

All properties treated in the examples of this paper are safety properties.
This is easily verified in each case.

Programs are modelled by transition systems. A transition system P =
(Σ, ✄, A) consists of a set of states Σ, a transition relation ✄ ⊆ Σ × Σ, and
a set of initial states A ⊆ Σ. For P we define the set of finite P -executions
[A]✄ to be the least set satisfying

1. A ⊆ [A]✄ and

2. if φ ∈ [A]✄ and (φ•, s) ∈ ✄, then φ ∗ s ∈ [A]✄.

The least ω-complete set containing [A]✄ is called the P -executions and is
denoted [A]✄. Because any safety property Γ is ω-completes we immediately
get that to establish that all executions in [A]✄ have property Γ it is sufficient
to establish [A]✄ ⊆ Γ.

3 Basic technique

Let P = (Σ, ✄, A) and P ′ = (Σ′, ✄′, A′) be two transitions systems. P ′ should
be regarded as an implementation of the abstract program P . Entities from
P ′ are attached with a prime to distinguish them from P -entities.

5

A simple way of relating P ′ to P is to choose a map α from Σ′ to Σ.
Element-wise application of α induce similar maps from pairs of Σ′-states to
pairs of Σ-states and from sequences over Σ′ to sequences over Σ. Without
ambiguity all these maps are denoted by α.

[A′]✄′ can be related to [A]✄ if α maps A′ to A and ✄′ to ✄. It is
not necessary to consider transitions in ✄′ from unreachable states. The
reachable states R in transition system P are the states occurring in [A]✄.
For any M ⊆ Σ we define M |✄, the ✄-transitions from M , to be the set
{(s, t) ∈ ✄ : s ∈ M}; then the reachable transitions in S are the elements in

R|✄.

Inheritance theorem. Let α be a map from Σ′ to Σ. If
α(A′) ⊆ A and α(R′|✄) ⊆ ✄, then α([A′]✄) ⊆ [A]✄.

Proof. We prove that α maps [A′]✄′ to [A]✄ by induction on
the length of sequences in [A′]✄′.
Basis: A′ is the set of one-element sequences in [A′]✄′; so α(A′) ⊆
A and A ⊆ [A]✄ gives the conclusion.
Induction step: Let φ ∗ s be a (k + 1)-element sequence in [A′]✄′

and assume that α(φ) ∈ [A]✄. Since φ ∗ s is in [A′]✄′, the pair
(φ•, s) must be a transition in R′|✄′; so α(φ•, s) is in ✄. Then
α(φ) ∗ α(s) and hence also α(φ ∗ s) is in [A]✄.

From the theorem we immediately conclude

Inheritance corollary 1. Let the finite P -executions have prop-
erty Γ (that is [A]✄ ⊆ Γ), and let α be a map from Σ′ to Σ. If
α(A′) ⊆ A and α(R′|✄′) ⊆ ✄, then α([A′]✄′) ⊆ Γ – i. e. the finite
P ′-executions have property α−1(Γ).

The corollary shows that P -properties can be used to induce new P ′-properties
or, as we shall also say, P -properties can be inherited. A P -property and its
corresponding P ′-formulation are often very similar. One such similarity is
expressed in the following proposition. It is important for the applicability
of the whole technique and is easily seen to be true.

Proposition. If Γ is a safety property, then also α−1(Γ) is.

6

Property Γ is said to be invariant to repetition of states if it satisfies
that φ ∗ ψ ∈ Γ holds if and only if φ ∗ φ• ∗ ψ ∈ Γ holds. Such properties
are useful in hierarchical construction of programs [9]: Any action considered
atomic at one level may split into a set of actions at a level below causing
lower level executions to contain more state transitions than corresponding
higher level executions. The best we can hope for is to construct a map from
lower level states to higher level states such that just one of the transitions
map to a transition caused by the abstract action; the other transitions just
map to repetitions of the current state.

Inheritance corollary 1 cannot directly utilise invariance to repetition of
states. But observe that if executions of (Σ, ✄, A) have property Γ where Γ
is invariant to repetition of states, then also executions of (Σ, �, A) have this
property where � is the reflexive closure of ✄ – i. e. � = {(s, s) : s ∈ Σ}∪✄.
Applied to inheritance corollary 1 this observation allows us to relax the
requirement α(R′| ✄′) ⊆ ✄:

Inheritance corollary 2. Let the finite executions of P =
(Σ, ✄, A) have a property Γ invariant to repetition of states, and
let α be a map from Σ′ to Σ. If α(A′) ⊆ A and α(R′|✄′) ⊆ �,
then executions in [A′]✄′ have property α−1(Γ).

Before we go on to show how to use the technique we develop some
notation for mappings between state spaces.

In most applications Σ will be the Cartesian product of the value spaces
of some program variables v1, . . . , vn of P . We treat each variable vi as a
projection vi : Σ → [vi], where [vi] is the value space of vi. Hence s is
determined by the values v1(s), . . . , vn(s). Furthermore any function α :
Σ′ → Σ is determined by the n equations

vi ◦ α ≡ ei, for i = 1, . . . , n

Here ei is a function from Σ′ to [vi].

The characteristic function FΓ of a property Γ is the boolean valued
function on Σ+ ∪ Σω satisfying φ ∈ Γ if and only if FΓ(φ) is true. It is easy
to inherit Γ given FΓ; the property α−1(Γ) is simply the set of sequences on
which FΓ ◦ α is true. So the function Fα−1(Γ) is identical with FΓ ◦ α.

7

Now assume that FΓ is given by an expression in the program variables
v1, . . . , vn and that α : Σ′ → Σ is given by n equations vi ◦ α ≡ ei. Then
FΓ ◦ α is an expression in v1 ◦ α, . . . , vn ◦ α. By using the n equations this
reduces to an expression in e1, . . . , en. Hence FΓ ◦ α may be expressed by
FΓ[v1, . . . , vn/e1, . . . , en].

Example A. Consider a buffer with maximum capacity N > 0 messages
shared between a producer process p and a consumer process c. The producer
must be prevented from overflowing the buffer while the consumer must not
attempt to remove messages from an empty buffer. Deadlock may not occur.

This programming problem is solved by introducing two semaphores [4]
a′ and b′, where a′ represents the unused space and b′ the space in use;

integer a′, b′ (a′ = N, b′ = 0);
cobegin
p : repeat waitp: P (a′); signalp: V (b′) forever ‖
c : repeat wait c: P (b′); signal c: V (a′) forever

coend

wait and signal are program locations. Processing of messages is not shown
but manipulations of buffer space is assumed to take place between the P (·)-
and V (·)-primitives. The program defines a transition system with state
space spanned by a′, b′, and the program counters of p and c. Each program
counter has just two values, wait and signal. The subscripts p and c are
added to enable easy reference to a specific program counter along with its
current value.

We use predicates to define sets of states. The predicate (at waitp) is
satisfied by any state where the value of the producer’s program counter is
wait. The initial states satisfy the predicates (a′ = N), (b′ = 0), (at waitp),
and (at wait c); and the transition relation is defined in accord with the
traditions semantics of semaphores; e.g. P (a′) describes the set of transitions
(s′, t′) where (at waitp) ∧a′ > 0 holds in s′ and where a′ gets decremented
by 1 and (at signalp) holds in t′.

The program is deadlocked if both processes are at wait, a′ = 0, and b′ =
0. We prove the program deadlock-free by treating it as an implementation
P ′ of an abstract program P . In P the compound actions P (a′); V (b′) and

8

P (b′); V (a′) are both considered atomic. This is indicated by brackets < and
>.

integer a, b (a = N, b = 0);
cobegin
p : repeat < P (a); V (b) > forever ‖
c : repeat < P (b); V (a) > forever

coend

Since each program counter has just a single value, there is no need to include
information of program counters in the state space of P . So Σ is spanned
by just a and b. Each of the two actions in P can execute only when a > 0
respectively b > 0.

Let I be a predicate on states and assume M ⊆ Σ is the set of states
on which I is true. Let Γ be the property M+ ∪ Mω. Then FΓ is true on φ
exactly when I holds for all states in φ. Separate notations will not be used
to discern I, M, Γ, and FΓ; the intended meaning can be inferred from the
context.

It is trivial to show that the P -executions have property

I : a + b = N

This implies that a > 0 ∨ b > 0 holds and we thus have deadlock freedom in
P .

A similar argument for deadlock freedom in P ′ would use that a′+b′ = N
holds when the predicates (at waitp) and (at wait c) are both true. But
a′ + b′ = N is not a property of P ′ as a′ + b′ can take on any of the values N ,
N − 1 and N − 2. A more complicated invariant using all these values must
be introduced to do the same job.

Instead we use the inheritance technique to get the property

(at waitp) ∧ (at wait c) ⇒ a′ + b′ = N

Let q1 → e1 ✷ q2 → e2 ✷ · · ·✷ en denote the function which has value ei,
1 ≤ i < n if q1, . . . , qi−1 all evaluate to false and qi evaluates to true, and
which has value en if all q1, . . . , qn−1 evaluate to false. Then α can be defined
by

9

a ◦ α ≡ (at waitp) → a′ ✷ a′ + 1

b ◦ α ≡ (at wait c) → b′ ✷ b′ + 1

Hence α suppresses the state changes caused by P (·)-primitives.

We now use this definition when both processes are at wait in some
state s′; if α(s′) satisfies I then s′ satisfies a′ + b′ = N ; this is the desired
implication.

To establish the property I ◦ α we use inheritance corollary 2 with I as
the property Γ.

Clearly α(A′) ⊆ A.

To prove α(R′| ✄′) ⊆ � we need a characterisation of R′. The P -
primitives prevent a′ and b′ from becoming negative. We will use this fact to
prove that e. g. the V (b′) action in P ′ maps to the entire < P (a); V (b) >-
action in P ; if for instance a′ were −1 at signalp the execution of V (b′) would
map to a state change where < P (a); V (b) > executes in spite of the fact
that a has value 0. So we are looking for a characterisation I ′ ⊇ R′ for which
we can prove that α(I′|✄′) ⊆ �. A sufficient characterisation is the following
property which is easily proven to hold for P ′-executions.

I ′ : ((at signalp) ⇒ a′ ≥ 0) ∧ ((at signal c) ⇒ b′ ≥ 0),

The relation α(R′|✄′) ⊆ � is proven by means of a schema. Such schemas
will be used repeatedly in this paper; hence we give it a detailed description
here.

action cases I′ maps to final state maps to image

waitp

a′ = n
[n > 0]

1 2

a = n

3 a′ = n − 1
signalp

4

a = n

5

EMPTY

6

signalp

a′ = n
b′ = m

7

[n ≥ 0]

8 a = n + 1
b = m̂

9 a′ = n
b′ = m + 1

waitp

10 a = n
b = m̂ + 1

11

< P (a); V (b) >

12

Each row of the schema proves α(✄′) ⊆ � for the subset of I′|✄′ defined
by a single atomic action of the program.

The double lines separate each row into 4 parts. The first part defines
the considered action by giving its program location The second part treats
the left state of those transitions (s′, t′) defined by the action. Under “cases”
it is possible to split the analysis into different cases (not necessary in this
example), values of program variables can be specified by parameters (such

10

as m and n), and semantic restrictions on the execution can be given (such
as a′ > 0 before execution of P (a′)); I ′ gives further restrictions obtained
from characterisations of R′; and “maps to” describes the image state α(s′).
The third part treats t′, “final state” t′ itself and “maps to” its image α(t′).
Finally the fourth part sum up the results in the two columns labelled “maps
to” and points out an action defining the transition (α(s′), α(t′)); EMPTY
indicates that α(s′) = α(t′); for α(s′) �= α(t′) either the P -action or its
program location is given.

Note that we use abbreviations. All predicates in a single entry are to be
and’ed together; furthermore predicates for program locations are defined by
just writing the desired location. Hence the entry labelled 4 is an abbreviation
for the formula (a′ = n − 1) ∧ (at signalp).

To simplify the schema a number of conventions apply to each row

• P ′-variables not mentioned under “final state” retain their value in the
transition (s′, t′).

• P−variables not mentioned in the “maps to”-column following “final
state” retain their value in the state change α(s′, t′).

• Parameters have a value which is fixed for the entire row. Conditions
on parameters are enclosed in angle brackets and apply to the entire
row.

• Numbers may be attached to the entries in order to explain how they
are obtained.

The schema is only given for the two producer actions since the arguments
are symmetric for the two processes. To illustrate all aspects explanations
are given for every entry of the schema.

1. a′ has some value n in the initial state s′ and, since the action at waitp

can execute, this value is positive.

2. No restrictions are needed in this row to prove α(s′, t′) ∈ �.

3. Inspection of the α-definition shows that a = n holds in α(s′).

11

4. a′ gets decremented by 1 and the control changes to signalp in the
transition.

5. By inspection of the α-definition.

6. No variable has changed its value in the transition (a has not since
a = n holds in both states, b because it is not mentioned). Hence
α(s′, t′) is just a repetition of the state.

7. a′ and b′ have some values before the execution.

8. The invariant I ′ gives that a′ is positive.

9. By inspection of the α-definition a = n + 1 holds in α(s′) and b has
some value m̂ (which is one of m or m + 1).

10. b′ is incremented by 1 and control changes to waitp.

11. By inspection of the α-definition a = n holds in α(t′); since the program
counter of the consumer has not changed, the same case of the definition
as in 9 must be used for the b-value; and as b is incremented, we have
b = m̂ + 1.

12. From 8 and 9 a is positive in α(s′); b gets incremented and a decre-
mented by one. Hence α(s′, t′) corresponds to a transition defined by
the producer action < P (a); V (b) >.

We have proved that P ′ cannot deadlock; i. e. a state where both processes
are at wait and a′ = b′ = 0 cannot occur.

To prove liveness properties we may wish to know more safety properties
of P ′: Even when a′ + b′ = 1 holds forever, we cannot be sure that one of
P (a′) or P (b′) eventually gets executed; a′ and b′ might alternately have the
value 1, and if we only require that P (v) gets executed eventually if v > 0
holds continuously, then freedom from deadlock is not sufficient; we need
the stronger assertion that a′ > 0 (b′ > 0) holds as long as the producer
(consumer) is at wait. But we now show how to inherit this property also –
without additional proof obligations.

If a > 0 in program P , then this clearly holds as long as < P (a); V (b) >
is not executed. In P ′ this gives that as long as V (b′) is not executed, a > 0

12

holds in α(s′); in particular, if the producer remains at wait, a′ equals a ◦ α,
so a remains positive.

This shows that inherited safety properties may also be useful in the
proof of liveness properties.

4 Extensions

In some cases the characterisation of R′ by giving a condition that is weaker
that R′ seems to require too much work. If we want to inherit I and the
needed characterisation is identical with or can be deduced from α−1(I),
then the technique seemingly does not offer any help as we must anyhow
give a traditional proof that P ′-executions have property α−1(I).

Example B (constructed for the purpose of illustration). Let P be the
program

integer a, x1, x2 (a = 1);
cobegin

repeat wait1: P (a); inc1: x1 := x1 + 1; signal1 : V (a) forever ‖
repeat wait2: P (a); inc2: x2 := x2 + 1; signal2 : V (a) forever

coend

In this program x1 and x2 are, in arbitrary order, repeatedly incremented by
1. The increment is performed in two mutually exclusive regions each having
program locations inc and signal.

Now consider an implementation P ′ where the increment is done by
means of a shared temporary variable t.

integer repeat a, x′
1, x

′
2, t

′ (a = 1);
cobegin

repeat wait ′1: P (a′); read ′
1
′
: t′ := x′

1; inc ′
1: x′

1 := t′ + 1;
signal ′1 : V (a′) forever ‖

repeat wait ′2: P (a′); read2
′ : t′ := x′

1; inc2: x2 := t′ + 1:
signal ′2 : V (a′) forever

coend

13

Primes attached to program locations are, as before, just used to ease the
reference to a program together with a location. The program counters loc′

1

and loc′
2 do not have primed values; their value spaces are merely extensions

of the corresponding loc1- and loc2-spaces. The natural definition of the map
α is

loci ◦ α ≡ (at read i) → inci ✷ loc ′
i

a ◦ α ≡ a′

xi ◦ α ≡ x′
i

If we want to inherit a property of P – e. g. that the sequences of x1-
and x2-values are monotonically non-decreasing – then we must establish
α(R′|✄′) ⊆ �; but the action x′

i := t′ + 1 only maps to the corresponding ac-
tion xi := xi +1 provided {t′ = x′

i} holds before the execution. To prove this
relationship the mutual exclusion in P ′ must be used, and hence also proved.
But if such a proof has already been performed in P a simile proof in P ′

seems to be nothing but a repetition of the proof in P . (End of example.)

Notice that we cannot simply presuppose that we work only with reach-
able states. It requires some real work to find out what the reachable states
are.

The following lemma shows that inherited properties actually can be
used as characterisations of the reachable states – so to speak in advance of
using the inheritance corollaries.

Characterisation lemma 1. If R ⊆ I (the reachable states of
P satisfy I), α(A′) ⊆ A, and α(α−1(I)| ✄′) ⊆ �, then R′ ⊆ α−1(I).

Proof. We prove by induction that all sequences φ in [A′]✄′ satisfy
α(φ•) ∈ R. Because [A′]✄′ is prefix closed all states in R′ can be
written φ• for some φ ∈ [A′]✄′. So α(R′) ⊆ R ⊆ I.
Basis: One-element sequences belong to A′ which maps to A ⊆ R.
Induction step: Let φ ∈ [A′]✄′ satisfy α(φ•) ∈ R. If (φ•, s′) ∈ ✄′

for some s′, then (φ•, s′) also belongs to α−1(I) | ✄′ since R ⊆ I; so
α(φ•, s′) ∈ �. If α(φ•) = φ(s′) we obviously have α(s′) ∈ R. And
if α(φ•, s′) ∈ ✄, then α(s′) belongs to R since R is stable under
✄.

Remark. If the assumptions in the lemma hold, we also have α(R′| ✄′) ⊆

14

�; hence the assumptions in inheritance corollary 2 hold, and we can imme-
diately inherit properties from P .

Example C. A subset I ⊆ Σ is said to be invariant in P = (Σ, ✄, A) if
A ⊆ I and if s ∈ I ∧ (s, t) ∈ ✄ implies t ∈ I (written ✄(I) ⊆ I). An ordinary
proof by induction shows that the reachable states R is a subset of I when
I is invariant. We will demonstrate that this fact may also be concluded by
means of the characterisation lemma.

Let P = (Σ, ✁, A) be the system where Σ = {true, false}, ✄ does not
contain the transition (true, false), and A = {true}. Clearly {true} is invari-
ant in P . Assume we will prove I ′ invariant in some other system P ′. We
define α by

α ≡ in I ′ → true ✷ false,

where in I ′(s′) holds when s′ ∈ I ′. If A′ ⊆ I ′ holds also α(A′) ⊆ A holds; and
if (s′ ∈ I ′ ∧ (s′, t′) ∈ ✄′) implies t′ ∈ I ′ then all (s′, t′) with s′ ∈ α−1(true)
map to the empty transition – i.e. α(α−1(true)| ✄′) ⊆ �. The characterisation
lemma then gives that R′ ⊆ α−1(true) = I ′ as desired. Hence ordinary proofs
of invariants can be considered as just a special case of the technique.
(End of example.)

Example D. Assume a program P is developed using “secure” operations
so that division by zero, use of array indices out of range, etc. all cause
the program to terminate in an error state. We call states where such a
termination may occur in the next transition for dangerous states. If P
is demonstrated never to enter dangerous states – either by proof or by
exhaustive program test – then any implementation P ′ can use corresponding
“insecure” operations. The informal argument for this may be formalised by
the inheritance technique.

The informal argument goes: For all executions not entering dangerous
states the P - and P ′-operations cause identical state changes. So if P never
enters dangerous states, P ′-operations will cause identical state changes and
may thus be used in place of the P -operations.

Using the inheritance technique we take I to be the undangerous states
of P and α to act as the identity function on all undangerous states of P ′

– hence α−1(I) equals I. The assumption that P ′- and P - actions cause
identical state changes on undangerous states now gives that α(I′| ✄′) ⊆ ✄;
so by the characterisation lemma we get α(R′| ✄′) ⊆ ✄; and hence by the

15

remark accompanying the lemma, all safety properties of P may be inherited.
(End of example.)

Example B (continued). We now prove α(R′| ✄′) ⊆ � for the programs
P and P ′ introduced earlier. To inherit that {x′

i = t′} holds before execution
of x′

i := t′ + 1 we use a little trick. States not satisfying the desired equality
are mapped to states not reachable in P . We could use e.g. states where
both processes are between the P (a)- and the V (a)-operations; but we prefer
to introduce an entirely new state ⊥ into the state space of P acting as false
in example C. In the thus changed program P⊥ a state only assigns values to
variables if the state is different from ⊥. We note that if P -executions have
property Γ, then P⊥-executions also have this property since the introduction
of ⊥ does not change [A]✄. We now define α by:

α ≡ (at inc′
i) ∧ (xi �= t′) → ⊥ ✷ β, where β is defines by

loci ◦ β ≡ (at read i) → inci ✷ loc ′
i

a ◦ β ≡ a′

xi ◦ β ≡ x′
i

We will demonstrate that the conditions in characterisation lemma 1 are
met; by the accompanying remark this allows us to inherit properties from
P . The set I is chosen to consist of those states different from ⊥ which satisfy
¬((at inc1) ∧ (at inc2)). P⊥-executions are easily seen to have property I.

We immediately get α(A′) ⊆ A. To demonstrate α(α−1(I)| ✄′) ⊆ � we
use a schema like the one introduced in example A. Now we use a column
labelled α−1(I) in place of the column labelled I ′, however,

action cases α−1(I) maps to final state maps to image

wait ′i
a′ = n
[n > 0]

a = n
waiti

a′ = n − 1
read ′

i

a = n − 1
inci

waiti

read ′
i x′

i = n
xi = n
inci

t′ = n
inc′i

xi = n 1

inci
EMPTY

inc′i
x′

i = n
t′ = m

[n = m] 2 xi = n
inci

x′
i = n + 1 3

signal ′i

xi = n + 1
signali

inci

signal ′i a′ = n
a = n
signali

a′ = n + 1
wait ′i

a = n + 1
waiti

signali

All assertions in the schema are trivially obtained except the following three:

1. Since t′ = n function α does not map the state to ⊥.

2. We have just introduced parameters n, m for the values of x′
i and t′; as

⊥ /∈ I it must be the case that x′
i = t′ – i.e. n = m.

16

3. That x′
i := t′+1 establishes x′

i = n+1 follows from t′ = m and [n = m].

Note that mutual exclusion does not enter into the argument at any place.
The effect of mutual exclusion is hidden in the inherited assertion that when
the control is at inci, the variables xi and t have identical values (End of
example.)

Sometimes it may seem awkward to characterise R′ by means of the
inherited property α−1(I). In the previous example, for instance, t′ is a
variable only present in the program P ′; so to restrict the values of t′ by a
property inherited from P appears to introduce too much trickery. Intuitively
the only property from P needed to establish that (at inc ′

i) implies x′
i = t′ is

mutual exclusion in P . Based on mutual exclusion it should be possible to
establish x′

i = t′ exclusively by arguments in P ′. The following generalisation
of characterisation lemma 1 shows that it is possible to cover this intuition
more accurately.

In the inheritance theorem it could be necessary to characterise R′ by
an invariant I ′ proven in P ′. This possibility is now relaxed such that I ′ only
needs to be proven relatively invariant: for transitions (s′, t′) with s′ in both
I ′ and α−1(I) the relation t′ ∈ I ′ It must hold.

Characterisation lemma 2. If R ⊆ I, α(A′) ⊆ A, A′ ⊆
I ′, α−1(I) | ✄′(I ′) ⊆ I ′ (relative invariance of I ′),
and α(α−1(I)∩I′| ✄′) ⊆ �,
then R′ ⊆ α−1(I) ∩ I ′.

Proof. Let ⊥ be a state not occurring in Σ. Let P⊥ be the
transition system (Σ ∪ {⊥}, ✄, A). We define a new function
β : Σ′ → Σ ∪ {⊥} by

β ≡ inI ′ → α ✷ ⊥

Since ⊥ /∈ I, this definition gives β−1(I) = α−1(I) ∩ I ′. The idea
is to show that β satisfies all conditions in characterisation lemma
1.

As α(A′) ⊆ A and A′ ⊆ I ′, also β(A′) ⊆ A holds. From α−1(I) |
✄′(I ′) ⊆ I ′ we get that, if (s′, t′) ∈ ✄′ and s′ ∈ α−1(I) ∩ I ′, then

17

β(t′) = α(s′). So α(α−1(I)∩I′| ✄′) ⊆ � gives β(β−1(I)| ✄′) ⊆ �.
Using characterisation lemma 1 now gives R′ ⊆ β−1(I) as desired.

To obtain a workable technique we sum up the results in characterisation
lemma 2, the safety theorem, the inheritance theorem and its corollary 2.

Inheritance technique. Assume that P = (Σ, ✄, A) and P ′ =
(Σ′, ✄′, A′) are two transition systems and let α be a map from
Σ′ to Σ. Assume that I ⊆ Σ is a set of states such that R ⊆ I;
and let I ′ ⊆ Σ′ be any iet of states. If

• α(A′) ⊆ A,

• A′ ⊆ I ′,

• α−1(I) | ✄′(I ′) ⊆ I ′,

• α(α−1(I)∩I′| ✄′) ⊆ �,

then α([A′]✄′) ⊆ [A]�. Hence any safety property Γ invariant
to repetition of states can be inherited – i. e, if P -executions
have property Γ([A]✄ ⊆ Γ), then all (fair, unfair, or finite) P ′-
executions have safely property α−1(Γ).

Example B (revisited). The most natural choice of α we given at page
13:
loci ◦ α ≡ (at read i) → inci ✷ loc ′

i

a ◦ α ≡ a′

xi ◦ α ≡ x′
i

The only property of P needed in the proof is mutual exclusion

I : ¬((at inc1) ∧ (at inc2))

α−1(I) expresses almost the same, namely

α−1(I) : ¬[((at read ′
1) ∨ (at inc ′

1)) ∨ ((at read ′
2) ∨ (at inc ′

2))]

The relationship x′
i = t′ may now be expressed by a relative invariant

I ′ : (at inc ′
i) ⇒ (x′

i = t′)

18

We show that all conditions in the inheritance technique are satisfied.

We assume that R ⊆ I has been proved. It is easily checked that also
α(A′) ⊆ A and A′ ⊆ I ′ hold.

The relative invariance of I ′ is proven thus: when (at inc ′
i) gets es-

tablished, (x′
i = t′) is also established; and the only action different from

x′
i := t′ + 1 which can falsify (x′

i = t′) is the action t′ := x′
ı̂ where 1̂ = 2 and

2̂ = 1; but using α−1(I) we get that control cannot simultaneously reside at
inc ′

i and at read ′
ı̂.

We once again use a schema to demonstrate that α maps α−1(I)∩I′ | ✄′

into �. Now we can draw restrictions both from α−1(I) and from I ′.

action cases I′ α−1(I) maps to final state maps to image

wait ′i
a′ = n
[n > 0]

a = n
waiti

a′ = n − 1
read ′

i

a = n − 1
inci

waiti

read ′
i inci

t′ = n
inc′i

inci EMPTY

inc′i
x′

i = n
t′ = m

[n = m] 1 xi = n
inci

x′
i = n + 1
signal ′i

xi = n + 1
signali

inci

signal ′i a′ = n
a = n
signali

a′ = n + 1
wait ′i

a = n + 1
waiti

signali

The rows for wait ′ and signal ′ are the same as before. The row for inc ′

just has the restriction [n = m] in another row than the previous schema.
The row for read ′ is a bit simpler than before it is freed for the argument
that the resulting state does not map to ⊥.

1. Now [n = m] is concluded from the relative invariant, not from the
inherited property.

Note that α−1(I) is not used in the schema. It only serves to prove the
relative invariance of I ′.

5 Two applications

The technique is demonstrated on two slightly more involved examples. The
schematic notation introduced in the earlier examples will again be used to
prove that α maps α−1(I)∩I′ | ✄′ into �.

19

5.1 Peterson’s algorithm

Peterson’s algorithm [12] provides fair mutual exclusion between two pro-
cesses p1 and p2. We will show that the algorithm is just an encoding of
a simple idea: assume p1 wants to enter its critical section; if p2 is within
its critical section or is waiting with priority, then p1 must wait until p2,
upon exit, explicitly gives p1 priority; otherwise p1 immediately gets priority
and can enter. This idea is shown in program P below. Actions inside and
outside the critical section are not shown. This is deliberate; they can be
inserted in a subsequent refinement of the program.

pri ∈ {1, 2};
cobegin

repeat
uncr 1: < if (at uncr 2) then pri := 1 >;
wait1: < await pri := 1 >;
crit1: < pri := 2 >;

forever
‖repeat

uncr 2: < if (at uncr 1) then pri := 2 >;
wait2: < await pri := 2 >;
crit2: < pri := 1 >;

forever
coend

Note that each process reads the current value of the other process’ program
counter. The meaning of the await-primitive is that control can only proceed
to crit i if the test is satisfied.

In P it is trivial to prove the following property invariant:

I : (at crit ′i) ⇒ (pri = i)

From this mutual exclusion immediately follows since pri cannot simultane-
ously take on both values 1 and 2.

The implementation P ′ of P is obtained by finding another representa-
tion of the state space.

20

boolean try ′
1, try

′
2(try

′
1 = try ′

2 = false); turn ′ ∈ {1, 2};
cobegin

repeat
uncr ′

1: < try ′
1 := true;

turn ′ := 2 >;
wait ′1: < await ¬(try ′

2 ∧ turn ′ = 2 >;
crit ′1: < try ′

1 := false >;
forever

‖repeat
uncr ′

2: < try ′
2 := true;

turn ′ := 1 >;
wait ′2: < await ¬(try ′

1 ∧ turn ′ = 1 >;
crit ′2: < try ′

2 := false >;
forever

coend

A correspondence between P ′ and P can be established be the following map
α (expression i : try ′

i: means the value of i such that try i holds):

loci ◦ α ≡ loc′
i

pri ◦ α ≡ (try ′
1 = try ′

2) → turn ′ ✷ i : try ′
i

The intuition behind the definition is (again 1̂ = 2 and 2̂ = 1): Process
i has priority if it is waiting and process ı̂ is not (so try ′

i and not try ′
ı̂ hold)

or if both processes wait and turn ′ = i.

We use the inheritance technique to inherit properties from P (e.g. mu-
tual exclusion). A characterisation of R′ is needed for this. The characteri-
sation I ′ = I ′

1 ∧ I ′
2 consists of the following two properties

I ′
1 : (at uncr ′

i) ⇔ ¬try ′
i and I ′

2 : try ′
i ∧ ¬try ′

ı̂ ⇒ turn ′ = ı̂

The first property just relates the value of try ′
i to the program counter

loc ′
i and is easily proven invariant. The second property expresses a more

subtle relationship used to find the value of pri in α(t′) when (s′, t′) is a
transition from crit ′i to uncr ′

i. Obviously A′ ⊆ I ′
2. The relative invariance of

I ′
2 is proved next.

The antecedent can be established in two ways. First the action at uncr ′
i

can establish try ′
i; but this simultaneously establishes turn ′ = ı̂. Second the

21

action at crit ′ı̂ can establish ¬try ′
ı̂; but assume (at crit ′ı̂) ∧try ′

i holds in s′;
from I ′

1 variable try ′
ı̂ is true and hence try ′

1 = try ′
2 holds in s′; so pri has the

same value in α(s′) as turn ′ has in s′; consequently I implies turn ′ = ı̂ in s′

and hence also in t′. Finally the consequent in I ′
2 can be falsified only by the

action at uncr ′
ı̂ but this action simultaneously falsifies ¬try ′

ı̂.

In order to use the inheritance technique it only remains to be shown
that α(A′) ⊆ A and that α maps α−1(I)∩I′ | ✄′ into �. That α maps A′

into A is seen by inspection of α. The proper mapging of α−1(I)∩I′ | ✄′ is
demonstrated by the following schema. The program is symmetric in the
two processes so only the argument for process 1 is given. Note that, for the
fist time, the analysis must be split into cases. This is because we must use
two different branches of the α-definition for pri according to the value of
try ′

2.

action cases I′
1 ∧ I′

2 α−1(I) maps to final state maps to image

uncr′1

¬try′
2

try′
2

uncr′2

¬uncr′2

uncr1
uncr2

uncr1
¬uncr2
pri = 2

(1)

wait′1
turn′ = 2

try′
1

wait′1
turn′ = 2

try′
1

wait′1
pri = 1

wait′1
pri = 2

uncr′1

¬uncr′1

wait′1

¬try′
2

try′
2

turn′ = 1

(2)

try′
1

try′
1

wait1
pri = 1

wait1
pri = 2

crit′1

crit′1

crit′1

crit1

wait1

wait1

crit′1

¬try′
2

try′
2

try′
1

turn′ = 2 (3)

crit1
pri = 1

crit1

uncr′1
¬try′

1

uncr′1
¬try′

1

uncr1
pri = 2

uncr1
pri = 2

(4) crit1

crit1

Four entries deserve a comment.

1. I ′
1 gives ¬try ′

1; so pri ◦ α has the value i for which try ′
i is true.

2. Since the action at wait ′1 can only execute when ¬try ′
2 or turn ′ = 1

hold, it is sufficient to treat the cases ¬try ′
2 and try ′

2 ∧ (turn ′ = 1).

3. I ′
1 gives the truth of try ′

1; that (turn ′ = 2) holds then follows from I ′
2.

4. Since try ′
1 = try ′

2 the value of pri equals the value of turn ′.

This concludes the argument and we may inherit properties from P . Mutual
exclusion in P immediately implies mutual exclusion in P ′ – i.e. I ◦α reduces
to ¬((at crit ′1)∧ (at crit ′2)). To show fairness in P ′ it is necessary to use the

22

safety property that if ¬(try ′
2 ∧ turn ′ = 2) holds when control reaches wait ′1,

then ¬(try ′
2 ∧ turn ′ = 2) will continue to hold as long as control remains

at wait ′1. This is easily deduced from the corresponding P -property that
pri = 1 continues to hold as long as control remains at wait1.

The atomic actions in P ′ are coarser-grained than necessary. All actions
can be split into atomic reads and writes of the shared variables. The await-
actions are implemented by while-loops using busy waiting. E.g. the wait ′1-
action refines into

while < try ′′
2 > ∧ < turn ′′ = 2 > do;

This construction is not terribly easy to reason about since it hides a tem-
porary variable used to store the value read from try ′′

2. For transparency we
substitute this loop by a goto-construction which explicitly uses the tempo-
rary variable.

boolean try ′′
1, try

′′
2(try

′′
1 = try ′′

2 = false); turn ′′ ∈ {1, 2} :
cobegin

repeat
uncr ′′

1: < try ′′
1 := true >;

ent ′′1: < turn ′′ := 2 >;
wait ′′1: < temp ′′

1 = try ′′
2 >;

test ′′1: < if temp ′′
1 ∧ turn ′′ = 2 goto wait ′′1 >;

crit ′1: < try ′′
1 := false >;

forever
‖repeat

uncr ′′
2: < try ′′

2 := true;
ent ′′2: < turn ′′ := 1 >;
wait ′′2: < temp ′′

2 := try ′′
1 >;

test ′′2: < if temp ′′
2 ∧ turn ′′ = 1 goto wait ′′2 >;

crit ′′2: < try ′′
2 := false >;

forever
coend

We construct α such that the state change caused by the uncr ′′-actions are
suppressed and such that process i proceeds to crit ′i in P ′ when it has suffi-
cient information to pass the goto-construction. Hence, if control resides at
test ′′i and temp ′′

i is false, then control resides at crit ′i in the image state.

23

loc ′
i ◦ α ≡ (at ent ′′i) → uncr ′

✷ (at test ′′i) ∧ temp ′′
i → wait ′

✷ (at test ′′i) ∧ ¬temp ′′
i → crit ′

✷ loc ′′
i

try ′
i ◦ α ≡ (at ent ′′i) → false ✷ try ′′

i

turn ′ ◦ α ≡ turn ′′

This α clearly maps A′′ to A′. To prove that the uncr ′′
i -action maps to the

empty action and the ent ′′i -action to the ent ′i-action we need the following
property

I ′′ : ((at uncr ′′
i) ⇒ ¬try ′′

i) ∧ ((at ent ′′i) ⇒ try ′′
i)

It is easily proven invariant in P ′′.

The schema below proves that α maps I′′ | ✄′′ into �′. Note that inher-
ited properties are not used at all in this proof – neither to prove I ′′ relative
invariant nor to prove correct mapping of R′′ | ✄′′.

action cases I′′ α−1(I′′) maps to final state maps to image

uncr ′′i ¬try ′′
i

uncr ′i
¬try ′

i

ent ′′i
try ′′

i

uncr ′i
¬try ′

i
EMPTY

ent ′′i try ′′
i

uncr ′i
¬try ′

i

wait ′′i
turn′′ = ı̂

wait ′i
¬try ′

i
turn′′ = ı̂

uncr ′i

wait ′′1

try ′′
ı̂

¬try ′′
ı̂

wait ′i

wait ′i
¬try ′

ı

test ′′i
temp′′

i

test ′′i
¬temp′′

i

wait ′i

crit ′i

EMPTY

wait ′i

test ′′i

temp′′
i

turn′′ = ı̂

temp′′
i

turn′′ = i
¬temp′′

i

wait ′i

wait ′i
crit ′i

wait ′′i

crit ′′i
crit ′′i

wait ′i

crit ′i
crit ′i

EMPTY

wait ′i
EMPTY

crit ′′i uncr ′i
uncr ′′i
¬try ′′

i

uncr ′i
¬try ′

i
uncr ′i

Now safety properties can me lnnerited. Mutual exclusion in P ′ was ex-
pressed by

I ′ : ¬((at crit ′1) ∧ (at crit ′2))

The property I ′ ◦ α reduces to

¬(((at crit ′′1) ∨ ((at test ′′1) ∧ ¬temp ′′
1))∧

((at crit ′′2) ∨ ((at test ′′2) ∧ ¬temp ′′
2)))

24

This property may in turn be weakened to the desired

¬((at crit ′′2) ∧ (at crit ′′2))

Other properties can be similarly inherited.

Implementing a bounded-size queue by a circular buffer

The following program P is an abstract description of a queue with a maxi-
mum capacity of N elements.

sequence q (q = ()); element e, f ;
cobegin

repeat
prodp: < produce(e) >;
waitp: < await |q] < N >;
insp: < q := q ∗ e >;

forever
‖repeat

wait c: < await|q| > 0 >;
remc: < f, q := head(q), tail(q) >;
conc: < consume(f) >;

forever
coend

Let ē denote the sequence of messages produced so far and f̄ the sequence of
messages consumed so far. Then the most important feature of the program
is the following safety property Γ which is obviously true for program P .

Γ : f̄ � ē

The two sequences ē and f̄ may each be specified by giving recursive defini-
tions for finite executions φ and by taking the value on an infinite execution
to be the limit of ē respectively f̄ on the finite prefixes of φ. The recursive
definitions are similar for ē and f̄ ; for ē it is

ē(s) = (), for s ∈ Σ
ē(φ ∗ s) = if (at prodp)(φ

•) ∧ (at waitp)(s)
then ē(φ) ∗ e(s) else ē(φ)

25

A property which will be of use in applying the inheritance technique is the
following:

I ′ : ((at insp) ⇒ (|q| < N)) ∧ ((at remc) ⇒ (|q| > 0))

This property is obviously true for program P .

The elements of the queue may be stored in an array of size N + 1 by
using a circus allocation policy. Two integers i′ and j′ serve as pointers into
the array; they are incremented using modulo (N + 1)-arithmetic (we use
⊕ for addition, � for subtraction in modulo (N + 1)-arithmetic). Different
conventions can be used for the implementation; here we use

|q| = k ⇔ i′ ⊕ (k + 1) = j′

Hence q is empty (q = ()) when i′ ⊕ 1 = j′ and q is full (|q] = N) when
i′ = j′; i′ points to the location most recently freed in the array and j′ points
to the location which will be occupied next.

array [0..N] of element q′(q′ = [?, . . . , ?]);
integer i′, j′(i′ ⊕ 1 = j′); element e′, f ′;
cobegin

repeat
prod ′

p: < produce(e) >;
wait ′p: < await i′ �= j′ >;
put ′p: < q′[j′] := e >;
ins ′p: < j′ := j′ ⊕ 1 >;

forever
‖repeat

wait ′c: < await i′ ⊕ 1 �= j′ >;
rem ′

c: < i′ := i′ ⊕ 1 >;
get ′c: < f ′ := q′[i′] >;
con ′

c: < consume(f ′) >;
forever

coend

We will map states of P ′ into states of P and remark that the state space of
P ′ is spanned by q′, i′, j′, e′, f ′, loc ′

p and loc ′
c, whereas the state space of P is

spanned by q, e, f, locp and locc.

26

q ◦ α ≡ (i′ ⊕ 1 = j′) → () ✷ (q′[i′ ⊕ 1], q′[i′ ⊕ 2], . . . , q′[j′ � 1])
e ◦ α ≡ e′

f ◦ α ≡ (at get ′c) → q′[i′] ✷ f ′

locp ◦ α ≡ (at put ′p) → insp ✷ loc′
p

locc ◦ α ≡ (at get ′c) → conc ✷ loc′
c

Note that the definition of q◦α gives the property |q| = k ⇔ (i′⊕(k+1)) = j′.

To use the inheritance technique it is necessary to introduce a P ′-specific
property assuring that the ins ′p-action will map to the insp-action.

I ′ : (at ins ′p) ⇒ q′[j′] = e′

It is a trivial fact that this implication holds; q′[j′] = e′ can only be falsified
by changing j′, g′, or e′; and only the producer can do this.

It is easily checked that α(A′) ⊆ A.

An important point in the proof that α maps α−1(I)∩I′ | ✄′ into � is to
show that the action q′[j′] := e′ maps into the empty action. The image
action could in principle change f since f is defined to have value q′[i′] when
(at get ′c) holds. The inherited invariant α−1(I) is used to deduce that this
does not happen. The entire proof is given in the following schema. I, J , E,
F , and Q are parameter values.

action cases I′ α−1(I) maps to final state maps to image

prod ′
i prodp

wait ′p
e′ = E

waitp

e = E
1 prodp

wait ′p i′ �= j′
waitp

|q| < N
2 put ′p insp waitp

put ′p j′ = J i′ �= j 3 insp
ins′p

q′(J) = e′
insp

4 EMPTY

ins′p j′ = J q′[J] = e′ i′ �= j
ins′p

q = Q
prod ′

p

j′ = J ⊕ 1
prodp

q = Q ∗ e
5 insp

wait ′c i′ ⊕ 1 �= j′
waitc

|q| > 0
rem′

c remc waitc

rem′
c

i′ = I
F = q′[I ⊕ 1]

I ⊕ 1 �= j
remp

q = F ∗ Q
6 get ′c

i′ = i ⊕ 1′

conc

q = Q
f = F

7 remc

get ′c F = q′[i′ ⊕ 1]
conc

f = F
con′

c
f ′ = q′[i′]

conc

f = F
EMPTY

con′
c conc wait ′c waitc conc

1. It is assumed that produce(e′) has same semantics as produce(e); hence
the same value E is produced.

27

2. Since |q| = k ⇔ i′ ⊕ (k + 1) = j′, it follows that i′ �= j′ implies |q| < N .

3. (at insp) ⇒ (|q| < N) holds in P . Using |q| = k ⇔ i′ ⊕ (k + 1) = j′

this gives i′ �= j′.

4. Only entry J of q′ is changed; since J �= i′ and i′ remains unchanged
we get that f does not change.

5. In t′ we have i′ ⊕ 1 �= J ⊕ 1 = j′; hence q has form (q′[i′ ⊕ 1], q′[i′ ⊕
2], . . . , q′[j′ � 1]) in α(t′). From j′ = J ⊕ 1 and e = e′ = q′[J] we get
that q = Q ∗ e.

6. From i′ ⊕ 1 �= j′ we get |q| > 0; thus we can write q as F ∗ Q =
(q′[I ⊕ 1], . . . , q′[j′ � 1]).

7. No element in q′ has changed; hence q has form (q′[I⊕2], . . . , q′[j′�1]),
or () if i′ ⊕ 1 = j′. Furthermore f is defined as q′[i′] = q′[I ⊕ 1] = F
when the consumer is at get ′c.

Now the property f̄ � ē can be inherited. We will show that (f̄ � ē) ◦ α is
the same function as f̄ ′ � ē′ where ē′ and f̄ ′ are given by recursive definitions
similar to those for ē and f̄ . It suffices to show that each of f̄ ◦ α and ē ◦ α
satisfy the same recursive definition as f̄ ′ and ē′ respectively. For ē ◦ α this
is shown thus

ē ◦ α(s′) ≡ ē(α(s′)) = (), for s′ ∈ Σ.
ē ◦ α(φ′ ∗ s′) ≡ ē(α(φ′) ∗ α(s′))

≡ if (at prodp)(α(φ′)) ∧ (at waitp)(α(s′))
then ē(α(φ′)) ∗ e(α(s′)) else ē(α(φ′))

≡ if (at prod ′
p)(φ

′•) ∧ (at waitp)(s
′)

then ē ◦ α(φ′) ∗ e′(s′) else ē ◦ α(φ′)

A similar calculation shows f̄ ◦ α = f̄ ′. Hence the property f̄ ′ � ē′ holds for
P ′.

6 History defined maps

In the second refinement of Peterson’s algorithm we have constructed β so
that it suppresses state changes in Σ′ until appropriate state changes take

28

place in Σ′′. This was possible because overwritten values of the variables
try1 and try2 could be deduced from the current state in P ′′. Hence the
current state s′′ was sufficient to define the state β(s′′).

Sometimes it is not possible to deduce overwritten values from the cur-
rent state. Then we need a more general approach where α also depends on
previous states. We say that α is history defined if α is a function from Σ′+

to Σ. To distinguish history defined maps from ordinary state-to-state maps
we call the latter state defined maps.

A history defined map a induce a map α̃ from Σ′+ ∪ Σ′ω to Σ+ ∪ Σω by
the definition:

1. α̃(s′) = α(s′) for s′ ∈ Σ′,

2. α̃(φ′ ∗ s′) = α̃(φ′) ∗ α(φ′ ∗ s′) for s′ ∈ Σ′ and φ′ ∈ Σ′+,

3. α̃(φ′) = lub{α̃(ψ′) | ψ′ ❂ φ′} for φ′ ∈ Σ′ω (defined because α̃ is mono-
tonic on finite ψ′)

The map α̃ can be used to inherit properties. This more complicated however,
than for state defined maps. We once again need

Proposition. If Γis a safety property, then also α̃−1(Γ) is.

Proof. We must show that α̃−1(Γ) is prefix closed and ω-complete.
Let φ′ ∈ α̃−1(Γ) and let ψ′ � φ′. By the definition of α̃, ψ′ � φ′

implies α̃(ψ′) � α̃(φ′). As Γ is prefix closed, we get α̃(ψ′) ∈ Γ;
hence also ψ′ ∈ α̃−1(Γ).
Now assume φ′

1 � φ′
2 � . . . is a chain in α̃−1(Γ) with least up-

per bound φ′. Then α̃(φ′
1) � α̃(φ′

2) � . . . is a chain which, by
definition, has least upper bound α̃(φ′). Since α̃(φ′

i) belongs to
Γ for all i and Γ is ω-complete, also α̃(φ′) belongs to Γ; hence
φ′ ∈ α̃−1(Γ′).

In general it may be difficult to find a simple expression of an inherited
property. If Γ is defined by FΓ, then α̃−1(Γ) is defined by FΓ ◦ α̃ where both
FΓ and α̃ may refer to prefixes of their arguments.

29

In a special case FΓ ◦ α̃ may be reduced as in the previous sections. This
happens if FΓ only refers to variables v1, . . . , vn and vi ◦α for these variables
is defined by

vi ◦ α(φ′) = vi ◦ β(φ′•)

for some β : Σ′ → Σ. Then FΓ ◦ α̃ is nothing more than the usual function
FΓ ◦ β.

The inheritance technique carries over to history defined maps rather
smoothly. For completeness the technique is generalised such that the reach-
able states in [A′]✄′ may be characterised as terminal states of sequences in
the intersection of two general safety properties, α̃−1(Γ) and Γ′. In some
cases the set of states in property α̃−1(Γ) ∩ Γ′ will be strictly less than the
intersection of the set of states in property α̃−1(Γ) with the set of states in
property Γ′.

General inheritance technique. Let P = (Σ, ✄, A) and P ′ =
(Σ′, ✄′, A′) be two transition systems and let α be a map from Σ′+

to Σ. Assume sequences in [A]✄ have safety property Γ and let
Γ′ be any safety property over Σ′. If

• α(A′) ⊆ A,

• A′ ⊆ Γ′

• for all φ′ ∈ α̃−1(Γ)∩Γ′ and (φ′•, s′) ∈ ✄′ the following holds
a. φ′ ∗ s′ ∈ Γ′,
b. α(φ′, φ′ ∗ s′) ∈ �

then α̃([A′]✄′) ⊆ [A]✄. Hence any safety property Γ0 invariant
to repetition of states can be inherited - i.e. if [A]✄ ⊆ Γ0, then
[A′]✄′ ⊆ α̃−1(Γ0).

Proof. We prove by induction on the length of φ′ that φ′ ∈ [A′]✄′

implies φ′ ∈ Γ′ and α̃(φ′) ∈ [A]✄.
Basis: α̃(A′) = α(A′) ⊆ A ⊆ [A]✄
Induction step: Let φ′ ∈ [A′]✄′. The induction hypothesis gives
φ′ ∈ Γ′ and φ′ ∈ α̃−1([A]✄) ⊆ α̃−1(Γ). Let (φ′•, s′) be a transition

in ✄′; then a. gives φ′ ∗ s′ ∈ Γ′; since (̃φ′ ∗ s′) = α̃(φ′) ∗ α(s′)
and α̃(φ′)• = α(φ′), we get from b. and α̃(φ′) ∈ [A]� that
α̃(φ′ ∗ s′) ∈ [A]�.

30

Note, if α : Σ′+ → Σ is defined from just the current state – α(φ′) = β(φ′•)
for some β : Σ′ → Σ – and if Γ and Γ′ are just defined by sets of states
I and I ′, then the general technique reduces to the previously introduced
technique.

Example. We now present another implementation of a bounded-size
queue by a circular buffer. In the new implementation we use the convention

|q| = k ⇔ i′ ⊕ k = j′

(Again ⊕ denotes addition modulo N + 1.)
The pointers i′ and j′ are used such that i′ points to the element to be
removed next and j′ points to the location where the next insertion will take
place.

array [0..N] of element q′(q′ = [?, . . . , ?]);
integer i′, j′(i′ = j′); element e′f ′;
cobegin

repeat
prod ′

p: < produce(e′) >;
wait ′p: < await i′ ⊕ N �= j′ >;
put ′p: < q′[j′] := e′ >;
ins ′p: < j′ := j′ ⊕ 1 >;

forever
‖repeat

wait ′c: < await i′ �= j′ >;
get ′c: < f ′ := q′[i′] >;
rem ′

c: < i′ := i′ ⊕ 1 >;
con ′

c: < consume(f ′) >;
forever

coend

The history defined map α : Σ+ → Σ is once again defined by exhibiting
the function v ◦α where v is a variable of P . The prime motivation for intro-
ducing a history defined map is to suppress state changes. After some variable
v′ changes its value we want to use the value before the state change. This
is accomplished by the function prev [b, v′] where p is a predicate on states
in Σ′. It takes a sequence φ′ ∈ Σ′+ and returns the value of v′ in the last

31

state of φ′ where p was true. Note that p must hold at some previous point
in φ′ in order for prev [p, v′] to be defined. Unless the prev [p, v′]-function is
used, all functions are to be evaluated in the final state φ′• of an argument φ′.

q ◦ α ≡ i′ = j′ → () ✷ (q′[i′], . . . , q′[j′ � 1])
e ◦ α ≡ e′

f ◦ α ≡ (at rem ′
c) → prev [(at get ′c), f

′] ✷ f ′

locp ◦ α ≡ (at put ′p) → insp ✷ loc′
p

locc ◦ α ≡ (at get ′c) → conc ✷ loc′
c

The only place where history plays a role is in the definition of f ◦ α. The
definition says that if control is at rem ′

c, then the previous value of f ′ should
be used – not the current.

We will use the general inheritance technique to show that α̃ maps [A′]✄′

into [A]�. The two safety properties Γ and Γ′ are the sets of sequences with
states in I and I ′ respectively given by

I : ((at insp) ⇒ |q| < N) ∧ ((at remc) ⇒ |q| > 0)

I ′ : ((at ins ′p) ⇒ q′|j′| = e′) ∧ ((at rem ′
c) ⇒ f ′ = q′[i′])

The first two items of the technique, α(A′) ⊆ A and A′ ⊆ I ′, are easily
checked. Item a. requires just a proof of relitive invoice of I ′. That (at ins ′p)
implies q′[j′| = e′ follows from the fact that only the producer can change
j′, e′, q′[j′] or the producer’s program location. To prove that (at rem ′

c) im-
plies f ′ = q′[i′] we need to establish that the producer cannot change q′[i′]
when the consumer is at rem ′

c. This follows from the inherited property

(at rem ′
c) ⇒ i′ �= j′

For the last item in the technique we once again use a schema. Now the
image of (φ′, φ′ ∗ s′) for transition φ′•, s′) in ✄′ may not only be determined
by φ′• and s′ but also by φ-states before φ′•. The column “cases” should be
used to distinguish between such cases.

32

action cases I′ α−1(I) maps to final state maps to image

prod ′
p prodp

wait ′p
e′ = E

waitp

e = E
prodp

wait ′p i′ ⊕ N �= j′
waitp

|q| < N
put ′p insp waitp

put ′p j′ = J insp
ins′p

q′[J] = e′
insp

1 EMPTY

ins′p
j′ = J
e′ = E

q′[J] = E i′ ⊕ N �= j
insp

q = Q
prod ′

p

j′ = J ⊕ 1
prodp

q = Q ∗ E
2 insp

wait ′c i′ �= j′
waitc

|q| > 0
get ′c remc waitc

get ′c f ′ = F
remc

f = F
rem′

c

f ′ = q′[i′]
remc

f = F
3 EMPTY

rem′
c

i′ = I
f ′ = F

F = q′[I] I �= j′
remc

q = F ∗ q
con′

c

i′ = I ⊕ 1

conc

q = Q
f = F

4 remc

con′
c conc wait ′c waitc conc

1. q′[J] has changed, but the value of q′[J] is not used in the definition of
q ◦ α.

2. From α−1(I) we get i′ �= j′ in the final state. Hence q is not empty,
and as j′ has been increased by one, the element q′[J] = E has been
inserted.

3. f is set to the previous value of f when control is at rem ′
c.

4. At con ′
c the value of f is not history defined any more. It thus has the

value q′[I] as desired.

It should be noted that in opposition to the previous implementation we do
not have to argue that the put ′p-action leaves f unchanged in P ; since f is
history defined, q′[i′] does not occur in the α-definition for f .

We can now infer that function (f̄ � ē) ◦ α̃ yields true when applied to
sequences in [A′]✄′. We prove again that (f̄ � ē) ◦ α̃ is the same function as
f̄ ′ � ē′ by proving ē ◦ α = ē′ and f̄ ◦ α = f̄ ′. The case f̄ ◦ α = f̄ ′ is the more
involved so we exhibit the reasoning for this case. f̄ is recursively defined by

f̄(s) = ()
f̄(φ ∗ s) = if (at conc)(φ

′•) and (at waitp)(s)
then f̄(φ) ∗ f(s) else f̄(φ′)

We now show that f̄ ◦ α̃ matches the similar recursive definition of f̄ ′.

33

f̄ ◦ α̃(s′) = f̄(α̃(s′)) = (), since α̃(s′) is a one-element sequence,
f̄ ◦ α̃(φ′ ∗ s′) = f̄(α̃(φ′) ∗ α(φ′ ∗ s′))

= if (at conc)(α̃(φ′)•) and (at wait c)(α(φ′ ∗ s′))
then f̄(α̃(φ′)) ∗ f(α(φ′ ∗ s′)) else f̄(α̃(φ′))

= if (at con ′
c)(φ

′•) and (at wait c)(s
′))

then f̄ ◦ α̃(φ′) ∗ f ′(s′) else f̄ ◦ α̃(φ′)
The reduction of f(α(φ′ ∗ s′)) to f ′(s′) is possible because s′ does not satisfy
(at remc).
In conclusion we then get that f̄ ′ � ē′ is true in [A′]✄′.

7 Completeness

We have presented a proof technique which allows us to inherit safety proper-
ties. A natural question then arises: is our proof technique complete? Before
this question is answered we have to discuss what completeness means.

In [1], [11], and [6] the authors all deal with open systems. This means
that it is possible to compare the external behaviour of a program at its
interface to the corresponding external behaviour of the intended implemen-
tation. A completeness result in their approaches then says that it is possible
to make an implementation proof by their methods if it turns out that the
external behaviour of the intended implementation actually implements the
external behaviour of the program.

In our approach the situation is radically different. We deal only with
closed systems so there is no interface at which the behaviours can be com-
pared. Instead the chosen α shows how to relate high level behaviour to low
level behaviour. This means that α is not only part of the proof technique
but also part of the interpretation of the relationship between two levels.
Consequently we cannot give a criterion which is independent of α for what
it means for one system to implement another system. Instead our complete-
ness result will show that, under very mild restrictions, it is possible to get
any safety property of a low level system as an inherited property of any high
level system. The history map α only has to be carefully chosen.

Completeness theorem. Assume that P = (Σ, ✄, A) is a tran-
sition system with both reachable and unreachable states, and as-

34

sume that P ′ = (Σ′, ✄′, A′) is a transition system with a safety
property Γ′

0 which is invariant to repetition of states. Then there
exist a safety property Γ0 of P , a safety property Γ′ of P ′ and
a history defined map α such that the conditions in the general
inheritance technique are satisfied and such that Γ′

0 = α̃−1(Γ0).

Proof. We let Γ0 be the property [A]� and we let Γ be the
property [A′]�′. To define α, let su be an unreachable state of P
and let sr be a state in A (this set is non-empty because P has
reachable states) We then define a by

α(φ′) =

{
sr, if φ′ ∈ Γ′

0

su, if φ′ /∈ Γ′
0

Since each sequence srsr · · · sr is a member of Γ0 and since no
sequence φ ∈ Γ0 contains unreachable states we obviously have
Γ′

0 = α̃−1(Γ0). So we are left with the proof that Γ0, Γ
′, and α

satisfy the conditions in the general inheritance technique. Since
A′ is a subset of Γ′

0 we have α(A′) = {sr} ⊆ A. By definition
we furthermore have A′ ⊆ Γ′. Finally φ′ ∈ α̃−1(Γ0) ∩ Γ′ implies
φ′ ∈ [A′]✄′. So if (φ′•, s′) ∈ ✄′ we have φ′ ∗ s ∈ [A′]✄′ = Γ and
since [A′]✄′ ⊆ Γ′

0 we furthermore have α(φ′, φ′∗s′) = (sr, sr) ∈ �.

The apparent strength expressed in the theorem – that properties can be in-
herited between lost any pair of transition systems – is also a major weakness.
It shows how much the map a can be used to code up the differences between
P and P ′. If the distance between P and P ′ is too large, then probably α is
very difficult to work with and possibly the properties of P will not get into
real use.

There is also another obstacle to the theorem. It does not address the
problem of reusing already proven properties as characterisations. In fact
the property Γ′ introduced in the proof cannot in any sense be said to be
orthogonal with the inherited property α̃−1(Γ0) since we actually have that
Γ′ ⊆ α̃−1(Γ0). So the proof technique in this case includes an outright proof
of the invariance of Γ′ and there is consequently no need for the technique.

It is not easy to answer the question what it really means for two prop-
erties to be orthogonal. Intuitively Γ′ and Γ′

0 in the completeness theorem

35

should be orthogonal in order to ensure that only a minimum effort is put
into proving Γ′ relatively invariant with respect to Γ′

0. One might suspect
that a best choice of Γ′ then word be to make Γ′ as weak as possible. This is
actually feasible since, as is easily seen, if both Γ′

1 and Γ′
2 can serve the same

purpose as Γ′ in the general inheritance technique, then so can Γ′
1 ∪ Γ′

2 so
a largest such Γ′ exists. Whether the largest Γ′ is easier to prove relatively
invariant is not clear, however; it may depend on the notation chosen for
expressing Γ′ and it may occur that a stronger property is easier to express
and work with than a weaker property.

8 Discussion

Gradually stronger techniques for inheriting safety properties have been pre-
sented. The limit of strength has not been reached, however. The following
should be the most general formulation of a technique along the lines in
this paper (φ �P ψ means φ can be extended to ψ by using zero or more
transitions from ✄):

Let (Σ, ✄, A) and (Σ′, ✄′, A′) be two transitions systems and let
α be a map from Σ′+ to Σ+. Assume [A]✄ ⊆ Γ.
If (for some Γ′)

• α(A′) ⊆ [A]✄,

• A′ ⊆ Γ′,

• for all (φ′•, s′) ∈ ✄′ with φ′ ∈ α−1(Γ) ∩ Γ′:

– φ′ ∗ s′ ∈ Γ′,

– α(φ′) �P α(φ′ ∗ s′),

then α([A′]✄′) ⊆ [A]✄.

This can be proven as before by induction on the length of sequences in
[A′]✁′.

Viewed as specialisations the two previous formulations of the technique
constrain the function α : Σ′+ → Σ+ by α(φ′ ∗ s′) = α(φ′)∗α(s′) respectively
α(φ′ ∗ s′) = α(φ′) ∗ β(φ′ ∗ s′) for some β : Σ′+ → Σ; these constraints ease

36

finding expressions for α−1(Γ) and they limit the number of checks to be
performed when applying the technique.

The above formulation leaves α totally unconstrained; hence no guide-
lines can be given for expressing the property α−1(Γ). The completeness
result says that this stronger technique may only be necessary for pragmatic
reasons. So far no programs have been found where more general techniques
than those presented previously seem to be helpful. Furthermore, as demon-
strated by the examples the proof technique is simplest to use for the first
versions of the technique. The practical relevance of the technique is more
doubtful when history information needs to be introduced. Whether the
introduction of history information is necessary crucially depends on how
“close” the abstract and the concrete descriptions are. If they are close, then
the technique may be of great value; if not, then it may turn out to be simpler
to give a direct proof of the safety properties in question.

As noticed more times, proofs of liveness properties are often based on
safety properties. Hence techniques for inheriting safety properties also aid
in establishing liveness properties. The liveness properties are not inherited,
however. Their proofs are repeated except for the safety parts.

All liveness properties are based on some basic fairness requirements;
certain sets of transitions must under certain conditions be chosen infinitely
often in infinite executions.

Inheritance of liveness properties without repetition of proofs can indeed
be done by demonstrating directly that the fairness requirements are met in
all images of execution sequences. But in opposition to the case for safety
properties it does not seem possible to use inherited liveness properties in
such demonstrations.

This difference seems to be due to the fact that safety properties are
proved by induction on the length of execution sequences, whereas liveness
properties are established by arguments involving well-foundedness. An in-
ductive argument is used to prove the validity of the inheritance technique for
safety properties and this argument does not carry over to liveness properties.

37

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Pro-
ceedings of the 2nd Symposium on Logic in Computer Science, pp. 165-
175, Edinburgh, U. K. July 1988.

[2] B. Alpern and F. B. Schneider, Defining Liveness, Information Process-
ing Letters Vol. 21, No. 4, October 1985, pp. 181-185.

[3] B. Alpern, A. J. Demers and F. B. Schneider, Safety without Stuttering.
Information Processing Letters, Vol. 23, no. 4, November 1986, pp. 177-
180, North-Holland.

[4] E. W. Dijkstra, Cooperating Sequential Processes. In Programming Lan-
guages, F. Genuys (Ed.), Academic Press 1968, pp. 43-112.

[5] E. W. Dijkstra et. al., On-the-Fly Garbage Collection: An Exercise in
Cooperation. ACM Communications, Vol. 27, No. 11, November 1978,
pp. 966-975.

[6] B. Jonsson. Modular Verification of Asynchronous Networks. Proceed-
ings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing. Vancouver, Canada, August 1987, pp. 152-166.

[7] L. Lamport, An Assertional Correctness Proof of a Distributed Algo-
rithm. Science of Computer Programming, Vol. 2, No. 3, December 1982,
pp. 175-206.

[8] L. Lamport, Specifying Concurrent Program Modules. ACM Transac-
tions on Programming Languages and Systems, Vol. 5, no. 2, April 1983,
pp. 190-222.

[9] L. Lamport, What Good is Temporal Logic?. Information Processing
83, pp. 657-667, North-Holland Pub. Co. 1983.

[10] L. Lamport. A simple approach to specifying concurrent systems. Com-
munications of the ACM, 32, 1, January 1989, pp. 32-47.

[11] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed
algorithms. Proceedings of the Sixth Annual ACM Symposium on Prin-
ciples of Distributed Computing, Vancouver, Canada, August 1987, pp.
137-151.

38

[12] G. L. Peterson, Myths about the Mutual Exclusion Problem. Informa-
tion Processing Letters, Vol. 12, No. 5 1981, pp. 115-116.

39

