
Bounded fixed point iteration∗

Hanne Riis Nielson Flemming Nielson

Computer Science Department
Aarhus University

Denmark

July 1991

Abstract

In the context of abstract interpretation for languages without
higher-order features we study the number of times a functional need
to be unfolded in order to give the least fixed point. For the cases
of total or monotone functions we obtain an exponential bound and
in the case of strict and additive (or distributive) functions we ob-
tain a quadratic bound. These bounds are shown to be tight in that
sufficiently long chains of functions can be shown to exist. Specialis-
ing the case of strict and additive functions to functionals of a form
that would correspond to iterative programs we show that a linear
bound is tight. This is related to the analyses studied in the literature
(including strictness analysis).

1 Introduction

We consider the problem of computing fixed points in static program analysis.
The whole purpose of static analysis is to get information about programs

∗A very preliminary version of this paper was entitled “the Complexity of Static Pro-
gram Analysis”.

1

without actually running them and it is important that the analyses always
terminate. In general, the analysis of a recursive (or iterative) program
will itself be recursively defined and it is therefore important to “solve” this
recursion such that termination is ensured.

In the denotational approach to static analysis the problem is addressed as
follows. To each program the analysis associates an element d of a complete
lattice (D,�) of abstract values. In the case of an iterative or recursive
programming construct the value d is determined as the least fixed point,
FIX H, of a continuous functions H : D → D. Formally, the fixed point of
H is defined by

FIX H = �{H i⊥ | i ≥ 0}

where ⊥ is the least element of D and � is the least upper bound operation
on D. It is well-known that the iterands H i⊥ form an increasing chain in D
and that

if Hk⊥ = Hk+1⊥ for some k ≥ 0 then FIX H = Hk⊥

So the obvious algorithm for computing FIX H will be to determine the
iterands H0⊥, H1⊥, · · · one after the other while testing for stabilisation, i.e.
equality with the predecessor. The cost of this algorithm depends on

• the number k of iterations needed before stabilisation,

• the cost of comparing two iterands, and

• the cost of computing a new iterand.

We shall study how to minimise the cost of the above algorithm for a first-
order framework of static program analysis. We shall assume that the lattice
D has the form

Ap → Bq

where A and B are finite complete lattices and p and q are positive num-
bers. A number of interesting analyses for first-order functions languages fall

2

within this framework, for example forward and backward strictness anal-
yses [M81, WH87], constant propagation [NN89], liveness analysis [NN89]
and demand analysis [BH89]. Also denotations formulations of many tradi-
tional analyses for imperative languages [ASU86, MR90] can be formulated
within the framework. The running example of this paper is a variant of the
definition-use analysis and it is presented in a denotational style in Appendix
A with correctness considerations in Appendix B. (The motivation behind
the analysis and its correctness are described at length in [NN92].)

We shall consider three versions of the framework:

• the general framework where functions of Ap → Bq only are required
to be total; this is written Ap →t Bq.

• the monotone framework where functions of Ap → Bq must be mono-
tone; this is written Ap →m Bq.

• the completely additive framework where functions of Ap → Bq must
be strict and additive (or distributive); this is written Ap →sa Bq.

We show that the number k of iterations needed to compute the fixed point
of an arbitrary continuous functional H is at most

• exponential in the general and the monotone frameworks, and

• quadratic in the completely additive framework.

In each of the three cases the bounds are shown to be tight in a certain sense.

The above results hold for arbitrary continuous functionals H. In the case
where H is in iterative form we get a further improvement of the bounds:

H is in iterative form if H h = f � h ◦ g for strict and additive
functions f and g.

We then show that the number k of iterations needed to compute the fixed
point is at most

• linear, and furthermore

3

• the fixed point can be computed pointwise.

Again the complexity result is tight in a certain sense.

The immediate applicability of these approaches are illustrated on the exam-
ple analysis of Appendix A. We also discuss the more general applicability
of the results by referring to various analyses presented in the literature.

2 The general and monotone frameworks

We shall first introduce some notation. Let (L,�) be a finite complete lattice,
that is

• � is a partial order on L, and

• each subset Y of L has a least upper bound in L denoted �Y .

We write

C L : for the cardinality of L
RC L : for the number of non-bottom elements of L,

i.e. RC L + 1 = C L
H L : for the maximal length of chains in L

where a chain d0 ❁ d1 ❁ · · · ❁ dk has length k (and contains k + 1 distinct
elements); here di ❁ di+1 denotes di ❁ di+1 ∧ di �= di+1.

Fact 1 : C(Ln) = (C L)n for n ≥ 1. ✷

Fact 2 : H(Ln) = n· H L for n ≥ 1. ✷

We write 2 for the complete lattice with two elements 0 and 1 ordered by
0 � 1. Thus C 2 = 2, RC 2 = 1 and H 2 = 1.

2.1 An upper bound

In the general framework we have

4

Proposition 3 : H(Ap →t Bq) ≤ (C A)p · q · H B for p, q ≥ 1. ✷

Proof : Let hi : Ap →t Bq and assume that

h0 ❁ h1 ❁ · · · ❁ hk

We shall then show that k ≤ (C A)p · q · H B.

From hi ❁ hi+1 we get that there exists w ∈ Ap such that hi w ❁ hi+1 w
because the ordering on Ap →t Bq is defined componentwise. But then there
exists j ∈ {1, . . . , q} such that hi w ↓ j ❁ hi+1 w ↓ j because the ordering on
Bq is defined componentwise.

Now for each hi ❁ hi+1 we get a pair (w, j) and each pair can occur at most
H B times. There are at most (C A)p distinct values for w and q distinct
values for j. So for the chain

h0 ❁ h1 ❁ · · · ❁ hk

the value k will be at most (C A)p · q · H B. ✷

Any monotone function is a total function so Proposition 3 yields:

Corollary 4 : H(Ap →m Bq) ≤ (C A)p · q· H B for p, q ≥ 1. ✷

It is straightforward to strengthen Proposition 3 to show that if we restrict
the functions of Ap →t Bq to be strict, written Ap →s Bq, then

H(Ap →s Bq) ≤ ((C A)p − 1) · q · H B

The reason is that the element w in the pairs (w, j) cannot be equal to ⊥, the
least element of Ap. Thus there are RC(Ap) choices for w and RC(Ap) = (C
A)p − 1.

We shall now apply Proposition 3 to the special chains obtained when com-
puting fixed points:

Theorem 5 : In the general framework any continuous factional

H : (Ap →t Bq)→ (Ap →t Bq)

5

satisfies FIX H = Hk⊥ for

k = (C A)p · q · H B

This result carries over to the monotone framework as well. ✷

Proof : Consider the chain

H0⊥ � H1⊥ � · · ·

Since Ap →t Bq is a finite complete lattice it cannot be the case that all H i⊥
are distinct. Let k′ be the minimal index for which Hk′⊥ = Hk′+1⊥. Then

H0⊥ ❁ H1⊥ ❁ · · · ❁ Hk′⊥

Using Proposition 3 we then get that k′ ≤ (C A)p · q · H B, i.e. k′ ≤ k.
Since Hk′⊥ = FIX H and Hk′⊥ � Hk⊥ � FIX H we get FIX H = Hk⊥
as required. ✷

Example 6 : The analysis of Append A considers the specie case where A and
B are the two-point domain 2. In this case Theorem 5 specialises to

In the general framework any continuous functional

H : (2p →t 2q)→ (2p →t 2q)

satisfies FIX H = Hk⊥ for

k = 2p · q

This result carries over to the monotone framework as well.

In Appendix A it is shown (Fact A.4) that the factorial program gives rise
to a continuous functions H : (23 →t 23) → (23 →t 23) so, according to the
theorem, at most 23 · 3 = 24 iterations are needed to determine the fixed
point. However, a simple calculation in Appendix A shows that the fixed
point is obtained ready after the first iteration! ✷

6

2.2 The bound is tight

Motivated by this example one may wonder whether the bound of Theorem
5 is too pessimistic. The following result shows that this need not be the
case:

Proposition 7 : H(Ap →m Bq) ≥ (C A)p · q · H B for p, q ≥ 1. ✷

The proof is in two stages where the first is expressed as a lemma:

Lemma 8 : H(Ap →m 2) ≥ (C A)p for p ≥ 1. ✷

Proof : It is sufficient to construct a monotone factions hi : Ap →m 2 such
that

h0 ❁ h1 ❁ · · · ❁ hk

for k = (C A)p.

The first step is to enumerate the elements of Ap. Let w1, w2, . . . , wk be
chosen such that

wj is one of the maximal elements of the set Ap \ {w1, . . . , wj−1}

For 0 ≤ i ≤ k define the function hi by

hi wi

{
0 if i < j
1 if j ≤ i

Clearly each hi is a well-defined total function. To see that it is monotone
assume that w ❁ w′. Then w = wj and w′ = wl for some j and l satisfying
l < j. There are three cases:

i < l < j : hi wj = 0 and hi wl = 0
l ≤ i < j : hi wj = 0 and hi wl = 1
l < j ≤ i : hi wj = 1 and hi wl = 1

In all cases hi w � hi w′ so hi is monotone. Clearly hi ❁ hi+1 for all i and
it is also easy to see that there are the required number of functions. This
proves the lemma. ✷

7

Proof of Proposition 7 : It is sufficient to construct a sequence of functions
hi : Ap →m Bq satisfying

h0 ❁ h1 ❁ · · · ❁ hk·r

for k = (C A)p and r = q · H B.

Let v0 ❁ v1 ❁ · · · ❁ vr be a chain in Bq (Since H(Bq) = q · H B such a
chain will exist.) The construction of Lemma 8 can be applied to the function
spaces Ap →m {vj−1, vj} for 1 ≤ j ≤ r and gives functions

hj
i : Ap →m Bq

for 0 ≤ i ≤ k. Furthermore

hj
0 ❁ hj

1 ❁ · · · ❁ hj
k

Now hj
k = hj+1

0 must be the case so we have a chain

h1
0 ❁ h1

1 ❁ · · · ❁ h1
k ❁ h2

1 ❁ · · · ❁ h2
k ❁ · · · ❁ hr

k

This chain has the required number of elements and we have completed the
proof. ✷

All monotone functions are total functions so Proposition 7 yields:

Corollary 9 : H(Ap →t Bq) ≥ (C A)p · q · H B for p, q ≥ 1. ✷

Combining these results we get

H(Ap →t Bq) = H(Ap →m Bq)

meaning that the maximal length of chains of total functions and monotone
functions are the same. This may be slightly surprising since it is well-known
that there are more total functions than monotone functions.

8

2.3 Applicability of results

We believe that all interesting analyses will give rise to monotone functions
so the real limitations of the results of this section are due to the following:

• only first-order languages are handled, and

• the lattices of properties must be finite.

Therefore it is not surprising that some of the well-known upper bounds
on the required number of iterands are direct corollaries of Theorem 5. As
an example [PC87] states that strictness analysis of a first-order language
bound. They consider functions in domains of has an exponential upper the
form

2p → 2

and using Theorem 5 we immediately get that at most 2p iterands we be
needed. It is not known whether this is a tight bound but it has been shown
that the exponential upper bound of strictness anaysis of the untyped (higher-
order) λ-calculus is indeed tight [HY86].

3 The completely additive framework

We shall now assume that the functions of interest are strict and additive;
by strictness of a function h we mean that h⊥ = ⊥ and by additivity that
h(d1 � d2) = (h d1) � (h d2). Since the complete lattices considered are all
finite it follows that a strict and additive function h is so completely additive,
that is h(�Y) = �{h d | d ∈ Y } for all subsets Y .

Following [G71] an element d of a complete lattice (L,�) is join-irreducible
if for all d1, d2 ∈ L:

d = d1 � d2 implies d = d1 or d = d2

and a complete lattice (L,�) is distributive if for all d, d1, d2 ∈ L:

9

d � (d1 � d2) = (d � d1) � (d � d2)

Clearly ⊥ is always join-irreducible but we shall be more interested in the
non-trivial join-irreducible elements, i.e. those that are not ⊥. To this end
we shall write

RJC L : for the number of non-bottom join-irreducible elements
of L.

We thus have RJC 2 = 1.

Fact 10 : RJC(Ln) = n · RJC L and if L is distributive so is Ln for n ≥ 1.

Lemma 11 : If (L,�) is a finite complete lattice we have

w = �{x | x � w, x is join-irreducible and x �= ⊥}

for all w ∈ L. ✷

Proof : Assume by way of contradiction that the claim of the Lemma is false.
Let W ⊆ L be the set of w ∈ L for which the condition fails. Since W is
finite and non-empty it has a minimal element w. From w ∈ W it follows
that w is not join-irreducible. Hence there exist w1 and w2 such that

w = w1 � w2, w �= w1, w �= w2

It follows that w1 ❁ w, w2 ❁ w and by choice of w that w1 /∈ W and w2 /∈ W .
We may then calculate

w = w1 � w2

=
⊔{x | x � w1, x is join-irreducible and x �= ⊥}
�⊔{x | x � w2, x is join-irreducible and x �= ⊥}

=
⊔{x | (x � w1 or x � w2), x is join-irreducible and x �= ⊥}

� ⊔{x | x � w, x is join-irreducible and x �= ⊥}
� w

shows that

10

w =
⊔{x | x � w, x is join-irreducible and x �= ⊥}

and contradicts w ∈ W . Hence W = ∅ and the claim of the Lemma holds.
✷

Lemma 12 : If (L,�) is a distributive complete lattice the conditions

(i) x is join-irreducible
(ii) x � w1 � w2 implies x � w1 or x � w2

are equivalent.

Proof : Condition (ii) always implies condition (i). To see that condition (i)
implies condition (ii) we calculate

x � w1 � w2 ⇔ x = x � (w1 � w2)
⇔ x = (x � w1) � (x � w2)
⇔ ∃i : x = x � wi

⇔ ∃i : x � wi

where we used the connection between � and �, distributivity, join-irredu-
cibility of x, and the connection between � and �. ✷

Corollary 13 [G71, p73] If L is a finite and distributive complete lattice then
we have RJC L = H L. ✷

3.1 An upper bound

In the completely additive framework we have

Proposition 14 : H(Ap →sa Bq) ≤ p · RJC A · q · H B for p, q ≥ 1. ✷

Proof : The proof is a refinement of that of Proposition 3 so we begin by
assuming that hi ∈ Ap →sa Bq and that

h0 ❁ h1 ❁ · · · ❁ hk

We shall show that k ≤ p · RJC A · q · H B.

11

As in the proof of Proposition 3 we get a pair (w, j) such that hi w ↓ j ❁

hi+1 w ↓ j for each hi ❁ hi+1. The element w is an arbitrary element of Ap

so in the proof of Proposition 3 there was C(Ap) choices for w. We shall
now show that w can be chosen as a non-trivia join-irreducible element of Ap

thereby reducing the number of choices to RJC(Ap). Calculations similar to
those in the proof of Proposition 3 we then give the required upper bound
on k.

The element w satisfies hi w ❁ hi+1 w. By Lemma 11 we have

w =
⊔{x | x � w, x is a join-irreducible and x �= ⊥}

From the strictness and additivity of hi and hi+1 we get

hi w =
⊔{hi x | x � w, x is join-irreducible and x �= ⊥}

hi+1 w =
⊔{hi+1 x | x � w, x is join-irreducible and x �= ⊥}

It cannot be the case that hi x = hi+1 x for all non-bottom join-irreducible
elements x of Ap since then hi w = hi+1 w. So let x be a non-bottom join-
irreducible element where hi x ❁ hi+1 x. Then there we only be RJC(Ap)
choices for x and this completes the proof. ✷

We can now apply Proposition 14 to the special chains obtained when com-
puting fixed points:

Theorem 15 : In the completely additive framework any continuous functional

H : (Ap →sa Bq)→ (Ap →sa Bq)

satisfies FIX H = Hk⊥ for

k = p · RJC A · q · H B.

✷

Proof : Analoguous to the proof of Theorem 5. ✷

The equality test between the iterands H0⊥, H1⊥, · · · can be simplified in
this framework. To see this consider two functions h1, h2 ∈ Ap →sa Bq. Then

12

h1 = h2

if and only if

h1 x = h2 x for all non-trivial join-irreducible elements x of Ap,
i.e. all elements (⊥, · · · , a, · · · ,⊥) where a is a non-bottom join-
irreducible element of A.

Example 16 : In the case where A and B are the two-point domain 2, Theorem
15 specialises to

In the completely additive framework any continuous functional

H : (2p →sa 2q)→ (2p →sa 2q)

satisfies FIX H = Hk⊥ for

k = p · q

The analysis of Appendix A turns out to be in the completely additive frame-
work (Fact A.5). For the factorial program where p = q = 3 we therefore get
that at most 3 · 3 = 9 iterands need to be computed. This is a substantial
improvement of the bound (24) determined in Example 6 but still the first
iterand is equal to the fixed point! ✷

3.2 The bound is tight

Motivated by this example we shall show that the bound of Proposition 14
is tight when A is distributive.

Proposition 17 : H(Ap →sa Bq) ≥ p · H A · q · H B for p, q ≥ 1. ✷

The proof follows the same pattern as that of Proposition 7 so we shall first
establish

Lemma 18 : H(Ap →sa 2) ≥ p · H A for p ≥ 1. ✷

Proof : It is sufficient to construct functions hi : Ap →sa 2 such that

13

h0 ❁ h1 ❁ · · · ❁ hk

for k = p · H A.

Let a0 ❁ · · · ❁ ak be a chain of Ap and note that a0 = ⊥ and ak = � must
be the case. Define hi by

hi w =

{
0 if w � ak−i

1 otherwise

for 0 ≤ i ≤ k. Clearly each hi is strict and monotone. For additivity we
calculate

hi(w1 � w2) =

{
0 if w1 � w2 � ak−i

1 otherwise

=

{
0 if w1 � ak−i and w2 � ak−i

1 otherwise

=

({
0 if w1 � ak−i

1 otherwise

)
�

({
0 if w2 � ak−i

1 otherwise

)

= (hi w1) � (hi w2)

Finally, hi ❁ hi+1 since ak−i ❂ ak−(i+1). ✷

Proof of Proposition 17 : The proof is similar to that of Proposition 7 except
that it uses the functions constructed in the proof of Lemma 18 rather than
those from Lemma 8. We omit the details. ✷

Combining Proposition 14 and 17 and using Corollary 13 we get

H(Ap →sa Bq) = p · H A · q · H B

provided that A is distributive.

3.3 Applicability of results

Compared with the development of Section 2 we have considered the addi-
tional requirement that

14

• the functions of concern must be strict and additive.

Furthermore we have seen that if the domain of the functions is distributive
then the bound on the number of iterations is tight.

It turns out that there are a number of interesting analyses that do not satisfy
these conditions, but, fortunately there are also a large class of analyses that
do, as e.g. the example analysis of Appendix A.

An example of an analysis that does not give rise to strict and additive func-
tions is strictness analysis [M81]. The abstract meaning of the conditional is
often defined by

if#(x, y, z) = x � (y � z)

and it is easy to show that if# cannot be an additive function. However,
there are analyses of first-order functional languages that do give rise to strict
and additive functions, an example is the liveness analysis of [NN89].

The potential restriction to finite and distributive complete lattices is more
severe. Consider for example an anaysis for detection of signs. One possibility
we be to base it on a complete lattice of the form

However, distributivity fail. An alternative wood be to use a more refined
lattice as

15

which is distributive (with neg, zero, pos and ⊥ being the join-irreducible
elements).

The finite distributive complete lattices are characterised in the following
lemma where we write P(D) for the Hoare power dome of the cpo D.

Lemma 19 : L is a finite and distributive complete lattice if ad only if L =
P(E) for some finite cpo E. ✷

Proof : This is essentially Theorem 9 of Section 7 in [G71]; in the notation
of [G71, p72] we have L = H(J(L)) and we have H(D) = P(D⊥) for all finite
partial orders D. ✷

4 Iterative program schemes

The upper bounds expressed by Theorems 5 and 15 are obtained without any
assumptions about the functional H except that it is a continuous function
over the relevant lattices. In this section we shall restrict the form of H.

For iterative programs as e.g. those considered in Appendix A the functional
H will typically have the form

H h = f � h ◦ g

where f and g are strict and additive functions. Then the iterands H i⊥ will
be strict and additive so we shall restrict our attention to the completely
additive framework.

4.1 An upper bound

The first reset is a refinement of Theorem 15:

Theorem 20 : In the completely additive framework the fixed point of a func-
tional

H : (Ap →sa Bq)→ (Ap →sa Bq)

16

defined by

H h = f � h ◦ g

for f ∈ Ap →sa Bq and g ∈ Ap →sa Ap can be computed pointwise. More
precisely, if for some w ∈ Ap and k ≥ 0

Hk
0⊥ w = Hk+1

0 ⊥ w

then FIX H w = f(Hk
0⊥ w) where H0 h = id � h ◦ g. Furthermore, it is

possible to take k = p · H A. ✷

Basically this result says that in order to compute FIX H on a particular
value w it is sufficient to determine the values of the iterands H i

0⊥ at w and
then compare these values. So rather than having to test the extensional
equality of two functions on a set of arguments we only need to test the
equality of two function values. Furthermore, the theorem states that this
test has to be performed at most a linear number of times.

To prove the theorem we need a couple of lemmas:

Lemma 21 : Let H h = f � h ◦ g for f ∈ Ap →sa Bq and g ∈ Ap →sa Ap.
Then for i ≥ 0 we have

H i+1⊥ = �{f ◦ gj | 0 ≤ j ≤ i}. ✷

Proof : We proceed by numerical induction on i. If i = 0 then the result
is immediate as H1⊥ = f � ⊥ ◦ g = f =

⊔{f ◦ gj | 0 ≤ j ≤ 0}. For the
induction step we calculate:

H i+2⊥ = f � (H i+1⊥) ◦ g
= f � (�{f ◦ gj | 0 ≤ j ≤ i}) ◦ g
= �{f ◦ gj | 0 ≤ j ≤ i + 1}

where the last equality follows from the pointwise definition of � on Ap →sa

Bq. ✷

Lemma 22 : Let H h = f � h ◦ g for f ∈ Ap →sa Bq and g ∈ Ap →sa Ap.
Then

17

FIX H = f ◦ FIX H0

where H0 h = id � h ◦ g. ✷

Proof : We shall first prove that

H i⊥ = f ◦H i
0⊥ for i ≥ 0.

The case i = 0 is immediate. So assume that i > 0. We shall then apply
Lemma 21 to H and H0 and get

H i⊥ =
⊔{f ◦ gj | 0 ≤ j ≤ i− 1}

H i
0⊥ =

⊔{gj | 0 ≤ j ≤ i− 1}

Since f is additive we get

H i⊥ = f ◦ �{gj | 0 ≤ j ≤ i− 1} = f ◦H i
0⊥

as required.

We now have

FIX H =
⊔{H i⊥ | i ≥ 0}

=
⊔{f ◦H i

0⊥ | i ≥ 0}
= f ◦ ⊔{H i

0⊥ | i ≥ 0}
= f ◦ FIX H0

where the third equality uses the continuity of f which is ensured by mono-
tonicity and finiteness of the complete lattices in question. ✷

Proof of Theorem 20 : We shall first prove that if Hk
0⊥ w = Hk+1

0 ⊥ w then
FIX H w = f(Hk

0⊥ w). This is done in two stages.

First assume that k = 0. Then H0
0⊥ w = H1

0⊥ w amounts to ⊥ = w. Using
Lemma 21 and the strictness of g we get

H i+1
0 ⊥ ⊥ =

⊔{gj⊥ | 0 ≤ j ≤ i} = ⊥

for i ≥ 0 and thereby FIX H0⊥ = ⊥. But then Lemma 22 gives

18

FIX H⊥ = f(FIX H0⊥) = f⊥ = f(H0
0⊥ ⊥)

as required.

Secondly assume that k > 0. From Hk
0⊥ w = Hk+1

0 w we get, using Lemma
21, that

⊔{gj w | 0 ≤ j < k} =
⊔{gj w | 0 ≤ j ≤ k}

This means that

gk w � ⊔{gj w | 0 ≤ j < k}

We shall now prove that for all l ≥ 0

gk+l w � ⊔{gj w | 0 ≤ j < k} (∗)

We have already established the basis l = 0. For the induction step we get

gk+l+1 w = g(gk+l w)
� g(

⊔{gj w | 0 ≤ j < k})
=

⊔{gj w | 1 ≤ j ≤ k}
� ⊔{gj w | 0 ≤ j < k}

where we have used the additivity of g. This proves (∗). Using Lemma 21
and (∗) we get

Hk+l
0 ⊥ w = �{gj w | 0 ≤ j < k + l}

= �{gj w | 0 ≤ j < k}
= Hk

0⊥ w

for all l ≥ 0. This means that FIX H0 w = Hk
0⊥ w and using Lemma 22 we

get

FIX H w = f(Hk
0⊥ w)

19

as required.

To complete the proof of the theorem we have to show that one may take
k = p · H A. For this it suffices to show that one cannot have a chain

H0
0⊥ w ❁ H1

0⊥ w ❁ · · · ❁ Hk
0⊥ w ❁ Hk+1

0 ⊥ w

in Ap. But this is immediate since k + 1 > H(Ap). ✷

Example 23 : In the case where A and B are the two-point domain 2, Theorem
20 specialises to

In the completely additive framework the fixed point of a func-
tional

H : (2p →sa 2q)→ (2p →sa 2q)

defined by

H h = f � h ◦ g

for f ∈ 2p →sa 2q and g ∈ 2p →sa 2p can be computed pointwise.
More precisely, if for some w ∈ 2p and k ≥ 0

Hk
0⊥ w = Hk+1

0 ⊥ w

then FIX H w = f(Hk
0 w) where H0 h = id�h◦g. Furthermore,

it is possible to take k = p.

The functionals considered in the analysis of Appendix A turn out to be of
the required form. For the factorial program where p = q = 3 we get that at
most 3 iterands need to be computed. Again we have obtained a substantial
improvement compared with Example 16 (and Example 6). ✷

The one shortcoming of Theorem 20 is that one has to test for stabilisation of
the iterands of H0 in order to determine when the fixed point of H has been
reached. To overcome this say that a function f is smash order reflecting if
it satisfies the following property:

if f x � f y
then x � y or f y = f �

20

Then one can strengthen the statement of Theorem 20 to

if f is smash order reflecting
and Hk⊥ w = Hk+1⊥ w
then FIX H w = Hk⊥ w

For the proof note that Hk⊥ w = Hk+1⊥ w implies that f(Hk
0⊥ w) =

f(Hk+1
0 w). We then have two possibilities. In one of these Hk

0⊥ w = Hk+1
0 w

so that the result follows thorn the proof of Theorem 20 as stated. In the
other case we have

f(�) = f(Hk
0⊥ w) � f(FIX H0) � f(�)

showing

FIX H w = f(FIX H0 w) = f(Hk
0⊥ w) = Hk⊥ w

Thus we have the desired result in both cases. – In the analysis of Appendix
A the function f corresponds to the function check which is smash order
reflecting.

4.2 The bound is tight

The above example shows that the upper bound given by Theorem 20 is
quite close to the number of iterations needed. We shall now show that the
bound is indeed tight.

Proposition 24 : In the completely additive framework there exists a contin-
uous functional

H : (Ap →sa Bq)→ (Ap →sa Bq)

of the form

H h = f � h ◦ g

21

for f ∈ Ap →sa Bq and g ∈ Ap →sa Ap and there exists w ∈ Ap such that at
least p · H A iterations are needed. More precisely Hk⊥ w �= FIX H w for
k = (p · H A)− 1 provided that H B > 0 and H A > 0. ✷

The proof is in two stages where the first takes the form of a lemma:

Lemma 25 : There exists a function g : Ap →sa Ap and an element w ∈ Ap

such that �{gi w | 0 ≤ i < n} �= �{gi w | 0 ≤ i ≤ n} whenever 0 ≤ n ≤ (p ·
H A)− 1. ✷

Proof : Let m = H A and let a0 ❁ · · · ❁ am be a chain in A of maximal
length. Define the function σ : A→ A by

σ x =




a0 if x = a0

am if {m} = {i | x � ai}
a1+min{i | x � ai} otherwise

noting that well-definedness follows from am = � so that {i | x � ai}
cannot be empty. The function is strict since a0 = ⊥. It is monotone
since x � x′ implies that {i | x � ai} ⊇ {i | x′ � ai} and it follows that
min{i | x � ai} ≤ min{i | x′ � ai}. It is additive because

{i | x � x′ � ai} =
{i | x � ai ∧ x′ � ai} =
{i | x � ai} ∩ {i | x′ � ai}

so that min{i | x � x′ � ai} is the greater one of min{i | x � ai} and
min{i | x′ � ai}. Finally σ satisfies that σ(a0) = a0, σ(ai) = ai+1 for
i ∈ {1, . . . , m− 1} and σ(am) = am.

Define the element w ∈ Ap by w = (a1, a0, . . . , a0) and define the function g
by

g(x1, . . . , xp) = (σ(xp), x1, . . . , xp−1)

Clearly g is well-defined, strict, monotone and additive (as σ is). For 0 ≤
i < m and 0 ≤ j < p we claim that

22

gi·p+jw = (x′
1, . . . , x

′
p) where x′

l =

{
ai+1 if l = j + 1
a0 otherwise

The proof is by complete induction on the value of i · p + j. So consider
i ∈ {0, · · · , m − 1} and j ∈ {0, · · · , p − 1} and assume that the result holds
for all i′ and j′ with i′ · p + j′ < i · p + j. We now have three cases.

If i = j = 0 the result follows from the definition of w.

If j = 0 and i > 0 we set i′ = i− 1 and j′ = p− 1 and note that 0 ≤ i′ < m,
0 ≤ j′ < p and i′ · p + j′ < i · p + j. The induction hypothesis gives

gi′· p+j′w = (a0, · · · , a0, ai′+1)

so that

gi′· p+j′+1w = (ai′+2, a0, · · · , a0)

Since i · p + j = i′ · p + j′ + 1 and ai+1 = ai′+2 this proves the result.

If j > 0 we set j′ = j − 1 and note that 0 ≤ i < m, 0 ≤ j < p and
i · p + j′ < i · p + j. The induction hypothesis gives

gi·p+j′w = (x′
1, . . . , x

′
p) where x′

l =

{
ai+1 if l = j′ + 1
a0 otherwise

so that

gi·p+j′+1w = (x′′
1, . . . , x

′′
p) where x′′

l =

{
ai+1 if l = j′ + 2
a0 otherwise

Since i · p + j = i · p + j′ + 1 and j + 1 = j′ + 2 this proves the result.

Now let 0 ≤ i < m and 0 ≤ j < p and write

(x′
1, · · · , x′

p) = �{gr w | 0 ≤ r < p · i + j}
(x′′

1, · · · , x′′
p) = gp·i+j w

It follows that

23

x′
j+1 = ai

x′′
j+1 = ai+1

thereby establishing the claim of the Lemma. ✷

Proof of Proposition 24 : Let g and w be as in the proof of Lemma 25. Let
k = (p · H A)− 1 and define w′ ∈ Ap by1

w′ =
⊔{gi w | 0 ≤ i < k}

so that

w′ � (gk w) =
⊔{gi w | 0 ≤ i ≤ k}

and hence w′ �= w′ � (gk w). Define the function f : Ap → Bq by

f(x1, · · · , xp) =

{
(⊥, · · · ,⊥) if (x1, · · · , xp) � w′

(�, · · · ,�) otherwise

It is easy to verify that f is a strict and additive function.

From Lemma 21 and the construction of f we have

Hk⊥ w =
⊔{f(gj w) | 0 ≤ j < k} = f w′ = (⊥, · · · ,⊥)

and

Hk+1⊥ w =
⊔{f(gj w) | 0 ≤ j ≤ k} = f(w′�gk w) = (�, · · · ,�)

Here gk w is defined because k ≥ 0 as H A > 0 and (⊥, · · · ,⊥) is different
from (�, · · · ,�) as H B > 0. Since

Hk⊥ w �= Hk+1⊥ w � FIX H w

we have demonstrated the claim of the Proposition. ✷

1In the notation of the proof of Lemma 25 we have w′ = (am, · · · , am, am−1) and
gk w = (am, · · · , am).

24

4.3 Applicability of results

Compared with the development of the previous section we now require that
the functionals H have a very specific form. In return Theorem 20 gives a
very simple method for determining the fixed point of H.

The anaysis of Appendix A fulfils the conditions of this section but certainly
there are many analysis that do not.

It is worth observing that Proposition 24 expresses that there are functionals
that require p · H A iterations to determine the fixed point. Of course this
needs not hold for a particle analysis for a praticular programming language
because it may be impossible to express a functional similar to that consid-
ered in the proof of Proposition 24. However, for the analysis of Appendix
A we are very close as may be illustrated by considering the program

while xn = xn do (xn := xn+1; · · ·; x2 := x1)

(The special nature of the ‘flow of control’ property discussed in Appendix
A means that we may have to subtract 1 from the lower bound.)

5 Conclusion

For functionals H : (Ap → Bq) → (Ap → Bq) we have considered ways of
bounding the size of the set Xw in

if Hk⊥ v = Hk+1⊥ v for all v ∈ Xw then FIX H w = Hk⊥ w

and ways of bounding the number k in

FIX H w = Hk⊥ w

Our resets may by summarised as follows:

framework Xw k

total or monotone Ap (C A)p · q · H B
completely additive { x ∈ Ap | x join-irred.} p · RJC A · q · H B
iterative scheme { w} p · H A

25

(where we have not distinguished between H and H0). Additionally we have
shown that the bounds on k are tight in a certain sense (and in the case of the
completely additive framework under the assumption that A is distributive).

5.1 Comparison with other work

The frontiers approach of [PC87] describes a method for computing fixed
points of functionals on domains of the form 2p → 2. The aim of this work is
similar to that of ours: to minimise the cost of computing fixed points. One
of the central ideas is to represent a faction h : 2p → 2 by the inverse images
h−1 0 and h−1 1. Using the monotonicity of h these sets can be reduced so
that they do not contain redundant elements. The computation of the fixed
point then proceeds by approximating the frontier of the fixed point from
above as well as below.

We expect that our work can be combined with the frontiers approach. In
particular we have limited the number of arguments to be considered when
comparing functions and this can be used to bond the size of the frontiers to
be constructed. As an example the maximal size of a frontier constructed in
the completely additive framework will be p. This may explain the remark
“Frontier sets are typically small. Only contrived functions seem to have large
frontier sets” found in [PC87]. In our terminology, the contrived functions
cannot be the additive ones.

Another approach to computing fixed points is the minimal function graph
approach of [JM86]. In this work one considers the minimal set Yw of (ar-
gument, result) pairs that have to be considered in order to determine the
value of a function h for a given argument w :

Yw = {(d, h d) | h d must be computed when computing h w}.

The approach can be used to determine the value of the fixed point of H for
a given argument w by determining the sets Yw for the various iterands. In
the worst case all possible arguments may have to be considered but on the
average fewer arguments we do.

We expect that our work can be combined with the minimal function graph
approach. In the completely additive framework the sets Yw can be reduced

26

as it will only be necessary to consider join-irreducible arguments and for
al other arguments the results can be computed using the additivity of the
iterands.

5.2 Further work

In our further work we hope to investigate the relationships between the
frontiers approach, the minimal function graph approach and that of the
present paper. In particular, it would be interesting to bridge the fairly
large gap between the results obtained in the monotone framework and those
obtained in the completely additive framework. Furthermore, it word be
worthwhile to investigate various recursive forms of functionals in an attempt
to generalise the results obtained for the iterative forms.

References

[ASU86] A. V. Aho, R. Sethi, J. D. Ullman: Computers - Principles, Tech-
niques and Tools, Addison - Wesley, 1986.

[BH89] B. Bjerner, S. Holmström: A compositions approach to time analy-
sis of first order lazy functions programs, Functional Programming Lan-
guages and Computer Architectures, 1989.

[G71] G. Grätzer: Lattice Theory - First Concepts and Distributive Lattices,
W. H. Freeman and Company, 1971.

[HY86] P. Hudak, J. Young: Higher-Order Strictness Analysis in Untyped
Lambda Calculus, Principles of Programming Languages, 1986.

[JM86] N. D. Jones, A. Mycroft: Dataflow of applicative programs using
minimal function graphs, Principles of Programming Languages, 1986.

[M81] A. Mycroft: Abstract interpretation and optimising transformations
for applicative programs, Ph. D. thesis, University of Edinburgh, 1981.

[MR90] T. J. Marlowe, B. G. Ryder: Properties of data flow frameworks -
A unified model, Acta Informatica vol. 28, 1990.

27

[NN89] H. R. Nielson, F. Nielson: Transformations on Higher-Order Func-
tions, Functional Programming Languages and Computer Architectures,
1989.

[NN92] H. R. Nielson, F. Nielson: Semantics with Applications - A Formal
Introduction for Computer Science, Wiley (to appear in early 1992).

[PC87] S. Peyton-Jones, C. Clack: Finding fixpoints in abstract interpreta-
tions, in: Abstract Interpretations of Declarative Languages (edited by
S. Abramsky & C. Hankin), Ellis Herwood, 1987.

[WH87] P. Wager, R. J. M. Hughes: Projections for Strictness Analysis,
Functional Programming Languages and Computer Architecture, LNCS
274, 1987.

A An example analysis

To illustrate the practical consequences of the theoretics development per-
formed in this paper we shall consider an analysis of a simple imperative
language. The language has five syntactic categories:

c ∈ Con : constants

x ∈ Var : variables
Var = {x1, x2, · · · , xn}

a ∈ Aexp : arithmetic expressions
a ::= c | x | a1 ∗ a2 | a1 − a2 | · · ·

b ∈ Bexp : boolean expressions
b ::= a1 = a2 | ¬b | · · ·

S ∈ Stm : statements
S ::= x := a | S1; S2 | if b then S1 else S2

while b do S

The semantics of this language should be intuitively clear. To describe the
analysis we assume that

I ⊆ Var is a set of input variables, and
Q ⊆ Var is a set of output variables.

28

The question to be asked of a statement then is whether there is a functional
dependency between the input and output variables, that is whether the final
values of the output variables only depend on the initial values of the input
variables and not on the initial values of other variables. As an example
assume I = {x1} and Q = {x2} and consider the programs

fac ≡ x2:= 1; while ¬(x1= 0) do (x2:= x2∗x1; x1:= x1−1)
fac’ ≡ while ¬(x1= 0) do (x2:= x2∗x1; x1:= x1−1)

The final value of x2 in fac will only depend on the initial value of x1 so there
is a functional dependency between input and output variables. However, the
final value of x2 in fac′ will depend on the initial value of x1 but also on the
initial value of x2; since x2 is not an input variable we do not have the required
functional dependency.

The analysis we operate on two properties

0 : meaning that the value definitely only depends on the
values of input variables,

1 : meaning that the value may depend on the values of
non-input variables.

We shall write 2 = {0, 1} for this set of properties and equip it with the
partial ordering � defined by 0 � 1. Then (2,�) is a complete lattice and
the least upper bound operation will be written �.

The analysis will keep track of the properties of the variables. However to
get a provably correct analysis we also need to keep track of whether or not
the flow of control only depends on the initial values of the input variables.
Therefore the analysis will associate each statement S with a function

P [[S]] : 2n+1 → 2n+1

that given properties (p1, · · · , pn, pn+1) of the variables x1, · · · , xn and of the
flow of control holding before S will determine the similar information holing
after S. The definition of P uses similar functions

PA[[a]] : 2n+1 → 2
PB[[b]] : 2n+1 → 2

29

PA[[c]](p1, · · · , pn+1) = pn+1

PA[[xi]](p1, · · · , pn+1) = pi � pn+1

PA[[a1 ∗ a2]] = PA[[a1]] � PA[[a1]]

PA[[a1 − a2]] = PA[[a1]] � PA[[a1]]
...

PB[[a1 = a2]] = PA[[a1]] � PA[[a1]]

PB[[¬ b]] = PB[[b]]
...

Table 1: Analysis of expressions.

P [[xi := a]](p1, · · · , pi, · · · , pn+1) =
(p1, · · · PA[[a]](p1, · · · , pn+1), · · · , pn+1)

P [[S1; S2]] = P [[S2]] ◦ P [[S1]]
P [[if b then S1 else S2]] = check (PB[[b]]) � P[[S1]] � P[[S2]]

P [[while b do S]] = FIX H
where H h = check (PB[[b]]) � h ◦ P [[S]]

Table 2: Analysis of statements.

defined for arithmetic and boolean expressions in Table 1. Also it uses the
auxiliary function

check: (2n+1 → 2)→ (2n+1 → 2n+1)

defined by

check h ps =

{
ps if h ps = 0

(1, · · · , 1) if h ps = 1

The definition of P is given in Table 2.

The overt algorithm for testing whether or not there is a functions depen-
dency between the set I of input variables and the set Q of output variables
for a statement S then proceeds as follows:

• construct the tuple ps = (p1, · · · , pn, 0) where pi = 0 if and only if
xi ∈ I

30

• apply the analysis to get ps ′ = P [[S]]ps ,

• let ps ′ = (p′1, · · · , p′n, p′n+1) and return

yes : if p′n+1 = 0 and p′i = 0 for xi ∈ Q, and
no? : otherwise.

Example A.3 : For the program fac we can assume that Var = {x1, x2} (i.e.
n = 2) and that I = {x1} and Q = {x2}. We then get

P [[fac]](0, 1, 0) = (FIX H)(0, 0, 0)

where

H h = check (λ(p1, p2, p3).p1 � p3)
� h ◦ (λ(p1, p2, p3).(p1 � p3, p1 � p2 � p3, p3))

so that

H h (p1, p2, p3) =

{
(0, p2, 0) � h(0, p2, 0) if p1 = p3 = 0
(1, 1, 1) otherwise

To determine FIX H we calculate the iterands H i⊥:

H0⊥(p1, p2, p3) = (p1, p2, p3)

H1⊥(p1, p2, p3) =

{
(0, p2, 0) if p1 = p3 = 0
(1, 1, 1) otherwise

H2⊥(p1, p2, p3) =

{
(0, p2, 0) if p1 = p3 = 0
(1, 1, 1) otherwise

and we see that FIX H = H1⊥. Then

P [[fac]](0, 1, 0) = (0, 0, 0)

and the algorithm we give the answer yes.

Similarly we get

31

P [[fac′]](0, 1, 0) = (FIX H)(0, 1, 0) = (0, 1, 0)

and the algorithm returns the answer no? as expected. ✷

The analysis fulfils certain properties that are referred to in the body of the
paper:

Fact A4 : The functions H : (2n+1 → 2n+1)→ (2n+1 → 2n+1) defined by

H h = check (f) � h ◦ g

is a continuous function for all choices of f : 2n+1 → 2 and g : 2n+1 → 2n+1.

✷

Fact A.5 : P [[S]] is a strict and additive function. ✷

B Correctness of the analysis

To be able to demonstrate the correctness of the analysis we need a formal
semantics for the imperative language. To this end Tables B.1 and B.2 define
semantic functions

SA : Aexp → (Zn → Z)

SB : Bexp → (Zn + T)

S : Stm → (Zn ↪→ Zn)

where Z is the set of integers, T is the set of truth values (tt and ff) and
Zn ↪→ Zn is the set of partial functions from Zn to Zn. Alternatively one
could have used total functions throughout and made Z and T into partially
ordered sets themselves. The auxiliary function cond used in Table 4 is
defined by

cond(p, g1, g2)(v1, · · · , vn) =

{
g1(v1, · · · , vn) if p(v1, · · · , vn) = tt

g2(v1, · · · , vn) if p(v1, · · · , vn) = ff

To express correctness we begin by defining a relation. For tuples (v1, · · · , vn),
(v′

1, · · · , v′
n) ∈ Zn and (p1, · · · , pn+1) ∈ 2n+1 we write

32

(v1, · · · , vn) ≡ (v′
1, · · · , v′

n) rel (p1, · · · , pn+1)

whenever

pn+1 = 1 or (∀i ≤ n . if pi = 0 then vi = v′
i)

Fact B.3 : If (v1, · · · , vn) ≡ (v′
1, · · · , v′

n) rel (p1, · · · , pn+1) and
PA[[a]](p1, · · · , pn+1) = 0 then

SA[[a]](v1, · · · , vn) = SA[[a]](v′
1, · · · , v′

n)

✷

SA[[c]](v1, · · · , vn) = c

SA[[xi]](v1, · · · , vn)Ê = vi

SA[[a1 ∗ a2]](v1, · · · , vn) = SA[[a1]](v1, · · · , vn) ∗ SA[[a2]](v1, · · · , vn)

SA[[a1 − a2]](v1, · · · , vn) = SA[[a1]](v1, · · · , vn)− SA[[a2]](v1, · · · , vn)
...

SB[[a1 = a2]](v1, · · · , vn) =

{
tt SA[[a1]](v1, · · · , vn) = SA[[a2]](v1, · · · , vn)
ff otherwise

SB[[¬b]](v1, · · · , vn) =

{
tt SB[[b]](v1, · · · , vn) = ff

ff otherwise
...

Table 3: Semantics of expressions

S[[xi := a]](v1, · · · , vn) = (v1, · · · ,SA[[a]](v1, · · · , vn), · · · , vn)

S[[S1; S2]] = S[[S2]] ◦ S[[S1]]

S[[if b then S1 else S2]] = cond(SB[[b]],S[[S1]],S[[S2]])

S[[while b do S]] = FIX F
where F f = cond(SB[[b]], f ◦ S[[s]], id)

Table 4: Semantics of statements

Fact B.4 : If (v1, · · · , vn) ≡ (v′
1, · · · , v′

n) rel (p1, · · · , pn+1) and
PB[[b]](p1, · · · , pn+1) = 0 then

33

PB[[B]](v1, · · · , vn) = PB[[b]](v′
1, · · · , v′

n)

✷

Fact B.5 : If (v1, · · · , vn) ≡ (v′
1, · · · , v′

n) rel (p1, · · · , pn+1) and
P [[S]](p1, · · · , pn+1) = (p′1, · · · , p′n+1) with p′n+1 = 0 then

• S[[S]](v1, · · · , vn) and S[[S]](v′
1, · · · , v′

n) are both undefined, or

• S[[S]](v1, · · · , vn) and S[[S]](v′
1, · · · , v′

n) are both defined and

S[[S]](v1, · · · , vn) ≡ S[[S]](v′
1, · · · , v′

n) rel ((p′1, · · · , p′n+1)

✷

The correctness of the algorithm of Appendix A now follows.

34

