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Preface

This collection contains the positions of most of the 31 participants at the
ECOOP’91 W5 Workshop on “Types, Inheritance, and Assignments. The
workshop is organized in connection with the Fifth Annual European Confer-
ence on Object-Oriented Programming, July 15–19 in Geneva, Switzerland.
The workshop takes place July 16, 9.00–17.30.

In addition to the 21 submitted position papers, the collection includes an
invited paper by Luca Cardelli.

The focus of the workshop is on the premises, results, and aspirations of
research in object-oriented type systems. In the Call-for-Participation the
following issues were raised.

The type theory of object-oriented programming is advancing
rapidly. Types are required to ensure reliability and efficiency
of software, and the presence of inheritance and assignments in
object-oriented languages makes typing a challenging problem.
This has led to a profusion of approaches, each giving important
but often incompatible contributions to the theory. The work-
shop will seek to relate these approaches, clarify state-of-the-art,
and point to major unsolved problems. We will focus on the fol-
lowing five questions: What are appropriate models of classes,
types, subclassing, and subtyping? How can updates be typed
without loss of type information? To what extent are type sys-
tems for functional languages adequate? Should classes and types
be different? How can type inference be accomplished?

In view of the present position papers, some more specific questions can be
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posed: Are present languages too complicated? Can static typing improve
efficiency? Are types just sets of classes? Does separate compilation and
concurrency require dynamic typing? What is common to the type systems
in object-oriented programming-, database-, and specification languages?
—Aarhus, June 1991

Jens Palsberg Michael I. Schwartzbach
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Typed Foundations of
Object-Oriented Programming

Luca Cardelli

In recent years we have seen a flourishing of ideas and techniques both in the
design and in the study of typed object-oriented languages. New languages
and language features are proposed at every turn, and new semantic models
and semantic interpretations closely follow.

While, on one hand, one should be gratified by such richness, I cannot help
feeling also a bit embarrassed. New mechanisms are justifiably proposed out
of necessity, to remedy deficiencies of existing mechanisms. But, eventually,
one reaches a point of diminishing returns, where convenience of additional
mechanisms is overshadowed by their added complexity. How many good
ideas can there really be?

This kind of exploration should eventually be replaced by consolidation, and
now may be a good time. In this respect, I would like to strike against two
common attitudes. One is the assumption that we understand existing lan-
guages well enough, so we can go ahead and create more complex ones. I
think it has not been proved yet (nor disproved) that object-oriented pro-
gramming as currently intended is a “good thing”. It is conceivable that even
basic features such as self will eventually be considered too subtle and power-
ful for robust software engineering (or verification), and should be abandoned.
Some features will of course survive, possibly becoming more general. Con-
solidation does not mean oversimplification; necessary distinctions must be
made, e.g. between types and classes. But do we need both prototypes and
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multiple inheritance at once? How can we tell when a language is powerful,
as opposed to “just too complicated”?

The other objectionable attitude is of a more technical nature. The semantics
of typed o-o programming has been so far explained in terms of denotational
models, and here too we have seen a variety of models and an embarrassing
richness of interpretation techniques. In all cases, though, a typed o-o lan-
guage is translated into some untyped λ-calculus (the language of the model);
a typing soundness theorem must then be proven. I think this is a rather
indirect and uninformative approach, from a typing perspective, and leads to
too many arbitrary choices. Many of the subtle problems we confront these
days are in the typing of o-o languages (as well as in their meaning). A proof
of typing soundness in a denotational model may show that the type rules of
an o-o language are sound, but I don’t think it shows why they are sound.
What are the essential properties of all these models and interpretations that
make the type rules sound?

The central question for me is: what is the smallest typed formal system
that captures the essence of object-oriented programming? Let’s call this
hypothetical system TFS. I think one should codify the crucial properties
of denotational models (or just our plain intuitions) into TSF, and then
give meanings to o-o languages by a type-preserving, subtype-preserving, and
meaning-preserving translation into TFS. If we can do this, then we will be
able to say that the typing and equational rules of TFS capture the essence
of typed o-o programming.

I have my share of responsibility for producing overcomplex formal systems,
but recently I have been investigating a very simple one, with the aims ex-
plained above. This system, called F <:, is described in [11] and, just to
show its compactness, here is the complete syntax of types:

A, B ::= Types
X type variables
Top the supertype of all types
A → B function spaces
∀(X <: A)B bounded quantifications

I am not yet claiming that this is the “right” minimal formal system, but
certainly I think it is on the right track. The first indication is that many
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common constructions, such as fixed-size records, can be encoded and their
type rules can be derived. More significantly, extensible records, for which
many complex axiomatizations have been proposed, can also be encoded.
(Extensible records were investigated for their relevance to functional and
imperative update.) Record concatenation, an always troubling subject re-
lated to multiple inheritance, can be encoded as well, following Rémy. By
adding recursion and higher-order features we can also emulate F-bounded
quantification, and we can capture all the crucial features of my (rather large)
Quest language.

What needs to be done now is to take some semi-realistic o-o language and
attempt to encode it “all the way down” into F <:. Early attempts have
proven difficult but also rewarding in terms of understanding of o-o features
and their typing.

In conclusion, I argue that we should be looking for typed semantics, given by
translations from o-o languages into small typed λ-calculi. The advantages of
this approach would be that (1) the translation process “explains” the type
rules of the source language in terms of more fundamental type rules of the
target calculus, and (2) the target calculus, being small, has fewer, cleaner
and more powerful features, and relatively simple models .

If it turns out that this translation is practically infeasible for some particular
o-o language, it may mean that we have the wrong approach, but it may also
mean that that language is “just too complicated”.
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Accessing Variables by
Methods in the Conformity
Typed Language Ellie

Birger Andersen

Ellie is an object-oriented programming language based on a number of
new strong concepts yielding very high language flexibility in order to be gen-
erally usable. This has been obtained by allowing definitions of new types and
control structures by reusing existing ones and by having a conformity-based
type system. As something unique, variables (and other named attributes)
are represented by objects providing methods for access of their values.

Delegation and multiple inheritance is supported by the same integrated
mechanism called interface inclusion. Objects may also define dynamic in-
terfaces that may change over time to be used for synchronization.

Furthermore, Ellie has fine-grained objects and fine-grained parallelism as
an integrated and natural part of the language. Ellie has been defined in
[2] and some facilities are discussed and evaluated in [4].

Variable Objects

In Ellie, variables are represented by variable objects, having a number of
methods for accessing their values. Variable objects are implicitly created by
the existence of declarations of variable names (and other named attributes).
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In the creation a variable object requires a parameter object called the quali-
fier which defines that the variable may only be assigned objects conforming
to the parameter object.

Variable objects and the technique of accessing variables by methods im-
plemented in Ellie has many advantages compared to, e.g., C++ and
Smalltalk.

• Assign and read value methods control the access to the value of a vari-
able. This is very useful when processes may access a variable simulta-
neously. Synchronization mechanisms can be implemented in order to
build reliable fine-grained parallel applications.

• The access methods are implicitly defined since variable objects are im-
plicitly defined. The methods are specialized by the qualifier so that
type information is available for type checks when accessing variables.
Therefore, type checking assignments are like type checking parame-
ters. Methods for dynamic conformity type checks etc. also exist.

• The variable methods may be redefined so what looks like a variable
may encapsulate something else than a value, e.g., evaluation meth-
ods. This means that real variables may be substituted by objects
implementing the same abstract type.

• Variables of an object may be made accessible by other objects by de-
claring variable methods to be part of the interface of the object. Unlike
in C++, the implementation will continue to be inaccessible, i.e., it
is still encapsulated. Unlike in Smalltalk, the access methods are
already defined implicitly.

Other Features Concerning Types

Ellie is semantically and syntactically a simple language but it relies on
some sophisticated ideas that all together constitute a very general language.

• First class objects defined by the fundamental and single block struc-
tured abstraction mechanism called an Ellie object are used for mod-
eling classes of traditional objects, methods, and blocks. Therefore,
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variables may refer to typed methods and blocks providing second or-
der programming facilities.

• Conformity type checking and parameter polymorphism analogous to
the conformity type system implemented in Emerald [8, 57] is used
for safe, efficient, and flexible typing with static/dynamic checks.

• Functional and operational methods like in Emerald, are used for
separating methods without and with side-effects. Methods are also
either future or non-future methods. A future method forks a process.
Such information also define the abstract type of an object.

Current Position

The implementation has shown that the idea of variable objects combined
with the conformity type system can be implemented in practice [29]. Some
of the powerfulness of these concepts has also been shown by examples [3].
An outstanding question is how Ellie will perform in the real world? The
language may seem too exotic to the programmers? In order to answer
such questions, I plan to let a number of graduate students write some real
programs.
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Types and Polymorphism in
Emerald

Andrew Black

The Emerald programming language has been developed since 1984 as a
tool for writing distributed subsystems and applications [8, 34]. It is statically
typed, and bases its type checking on an inclusion relation called conformity.
It also supports parametric polymorphism, so that it is possible for users
to create types like Set.of[element]. All of the operations performed by the
Emerald type-checker at compile-time are also available to the program at
run-time; the success of a compile-time check can be viewed as a license to
omit the same check at run-time.

More recently, we have been working on a model for the Emerald type
system as a means of obtaining a better understanding of what Emerald
types really are. We are now able to give a type to the constant nil, find the
smallest type that conforms to two given types, and type-check polymorphic
self-application.

Types and Subtyping

One of our major design goals was that Emerald objects be implementation
independent : that objects with the same behaviour be implementable in
many different ways, without the cooperation of their clients.

Implementation independence was originally motivated by the need to allow

11



the Emerald compiler to generate different implementations of an object
from the same source code, depending on how the object is used. For ex-
ample, if it is possible to determine by static analysis that a refeence to an
object o is never exported from the object that creates o, then there is no
need to provide o with the mechanism to deal with incoming remote invo-
cations. However, we soon realised that implementation independence also
allows the programmer to create multiple implementations of the same ab-
straction explicitly. For example, matrices can be implemented densely or
using sparse array techniques; the interface is the same in both cases, and
clients need not care how a particular object is implemented.

Consideration of the consequences of implementation independence and the
encapsulation provided by object structure led us to design a type system in
which types are sets of operations, not sets of values. With each operation is
associated a signature that describes the types of its arguments and results.
Binding an object of type S to a name declared to be of type T (as occurs
during assignment or parameter passing) requires that S be a “subtype” of T ,
i.e., that objects of type S can be used where objects of type T are expected,
or that S can be substituted for T . Substitutability means that

1. the operations of S must be a superset of the operations of T ;

2. for each operation φ supported by T :

(a) the results of φ in S must be substitutable for the corresponding
results of φ in T , and

(b) the arguments of φ in T must be substitutable for the correspond-
ing arguments of φ in S

If the first condition is not met, then there will be some operation θ that
may be validly invoked on an object of type T , but which is not supported
by an object of type S. The second condition ensures that the first condition
is met recursively for operations applied to the arguments and results. Note
that part 2(b) is contravariant.

There are many relations between types that have the above properties. For
example, Pool’s type system has a relation < that requires, in addition to
the above properties, that sets of attributes associated with each type be in a
subset relationship [1]. Emerald’s conformity relation ◦> is (by definition)

12



the largest relation that satisfies the substitutability conditions. It might
be argued that a smaller relation leads to “safer” programs in some sense;
this can be debated at length. However, it is clear that a larger relation will
lead to unsafe programs, i.e., programs in which it is possible to invoke an
operation on an object that does not support it. For us, this is motivation
enough to study the conformity relation.

It is easy to model types and conformity between types when all of the
operation signatures are constants. It is much harder to find a model that
extends to operations that enjoy parametric polymorphism, i.e., where the
type of the result of the operation depends on an argument. We have recently
developed such a model; both types and operation signatures are represented
as functions [9].

Classes and Inheritance

Classes and types are entirely separate in Emerald. The type system is
concerned only with the existence of a certain operation, never with its im-
plementation, or with the implementation of the objects on which it operates.
At the language level, there is no notion of class: each object is autonomous,
by which we mean that it “owns” its own set of operations and “knows” what
they are. In the implementation of Emerald “class” objects are present at
run-time, one per object constructor on each machine; these classes represent
shared implementation detail.

Similarly, while creating new classes by inheritance from existing classes is
an important programming technique, it has nothing to do with the type
system. The inheritance relationship between two objects’ classes is entirely
independent of any conformity relationship between their types.

Updating Objects

Mutable objects are distinguished from immutable objects only in that they
have update operations that change their abstract state, such as Move on a
point object or Enter on a directory object. Since the arguments of the update
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operations are typed, there is in principle no loss of type information.

In practice, retaining all type information by static methods is infeasible:
users require directories that can be used to reference any file, not just a
specific type of object such a Textfile. As a consequence, the only static
information that we have about the type of the result of a lookup operation on
a Directory.of[File] is that it is a File. Recovering the more specific information
that it is a Textfile requires a run-time check. However, since the same
typing mechanisms are available at run-time and at compile-time, it is easy
to integrate this check into the type system. The expression view f as
Textfile has the syntactic type Textfile regardless of the syntactic type of the
identifier f; if at run-time the (dynamic) type of the object bound to f does
not conform to Textfile, the evaluation of the view expression will cause a
checked run-time error.

Implementing dynamic type checking requires that some representation of
a type be available at run-time. In Emerald, types are objects and can
therefore be manipulated in the same way as other objects.
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On the Specialization of Object
Behaviors

Gregor V. Bochmann

(Abstract of a full paper)
Various ordering relations have been used for defining inheritance schemes
for object-oriented languages. This paper is not concerned with code sharing,
which seems largely an implementation issue, but with properties that are
relevant for specifications. In addition to the schemes related to subtyping
and relations based on the defined operations of object classes, this paper
also considers relations comparing the dynamic behavior of objects, including
constraints on the results of operations, the ordering of operation executions,
and possibilities for blocking. All these aspects are important for a complete
characterization of the allowed behavior of object instances belonging to a
given object class. The paper shows that all these aspects can be described
in a unified manner, based on a set of allowed “behaviors”. This leads to a
unified (multiple) inheritance scheme for object-oriented languages covering
all the above aspects. The use of these concepts to the design of an object-
oriented specification language is also discussed.
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Types and Inheritance in
Object-Z

David Carrington

Object-Z is a formal specification language based on the Z notation devel-
oped by Abrial and the Programming Research Group at Oxford. Object-Z
provides a class construct to induce additional structure on specifications, an
extension that facilitates an object-oriented style (See [14, 22, 23, 24, 25] for
an introduction to Object-Z and several case studies).

Object-Z is based on the view that each class represents a type. The
primitive mathematical objects that form the basic language are not defined
by classes although they could be. At the specification level, there does not
seem to be any merit in distinguishing between class and type, while the
advantage of simplicity is important.

Object-Z takes a “liberal” view with respect to subclassing in that it does
not insist that all subclasses must be substitutable for the parent class. Op-
erations in a descendent class can be extended, redefined or removed. Thus
subclasses need not be subtypes. This flexibility is very convenient in a
specification context.

There is current research investigating how classes and refinement fit to-
gether. Refinement is a relation between objects that offers the ability to
substitute one object for another. It provides a convenient framework for
viewing the development steps involved in transforming a specification to an
implementation. Refinement can be achieved both within the inheritance
hierarchy and outside it. For the refinement relation to hold between a class
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and one of its subclasses, additional constraints must apply to the subclass to
make it a behavioural subtype. Investigation of both operational and obser-
vational compatibility have been pursued to consider reactive and proactive
objects.

With Object-Z, we are primarily concerned with data refinement although
procedural refinement into object-oriented programming languages such as
Eiffel and C++ is also being studied.
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Static Type Inferencing for a
Dynamically Typed Language

Bruce A. Conrad

I have been involved in the design and implementation of an object-oriented
programming environment which does not use static type-checking, being a
derivative mainly of Smalltalk.

We have constructed some end-user applications using this system, and have
noticed a difficulty in delivering an application with only methods which
might be used during execution. It appears that some kind of static type
inferencing method might allow us to automatically remove from an appli-
cation those methods which could not be invoked, thus reducing the size of
a delivered application.

Objects are identified by literals, variables and message sends. Variables can
be either global or local (method temporaries and arguments). Even though
the language does not include annotations for types, each literal refers to
an object of a certain class, and, during its lifetime, each variable refers to
objects of a certain class.

Object types could be identified by their class. Because of polymorphism,
this simplistic view needs to be extended. Two ways we have examined are:
a type is identified by a single class name meaning that the object will be an
instance of that class or any one of its subclasses; or, a type is identified by a
set of classes, meaning that the object will be an instance of one of the classes
in the set. The potential number of types in the former case is the same as
the number of classes in the system; in the latter case, it is exponential in
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the number of classes in the system.

Our experience has shown that the notion of type and the class inheritance
hierarchy are not necessarily related. For example, our File class has meth-
ods for sequentially examining the contents of a file, and our Scanner class
has a set of methods with the same functionality for examining a string of
characters. However, the classes are unrelated by inheritance, except having
a common superclass, Object. A compiler object has an instance variable
which can be either a File or a Scanner. For this reason, we prefer to view a
type as a set of classes, rather than a single class.

We would like to be able to infer the type of the result of message sends. Then
we could begin with the startup method and collect a list of the methods (and
classes) which might be used by a particular application during its execution.

The type of literals is known statically, by definition. The type of each global
variable can be known by examining the class of the initial value of the vari-
able and all assignments to it (many global variables are actually constants,
since they never appear on the left hand side of an assignment). For local
variables, the initial value is of type Undefined for method temporaries. For
formal arguments, the type is the union of the types of corresponding actual
arguments.

We can associate with each method a set of type signatures. Given a tuple
of receiver and argument types, ex. (t0, t1, . . . , tn) for a method expecting n
arguments, we would like to determine the type of the resulting object. Each
method selector would have a function associated with it (indicated by the
italicized selector), from T × T n to T .

The type signature for primitive methods is defined by the run-time system.
For example: #class(x) = Class. If an object of any type is sent the message
#class , the result will be of type Class.

As another example, #new({Class}) = x, where x is the receiver of #new ,
typically a constant or particular class. In the case where the receiver of
#new is “self class” in some method of an abstract superclass, the type of “self
class new” is the set consisting of the subclasses of the abstract superclass,
except those which redefine the method.

For methods giving access to instance variables, existing objects could be
examined, as well as assignments to the instance variable. For example:
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#superclass(Class) = Class or Undefined.

For other methods, the result could be computed. One way would be bottom
up, starting with methods which only send primitive methods. For example:
#upTo : ({File, Scanner}, Character) = String.

There are simplifying considerations: first, the resulting object of many mes-
sage sends is simply dropped so that its type is irrelevant; and, second,
most of the method selectors in the system refer to unique methods, so that
the type of the receiver can be inferred to be the class implementing the
method, based on the assumption that we have a working system. The
non-polymorphic selectors can be helpful in determining the type informa-
tion when polymorphism applies. For example, the formal argument in a
method, say ai, has a type which needs to be determined. Arguments cannot
be assigned to, so its type will be constant throughout the method. If it is
sent #x and #y, then it must be of type {Coordinate}, for these methods are
defined only in the Coordinate class.
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Type and Class

Rainer Fischbach

Type and class are different. Class and type are different notions.
There is no simple scheme that relates classes with concrete and abstract
types. Class is a syntactical construct, whereas type is a semantical concept.

Frequently—but not in all cases—a class gives rise to a concrete type and
binds that type to the signature of an abstract type by means of its interface.
An abstract type is not a type but rather a family of types related by a set
of morphisms. In particular, it should not be confused with the union of this
family, which in most cases—if it is at all a type—is a completely different
type. For instance, the union of all groups is not a group!

As a consequence, concrete and abstract types are not in a subset relation!
Syntactical constructs that provide for higher forms of abstraction in OO
languages, like generic and deferred classes, do not denote types but rather
families of types. In particular, the Eiffel mechanism for automatic covari-
ant redefinition of formal argument types in subclasses inhibits type forma-
tion in a deferred class. The only correct use of such class names would be
as a bound identifier like “G” in the phrase “let G be a group. . . ” that leads
in the statement of a mathematical theorem.

Levels of subtyping are required. Subclassing through inheritance does
not produce subtypes in all cases. On the other hand, subtype relation is
not limited to the the class inheritance mechanism and could be established
by alternative formal means, for instance through embeddings.
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Several levels of subtyping should be distinguished. In most programming
languages, types are tied to signatures only. In this setting, the subtype
relation means conformance of signatures. Notwithstanding the limited ex-
pressive power of most programming languages, the notion of semantic con-
formance as expressed through subspecification or embedding of theories de-
serves some awareness.

As formal specification receives wider acceptance, a better understanding
of these issues should become part of the common knowledge. A point of
concern is the widespread use of inheritance in the OO community that is
greatly at odds with any notion of semantic conformance.

Type checking becomes difficult. Covariant redefinition of formal ar-
gument types and hiding of features in subclasses is a potential source of
type errors. An inexpensive way to deal with this situation without giv-
ing up static type checking is to constrain the use of polymorphism, as the
designers of the Eiffel derivate Sather have done.

The only way to reconcile static type checking with the full power of polymor-
phism would be to calculate the set of dynamic types, that any expression
that forms a target or an actual argument of a feature application could
assume, and verify if this application is legal for those sets. This seems to
be quite costly, but not too costly if much money or even human live is
at stake in the case of a software misfunction. Rules for the calculation of
those dynamic type sets and limits on the algorithmic complexity of these
calculations have to be established.
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On Type Inference for
Object-Oriented Programming
Languages

Andreas V. Hense

Types are essential for the ordered evolution of large software systems
[13]. This holds for all programming language styles, be they imperative,
functional, logical, or object-oriented. Type inference helps to avoid writ-
ing redundant information. In object-oriented programming, one certainly
has large evolving software systems, as one of its main virtues is rapid pro-
totyping. Therefore, types are needed for reliability, and type inference is
needed for “rapidity”. Two features of object-oriented programming make
type checking especially hard: late binding and assignments.

Based on the work of Rémy and Wand [58, 67] we have developed a type
inferencer for a small object-oriented language [31]. Our type inferencer
works without type declarations. It can thus be seen as an optional test on
an otherwise dynamically typed language. The object-oriented language is
called O’small and has the following features:

1. state: Objects have assignable instance variables, visible only in the
declaring class (encapsulated instance variables). All variables must be
initialized.

2. classes: Classes are not first-class objects.

3. inheritance: O’small has single inheritance á la Smalltalk [28] us-
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ing pseudo variables self and super. An extension to inheritance with
explicit wrappers [30] permitting the modeling of certain cases of mul-
tiple inheritance is possible.

4. parameter passing: Message parameters are passed and returned by
reference. This is consistent with assignments involving only references
(no duplication of objects).

For type checking, O’small is translated into a λ-calculus with impera-
tive features. The type checking algorithm uses so called row variables [67]
rather than subtyping. In contrast to Wand [67] we have principal types, for
O’small does not have multiple inheritance. We have added the treatment
of imperative features: assignments are restricted to their declarative scope.
All occurrences of an assignable variable are collected and checked at the end
of the scope.

One feature of our type checker is surprising, considering that it works on
the λ-calculus level, where the notion of classes does not exist: it recognizes
abstract classes.

Our type system is best compared to Palsberg’s and Schwartzbach’s type in-
ferencer [54], because their example language is almost identical to O’small.
Their type inferencer is based on an entirely different technique, using sub-
typing and fixed-point derivation rather than unification. Common to our
system is the absence of flow analysis. Their system is more flexible and can
check programs that we have to refuse because of the lack of subtyping. But
the increased flexibility must be paid with a quadratic expansion of code: all
antecedents of a class must be expanded. In our approach every class has to
be checked at most once.

One may argue that ML-type inference is DEXPTIME-hard anyway [51],
so that a quadratic increase does not matter. But the worst case examples
may never occur in practice, and the acceptance of a type checker in a rapid
prototype system crucially depends on its performance—also on its flexibility,
of course. It remains to be shown how the two type checkers’ performance
compares in practice.

The comparison of our type checker with the one of ML [20, 66] shows that
we are more flexible in the treatment of imperative features (polymorphic
references). On the other hand, O’small has language restrictions that ML
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does not have.

The following questions are open: (1) Can our type checker be substantially
generalized? (2) How severe are the restrictions due to the lack of subtyping
in practice? (3) What are the advantages of row variables compared to
subtyping?
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Why static typing is not
important for efficiency, or why
you shouldn’t be afraid to
separate interface from
implementation

Urs Hölzle

It is commonly believed that the type information provided by type dec-
larations helps compilers to generate more efficient code. To cite from this
workshop’s Call for Papers: “Types are required to ensure [. . . ] efficiency
of software.” At first sight it seems obvious why this is true. For example,
static type information allows early binding of generic operators: when a
Pascal compiler encounters the expression i + 1, it can compile this into
an integer addition or a floating-point addition, based on the declared type
of i. In contrast, a Lisp compiler usually cannot determine statically which
operation to use since the run-time type of i is unknown.

In the remainder of this paper, I will argue that this belief does not hold
for object-oriented languages, especially those which separate interface from
implementation. For such languages, static type information has almost no
efficiency advantages.
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Why object-oriented languages are different

Encapsulation is one of the most desirable features of a programming lan-
guage. Not only does it lead to more modular and maintainable programs,
it is also the key to effective code reuse: strict encapsulation ensures that a
procedure depends only on the abstract interface of its arguments, and thus
that the procedure will work properly with any arguments which correctly
implement this interface. As a result, any particular piece of functionality
has to be written only once: there is no source-code redundancy.

Most of today’s object-oriented languages do not naturally provide true en-
capsulation (but in some, it can be simulated). For example, C++ allows
direct access to instance variables of an object, thus exposing part of its im-
plementation. More importantly, in most languages a subtype must inherit
the format of its supertype (i.e., the subtype can only add instance vari-
ables but cannot remove them or replace them with functions). Since this
representation inheritance is not implied by the mathematical subtyping re-
lationship, interface and implementation are not properly separated in such
languages. I will call this form of types representation types (as opposed to
interface types). Most of today’s object-oriented languages have representa-
tion types ; notable exceptions are Pool and Trellis/Owl. Self has full
encapsulation but no static typing.

Object-oriented languages achieve encapsulation through the combination
of two features: subtyping and dynamic dispatch. Both features have a
profound impact of the value of static type information for code generation:

Subtyping dilutes the information content of type declarations: the decla-
ration v: T no longer asserts “v contains an object of type T” but only “v
contains an object of type T or any subtype of T.”

Dynamic dispatch makes it impossible in general to statically bind a partic-
ular function invocation v.func() to a specific implementation. By definition,
the function actually invoked at run-time depends on the exact type of v.
Using static type information, the compiler can check the validity of the invo-
cation (i.e., that no “message not understood” error will occur at run-time),
but it cannot determine the exact function being called.
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Efficiency and static typing

As outlined in the previous section, in an object-oriented language, objects
can only be manipulated by invoking functions defined in their interface,
and every such function application v.func() is (conceptually) a dynamically-
dispatched call. Thus, the call frequency of any program will be extremely
high since every operation, no matter how trivial, is dynamically-dispatched.

In fact, calls will be so frequent that any implementation which actually per-
forms them will be unacceptably slow, no matter how efficient the method
dispatch is. An example from Self (which provides full encapsulation)
will illustrate this claim: if every function application is compiled into a
dynamically-dispatched call, programs run up to several hundred times slower
than their C counterparts. A simple calculation shows that the number of
calls performed is so high that the programs would still run several times
slower than C even if all calls were ideally fast (2 cycles/call).

Static type information can eliminate only a small fraction of these dynami-
cally- dispatched calls.1 Thus, any statically-typed language with interface
types would suffer from the same problems, even though the dispatching
speed might be better. But if this is true, how can “good” languages (namely
those with interface types) ever be practical? The answer is simple: the
compiler must be able to optimize away most of the calls. Optimization
techniques which can eliminate many calls are used in the Self compiler
(see e.g. [15, 16, 32]) and could be adapted to statically-typed languages as
well [37]. In the resulting code, most calls are inlined so that dispatching
speed is no longer crucial, and statically-typed languages hold no significant
performance advantage over dynamically-typed languages.

The length restrictions of this paper do not allow a discussion of particular op-
timization techniques. However, the following observation may show why the
claim is plausible: the generated code contains (relatively infrequent) type
tests which test for particular implementation types (not interface types!).
These tests (or equivalently, dispatches) “guard” sequences of code which
are specialized for the particular implementation types; in these code se-

1The only calls that could be optimized at link time are calls where the receiver is
of a type which has only one implementation and no subtypes. In other words, this is
the only situation where the compiler can statically determine the implementation type
corresponding to the interface type.
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quences, the implementation type of every operand is known. Since type
declarations only provide interface types (not implementation types), these
type tests cannot be eliminated by the type information obtained from type
declarations.2

The point I want to make is that any object-oriented language with a type
system separating interface from implementation will lead to implementa-
tion challenges which are very similar to those found in the implementation
of Self. To achieve good performance, compilers will have to rely heavily
on inlining. To inline a call, the implementation type of its receiver must be
known. Unfortunately, this implementation type cannot in general be com-
puted from the program text alone, and thus statically-typed object-oriented
languages suddenly find themselves on equal footing with dynamically-typed
languages like Self.

Contrary to popular belief, the relatively good efficiency of some statically-
typed object-oriented languages (such as C++) is not the result of static
typing per se but the result of not providing true encapsulation: types are
representation types, not interface types. Programs which actually try to use
fully abstract data types are much slower because the compiler technology
used by most compilers is inadequate for this case. Typically, such languages
also contain some non-OO types such as Integer which have a fixed represen-
tation and are not part of the normal type hierarchy. This limits code reusq
for example, it is not possible to insert integers into a collection of “compa-
rable” objects even though integers implement the comparison protocol.

Conclusion

In an object-oriented language with true interface types, dynamically-dis-
patched calls will be so frequent that any implementation which actually
performs the calls will be unbearably slow, no matter how efficient the dis-
patch. The only currently known way to achieve good performance is to use
optimization techniques similar to those employed by the Self compiler, and
the code generated by such techniques can hardly be improved by static type

2Some of those tests could be eliminated at link-time. However, the performance impact
is likely to be small since type tests represent a small fraction of execution time (if they
don’t, the compiler didn’t do a good enough job anyway).
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information.

Thus, efficiency should not be a major motivation to include static typing in
a new object-oriented language. As a corollary, language designers who want
their languages to have a clean separation between interfaces and implemen-
tations need not despair: it is possible to implement languages with “clean”
type systems efficiently.
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Types vs. Classes, and Why
We Need Both

Norman C. Hutchinson

Historically, types have been required to serve two purposes:

• Classification of the entities involved in a computation, and

• Providing “representation independence”; ensuring that the meaning
of a program is not dependent on the representations chosen for its
values.

If we throw away all of the baggage that the phrases “object-oriented” and
“object-based” have accumulated over the last decade, we can see that the
fundamental advantage that systems that support objects have over systems
that do not is encapsulation. That is, a system that supports objects re-
quires the grouping of data and operations and guarantees that only those
operations defined with the data will be allowed access to the data. The
encapsulation of objects provides exactly the “representation independence”
mentioned above; it ensures that only code that understands the representa-
tion used for data will be allowed access to that data.

Objects and types

Accepting the object-oriented philosophy allows us to rethink the question
of what we want from our type systems. We already have a mechanism for
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enforcing encapsulation, what we need is a mechanism for the classification
of objects. There are two major forms of classification that we might desire:

• Classification based on implementation. The class systems that have
evolved since Simula address this need very nicely. One can define
a subclass of an existing class as a refinement: either extending or
modifying the behaviour of the superclass.

Such a classification scheme is of interest to the programmer of a collec-
tion of classes because it allows her to reuse code, ensure that objects
behave in a consistent way, etc. It is also of interest to the compiler
writer because the information about how objects are implemented can
be exploited to generate smaller objects and faster code.

• Classification based on the abstract invocation protocol implemented
by the object. By this I mean that each “client” of an object expects
the object to implement a particular collection of operations, and any
supplied object that implements all of the required operations meets
(at least syntactically) the requirements imposed by that client.3

Example of such requirements abound. A window manager expects a
particular protocol from each window under its control (move, resize,
refresh, terminate). A file system expects its directories to implement
add, lookup, delete, and list.

One can simulate this in a traditional object-oriented system by creat-
ing abstract superclasses that define “dummy” implementations of the
operations and then subclassing to get each of the various implementa-
tions. There are at least two important problems with this approach:

– You must have the insight to do this in advance of the need, since
adding superclasses to existing objects is not generally possible.

– I believe that this kind of classification is fundamental, and we
must directly address the need rather than simulating it using
mechanisms that were designed to solve a different problem.

3We could strengthen this form of classification by requiring that the object’s semantics
appropriately satisfy the demands of the client. While this is obviously desirable, I believe
this to be outside of the scope of type systems.
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Position

I believe that in order to fulfill their full potential, object-oriented systems
must address both of these forms of classification. I therefore believe that we
need to be talking about two notions of typing for object-oriented languages.
I therefore believe that class, which has historically referred to classification
based on implementation should continue to address this need, and that
type should be used for classification at the abstract level, separate from
implementation.

There are a number of issues that must be addressed by further research.

Subclass vs. subtype Does creating a subclass imply that it must be or
should be a sub-type? Without additional restriction, a subclass may
not be a sub-type since the subclass may redefine the types of argu-
ments or results to an operation. Whether languages should force a
subclass to also be a subtype is not so clear.

Type inference Type inference can be done at both levels, for different
purposes. Type inference at the abstract level can free the programmer
from the tedium of specifying all the type information. Type inference
at the concrete level provides the compiler with additional information
to aid in optimization.

Implementation If typing is done at an abstract level, then the compiler
gets no information (in general) about the implementations of the ob-
jects that are being manipulated. How can one efficiently implement
method lookup under these circumstances? The methods used in un-
typed languages can surely be applied, but can one approach the effi-
ciency of the single level of indirection achievable in languages where
typing is based on classes?

The Emerald programming language has been exploring these notions for
the past several years, and has partial answers to some of the questions, but
much more work needs to be done.
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Types and Classes in Cocoon

Christian Laasch and Marc H. Scholl

Our primary goal in the Cocoon project is to integrate the modeling
facilities of object-oriented data models with a strongly-typed set-oriented
extension of relational algebra that allows optimization of processing strategy.
So we developed an (object/function) model that is sketched in the next
section, it separates types from classes. Afterwards we briefly describe our
generic query and update operations that allow static type checking.

Cocoon - An Object-Oriented Data Model

The Cocoon model as described in [61, 62] consists of objects and functions
(see also [69, 21]), but separates types, that include all compile-time infor-
mation from classes. It is a core object model, meaning that we focus on
the essential ingredients necessary to define a set-oriented query and update
language.

Objects are instances of either predefined types (e.g. bool, real) or abstract
types.

Abstract types are denoted by a set of function labels (in square brack-
ets), e.g. Person == [name, age, sex]. Naming types is simply meant as an
abbreviation.

Functions are the only way to retrieve and change the encapsulated prop-
erties of objects. They are described by a name and signature, they are the
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interface operations of type instances. The implementation is specified sep-
arately. We use the term functions in the general sense including retrieval
functions as well as methods, that is, functions with side-effects. Besides
functions we also use ‘set’ as type constructor.

Subtyping. The subtyping relation (�) between abstract type expressions
is defined by the inclusion of the function-label sets:

[. . . f . . .]1 � [. . . f . . .]2 :⇐⇒ {. . . f . . .}1 ⊇ {. . . f . . .}2

Therefore objects can be instances of several types. The subtype relation
of constructed types (τ) can be inferred by following subtyping rules (the
consequence is valid, if the premise can be deduced):

[SETS] τ1�τ2
{τ1}�{τ2} [FCNS]

τdom
1 �τdom

2 ,τrng
1 �τrng

2

τdom
2 →τrng

2 �τdom
1 →τrng

1

Therefore types are regarded as ideals and the set inclusion between atomic
types corresponds to the inclusion of their function sets.

Classes are a special kind of abstract objects: they represent (typed) sets of
objects. A class C itself is an instance of the meta type ‘class’ that associates
a type, the member type(C), to all objects in the set extent(C). The extent
of a class includes all objects that are instances of the member type and fulfill
the necessary and sufficient class predicate (suffp(C)). Due to the separation
of types and classes, there may be any number of classes for a particular type:
for instance, more than one as the result of selection operations, see below,
or none, if we are not interested in maintaining an explicit extent of that
type.

Subclassing. A partial reflexive order between classes (�) is defined as
follows:

subc � supc :⇐⇒
(member type(subc) � membertype(supc)) ∧ (suffp(subc) ⇒ suffp(supc))

Notice that the explicit separation of subtype and subset relationship alle-
viates the problem of deciding whether a class c1 is a subclass of c2 or not,
because there is no need to check predicate subsumption (which is in gen-
eral undecidable), if (member type(c1) � member type(c2) is not true. We
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use an incomplete decision procedure for positioning a class in a class lattice
(resp. testing the predicate subsumption) guaranteeing that the determined
position is correct. However, there may be cases where the class could have
been placed further down the lattice. There-fore, our notion of subclassing
meets the common sense, but divides two independent relationships.

Generic Operations

We use a set-oriented algebra, where the inputs and outputs of the opera-
tions are sets of objects. Hence, query operators can be applied to extents
of classes, set-valued function results, query results, or set variables. Even
though classes represent polymorphic sets, type checking of our language
always refers to the unique member type of the involved sets. As query
operations we provide set operations (union, intersect), selection of objects
(select), and two type changing operators (project, extend). The pick oper-
ation chooses one object of a set. The effects of each operator are defined
sepakately for type and extent. (Only union, intersect, and pick have an effect
on both.)

Another argument for separating subtype and subset relationship among
classes is the classification of query results (needed for views definitions,
for example) [60]. Classification of results, that uses the object preserving
semantics of our operations, improves clarity of the class lattice, and can be
used for optimization. Already a single combination of select and project—
as usual in relational algebra (resp. in each Sql-statement)—results in a
subset and a supertype. Therefore the input is neither a subclass of the
result nor vice-versa: we cannot connect the result to the input in a mixed
class hierarchy. If, however, we separate the two concepts, two relationships
hold—but in opposite direction. Therefore it is possible to position the result
type and set close to the input counterparts in the two lattices.

Besides query operations we provide a set of generally applicable generic
update operations that can also be used to define type-specific update op-
erations. Included are operations to assign values to variables, classes, and
functions and also for object evolution, i.e., besides creating and deleting
objects also adding and removing types to/from them.
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Extending the C++ Type
System to support Annotations

Doug Lea

Current work by myself and colleagues continues exploration of type sys-
tems that can support predicate-based extensions required in order to directly
integrate OO formal methods into OO languages. Much of the framework was
presented in a draft description of Annotated C++ (A++) [17]. A++ is a
superset of C++ enabling programmers to embed specifications via declara-
tive constraints within C++ classes and functions.

General features of our evolving approach with respect to OO type issues
include constructs that are incompatible with the underlying C++ type sys-
tem, but are laid on top of C++ in a way that preserves much the class
structure, if not the type structure, of the language. These include:

1. Separation of subtyping and subclassing, in order to remove issues of
inheritance and code reuse from those of behavioral guarantees.

2. A contravariance- and conformance-based type system similar to that
of Emerald.

3. Integration of predicative types (behavioral constraints) with standard
subtypes. Subtypes may be defined by adding constraints (predicates)
in addition to adding or redeclaring methods.

4. Integration of type-checking and constraint verification, in part by re-
linquishing static checkability guarantees.
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5. Constructs that allow programmers to state that an object may change
the type(s) it conforms to as the result of state changes. This may be
seen as a generalization of the assignment issue in OO programming.

Our work is very much applied, and oriented toward construction of a usable
annotation system. We are interested in determining the relation between
this system and other type models for OO languages.
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Experience with Types and
Classes in the Guide Language

Emmanuel Lenormand and Michel Riveill

As part of the Esprit Comandos project, the Guide project investigates
a distributed operating system architecture, which could be used as a basis
for large scale applications, e.g. software development environments or ad-
vanced document processing systems. Such applications involve many com-
ponents organized in complex structures, persistent data and data sharing.
In this light, object-orientation has been chosen, for its ability to fulfill these
requirements [26]. A high-level language support is also needed to ensure
maintainability and ability to evolve for the system. Thus, in order to pro-
vide a better integration of the system and applications, an object-oriented
programming language has been designed, which is dedicated to the expres-
sion of distributed applications. This language, which is also called Guide
[35, 19], presents some characteristics concerning its types and classes, which
we are going to discuss.

Types and classes in Guide

The types/classes system of Guide presents two main characteristics: first,
the hierarchies of classes and types are separated, and second, the inheritance
mechanism is constrained by conformance rules.

Two hierarchies. As in modular languages, it has been decided to sepa-
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rate, in the GUIDE language, the interfaces of the abstract structures which
represent the types, and their implementations, which represent the classes.
This choice involves different interesting abilities, among which facilities for
programming in the large (provide to the programmer the specifications of
the modules he wants to use, without having to deal with implementation
details) and modularity. Modularity is enhanced by this separation since
information remains hidden to the programmer, who only accesses the fea-
tures defined in the types. While these advantages may still be present in
some object-oriented languages (such as Eiffel) which do not have sepa-
rate definitions of types and classes, the separation of these notions provides
additional gains: ability to define several different implementations of a type
-this provides a great flexibility, at the possible expense of static binding-
and conceptual clarification.

Conformant inheritance. The type system of Guide provides confor-
mance rules, which are the basis of the static type checking of Guide pro-
grams. These rules are the classical (“contravariant”) ones as they are defined
in [12], and they are respected over the type hierarchy. Thus, a type which
inherits from another one, must conform to it. This implies a conformant
inheritance mechanism for the type hierarchy. Then the choice has been
made, to extend this mechanism to the class hierarchy. Typically, a class
implements a type and the condition which must be verified for two classes
to be in a valid inheritance relation can be expressed as follows: if class A
implements type TA and class B implements type TB, B may inherit from
A if and only if TB conforms to TA.

As pointed out in the last paragraph, the separation between types and
classes does not forbid them to keep related in some way. The link which
exists can be called the implementation link and defined as follows:

A class implements one and only one type. A type can be unimplemented, or
implemented by one or more classes, in diflerent ways.

So, a relationship between the types and classes graphs can be derived. The
fact that classes inheritance obeys to conformance rules strengthens this cor-
respondence, as each link between a class and its subclass corresponds to a
conformance link between the types they implements.

Further work on the Guide language is now focused on multiple inheritance.
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Indeed, Guide supports only simple inheritance, and, in the perspective
of a possible extension, we wonder particularly how its model would react
to a multiple inheritance mechanism, for both types and classes, and what
model is suitable for this mechanism. An other point concerns the actual
separation of type and class hierarchies; the class inheritance mechanism
respect conformance rules, whereas there is no theoretical reason for this
[18], and it could be interesting to forget this restriction. The question is: to
what extent is it interesting?

Experience with the Guide language.

The Guide language is used by programmers in Bull-IMAG laboratory and in
several locations in Europe, particularly members of the Comandos project,
so the features mentioned above have been tested and thoroughly evaluated.
Indeed, over 100,000 lines of Guide source code have been written, in various
application programs.

Concerning the separation of the hierarchies, the double declaration of meth-
ods in a type and in the class which implements it, seems to be quite redun-
dant for the programmer. To that extent, appropriate editorial tools would
be appreciated. Yet, this little drawback should not hide the gain the sepa-
ration of type and class hierarchies generates.

An important feature which is allowed by this choice is declaring types as
access filters, i.e., introducing some control on access to types, as in the
following example.

TYPE ChanIn IS
METHOD input;

END ChanIn.

TYPE Chan SUBTYPE OF ChanIn IS
METHOD output;

END Chan.

CLASS ClassChan IMPLEMENTS Chan IS
METHOD input; // implementation of input
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METHOD output; // implementation of output
END ClassChan.

canal: REF ChanIn;
canal:=ClassChan.New // canal is implemented by class ClassChan
canal.input; // valid instruction
canal.output; // illegal instruction - output is not part of the ChanIn type

The possibility of declaring several implementations for a type has also been
used and appreciated, in order to take in account some kind of heterogeneity,
as shown below.

TYPE Window IS
height: Integer;
width: Integer;
METHOD resize(IN h,w: Integer); END Window;

CLASS MyWindow CLASS YourWindow
IMPLEMENTS Window IS IMPLEMENTS Window IS

CONST hmax: Integer=600; CONST hmax: Integer=500;
CONST wmax: Integer=400; CONST wmax: Integer=500;
METHOD resize(IN h,w:INTEGER); METHOD resize(IN h,w:INTEGER);

BEGIN BEGIN
IF (h<=hmax) THEN IF (height+h<=hmax) THEN

height:=h; height:=height+h;
END; END;
IF (w<=wmax) THEN IF (width+w<=wmax) THEN

width:=w width:=width+w;
END; END;

END resize; END resize;
END MyWindow. END YourWindow.

Then you can choose the implementation you want for a Window variable.

window: REF Window;
window:=MyWindow.New; or window:=YourWindow.New;
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The respect of the conformance rule along the type hierarchy is necessary to
ensure a useful and simple static type checking. The extension of this rule to
the classes inheritance is quite natural from the programmer’s point of view,
since in most cases the class hierarchy copies exactly the type hierarchy. Yet,
as mentioned above, there is apparently no reason why it should be so, and
a less restricted class inheritance mechanism should also be convenient, as it
does not disallow what Guide provides for the moment.
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The Demeter Model for Classes
and Types

Karl Lieberherr

I focus on the following question: What are appropriate models of classes,
types, subclassing, and subtyping? Instead of using the term “type”, I use the
term “alternation class”. Therefore I talk only about classes in the following.

An appropriate model for classes should satisfy the following conditions:

1. A set of classes efficiently defines a set of legal objects.

This rule is important for the debugging of object-oriented data models.
It allows to check whether an object can be “expressed” by a given set
of classes. By efficient we mean that an object can be checked for
legality by an algorithm of low polynomial complexity.

2. A set of legal objects efficiently defines a set of classes.

This rule just expresses the intuition that classes are natural abstrac-
tions of objects and therefore classes should be computable efficiently
from a representative set of objects. Efficiently again means that the
problem is solvable by an algorithm of low polynomial complexity.

3. Objects have a succinct description as sentences which contain essen-
tially only information about “primitive” objects.

This rule makes sure that objects can be easily described for debugging
the structure of object-oriented data models and of programs.
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4. The model allows object-oriented programming with graphs by express-
ing a group of collaborating classes as paths in a class graph and by
propagating code to the classes along the paths.

Our experience indicates that the above properties are important and we
have invented the Demeter model which satisfies all of them. The Deme-
ter model is based on a mathematical structure called a class dictionary
graph. A class dictionary graph defines a set of legal objects through relation-
ships between construction and alternation classes. Construction classes are
instantiable classes which are used to create objects and alternation classes
define abstract classes which define disjoint unions of construction classes.
A class dictionary graph needs to satisfy a structural specification and two
simple axioms: the Cycle-Free Alternation Axiom and the Unique Label Ax-
iom.

To allow short descriptions for objects, class dictionary graphs are extended
with terminals to define languages. A class dictionary graph with terminals
is called a class dictionary. A printing procedure of a few lines defines how
objects are printed as sentences. The set of all legal tree objects in their
printed form is the language defined by a class dictionary. To allow a fast
transformation of a sentence into any object, a class dictionary needs to sat-
isfy also the Bad Cycle Axiom and two LL(1) rules. Under those conditions,
the printing function is a bijection between objects and sentences and it has
an inverse which is naturally called a parsing function. The parsing function
is easily implemented by a recursive-descent parser and it is heavily used for
debugging the structural aspects of object-oriented data models.

Once a class dictionary is debugged, we proceed by defining functions for
it. A function with the same name is typically defined for a group of col-
laborating classes. We define such a group by a propagation pattern which
specifies several paths in the class dictionary. Each class on a path gets a
function with a specified interface propagated to it; also, a default body is
provided which can be overridden by a user-defined function. Programming
with class dictionaries and propagation patterns shortens many programs
and has other significant advantages, e.g. resilience to change, over the tra-
ditional approach. Propagation patterns provide tool support for the Law of
Demeter.

The efficient abstraction of classes from a set of object examples is easily
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accomplished in our model. The details are described in [6, 40].

The papers [38, 46, 45, 43, 44, 47, 42, 40, 41, 39, 6] contain more information
on the Demeter model.
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Classes as First-Class Types

Ole Lehrmann Madsen and Birger Møller-Pedersen

This position paper presents the notion of classes and types in the Beta
[36] programming language which is based on the Scandinavian approach to
object-orientation. It is argued that the type system of a language should be
based upon the class/subclass mechanism.

Classes intended for modeling classification hi-

erarchies

The point of view taken in the Scandinavian approach to object-oriented
programming is that classes are intended to model concepts in the application
domain. This leads to the definition of the subclassing mechanism as a
means to represent classification hierarchies corresponding to generalization/
specialization. Inheritance of properties, and not just of code, is the main
motivation for subclassing. Viewed as a modeling mechanism, subclassing
must define a hierarchical type system.

Representing application concepts by means of a separate notion of types
(or designing class language mechanisms from a type point of view) will
imply that some desirable properties are not adequately modeled. If the
only allowed signature of a type or class is that of a set of operations, while
instance variables are only for implementation purposes, then the well-known
apartment example would be difficult to accomplish. In Beta, properties like
that of having part-objects representing the fact that apartments have parts
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like kitchen, bathroom, etc. are regarded as properties associated with the
class Apartment:

Apartment: CLASS
(#
theBathroom: @ Bathroom;
. . .

#)

where Kitchen and Bathroom are names of classes.

Interface and Implementation of Classes

The fact that the Beta approach is to use the class/subclass hierarchy as
a type/subtype hierarchy, does not imply we do not want to distinguish
between interface and implementation of a class. The language has a separate
fragment mechanism for that, illustrated by a simple example:

Stack: CLASS
(# rep: @<<SLOT rep: ObjectDescriptor>>

push: PROC
(# E: @ Integer

enter E
<<SLOT Push: DoPart>>

#);
. . .

(#

The example shows a fragment defining the visible parts of a class stack.
The slots may be filled with the representation of the stack and with the
implementation of the operations, and different fillings will given different
implementations. The fragment as showed above corresponds to signatures
in other languages. The following fragment defines the implementation:

ORIGIN ‘Stack’
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—Rep:ObjectDescriptor—
(# S: [100] @ Integer; top: @ Integer #)

—Push:DoPart—
(#
do E->rep.S[rep.top+1->rep.top]
(#
. . .

Strong Typing, Qualified References, and As-

signment

Typing in languages that use classes as types are closely associated with
typing of object references and the use of these types in access of attributes
and rules for reference assignment. These languages provide a compromise
between weak and strong typing since not all operations on an object can be
inferred from the typing of the reference.

Most strongly typed languages rely on a combination of compile-time and
run-time type checking [50]. Beta is an example of such languages. A large
class of type errors are caught at compile-time, whereas others are left to
run-time checks. Consider the following class hierarchy:

Vehicle: class (# . . . #);
Bus: class Vehicle (# . . . #);
Truck: class Vehicle (# . . . #);
Car: class Vehicle (# . . . #);

aVehicle: ˆ Vehicle;
aBus: ˆ Bus;
aTruck: ˆ Truck;

The reference aVehicle is typed by Vehicle. This implies that aVehicle may
denote instances of class Vehicle and instances of subclasses of Vehicle.

The cost for typed references is a run-time check that will take place at some
cases of reference assignment:
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new Bus[] -> aBus[]; {1}
aBus[] -> aVehicle[]; {2}
aVehicle[] -> aBus[]; {3}
aTruck[] -> aBus[]; {4}

The assignments in {1} and {2} are obviously valid. The assignment in
{3} is legal if aVehicle denotes an instance of Bus. In general this may not
be detected at compile time. This implies that a run-time type check will
be performed in this case. The assignment in {4} is illegal, since it is not
possible for aTruck to denote a Bus object.

Most assignments are as in {2} (or types are equal) and no run-time checking
is needed. The ability to weaken the type information on an object as in {3}
is very usable in order to write general code like queue and list manipulation
etc. In the example above one would typically use the following views: as an
element in a queue, as a Vehicle, and as a Bus or Truck.

In most languages value assignment is defined as a pure copying of bits. In
this way the state of one object may be forced upon another object. Often
different object states may denote the same abstract value. It is therefore
not always desirable to define the semantics of value assignment as a bitwise
copying. The situation is even worse when considering equality. Here a
bitwise comparison of two objects may not correspond to equality of the
abstract values represented by the two objects.

In most work on hierarchical type-systems the distinction between reference
semantics and value semantics of assignment and equality does not seem to
be explicit. In relation to object-oriented programming this distinction is,
however, crucial.

Virtual Classes

In Beta classes may be parameterized by other classes by using virtual
classes [49]. Beta has covariance of arguments to procedures in subclasses
like Eiffel, but as opposed to Trellis/Owl. Since Beta supports sub-
type substitutability, a run-time check of arguments is performed in the case
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of covariance. This run-time check is similar to the run-time check performed
when assigned a less qualified reference to a more qualified reference as de-
scribed in the previous section. The amount of run-time checking may be
limited by using type exact references and so-called final virtual bindings.

Summary

The following summary made by Pierre America at TOOLS’91 is useful:

It is only possible to obtain at most 2 of the following 3 properties:

1. Subtype substitutability

2. Covariance

3. Static typing

Beta has given up static typing for a limited amount of run-time checking.
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Adjusting the Type-Knob

Boris Magnusson

In this paper we describe a programming style that can be used to get
Smalltalk like type-less programming also in strongly typed languages like
SIMULA, Beta, C++ and EIFFEL. The strong typing facilities in these
languages can then be utilized as the abstractions and class hierarchy falls
into place. This style of programming supports migration of applications
from rapid prototypes to type-checked products.

Developing prototypes versus products

The relative freedom of type-less programming languages is often praised by
programmers developing so called rapid prototypes. The ability to change,
re-work and try a program although not all the abstractions and class hier-
archies have been worked out has its benefits. Small changes and additional
functionality can often quickly be implemented and tried out although the
class hierarchy might not yet be consistent. If the functionality is not found
valuable one can discard the code without much loss of effort. On the other
hand, if the code is found valuable more work can then be spent to integrate
it in a consistent way. Systems developed this way does, however, rarely
qualify as production systems. The potential risk of such a system failing
with the message “Message not understood”, or some other information with
the same meaning, can not be neglected. In the process of converting the sys-
tem to production quality a type-less programming language offers no help
in finding type errors.
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In contrast to type-less languages we have languages with type rules that
can be checked by a compiler. In the field of object oriented programming
languages strong typing means that references are qualified, e.g. restricted
to reference only object of a certain class and its subclasses. Building ap-
plications in such a system often includes repeated modifications and re-
compilations because of type errors in the program. This is sometimes found
tedious since the programmer “knows” that the program will not actually
come in a situation where the error will show. The work to satisfy the com-
piler in such cases can be found unnecessary when the goal is to make an
experiment and the code will be thrown away in the end. On the other hand
when the compiler is satisfied there are certain errors that can not occur.

The merits of these two approaches to program development and language
design has often resulted in that systems are developed twice—once to try out
the ideas, get some feedback and get a first sketch of the architecture of the
system—and then over again to get a robust implementation. In this paper
we describe how this transition can be made in incremental steps within the
same language. Parts of the program can be expressed in a type checked
manner while other parts remain experimental. Experimental parts can also
be added later. In this paper we will show how untyped Smalltalk like
programming can be achieved in a strongly typed language.

The type-less, prototype solution

To illustrate the difference in approach between a language with and without
typed references we like to use a small example: Consider a system with the
following classes:

CLASS Graphical
virtual: Draw, Move

CLASS Line
operations: Draw, Move

CLASS Rectangle
operations: Draw, Move

CLASS Circle
operations: Draw, Move
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CLASS Cowboy
operations: Draw, Move, Shoot

This can be easily expressed in any O-O language with some syntactic varia-
tions. Line, Rectangle, and Circle are all classes with the same set of graphical
operations while Cowboy is an unrelated class.

In a language without typed pointers we can declare one pointer and let it
reference an object of any of the above classes. We can also call an operation
of the class (send the object a message):

pointer P;
if . . . then P:- new Cowboy else p:- new Circle;
P.Shoot;
P.Draw

Two different kind of errors can occur here. In the first statement case the
object P might point to a Cowboy in which case everything is OK but if it
is say a Circle we will get a “Message not understood” during execution. In
the second case the programmers assumption might be that all the objects
P will point to are graphical and Draw will thus have a certain meaning. If
there, however, happens to be a Cowboy object the result will be a surprise.

The qualified references, the production ver-

sion

In a language with qualified references we can declare pointers that are dedi-
cated to point to objects of a certain class or its subclasses and the problems
above are caught during compilation. We have to introduce a special class,
“Graphical”, in order to express the relation between three of the classes.

CLASS Graphical
virtual: Draw, Move

Graphical CLASS Line
operations: Draw, Move
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Graphical CLASS Rectangle
operations: Draw, Move

Graphical CLASS Circle
operations: Draw, Move

CLASS Cowboy
operations: Draw, Move, Shoot

pointer(Graphical) aG;
pointer(Cowboy) aB;
aG :- new Circle;
aB :- new Cowboy;
aG.Draw —is guaranteed to Draw of a subclass of Graphical
aG.Shoot —will be reported as an error by the compiler
aG :- aB —will also be refused by the compiler

In a typed language the superclass Graphical will be required to declare the
virtual operations Draw and Move in order to use them with a pointer qual-
ified only as Graphical. The operations are then implemented in different
ways in the three sub classes as shown above. Graphical is not intended to be
instantiated and such classes are often called “abstract”, Note that the sole
reason to introduce this class is to express this commonality between classes,
there is no code-sharing going on here.

Type-less programming in a typed language

Our first step towards a type-adjustable programming style is to show how
you can actually program type-less in a typed system. The rules are very
simple: (1) Make all classes subclasses (direct or indirect) of one class, say
AnyType. (2) D ec are 1 all virtual operations in class AnyType. (3) Declare
all pointers as pointers to AnyType objects.

This will result in that all pointers can reference any particular object and
that all operations are (from the compilers point of view) available in all
classes. The above example will become:

CLASS AnyType
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virtual: Draw, Move, Shoot
AnyType CLASS Line

operations: Draw, Move
AnyType CLASS Rectangle

operations: Draw, Move
AnyType CLASS Circle

operations: Draw, Move
AnyType CLASS Cowboy

operations: Draw, Move, Shoot

pointer(AnyType) P;
if . . . the P :- new Circle else P :- new Cowboy;
P.Shoot;
P.Draw

Here we can experience the same kind of errors (and thus achieve the same
freedom) as in a genuinely type-less language. P.Shoot may result in a exe-
cution error like “Message not understood” and P-Draw may be a surprise if
P points to a Cowboy object which is now perfectly legal.

Using this simple programming style lets us mimic a Smalltalk like pro-
gram development method. Not all issues have been addressed in the above
small example. Class hierarchy—in the above example all classes are sub-
class of AnyType. In a larger example there will be a deeper class hierarchy in
order to achieve code reuse. We will address this below. Instance variables—
they are not part of the external protocol in languages like Smalltalk and
we have ignored them above. If instance variables are considered part of
the external protocol they can be placed in class AnyType. Most likely they
are not and can be placed in the class hierarchy where they make sense (as
usual).

Using the style described here one can add classes, pointers and methods
with almost no interference with the compiler. Any errors in line of thought
or mistakes will show up during execution of the program in very much
the same way as in a Smalltalk system. The above rules lets us develop
prototypes and perform experiments in a Smalltalk like style. When these
have been successfully completed we like to take benefit of the type system
in order to help us create production quality applications. This can be done
through incremental changes to a program developed using the three rules
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defined above. The modifications to the program will follow three routes: (1)
Regrouping the classes into deeper hierarchies. (2) Propagate declarations of
virtual operations from AnyType to more specialized classes. (3) Narrowing
the pointer declarations to be more specific.

Conclusion

The motivation for this paper has been twofold. The proposed program-
ming style is new an may turn out to be useful. The description of how
type-less programming can be achieved in a language with strong typing
highlights some of the important differences between these radically different
approaches to object oriented software development. The type-less program-
ming style concentrate attention on the organization of the code itself (code
reuse). In the programming style using qualified references it is essential to
find commonality between classes (modeling).
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Typing Issues in Kea

W. B. Mugridge

My interest in this workshop stems from an ongoing research project into
the design of Kea, a tightly integrated functional/object-oriented language.
I provide a brief background of my work (with Hamer and Hosking) [33]
before answering the specific questions of the workshop.

Our research is concerned with providing a programming system which is
suited to building a class of applications which have not received wide at-
tention. This class is characterised by the need to model complex, richly
interconnected structures that are explored by the user to obtain some infor-
mation, check requirements, expand a design, etc. The model is essentially
static, but where the user makes changes to inputs to explore alternatives.
In order to make this easy for the user and the programmer, the system must
ensure consistency under change, so that the model that is visible to the user
is always correct.

Object-orientation was adopted as an appropriate way of representing cate-
gories, structures, and interrelationships between these. Consistency implies
the need for a functional language within this object-oriented setting, to-
gether with run-time dependency management to propagate the effects of
user changes.

Kea is a statically-typed programming language that inherits from the OO
paradigm the notions of encapsulation, inclusion-polymorphism, method over-
riding, and multiple inheritance. From the functional paradigm, Kea inherits
higher-order and polymorphic functions, type inference, and lazy evaluation.
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As discussed in the conference paper [52], Kea has the novel feature of
“dynamic classification”. A classification attribute specifies a “cluster”: a set
of mutually exclusive subclasses [63]. If class A has cluster {B, C}, dynamic
classification ensures that any object of class A will also belong to either class
B or C (but not both). In this way, clusters constrain types; for example,
the presence of cluster {B, C} means that no class can multiply inherit from
both B and C.

Kea supports multivariant functions, a typed form of Clos multi-methods.
As with multi-methods, the code chosen for execution (during dispatching)
depends on the type of all the function call arguments, rather than just the
type of the primary object (self). Unlike Clos, a form of encapsulation
is enforced; a function defined within a class need not be part of the class
signature.

Our Approach to Types

As far as the Kea programmer is concerned, classes are equated with types.
Equating classes with types at the language level allows the benefits of dy-
namic classification to be realised. Multivariant functions permit subclassing
to be equated with subtyping without violating contravariante constraints
and hence they avoid the need to separate type and class at the language
level, as compared to the approach of [10, 18].

At the language implementation level, we have a richer notion of types in
which type does not equate to class. In order to provide for the typing of
functions, least upper bound and greatest lower bounds must be defined; i.e.,
type expressions form a lattice.

Kea does not support assignment; I cannot comment on the issue of typing
of updates.

We are still coming to grips with the subtleties of typing; subclassing intro-
duces many interesting issues. While type systems for functional languages
appear to provide a basis for typing object-oriented languages, they need to
be extended to avoid various forms of type loss (such as those that arise for
multivariant functions from the principal type property).
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We wish to avoid explicit typing in Kea programs, including (bounded)
parametric polymorphism. We are still exploring the extent to which such
type inference can be carried out; certainly the typing of recursive multi-
variant functions is more complex than the typing of recursive functions in
functional languages (in Kea such typing is a multi-step process rather than
the single-step unification process used in functional languages).

If type inference can be carried to object parameters, we can introduce (para-
metric) polymorphic classes (i.e., generic classes) simply by permitting the
programmer to provide less type information in a program. If this becomes
feasible, it will be interesting to compare the flexibility of such a system with
the “type substitution” of Palsberg and Schwartzbach. Handling types ap-
propriately (and thus avoiding type loss) under separate compilation is an
important issue that will need to be addressed eventually.
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Subclassing and Subtyping

Jens Palsberg and Michael I. Schwartzbach

We have studied an idealized subset of Smalltalk in order to get a better
understanding of subclassing and subtyping [53, 56, 54, 55]. The project is
nearing completion, and in the following we survey its results and limitations.

Why Types?

There are three reasons for introducing types. All are motivated by deficien-
cies of untyped languages: they can be (1) unreadable, (2) unreliable, and
(3) inefficient. Types can remedy this by providing (1) type annotations,
(2) a safety guarantee, and (3) information for optimization. We have the
pragmatic attitude that anything meeting these requirements deserves to be
called a type.

For object-oriented languages, a suitable definition of type is set of classes.
Let S be such a set and x : S a type annotation. The information it carries
is that x can only evaluate to either nil or some instance of a class in S. The
safety guarantee can by obtained by verifying for every message send x.m(. . .)
that all classes in S implement a method m. The optimization is primarily
concerned with inlining the call of m whenever all classes in S have the same
implementation of m.

Our idealized language uses finite sets of classes as types. We restrict our-
selves to consider entire programs, and then finite sets of classes is an almost
universal notion of type; after all, in a particular program any predicate on
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classes can be expanded to yield a finite set. Note that also interfaces and
more general specifications correspond to predicates.

What is Subtyping?

Subtyping in object-oriented languages allows a more flexible typing of as-
signments and parameter passings compared to Pascal-like languages. With
types being sets of classes, it is natural to allow an object to have any type
containing its class. It follows that subtyping is simply set inclusion; for an
assignment x:=y the type of y must be contained in that of x (and simi-
larly for parameter passings). Any sound notion of subtyping must respect
inclusion of the associated sets.

What is Subclassing?

Subtyping and subclassing are conceptually unrelated. A language may have
one of them or both. We view subclassing as being primarily concerned
with code reuse. The well-known concept of inheritance can be seen as a
textual short-hand, which is particularly useful since the compiled code can
be reused, due to dynamic method lookup. In typed languages, it is also
important if code is reused in a type-correct manner.

With this simple view, there are no problems with updates or type-loss.

Generalized Subclassing

In our view, the previous formal models of classes and types are inappropriate
for studying code reuse. They put the emphasis on class interfaces, and tend
to ignore or water down the imperative constructs.

It seems unavoidable that a theory concerned with code reuse must employ a
model that makes explicit reference to source code. We have modeled classes
in a direct manner, as regular trees with nodes labeled by untyped, gapped
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source code. Surprisingly, this can form the basis for a mathematically at-
tractive theory of subclassing [55].

We have defined a partial order � on classes (i.e., on labeled trees) which
is a generalized subclassing relation. Specifically, if sup � sub holds, then
we know that sub can be implemented as a modification of sup while pre-
serving type-correctness and reusing compiled code. The implementation
is a straightforward generalization of the standard Smalltalk interpreter,
employing a dynamic search for the arguments of new [56].

The order � has the same basic properties as inheritance: it is decidable,
has a least element, has finite intervals, preserves the recursive structure of
classes, and excludes what we call temporal cycles (basically, cyclic inheri-
tance relations).

Class Substitution

It turns out that � has two suborders which form an orthogonal basis (corre-
sponding to a particular formal definition). One suborder is exactly realized
by inheritance, while the other is realized by a new subclassing mechanism,
which we call class substitution. Together, inheritance and substitution al-
low for the programming of all subclasses, and they are independent and.
complementary.

Class substitution can be seen to implement a general kind of genericity
which is superior to e.g. parameterized classes: any class is generic, can
be gradually generically-instantiated, and has all of its generic instances as
subclasses [53].

Type Inference

It might be considered desirable to obtain a safety guarantee and possibilities
for optimizations without requiring the programmer to think about types.
This leads to the problem of type inference, for which we have suggested a
solution for our idealized language [54].
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We have designed an algorithm that given an untyped program can compute
a sound approximation of the type of every expression, i.e., a superset of
the classes to instances of which it can evaluate. The algorithm employs a
so-called trace graph and generates a finite set of conditional set inclusions,
which is solved by a simple fixed-point computation.

Unlike some previous algorithms, ours can type-check most common pro-
grams. It is currently being implemented in a prototype version, which shows
hopeful promises about its efficiency and applicability.

Separate Compilation

Our approach seems incompatible with separate compilation, in the sense of
introducing new classes into a compiled program. We can, of course, allow
separate compilation of method bodies.

When new classes may be introduced, then finite sets are no longer sufficient;
after all,. one cannot predict the potential future classes. The solution is to
use more general predicates such as x :↑C, which expands to the infinite set
of C and all its subclasses.

Unfortunately, most of our results break down for such (finitely represented)
infinite sets. This is probably not coincidental, since languages supporting
both inheritance and types such as ↑ C invariably resort to some degree of
dynamic type-checking (or accept an unsound type system).
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Ideas for Types and Inheritance
in OOP

Oskar Permvall

I’m a PhD-student writing on OOP, especially on classification and compar-
ison of languages pretending they are object oriented. This includes finding
out which language constructs can be considered object oriented and how
they are defined. Functional programming is another major interest of mine
and my opinion is that it would be fruitful to apply ideas in functional pro-
gramming to concepts in OOP, e.g. higher order functions. My reason for
this is increased expressibility, higher readability, and shorter code among
other properties.

In order to define what is meant by being object-oriented one has to decide
which properties that are important and how to characterize them. Some
subjects connected to the topics of this workshop that I find relevant are
the difference between values and objects, the importance of a type system,
and the relation between inheritance and aggregation. Each of these will be
treated below.

Values and objects

What is an object in OOP? Is the number 1 an object? My point of view
is that it is not and I will try to motivate that a (good) OOL should have
two type-systems, one for value-types and one for object-types. What then
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is the basic difference between value and object?

A value is equivalent to the totality of its components and its type is a listing
of its component types, i.e., some kind of record, tuple, or list. Value types
are similar to algebraic types in functional programming.

An object has more to it than its visible methods. An object contains an
identity to distinguish it from other objects. Furthermore, it can contain
a program counter, if the class is allowed to contain code. None of these
should be visible in the type, i.e., an object is more than the totality of
its components and cannot be created by gluing components together. It is
natural to select the name of the class to be the type of an object.

The essential point is that a value does not have an identity, which gives that
if a certain value is in one or two locations in the memory depending on how
it is represented, should not matter to the programmer. Basic examples are
all kinds of enumerable types, like numbers, booleans, strings and so on.

Another point is how the language treats equality, values should be tested by
structural equality while checking identities is the right thing for objects. If
we had that numbers where objects then it could happen that 1=/=1 since
they were different instances, i.e., if numbers were objects then there has
to be at most one instance of every number and it would carry an identity.
Furthermore, if numbers are implemented as objects then it will not be easy
to reason about expressions using ordinary algebraic laws.

A programmer is free to choose if he wants objects or values and design
his structures based on that decision. There is nothing that forbids one
to implement trees and other structures as values and complex numbers as
objects but it will be unusual to do so. For example, in an OO system for
graphics it seems clear that a line should be modeled as an object, but a
point, is it a value or an object? My view is that it is a value but if it has
more attributes than coordinates then I would consider it to be an object.
Generally speaking, most concepts seem to have both aspects and it depends
on the application which to choose (compare the wave/particle dualism of
light in physics).

Values and objects are not on the same level because an object can have value
components while a value cannot have objects as components since then it
would become an object.
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Typing

Types help you to structure your problem and increase readability and main-
tainability. Types is a complicated notion with several dimensions. Three
of these dimensions are weak vs. strong, explicit vs. implicit, and static
vs. dynamic. A strongly typed language has a fixed type associated with
every variable and this type carries all information about the value stored
in the variable. A weakly typed language is close to an untyped language,
i.e., you do not know what to expect of a value stored in a variable. See [50]
for a discussion of this an related matters. An explicitly typed language has
all type information written out, while the compiler computes the necessary
type information in an implicitly typed language. A statically typed lan-
guage has no run-time checks and a dynamically typed language decides if it
is well-typed at run-time. These dimensions are continuums and are orthog-
onal. Concepts such as polymorphism and other hierarchical type systems
are within the first dimension.

Here follows some examples from the first dimension. Everyone that has
tried to create a flexible list or tree system in Pascal without using large
variant records (which implies that type safety is lost) will agree that it is
an example of a too strongly typed language. Simula’s and Beta’s class
hierarchy and qualified reference system is one solution to that problem,
but we have moved towards the weak end. Smalltalk is a weakly typed
language because it has no types associated with variables. Loops and other
Lisp-based OO systems belong to the same class. If a language is extended
with parameterized types, then it does not necessarily change its position in
the first dimension.

Having both values and objects implies two different type systems in the
language. Classes in the object-world will be replaced by some kind of module
in the value-world and these modules will be typed by their signatures rather
than their names. The module system of ML can serve as an example of a
module system in the value-world.
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Inheritance and aggregation

Inheritance is a class operator. It takes a class and a class-piece (should be
defined better) yielding a new class. A question well worth to investigate is
if there are other operators that it would be useful to introduce into OOP?

Inheritance means different things to different people and this causes some
controversy in the 00 community. The inheritance mechanism is used in at
least two different ways, as a method for building a conceptual hierarchy and
as a language for reusing or aggregating software components. This ambigu-
ity is not good and my view is that inheritance should be restricted to the
concept hierarchy and a new (sub-)language should be defined to cope with
aggregation and its special needs. Multiple inheritance is often advocated as
a solution for combining classes while it is actually an aggregation language
that is wanted.

This aggregation language would have operators to combine classes to form
new classes and specify sharing, internal communication, exception handling,
and so on. However, the major unsolved question is if aggregations are classes
or something else? As always, there will be definitions that is in-between,
i.e., they can be considered being both a concept and an aggregation.

To introduce a third system of operators for the aggregation language is a
bad solution. I have no evidence, but believe that a module language for the
value type system would have many similarities with an aggregation language
for the object world and therefore can be used as an aggregation language.
There will be no problems to keep the semantics apart since building new
value types involves no objects and vice versa. The only problem I can predict
is that the aggregation language will need more operators, structures and so
on than the module language needs.
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On treating Basic and
Constructed Types Uniformly
in OOP

Markku Sakkinen

Objects, values, and types. I agree on most points with the classic
paper [48]: both values and objects and a clear distinction between them
are useful in programming. I would like to have both objects (concrete) and
values (abstract) of all types, i.e., the abstract-concrete dichotomy should be
independent of type. Especially, there should be objects (variables) of basic
data types, as in most conventional, non-OO languages. However, there
can be no abstract values of a reference type, nor of any complex type that
contains references. Thus the set of object types is a proper superset of the
set of value types.

A slight confusion between values and objects usually seems to be coupled
with a similar confusion between objects and references. I want to distinguish
between any type T and type ref T. I also prefer that aggregate objects need
not have only references as their components. In these respects I regard
languages like Pascal, Ada, and C++ as superior to most object-oriented
languages.

It is also useful to have immutable (constant) concrete objects. Furthermore,
in the presence of references, it is sensible to distinguish between two degrees
of immutability. An immutable object is totally immutable if and only if
either it contains no references, or all references in it are to totally immutable
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objects. (To make all cyclic cases unambiguous, this would obviously need a
little technical refinement.)

How to inherit from a basic type

I will discuss here only “essential inheritance” in the sense of [59], i.e., im-
plying an is-a relationship. Since we are not limited to reference semantics,
“incidental inheritance” can be seen simply as a special case of aggrega-
tion/composition, as outlined in that paper. The same view on “private
inheritance” in C++ is taken in [5].

Inheritance (prefixing, type extension) is ordinarily defined for record like
types only. Basic types such as Integer are not records; how should the
same principle be extended to them? A solution essentially exists already in
Simula: allow a superclass name, as an alternative to an attribute (compo-
nent) name, as the second operand of a qua clause! If we define a new class
My integer that inherits from Integer, we can refer to the integer part by self
qua Integer, or if you prefer, self.lnteger.

Objects of type My integer can be either mutable or immutable; the value
of the integer part must be given in the initialisation at least for immutable
objects. If the class were not to be completely encapsulated, literal My integer
values could be denoted by a display notation.

In the interest of symmetry, one could like to refer also to the incremental
part (“difference class” instance) of a My integer object as a whole, e.g., self
qua (My integer–Integer). There is one important point on which I prefer the
meaning of class qualification in C++ to that of qua in Simula: in C++
it affects the selection of virtual operations. It is a great disadvantage in
Simula that there is absolutely no way to invoke an overridden superclass
version of a virtual procedure or function in the context of a subclass object.

One could inherit from any non-record constructed types (arrays, sets, se-
quences, . . . ) i.n the same way as from basic types, if such type constructors
exist in the language at hand. My opinion is that it is nice to have such
structured types as language primitives rather than as parameterised classes.
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Does this generalise well?

With single inheritance, there is evidently no difficulty when the parent is
an “ordinary” (record-structured) class—of course: that is the case we gen-
eralised from. Even multiple inheritance (MI) is rather simple if the parent
classes are pairwise mutually independent, i.e., have no common ancestors.
I would regard any name clashes in this case as accidental, to be resolved by
superclass qualification.

The “fork-join” MI case, i.e., where parent classes have common ancestors,
is more complex. While I did not see any problems in the MI principles of
C++ yet in [59], I now agree with [5] that there should always be only one
subobject of any ancestor class. I.e., in the C++ model and terminology,
base classes in public inheritance should in principle always be virtual.
The proposal of the previous section makes sense un-der this approach: e.g.
multi-level superclass qualifications would never be needed.

Of course, all subobjects cannot be contiguous in fork-join MI. This is one
argument (efficiency) why it should be possible to forbid, in a class definition,
the use of a given inheritance relationship in fork-join MI by subclasses. If
class B inherits class A with this restriction, no further class should inherit
both B and another subclass of A. There can often be a much stronger,
semantic reason for such a restriction besides efficiency: the need for guar-
anteedly non-shared subobjects.

No magic can help that the handling of virtual operations that are overridden
on more than one path from their class of declaration to the most specific
subclass, is problematic, as illustrated in the literature [64]. It could be
considered to forbid fork-join inheritance also in such cases. On the other
hand, method combination schemes as in CLos can obviously help a lot in
typical situations.

Some subtleties

In the “object algebra”, we could regard the non-inherited parts of each class
definition as forming the basic subobjects, and any combination of those
could be regarded as a subobject. (If Paul Johnson’s fine-grained inheri-
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tance principle is followed, there will be a lot of basic subobjects in most
objects.) qua could then have any corresponding class combination as its
second operand.

Now, if we invoke a virtual operation using qua, what should happen to self
in that invocation? As far as I know, self still denotes the whole object in
all common languages. There could be a need for an alternative that would
bind self to the qualified subobject. This would be a slight generalisation of
here, as recently proposed by Mario Wolczko.

There are well-known complications in comparing and copying objects. One
reason why I prefer value semantics to reference semantics is that, when
classes are sensibly designed, straight component-by-component comparison
can often be “the right thing” in Ada or C++; in referencebased languages
almost always, shallow equality is too shallow and deep equality too deep.
The same applies to copying. Besides, reference-based languages usually do
not offer any equivalent of a Pascal or Ada assignment except for simple
types and references.

One typical disadvantage of languages with value semantics (e.g. C++) is
that restricted polymorphism (subclass object standing for superclass object)
is possible only for references (pointers). However, this defect is avoidable:
[37] contains a proposal for extending polymorphism to non-pointer, class-
type variables. That proposal could be implemented e.g. by variables with
“reference pragmatics” but value semantics.
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Types in Ansa DPL

Andrew Watson

Ansa is a distributed computing architecture with an object-based compu-
tational model in which clients interact with objects through interfaces, each
comprising a set of operations. In order to support the heterogeneity implicit
in distributed systems, the computational model type system assigns abstract
types to interfaces. Objects themselves cannot be directly manipulated and
therefore have no type.

Introduction

The Ansa computational model

Ansa (the Advanced Networked Systems Architecture) is an architecture for
distributed computing systems.

Ansa’s application programming model (called the computational model) is
intended to insulate the programmer from the way that his application is
distributed over a network of computers. This distribution transparency is
achieved using an object-based4 model in which all objects are potentially
located on separate network nodes, and only interact by explicitly requesting
each other to perform actions on the state that they encapsulate. Since
all communication between objects is explicit, potential failures (either of

4The term object-based is used in the sense proposed by Wegner [68] to mean that the
model has objects, but does not support classes or inheritance.
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communication or of objects) have well-defined effects which are incorporated
into the model.

Compared to the Smalltalk- object model [27], the Ansa computational
model has the following salient features;

• Objects are completely autonomous. They may be created by factory
objects, but thereafter have no special relationship with the factory or
any other object. There is no object containment, classes or run-time
(“reactive”) inheritance.

• Each object may have one or more interfaces, each of which is a collec-
tion of named operations, akin to methods. Clients of the object hold
references to interfaces (rather than to the object itself), and interact
with the object by invoking operations in those interfaces. This allows
an object to present different abstractions to different clients. Objects
may dynamically create new interfaces.

• Each operation has a predefined set of possible outcomes, called ter-
minations, each with an intrinsic name that distinguishes it from the
operation’s other possible terminations. All terminations have equal
status, and each carries a predefined number of result param-eters.

Type system requirements

Support for heterogeneity

Ansa hides heterogeneity (both of hardware and software) from the applica-
tion programmer. The computational model type system must classify object
interfaces solely by the services they perform, not by their implementation.
This leads to a system based on abstract types.

Support for trading

Ansa supports dynamic configuration of distributed systems via trading. A
trader is a broker that accepts and records references to object interfaces pro-
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viding publically-offered services. Upon receiving from a prospective client
a specification of a service that it requires, the trader searches its internal
database and returns a reference to a suitable service, if it knows of one. The
client then invokes the service using this interface reference, without further
interaction with the trader.

Should a client attempt to invoke on a service obtained from the trader an
operation that it does not support then an interaction error results. To
guard against this, and also against the complimentary failure should the
service return a termination not understood by the client, the trader accepts
from the client a representation of the abstract type it expects the service
to possess. The trader checks this against the abstract type of the offered
service to ensure that there can be no interaction error when the client comes
to use the service.

There are many possible relationships between a pair of types that satisfy this
requirement; the weakest (and hence the least restrictive on the programmer)
is the type conformance relationship [57]. Briefly, type S conforms to type
T provided that every operation that can be performed on T may also be
performed on S, and every termination from every operation in S is also
present in the corresponding operation on T . Where the operations and
terminations have parameters, these must match in number and conform in
the appropriate direction.

Support for federation

Ansa supports interconnecting hitherto-unrelated distributed computing sys-
tems, allowing interworking that is transparent to the application program-
mer. This precludes type systems based on programmer assertions of rela-
tionships between types; when two systems “meet” for the first time, merg-
ing the type relationship databases of the two would require a great deal of
(human) effort. This federation requires a type system in which the rela-
tionships between types are computed automatically as needed (e.g. when
trading) rather than explicitly specified in advance.

75



DPL

Dpl (Distributed Programming Language) is being developed for construct-
ing Ansa distributed applications using the computational model. While
computationally complete and capable of being used as a programming lan-
guage in its own right, Dpl is intended to be used in conjunction with an
existing language (such as C).

Dpl is a statically-typed, block-structured object-based language whose de-
sign owes much to that of Emerald [57].

Bindings in DPL

Object state is represented as bindings of names to values; these bindings may
be either variable, meaning that their contents may be changed by assign-
ment, or constant, meaning that they may not be updated once established.
This distinguishes bindings that are used to name parameters and interme-
diate results from those that represent mutable object state, thus assisting
both programmers and compilers.

Type declarations

Dpl uses few type declarations; interface types are declared explicitly when:

• creating a variable binding, but not a constant binding (since in the
former case the programmer may wish subsequently to assign interfaces
of various types to the binding)

• declaring the formal parameter list of an operation (since the body of
the operation may be compiled separately from programs that invoke
it).

76



Current status

Initial work on the type system was performed by Alastair Tocher (BNR
Europe) and Owen Rees (APM) [65], with the latter implementing a type
checker as part of the prototype implementation of Dpl. This performed
static type checks where possible, but the design of the language at that
time did not permit the types of all expressions to be determined statically.

After study by Simon Brock (UEA) and the current author the structure
of Dpl is being altered to remove these unhelpful features of the language,
which (amongst other things) allowed the programmer to produce types that
change over time and type computations whose outcome depends on data not
available until run-time. This redesign is still in progress, but it is expected
that a static type system can be constructed which supports all Ansa’s
requirements.
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Model-oriented Type
Descriptions and Inheritance

Alan Wills

Types (descriptive of behaviour) and classes (prescriptive of implementa-
tion) are clearly different. Inheritance can be seen as the derivation of one
description from another—whether of type, class, or whatever. Subtyping is
about substitutability, and subclassing is arguably just about inheritance of
class attributes.

Automatic type-checkers are limited to checking signatures—sometimes with
extra clues about the programmer’s intentions from naming, property labels
(as in Pool) or a theoretically spurious linkage to inheritance (as in C++).
But ideally, subtyping should depend only on proper behavioural descrip-
tions. This becomes practical and interesting if we are interested in formal
specification and verification (aside from any questions about whether that
is a worthwhile endeavour!)

So what is the most practical way to describe a type? What implications
does inheritance have for this description?

Model oriented or axiomatic (or both)?

The two traditional camps in specification-the property-oriented algebraists
(Obj etc.) and the operation-specifying model-orienteers (Z, Vdm etc.)—are
not at such opposite and immiscible poles as they might seem.
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Both styles begin by defining a type as a signature: i.e., a set of signatures
of visible operations. The divergence comes in defining the behaviour. The
operation-specifying styles achieve some clarity of notation and simplified
proofs by defining just one property per operation; but this is a convenient
rather than a mandatory association with the model-oriented approach, and
multiple properties per operation are useful when combining inherited and
locally-defined properties.

Algebraic specifications define equalities between applicative terms or se-
quences of operations; whilest model-oriented specifications define the effects
of operations on a hypothetical set of components (a “model”) of the object’s
state, and vice versa. This contributor favours appropriate technology: alge-
braic specification is necessary and useful for the simple types like numbers
and stacks; model-oriented specification is more readable and intuitive for
anything larger.

In any case, some algebraic specifications will always require intermediate
existentially-quantified variables [7], which amount to a model. The point of
a model is that it shares one description of the intermediate state between
several properties, making them easier to read and less errorprone to work
with.

Type notation

So a model-oriented type description consists of a signature, model compo-
nents (hidden variables) and properties. The operations in the signature may
be “typed” in the conventional sense, so that the automatic typechecker can
do some of your verification; the theorem-prover (wholly or partly human)
takes over for the hard stuff in the properties.

Type-descriptions can be combined with class-descriptions—which are signa-
ture, variables, and methods—allowing properties to directly document real
variables and operations; and supporting the traditional and useful “abstract
class”, which is both specification and part implementation.

The usual op-spec style divides properties into invariants (static constraints
on hidden components) and op-specs (governing state transitions) in the form
pre ⇒ post , where post includes references to before and after states. This
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separation simplifies implementation proofs, especially where the models are
different. But you have to be careful that op-specs don’t inadvertently impose
static constraints on model variables.

Model-oriented subtyping and inheritance

You choose a specification model for convenience and clarity; implementa-
tions are chosen for performance and maintainability, and may look entirely
different. You have to verify that your implementation behaves the same as
your model dictates (but not that it uses the same components). There’s no
violation of the principle of encapsulation here: the model-oriented specifi-
cation tells you nothing about the innards of any implementation.

An example is a compiler symbol table, modeled with clarity (and user-
defined generic types) as

SymbolTable(Ref) = Stack(Dictionary(Symbol, Ref))

but implemented much more efficiently, perhaps as a single dictionary.

A complex development should end up with a simple model at one extreme,
an implementation at the other, and perhaps several “reification” stages in
between. Since the models should be different, this subtyping will have noth-
ing to do with inheritance, but instead should be documented with reification
proofs (even if informal ones).

On the other hand, where the reification does happen to be an extension by
inheritance, the proofs are a lot easier, if not vacuous.

A type which inherits its properties is bound to be substitutable for its par-
ent; but properties inherited from different parents may conflict with each
other and with the locally-added properties, resulting in an unimplementable
type. The art of successful model-inheritance is therefore to ensure that the
extensions are conservative. Essentially, invariants should only constrain
their “own” variables, not those belonging to a parent. Name-clashes from
multiple parents need to be resolved by renaming unless the variables orig-
inate from a common ancestor. Op-specs applying to the same operation
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can be conjoined; the case where the preconditions are disjoint is trivially
non-conflicting.

The model-oriented approach seems, at not too onerous an expense, to offer
a good readable style—which is the important thing while program construc-
tors and theorem provers are still people.
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Discussions

The workshop is organized as five discussions, the topics of which are outlined
below.

Classes versus Types

This topic has been touched upon by most position papers. There is some
concensus that classes describe implementations, whereas the role of types
is much more in question. Definitions of types range from types in the λ-
calculus, over class interfaces, to simply classes. Naturally, these views carry
over to subclassing and subtyping. Do the differences reflect genuine dis-
agreement about the premises of object-oriented programming, or do they
merely arise from emphasizing different areas of application?

Static versus Dynamic Typing

Many languages aspire to achieve static typing. However, this ideal is often
sacrificed for added flexibility. It has been argued that type systems based
on contravariance are too restrictive; others argue that type systems based
on covariance require too many run-time checks. There is also some dispute
about the motivations for wanting static typing. Efficiency is often brought
up, but how strong is the connection? Can one responsibly deliver a product
in which “message not understood” may occur?

90



Type Inference

Do programmers want explicit type information in their programs, or do they
prefer the prototyping style of e.g. Smalltalk? Are types in many existing
languages too cumbersome? Can their benefits be obtained through type
inference?

Challenge Session

Most type systems are quite hard to compare on a formal basis, since their
premises are radically different. A shortcut to reaching an understanding may
be to compare the way some specific programming tasks are achieved under
the various approaches. We invite participants to present small examples
that they feel are important and representative.

The Future?

Cardelli, in his position paper, warns that many languages may be “just too
complicated” and advocates that the time is ripe for consolidating some basic
ideas. Does this correspond to common attitudes? If so, which are the basic
ideas that we can agree upon? What are the future developments that most
people would welcome as important and significant?
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University of Jyväskylä E-mail: sakkinen@jytko.jyu.fi
PL 35, SF-40351 Jyväskylä
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