
Distributed CCS

Padmanabhan Krishnan∗†

Department of Computer Science
Ny Munkegade Building 540

Aarhus University
DK 8000, Aarhus C Denmark
E-mail: paddy@daimi.aau.dk

July 1991

Abstract

In this paper we describe a technique to extend a process language
such as CCS which does not model many aspects of distributed com-
putation to one which does. The idea is to use a concept of location
which represents a virtual node. Processes at different locations can
evolve independently. Furthermore, communication between processes
at different locations occurs via explicit message passing. We extend
CCS with locations and message passing primitives and present its
operational semantics. We show that the equivalences induced by the
new semantics and its properties are similar to the equivalences in
CCS. We also show how the semantics of configuration and routing
can be handled.

1 Introduction

A number of different types of parallel and distributed machines have been
built. These include vector machines [Rus78] data driven/demand driven ma-

∗The author acknowledges support from the Danish Research Council
†To appear at CONCUR-91

1

chines [TBH82], shared memory systems (like the Sequent) and distributed
memory systems ranging from a network of work stations to well structured
architectures like the hypercube. More parameters such as heterogeneity,
reliability for fault-tolerance etc. add to the variation. Despite the variety,
a common factor is the presence of multiple processing elements and inter-
connection between them. For such machines to be useful, applications must
use the multiple processors, which requires the decomposition of the appli-
cation into partitions which can be executed in parallel. Any co-operation
between the partitions (synchronization, communication etc.) must utilize
the interconnections.

Given the wide variety of architectures, it is not surprising that a variety
of programming languages have been proposed; each addressing a subset of
the architectures. Many languages are based on the message passing between
a set of parallel processors [INM88]. Other approaches include using a dis-
tributed data-structure (tuple space [Gel85]), using the parallelism available
in functional programs, parallel logic languages [CG83]. [Mar89] gives an de-
tailed description of the various approaches. Our aim is to develop a calculus
in which the following can be studied: 1) Expressing parallelism, 2) Describ-
ing the effect of parallelism and 3) Mapping of the expressed parallelism to
a physical environment.

Labeled transition systems have been used to describe concurrent sys-
tems [Mil80]. The syntax of CCS is simple and yet powerful enough to
express parallelism, non-determinism and synchronization. However, it does
not address issues to related to modeling the physical environment. Also
the operational semantics of CCS reduces parallelism to non-determinism
(or interleaved execution of actions: the expansion theorem for CCS). This
is due to the presence of only one observer with the power to observe one
action at a time. We provide a semantics for CCS which is “distributed”.
Given that there is no uniformity in the nature of distributed architecture,
one needs to define “distributed”. For that we consider the natural language
meaning of the terms concurrent, distributed and parallelism. Concurrent is
defined as “happening together in time or place”; distributed as “scattered
or spread out over a surface” and parallelism as “without interactive causal
relationship”. In CCS concurrent has the interpretation of place or proces-
sor. Thus it is not surprising that parallelism, given one place, reduces to
non-determinism. Our goal is to “scatter parallelism over a surface”.

2

Given that parallelism is to be mapped over a surface, the question arises
as whether to allow the process to contain some information regarding the
mapping. If so, another level of abstraction can be created. The mapping
information available in the process can be considered to a logical represen-
tation of the surface. One then studies the effect of mapping a logical surface
to a physical surface. In distributed computation, one considers the repre-
sentation of distribution also called binding and the mapping of binding to
the physical surface, i.e., configuring. This view is indeed taken by the advo-
cates of the virtual node approach to distributed computing [CM87]. Thus
there are two stages in program construction, viz., 1) distributed surface with
logical binding and 2) the configuration of distributed memory.

In section 2 a semantics for distributed memory systems is developed and
in section 3 some of the issues related to program development are discussed.
In section 4 a few examples are presented.

2 Distributed CCS

Distributed systems do not share memory and hence the location of a process
in the system is important. Given a number of processors, a process can only
use the processor associated with the memory unless it is explicitly relocated.
As both binding and configuration are to be considered, an extension to CCS
is necessary. A notion of location has been introduced in CCS [KHCB91]
to study the distributed nature of processes. Their primary concern is the
logical construction of processes without considering the architecture the
process is executing on. The idea of location has also been used in other
languages [Hud86]. We use the same syntax as in [KHCB91] but give a
different semantics.

In the semantics for CCS, any two processes could synchronize. This
cannot be permitted in the distributed case. A local transition depending
on behavior at a remote site is unrealistic. Consider, for example, the CCS
process ((a+b) | (ā+ b̄))\{a, b}. If the two parallel processes are physically
distributed, the decision to execute a(or b) has to be taken in co-ordination
with the ā(or b̄). If a general CCS process is to be executed on a physi-
cally distributed environment a non-trivial protocol to effect these decisions
is essential. Therefore, deriving a distributed implementation from the oper-
ational semantics is not straight forward.

3

For the distributed case, a protocol based on the send/receive primitives
is more appropriate. This then requires a definition of buffers, where the
messages sent are stored before actually ‘used’ by the process. Towards this,

we assume special actions such as
<l,a>
❀ , which indicates the sending of action

a to location l. This message is buffered by a process on location n by cre-
ating a process which can engage only in action ‘a’. This can be generalized
to communicating an arbitrary process. As we do not limit the number of
parallel terms in a process, unbounded buffering is modeled.

Definition: 1 Define a finite set of locations L, a set of local actions Lact

(represented by a,b), a set of sending actions Sact (represented by
<l,a>
❀). The

cardinality of Sact is less than or equal to the cardinality of L× Lact. Let τ
represent synchronization and δ represent idling (of a location). The set of
actions is Act = Lact ∪ Sact ∪ {τ, δ}.

The basic syntax for our language (with µ being any action, l any location,
and H a subset of Act) is as follows:

P = Nil | µ ;P | (P | P) | P + P | (1 :: P) | (P \H) | rec(X̃:Ẽ)

Nil is a process which can exhibit no further action. µ ;P represents
action prefix; i.e., after executing µ the processes behaves as P. (P | Q) is
the parallel combination of P and Q, while P+Q represents choice between
P and Q. (l :: P) restricts the execution of P to location l, (P \H) restricts
the behavior of P to those actions not in H. rec(X̃:Ẽ) is recursive process.
We place the usual restrictions that terms must be closed and the recursion
guarded.

Given that a process has location information, an observation now is a
pair consisting of action and location. As processes on different locations
can execute in parallel behavior is characterized by a set of observations
with the restriction that processes can exhibit multiple actions if they are at
different locations. Process can synchronize if the are at the same location.
A structural operational semantics [Plo81] is defined as an generalization of
the rules for CCS. We assume that the following black-box is a model of a
distributed system which runs a process given a set of processing elements
(locations). There is a step line which when toggled advances each processing
element by one step. The observer first toggles the machine and then notes
the behavior on each of the locations (which may appear at different times

4

with respect to a global clock) and the process continues. This is similar to
the step semantics developed for Petri Nets [vGV87].

The following definitions are used in the operational semantics which is
defined in figure 1.

Definition: 2 Let OL represent the function space from L → Act. This
is used by the operational semantics to identify the action observed at any
location.

Definition: 3 Define the transition relation −→D⊆ Processes ×OL× Pro-
cesses.

Also define two projection functions Location and Action, which return
the location/action part of the observation.

Definition: 4 Define S1+S2 as follows: S1+S2 = S where

S(l) =




S1(l) if S2(l) = δ
S2(l) if S1(l) = δ

τ if S1(l) = S2(l)

The idea is that the two behaviors (Sl and S2) can be exhibited in one
step if the non-idling actions are on different locations. If a location can
exhibit two actions, they must be synchronizable and the combined behavior
will exhibit τ .

The distributed operational semantics is defined in figure 1. We label the
transition with only the non-idle observations. All locations not present on
the label are assumed to exhibit the idle action (δ).

An informal explanation of the semantics follows. A process with no
location can be executed at any location. However, the remainder of the
process is constrained to executed at that location. This can be thought of
as the initial loading of a process. The sending of a message to a particular
location results in creating a process at that location which can only engage
in the action contained in the message. Furthermore, the message passing is
visible to the observer. As we have not named processes, one cannot send a
message to a particular process. This can be simulated by ensuring only ‘one
process’ at a location, and the result of sending messages to it as the buffers.
A process already assigned a location can exhibit actions on that location.

5

Lact Prefix a; P
{<l,a>}−→D l :: P∀ l ∈ L

Sact Prefix
<m,a>
❀ ; P

{<l,
{<m,a>}

❀ >}−→D (l :: P) | (m :: a)∀ l ∈ L

Location
P

{<l,µ>}−→D P′

l :: P
{<l,µ>}−→D P′

Interleaving

(Asynchronous Evolution)

P
S−→D P′

P | Q
S−→D P′ | Q

Q | P
S−→D Q | P′

Parallelism

P
S1−→D P′, Q

S2−→D Q′, S = S1 + S2

P | Q
S−→D P′ | Q′

Q | P
S−→D Q′ | P′

Hiding
P

S−→D P′,
Action(S) ∩ H = ∅ and Action(S) ∩ H = ∅

P \H S−→D P′ \H

Recursion
Ei(rec X̃ : Ẽ/X)

S−→D P′

reciX : E
S−→D P′

Figure 1: Operational Semantics

6

In the operational semantics of l :: P we do not restrict P’ to location l.
The restriction is introduced by the transition of P. Furthermore, P could
have evolved to P’ via a send (say to location m) in which case P’ has the
structure: l :: P” | m :: a. Then l :: P’ cannot exhibit a.

In this paper we do not consider relocating the processes to the appropri-
ate location. Processes can evolve ‘independently’ of other processes mod-
eling asynchronous behavior (the first | rule). The parallel combination of
two processes exhibit ‘true concurrency’ if their locations are disjoint. Pro-
cesses can also synchronize in the usual way. The hiding operator restricts
the actions a process can exhibit. The restriction applies to all locations.

2.1 Bisimulation

In this section we establish a equivalence relation between processes based
on the well known notion of bisimulation [Par81]. The use of bisimulation
is to identify processes which cannot be distinguished by an observer. For
this draft we assume that the observer is equipped to observe a single action
(including synchronization, idling) at every location.

Definition: 5 Define a relation on processes R to be a bisimulation such
that if P R Q then

P
S−→D P′ ⇒ ∃ Q′ such that Q

S−→D Q′ and P ′ R Q′ and

Q
S−→D Q′ ⇒ ∃ P ′ such that P

S−→D P′ and Q′ R P ′

Definition: 6 ∼D=
⋃{R such that R is a bisimulation}

7

Proposition 1 ∼D is a congruence

P + Q ∼D Q + P

(P + Q) + R ∼D P + (Q + R)

P + P ∼D P

P | Q ∼D Q | P

(P | Q) | R ∼D P | (Q | R)

P | Nil ∼D P

l :: (P | Q) ∼D (l :: P) | (l :: Q)

l :: (P + Q) ∼D (l :: P) + (l :: Q)

l :: (P\H)
∑

D(l :: P)\H

Proposition 2 If (l1 �= l2), l1 :: (l2 :: P) ∼D Nil .

Proposition 3 If P and Q are processes without location, (l :: P) ∼D (l :: Q)
implies P ∼D Q.

The above proposition does not hold if P and Q are allowed to contain
locations. For example, if P = l :: nil and Q = m :: a, l :: P ∼D l :: Q but
P is not ∼D Q.

As we have assumed only one processor (or observer) at any given loca-
tion, the expansion theorem for CCS translates directly to the location case.

Proposition 4 If P =
∑

I ai; Pi and Q =
∑

J bj; Qj then l :: (P | Q) ∼D l ::
(
∑

I ai; (Pi | Q)) + l :: (
∑

J bj; (Qj | P)) + l :: (
∑

ai=bj
τ ; (Pi | Qj))

Example 1 Note that the expansion theorem in CCS is not ualid directly.
In general, (a | b) is not bisimilar to a; b + b; a. If there are two locations (l
and m), (a | b) can exhibit < m, a >, < l, b >, which a; b+ b; a cannot exhibit.
But l :: (a | b) is bisimilar to l :: (a; b + b; a).

However, a; (b; c+ c; b) is bisimilar to a; (b | c). This is because the execu-
tion of action a fixes the location for the remainder of the process. If a parallel
execution of b and c is to be permitted the process can be coded as follows. Let

l1 and l2 be two distinct locations. (a;
<l1,t>
❀ ;

<l2,t>
❀ | (l1 :: t̄; b) | (l2 :: t̄; c)\{t}.

The termination of the action a is explicitly sent to the two locations. Pro-
cesses at the two locations wait for this information before proceeding in par-
allel.

8

Proposition 5 If L = {l1, 12, . . . ln},

a; P ∼D
∑

li∈L li :: (a; P)

P | Q ∼D
∑

li∈L(li :: P) | Q +
∑

li∈L P | (li :: Q)

Bisimilarity involving the hiding operator is more complex than in CCS.
In CCS (b;P)\{a} is b isimilar to Nil if b is equal to a, and to b;(P\{a})
otherwise. While this holds in our case the relation involving send actions

is not straight forward. For example, l :: (
<m,c>
❀ ; b | m :: a)\{a} is bisimilar

to l ::
<m,c>
❀ ; b. This is because the a action on m cannot be executed and

there is no action which sends ā to location m. However, (l ::
<m,a>
❀)\{a}

is not bisimilar to l ::
<m,a>
❀ as the latter can exhibit a at location m; nor

is it bisimilar to Nil as the former can exhibit a send action. Similarly

l :: (l :: (
<m,ā>
❀ ; b | m :: a)\{a} is in ‘normal form’ as there is a causal link

between the send action and the b action on l and the a action on m. These
observations play an important role when considering the axiomatization of
the bisimulation equivalence which will be reported in a forthcoming paper.

In the above definition of bisimulation equivalence, we assumed that the
observer could observe the τ action. The equivalence constructed is referred
to as strong bisimulation. Another equivalence which is well studied is weak

equivalence. Towards that, a transition relation =⇒ as P
a

=⇒ Q iff P(
δ−→

)∗
a−→ (

δ−→)∗ is defined. The generalization to the above definition to the
distributed case is not straight forward. This is because we define a stepped
semantics and evolutions from multiple locations is possible. For example,

transitions such as P
<l,a>,<m,τ>−→D P′ have to be mapped to one without τ .

Omitting the < m, τ > is not advisable. If P were placed in a parallel
context (such as P | Q) Q would be able to exhibit an action at location m
in the same step as P exhibits < l, a >. By disallowing step semantics one
can use the original definition, but the presence of step semantics requires a
reformulation. An appropriate reformulation of observational equivalence in
the presence of step semantics is being studied.

9

2.2 Testing

In this section we look at the applicability of the ideas developed in [DH84]
for testing distributed processes. CCS processes are tested by CCS processes
equipped with a special action ω which indicates success. Two basic types
of testing are defined as follows:

Definition: 7

A process p may satisfy a test o if (o | p)
τ∗−→ q and q

ω−→.

A process p must satisfy a test o if (o | p)
τ−→ (o1 | p1)

τ−→ . . . (oi | pi)
then ∃ n ≥ 0, on

ω−→ and if (ok | pk) can diverge, then for some k′ ≤ k,
ok′

ω−→ (also called the existence of a successful extension).

A similar technique can be used for distributed processes. However, given
the current definition of the operational semantics, permitting only τ ’s in the
testing relation is not sufficient. In CCS all non-τ actions had a correspond-
ing synchronization action. In our extension, elements of Sact cannot be
synchronized to produce a τ action. Therefore, one cannot differentiate be-

tween l :: (a +
<m,b>
❀) and l :: (a). Therefore one has to permit send actions

to be part of the testing process. If one considers τ as communication at a
local site, then send actions are communications across sites and contribute
to the testing process.

The semantics of the parallel combinator permits both ‘asynchronous
interleaving’ and ‘simultaneous evolution’ of processes at different locations.
The testing process must be permitted to test for transitions at different

locations; otherwise it will not be able to distinguish l :: (a;
<m,b>
❀ ; c) and l

:: (a;
<m,d>
❀ ; c). However the testing procedure may be restricted to observe

only interleaving of actions across all locations.

Another issue is the observation of success. One may insist that a test is
successful only if ω is observed at ‘all locations’. However, it is not possible
to know a priori all the locations involved. Thus an observation of ω at any
location is considered to be a success.

10

Definition: 8

A process p may satisfy a test o (written as p may o) if (o | p)
TO1−→D

q1

TO2−→D
q 2 . . . q and q

{<,ω>}−→D for some location l, where each TOi is a partial
function from L → ({τ, δ}∪ Sact).

A process p must satisfy a test o (written as p must o) if euery evolution
of (o | p) is either successful (i.e., exhibits ω at some location) or has a
successful extension.

Definition: 9
p �may q : ∀ tests o, p may o iff q may o.

p �must q : ∀ o, p must o iff q must o.

p � q : p �may q and p �must q.

Example 2 Given at least two distinct locations, l and m, (a; b + b; a) ��
(a | b). Consider the testing process (l :: ā;

<m,c>
❀ | m :: c̄; b; ω)\{c}. The first

process cannot pass the test while the second may pass the test. Note that the
synchronization between the two branches of the tester is essential. If one
had only m :: (b̄; ω) then both the process will pass the test. Thus we haue
defined a ‘non-interleaving’ testing equivalence.

Proposition 6 � is substitutive with respect to |

Proposition 7 P ∼D Q implies P � Q.

Proposition 8 If P and Q are CCS terms, P �CCS Q implies l :: P = l :: Q.

Further study is necessary to characterize the differences between bisim-
ulation and testing equivalences for the distributed processes.

3 Program Development

While a theory usually abstracts away issues related to implementation de-
tails, it should be possible to derive a implementation dependent semantics
from the more abstract semantics. Distributed program development can
be divided in two phases: 1) Binding and 2) Configuration. In the binding

11

phase the system is specified with an expected architecture. For example,
the sorting algorithm used for hypercubes will be different than the algo-
rithm used for trees. Thus the specification of the algorithm indicates the
architecture. One can consider that CCS with location addresses the issue
of binding. A specification may assume the availability of a certain number
of processing elements. But the physical architecture may be smaller. The
issue then is to map the expected set onto the physical set which is called
configuration. In the following two subsections we show how a semantics re-
lated to mapping the logical architecture to the physical one can be derived
from the distributed semantics.

3.1 Configuration

Configuration is the mapping of a logically distributed program to a physical
network. Usually, the number of processing elements in the physical network
is less than the number of logically distributed units. One can represent the
physical network by a set of locations and define a function Config: L → L′,
where L′ represents the physical sites. Define a translation of a process using
L into a process using L′ as follows. L represents the logical parallelism used
in defining processes while L′ is the physical parallelism permitted.

Trans(a;P) = a;Trans(P)

Trans(
<l,a>
❀ ;P) =

<Config(l),a>
❀ ; P

Trans(P | Q) = Trans(P) | Trans(Q)

Trans(P + Q) = Trans(P) + Trans(Q)

Trans(l :: P) = Config(l) :: Anchor(P, l)

Anchor(a; P, m) = a; Anchor(P, m)

Anchor(
<l,a>
❀ ; P, m) =

<Config(l),a>
❀ ; Anchor(P,m)

Anchor((P | Q), m) = Anchor(P, m) | Anchor(Q, m)

Anchor((P + Q), m) = Anchor(P, m) + Anchor(Q, m)

Anchor(l :: P, m) = Nil if 1 �= m

Anchor(l :: P, m) = l :: Anchor(P, m) if 1 = m

12

Trans converts all the old locations to the appropriate new locations. An-
chor is needed to ensure that processes which could not exhibit any action
continue to remain so under configuration. If Trans(l :: P) were defined to be
Config(l) :: Trans(P) this property is not retained as shown by the following
example.

Example 3 Consider l :: (m :: a) with l �= m. It is bisimilar to Nil un-
der −→D. However, if Config(l) = Config(m) = m′ l :: (m :: a) will be
m′ :: (m′ :: a) which can exhibit action a. The intuition is that a ‘wrongly’
constructed program cannot be rectified at the binding stage.

Proposition 9 (P ∼D Q) implies (Trans(P) ∼D Trans(Q))

The above result can be generalized to relate configurations.

Definition: 10 Let Conf1, Conf2: L → L′.

Define Conf1 ≤ Conf2 iff Conf2 (l) = Conf2(m) implies Conf1 (l) =
Conf1(m)

Thus, if Conf1 ≤ Conf2, processes under Conf2 can exhibit ‘more paral-
lelism’, which gives the following proposition.

Proposition 10 Conf2(P) ∼D Conf2(Q) implies Conf1(P) ∼D Conf1(Q)

3.2 Routing

In the distributed semantics we tacitly assumed a fully connected topology.
This is acceptable for logical purposes. However, when mapping onto a phys-
ical network, a transfer from one location to another could make a number
of hops. This information will depend on the routing tables used.

Definition: 11 Define a routing table as a function: L × L → L. Route(l,
m) = n (and m �= n) is to be read as the route from l to m uses the connection
from l to n.

A new location semantics using the routing information can be defined
as follows.

13

P
{<l,

<n,a>
❀ >}−→D P′, (m �= n), Route(l, n) = m

P
{l,<n,a>

❀ }−→R P′ | m ::
<n,a>
❀ ; nil

P
{<l,

<n,a>
❀ >}−→D P′, Route(l, n) = n

P
{l,<n,a>

❀ }−→R P′ | n :: a;Nil

Proposition 11 As expected (P ∼R Q) iff (P ∼D Q)

4 Examples

In this section we present a few examples of distributed processing.

Example 4 The following is an encoding of RPC [BN81]. A caller pro-
cess sends a request to the callee and waits for a response. The callee waits
for a request, calls the procedure and sends an acknowledgement. The calling
of the procedure is denoted by a and the response by b. The actual procedure
(call-procedure) is modeled as an action.

caller =
<m,a>
❀ ; b̄; caller

callee = ā; call-procedure;
<l,b>
❀ ; callee

System = ((l :: caller) | (m :: callee)) \{a, b}

Though the above code assumes a fixed location to send the response the
location of the caller can be coded to be part of the action.

caller i =
<m,ai>

❀ ; b̄; caller

callee =
∑

i āi; call-procedure;
<li,b>
❀ ; callee

System = ((
∏

i li :: caller) | (m :: callee)) \{a, b}

14

Example 5 The following is an encoding of call streams [LS88]. Here the
caller does not wait for an the acknowledgement. If continues its local pro-
cessing (local-processing) and is willing to accept an acknowledgement when
it has arrived.

caller =
<m,a>
❀ ; (b̄; caller + local-processing: caller)

callee = ā; call-procedure;
<l,b>
❀ ; callee

System = ((l :: caller) | (m :: callee)) \{a, b}

Example 6 Encoding of tuple space as in Linda [Gel85]. In this example,
we assume that there are two process (out1 and out2) which output to the
tuple space; one process which removes tuples from the tuple space (in) and
a process which reads the tuple space (read). The tuple space receives an in
request and then returns a tuple in its space. The removal of the tuple is
‘tacit’ due to the semantics of synchronization. The read request is handled
similarly except that the tuple is ‘regenerated’ as the synchronization removed
it. The tuple space (tup) can either accept either an in action, or a read
action. In our example, ci is the location of the in process, cr the location of
the read process and tup the location of the tuple space.

out1 =
<t,a>
❀ ; out1

out2 =
<t,b>
❀ ; out2

in =
<t,i>
❀ ;(ā; in + b̄; in)

read =
<t,r>
❀ ;(ā; read + b̄; read

tup = ā;
<ci,a>
❀ ; tup + b̄;

<cr,b>
❀ ; tup) + r̄; (ā; ((

<cr,a>
❀ ; tup) | a;

nil) + b̄; (
<cr,b>
❀ ;tup) | b; nil))

System = (out1 | out2 | c1 :: in | cr :: read | t :: tup) \{a, b}

Example 7 Consider a printer(Pr) which interacts with a generator(Gen)
and a console (Cs). The generator issues the print command. The console

15

is informed about the status by the printer. If the printer is fine (ok) it waits
a request (req) and prints it (print). If it is out of paper, it informs the
console (op) and waits for new paper to be added. The first set of definitions
present the specification in CCS, while the second uses asynchronous message
passing.

Gen = pc; req; Gen

Pr = (ok; req; print; Pr) + (op; np; Pr)

Cs = (op; np; Cs) + (ok; Cs)

Sys = (Gen | Pr | Cs) \{req, op, np, ok}

The distributed process is as follows.

Gen = pc;
<prl,rp>

❀ ; Gen

Pr = (
<csl,ok>

❀ ;req; print; Pr) + (
<csl,op>

❀ ; np; Pr)

Cs = (op,
<prl,np>

❀ ; Cs) + (okCs)

Sys = ((gl :: Gen) | (prl :: Pr) | (csl :: Cs))\{req, op ,np, ok}

In the CCS version, the generator can proceed only when the printer is
ready. However, in the asynchronous case, there is no limit on the number
of items to be printed before printing occurs. The creating of the ‘message’
processes can be thought of as the spool area. Also notice that ordering of ok
messages between the printer and the console need not be preserved. However,
the printer cannot continue if it is out paper until the console has fixed the
problem. The above observations are valid even if the configuration assigns
the three processes to the same processing element. The difference is in the
send actions and the number of actions observed in a step.

16

5 Related Work

CCS with location was introduced in [KHCB91]. The main operational rules

in their semantics are as follows: a; p a−→u p u ∈ Loc∗ and
p

a−→
l

p′

u :: p a−→vu
v :: p′

.

The main difference of our semantics, is that we do not allow the evolution
of processes such as v :: u :: P with v �= u. The evolution is permitted by
[KHCB91] as they are concerned with the structure of the process rather than
implementing a process on a distributed architecture. A location string ‘vu’
indicates that it is a sub-location of ‘v’. They also assume an infinite number
of locations and distinguish between a; (b | c) and a; (b; c + c; b). Similarly
[CH89] present a distributed bisimulation semantics. The motivation and the
results is similar to [KHCB91]. A detailed comparison between [KHCB91]
and [CH89] is presented in [KHCB91]. In short, both the approaches consider
spatial issues in distributed computation at the logical level. They do not
consider limitations imposed by a physical architecture. Our semantics is
also similar to step semantics [vGV87] but we have bounded the number of
processes that can evolve in one step by the number of locations present. In
‘distributed semantics’ such as [DDM88] the primary concern is causality and
not physically distributed computing elements. In the Chemical Abstract
Machine [BB89], synchronization in a distributed environment is achieved
by ‘moving’ the processes ‘next to each other’. This while resulting in a
nice theory is not accurate for all systems. In actual systems, processes are
usually static and communicate with messages. This is not surprising as
the pro-gramming paradigm on which the Chemical abstraction Machine is
based [BCM88] assumes that all data is available in shared storage.

6 Conclusion

This is very much a working paper. We have used of idea of locations to
denote distribution and presented a semantics based on the restrictions im-
posed by distributed hardware. Much more work is essential to understand
the effect of a distributed architecture on process behavior. We have outlined
a few basic results for strong bisimulation and testing equivalences. Issues

17

such as weak equivalence, a complete axiomatization for these equivalences
etc. need to be investigated. We have also outlined how configuration and
routing can be handled. A few examples demonstrating the use of our lo-
cation CCS has been presented. The applicability of this to more specific
architectures such as cube, meshes etc. are currently under study.

Acknowledgement

The author is thankful to Uffe Engberg for many suggestions one of which
was to use locations to characterize distribution. Thanks also to Peter Mosses
and Jens Palsberg for taking a keen interest in this work.

References

[BB89] G. Berry and G. Boudol. The Chemical Abstract Machine. Technical
Report 1133, INRIA-Sophia Antipolis, December 1989.

[BCM88] J. P. Banatre, A. Coutant, and D. Metayer. A Parallel Machine for
Multiset Transformation and its Programming Style. Future Generation
Computer Systems, 4:133–144, 1988.

[BN81] A.D. Birrell and B.J. Nelson. Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems, 2(4):39–59, February 1981.

[CG83] K. L. Clark and S Gregory. PARLOG: A Parallel Logic Programming
Language. Technical Report 5, Imperial College, May 1983.

[CH89] I. Castellani and M. Hennessy. Distributed Bisimulations. Journal
of the Association for Computing Machinery, 36(4):887–911, October
1989.

[CM87] K. M. Chandy and J. Misra. Parallelsim and Programming: A Per-
spective. In Foundations of Software Technology and Theoretical Com-
puter Science, LNCS 287, pages 173–194. Springer Verlag, 1987.

[DDM88] P. Degano, R. DeNicola, and U. Montanari. A Distributed Op-
erational Semantics for CCS Based on Condition/Event Systems. Acta
Informatica, 26:59–91, 1988.

18

[DH84] R. DeNicola and M. C. B. Hennessy. Testing Equivalences for Pro-
cesses. Theoretical Computer Science, 34:83–133, 1984.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transac-
tions on Programming Language and Systems, 7(1):80–112, Jan 1985.

[Hud86] P. Hudak. Parafunctional Programming. IEEE Computer, 19(8):60–
71, 1986.

[INM88] INMOS Ltd. occam-2 Reference Manual. Prentice Hall, 1988.

[KHCB91] A. Kiehn, M. Hennessy, I. Castellani, and G. Boudol. Observing
Localities. In Workshop on Concurrency and Compositionality: Goslar,
1991.

[LS88] B. Liskov and L. Shrira. Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed Systems. SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
260–267, 1988.

[Mar89] S. T. March, editor. ACM Computing Surveys, volume 21,3. ACM,
1989.

[Mil80] R. Milner. A Calculus of Communicating Systems. Lecture Notes on
Computer Science Vol. 92. Springer Verlag, 1980.

[Par81] D. Park. Concurrency and Automata on Infinite Sequences. In Pro-
ceedings of the 5th GI Conference, LNCS-104. Springer Verlag, 1981.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI FN-19, Computer Science Department, Aarhus
University, 1981.

[Rus78] R. Russell. The CRAY-1 Computer System. CACM, January 1978.

[TBH82] P. Treleaven, D. Brownbridge, and R. Hopkins. Data Driven and
Demand Driven Computer Architectures. ACM Computing Surveys,
14(1), 1982.

[vGV87] R. J. van Glabbeek and F. W. Vaandrager. Petri Net Models for
Algebraic Theories of Concurrency. In J. W. deBakker, A. J. Nijman,
and P. C. Treleaven, editors, PARLE-II , LNCS 259. Springer Verlag,
1987.

19

