
Contents

1 Introduction 1

2 Types 3

2.1 Types are Sets of Classes . 4

2.2 Subtyping is Set Inclusion . 5

2.3 Inheritance is Not Subtyping 6

2.4 Other Type Systems . 7

3 The Example Language 8

3.1 Informal Semantics . 8

3.2 Static Correctness . 10

3.3 Tree Representations of Classes 12

3.4 Examples . 14

4 Inheritance 15

4.1 Syntax . 15

4.2 Properties . 16

4.3 The Expansion Algorithm . 18

4.4 Example . 22

5 Generalized Subclassing 25

5.1 A Generalized Interpreter . 26

5.2 A Partial Order on Trees . 26

5.3 Properties . 29

5.4 Examples . 33

i

6 The Orthogonality Result 36

6.1 Two Suborders . 36

6.2 Orthogonality . 37

7 Class Substitution 40

7.1 Syntax . 40

7.2 Semantics . 40

7.3 Pragmatics . 42

8 Separate Compilation and Infinite Types 46

9 Conclusion 48

ii

Static Typing for Object-Oriented
Programming

Jens Palsberg
palsberg@daimi.aau.dk

Michael I. Schwartzbach
mis@daimi.aau.dk

Computer Science Department
Aarhus University

Ny Munkegade
DK-8000 Arhus C, Denmark

June 1991

Abstract

We develop a theory of statically typed object-oriented languages.
It represents classes as labeled, regular trees, types as finite sets of
classes, and subclassing as a partial order on trees. We show that
our subclassing order strictly generalizes inheritance, and that a novel
genericity mechanism arises as an order-theoretic complement. This
mechanism, called class substitution, is pragmatically useful and can
be implemented efficiently.

1 Introduction

Object-oriented programming is becoming widespread. Numerous program-
ming languages supporting object-oriented concepts are in use, and theories
about object-oriented design and implementation are being developed and
applied [21, 3, 13].

1

An important issue in object-oriented programming is to obtain reusable
software components [30]. This is achieved through the notions of object,
class, inheritance, late binding, and the imperative constructs of variables
and assignments. Such features are found for example in the Smalltalk
language [25] in which a large number of reusable classes has been written.
Smalltalk, however, is untyped. Though this is ideal for prototyping and
exploratory development, a static type system is required to ensure that
programs are readable, reliable, and efficient.

This paper studies an idealized subset of Smalltalk, which we equip with
a novel static type system. Our analysis results in the definition of a new
genericity mechanism, called class substitution, which we prove to be the
order-theoretic complement of inheritance.

In the following section we briefly review the benefits of static typing. We
argue that the choice of finite sets of classes as types can provide exactly
those benefits. Furthermore, in this setting subtyping can be seen to be
simply set inclusion. Finally, we compare this notion of type with others
that have been proposed.

In section 3 we outline the example language. It is an idealized subset of
Smalltalk, in which variables and parameters are declared together with
types. The language has been simplified by the omission of blocks; instead, a
primitive if-then-else is provided. We also give precise requirements for static
correctness of programs, and introduce a mathematical framework in which
we represent classes as labeled, regular trees. These representations abstract
away from class names.

In section 4 we discuss inheritance and its interaction with mutually recursive
classes. We also show that a program using inheritance can be transformed
into one which does not.

In section 5 we structure the class representations with a partial order which
generalizes inheritance. The intuition behind the order is that a subclass may
extend the implementation and redefine the types consistently, while preserv-
ing the recursive structure of the superclass. All such generalized subclass
relationships can be exploited by an implementation to provide reusable soft-
ware components. The suggested implementation is a generalization of the
Smalltalk interpreter. We show that the partial order has the same char-
acteristic properties as its subset inheritance: it is decidable, has a least

2

element, has finite intervals, does not allow temporal cycles, and preserves
subtyping.

In section 6 we prove that the generalized subclassing order is strictly more
powerful than ordinary inheritance. We characterize the extra possibilities
by showing that they form a suborder which is an order-theoretic orthogonal
complement to the suborder formed by inheritance relationships.

In section 7 we develop the orthogonal complement of inheritance into a
programming mechanism, called class substitution, which turns out to be
a genericity mechanism. This means that our simple type system, though
voided of e.g. type variables, still supports genericity. We extend the example
language with syntax for class substitution, give example programs, and
compare with parameterized classes.

Finally, in section 8 we use our framework to analyze the kind of type system
which is common in existing object-oriented languages, for example C++ and
Simula/Beta. The analysis yields an explanation of why these languages
often allow loop-holes in the type system or resort to run-time type-checking
in some cases.

2 Types

Types are introduced into untyped languages because an untyped program
may be unreadable, unreliable, and inefficient. Any choice of type system for
a language must be able to remedy some or all of the above deficiencies [29].

Types may be used as annotations, and those can be read not only by humans
but also by the compiler which may be able to exhibit a safety-guarantee
and perform compile-time optimizations. The safety-guarantee will typically
state that operations are only performed on arguments of the proper types;
in other words, certain run-time errors will not occur.

In this section we present a new, simple type system for object-oriented
languages and we argue why it yields the benefits stated above. We also
examine other type systems and discuss similarities and differences.

3

2.1 Types are Sets of Classes

The basic metaphor in object-oriented programming is the object. An object
groups together variables and procedures (called methods), and prevents di-
rect outside access to the variables; it may be thought of as a module [57].
Objects are instances of classes, see for example figure 1. The class Record
specifies a pattern from which all Record objects will be created. Such an
object is created for example in class File by the expression “Record new”
and it gets a separate copy of all variables. Note that also Integer is a class,
though specified elsewhere, and that each method returns the result of its
last expression. If nothing needs to be returned, then usually one returns the
object itself, denoted by self.

class Record
var key: Integer
method getKey returns Integer

key
method setKey(k: Integer) returns Record

key := k ; self
end Record

class File
var buffer: Record
method initialize returns File

buffer := Record new ; buffer.setKey(17) ; self
end File

Figure 1: Records and Files.

The only possible interaction with an object is when sending a message to it—
when invoking one of its methods. For example, in class File the expression
buffer.setKey(17) expresses the sending of the message setKey with argument
17 to the object in the variable buffer. If the object does not understand the
message—if its class does not implement a method with the specified name—
then the run-time error messageNotUnderstood occurs. In a pure object-
oriented language this is the only run-time error that can occur.

The purpose of a type system is to allow the programmer to annotate pro-
grams with information about which methods are available in a given object,

4

and to allow the compiler to guarantee the the error messageNotUnderstood
will never occur [4, 8]. The latter immediately enables compile-time opti-
mizations because a number of checks need not be inserted into the code.

In Smalltalk, any object can be assigned to any variable. Message sending
is implemented by late binding, i.e., the message send is dynamically bound to
an implementation depending on the class of the receiver. The fundamental
question is: which messages will an object residing in a variable be able to
respond to. Ignoring the possibility of doing flow analysis, the answer is:
those methods that are common to the classes of the possible objects in that
variable. This set of methods can be specified by simply listing the classes
of the possible objects, because only finitely many classes occur in a given
program. These observations lead us to define the notion of type that will
be analyzed throughout this paper.

A type is a finite set of classes.

Note that a type can only contain classes that are part of the program. This
corresponds to a “closed-world” assumption.

Our types are more general than they may seem at first. Any kind of type
expressions may be employed, providing that they can be interpreted as
predicates on classes. In a given program only finitely many classes will
satisfy any given predicate. The type can now be identified with the finite
set; hence, we are justified in viewing our type system as being quite general.

As an example of a type, consider again figure 1, where class File specifies a
variable buffer of type Record. The type contains a single class, hence, only
Record objects are allowed to reside in the variable.

2.2 Subtyping is Set Inclusion

An object may have more than one type. Consider for example an instance
of class Record. The singleton type containing just Record is a type of that
instance, but so is also any superset. Henceforth, we will call a superset for
a supertype, and a subset for a subtype.

When type-checking an assignment x := e (and similarly for a parameter
passing), then it suffices to check that the static type of x is a supertype of

5

the static type of e. This is because the assignment then will not violate the
requirement that only objects of the static type of x can reside in x.

If we had a more advanced kind of type expressions, then subtyping must be
defined to coincide with—or at least to respect—inclusion of the correspond-
ing sets.

The nil object requires special attention. In Smalltalk it is an instance
of the class undefinedobject, and it is the initial contents of variables when
objects are created. This implies that we should want undefinedObject to
be a member of all types. In this paper, we do not want to rely on any
predefined classes, however, so we will treat nil in another way. Instead of
having undefinedObject as an explicit member of all types, we will define nil to
be a special primitive value which implicitly has the empty type and, hence,
has all types. Treating nil as a non-instance is in line with its implementation
in typed languages such as C++ [53], Eiffel [39], and Simula [22]/Beta
[32]. In the language we later present, nil is in fact the only constant value.
The language can be viewed as simply a calculus of pointers, in which it is
quite natural that nil should enjoy a special status.

2.3 Inheritance is Not Subtyping

Object-oriented programming differs from other programming paradigms in
offering inheritance as a means for reusing class definitions. Inheritance can
be viewed as a shorthand: it allows the definition of a class to be a mod-
ification of an existing one. More specifically, it allows the construction of
subclasses by adding variables and methods, and by overriding method bod-
ies [25, 56]. A thorough discussion of inheritance is given in a later section.

The difference between inheritance and subtyping is illustrated in figure 2
which displays a class hierarchy discussed in [37], together with the corre-
sponding type hierarchy. Notice that we turn the class hierarchy “upside-
down” in order to get the smallest class at the bottom, and that the figure
uses the notation ↑C for the set of all subclasses of C, even potential ones.
The class hierarchy is a tree, whereas the type hierarchy is a lattice.

Note that the Beta group interprets nil as an instance of an auxiliary class
on top of the class hierarchy [37]. This is awkward because it implies that

6

Figure 2: The class and type hierarchy (excerpts).

this class can be obtained by some sort of multiple inheritance of all other
classes. This again implies that instances of this auxiliary class should be able
to respond to any message; clearly nil is not able to do this. Our explanation
of nil as a value having the empty type is more satisfactory: it reflects that nil
can not respond to all messages, and that it can be assigned to any variable.

2.4 Other Type Systems

Usually, formal models of typed object-oriented programming are based on
the lambda calculus. They represent objects as records and methods as
functions, and involve coercions together with subtypes [9, 41], polymorphic
types [40, 10, 23], or F -bounded constraints [18, 16, 7] in the description of
inheritance. In contrast, traditional object-oriented languages are not based
on coercions and do not support methods as values.

Furthermore, the coercion models—while being very general in some respects—
do not support variables and assignments, because variable (mutable) types

7

have no non-trivial subtypes, as observed by Cardelli [11]. In a functional
language, an assignment must be emulated by the creation of an updated
copy, and it is extremely hard to preserve the type of the original value. It
was long believed that bounded parametric polymorphism was sufficient [10],
but it has been realized that considerably more fine-grained type systems are
required to handle even simple updates [12].

Graver and Johnson’s type system for Smalltalk [27, 28] has much in
common with ours. Their types are essentially finite sets of classes, but
they have to axiomatize a subtype relation that corresponds exactly to set
inclusion because the type system involves type variables. They also employ
a notion of signature type which essentially denotes the finite set of subclasses
of a given class, under a “closed-world” assumption.

One strength of our type system is that it can avoid type variables and
exclusively use the simple notion of sets of classes as types. The issue of
genericity will instead be handled by generalizing the notion of subclassing.

3 The Example Language

Our example language is an idealized subset of Smalltalk, except that
variables and parameters are declared together with a type, see figure 3. We
also leave the issue of inheritance to the following section. In this section we
briefly discuss the semantics of the language and state the precise rules for
static correctness. We also introduce a convenient representation of classes.

3.1 Informal Semantics

A program is a set of classes followed by an expression whose value is the
result of executing the program. A class can contain variables and methods; a
method consists of a name, an argument-list, a result-type, and an expression.
The result of an assignment is the assigned value. A message send is executed
by evaluating the receiver and the arguments, and if the class of the receiver
implements a method for the message, then a normal procedure call takes
place; otherwise, the error messageNotUnderstood occurs. The result of a
sequence is the result of the last expression in that sequence. The if-then-else

8

(Program) P ::= C1 . . . Cn E

(Class) C ::= class ClassId
var D1 . . . Dk M1 . . . Mn

end ClassId

(Method) M ::= method MethodId (D1 . . . Dk) returnes T E

(Declaration) D ::= Id : T

(Type) T ::= [selfClass] ClassId1 . . . ClassIdn

(Expression) E ::= Id := E | E . MethodId (E1 . . . En | E ; E |
if E then E else E | ClassId new | selfClass new |
E instancdOf ClassId | self | Id | nil

Figure 3: Syntax of the example language.

expression tests if the condition is non-nil. The expression “selfClass new”
yields an instance of the class of self. The expression “E instanceof ClassId”
yields a run-time check for class membership. If the check fails, then the
expression evaluates to nil. The expression self denotes the receiver of the
message, Id refers to instance variables and parameters, and nil is a primitive
value.

Note that selfClass always can be replaced by the name of the enclosing class.
This is a convenient way of making recursion explicit. It is not sufficient for
expressing mutually recursive classes, however. For that, it is necessary to
use the class names directly.

We have no primitive types (like integer and boolean) nor type constructors
(like list) because we can program classes that encode them, see [44].

Note that we ignore the issues of concurrency and persistence [55].

9

3.2 Static Correctness

We define correctness of a method body with respect to the name of the
enclosing class, and global and local environments. These can be uniquely
determined from the program syntax.

The global environment maps class names to class descriptions. A class de-
scription maps method names to method descriptions. A method description
maps argument numbers to their declared types; for convenience, the result
type is assumed to have number zero.

The local environment is a finite map from names of instance variables and
parameters to their declared types.

We shall use the notation

E :: τ

to denote that the expression E is statically correct and has type τ . This
property will be defined by means of a number of rules of the form

• Condition1
...
Conditionk

E :: τ

with the obvious interpretation: if all the conditions can be satisfied, then
the conclusion follows.

The following rules exhaust the syntactic possibilities; the enclosing class has
name C, the global environment is denoted by G, and the local environment
is denoted by E .

• nil :: { }

• self :: C}

• selfclass new :: {C}

10

• D new :: {D}

• id ∈ dom(E) early check

Id :: E(Id)

• E :: τ
E instanceOf D :: {D}

• Ei :: τi

if E1 then E2 else E3 :: τ2 ∪ τ3

• Ei :: τi

E1 ; E2 :: τ2

• E :: τ1

Id :: τ2

τ1 ⊆ τ2 subtype check
Id:=E :: τ1

• E :: τ
Ei :: τi

∀c ∈ τ : m ∈ dom(G c) early check

∀c ∈ τ : dom(G c m) = {0, . . . , n} early check

∀c ∈ τ : τi ⊆ G c m i subtype check

E . m(E1. . . En) ::
⋃

c∈τ Gc m 0

Now, a program is statically correct when all method bodies have a typing
in the corresponding environments.

Note that really only two kinds of checks are performed:

• early checks, which require the existence of certain declared names.

• subtype checks, which require inclusions between certain types.

With this definition of static correctness, it should be obvious that variables
of type T can only contain objects of type T; that if an expression is evaluated
to a non-nil result, then the class of that result is contained in the type of the
expression; and that we can guarantee that any message is sent to either nil

11

or an instance of a class which implements a method for that message. Note
that we ignore keeping track of nil-values; this can be treated separately by
flow analysis.

A formal proof of these claims should be based on a dynamic semantics of
the example language [47, 31]. We will not go into the details in this paper,
however, but move on to define a convenient representation of classes.

3.3 Tree Representations of Classes

We shall work with a slightly abstracted form of classes, which will allow us
to give a formal treatment of their relationships.

The mathematical framework is a kind of labeled trees, which we shall call
L-trees.

Definition 3.1: Let Σ be a finite alphabet. An L-tree over Σ is an ordered,
node-labeled, regular tree. We recall that a tree is regular when it has only
finitely many different subtrees [20]. The labels are finite strings over Σ ∪
{•}, where it is assumed that • /∈ Σ. The empty label is denoted by Ω. We
shall refer to the special symbol • as a gap. It is further required that any
node in an L-tree has exactly one subtree for each gap in its label. ✷

We have some notation associated with such trees.

Definition 3.2: Let T be an L-tree. A tree address is a sequence of integers
denoting a path from the root to a node; each integer denotes the number of
a subtree in the given order. We write α ∈ T when α is a valid tree address
in T . The empty tree address is denoted by λ. If α ∈ T then T [α] denotes
the label with address α in T , and T ↓α denotes the subtree of T whose root
has address α. Note that T ↓λ = T . ✷

We can now separate a class from its surrounding program and represent it
as an L-tree. Intuitively, the tree is a possibly infinite unfolding of the source
code of the class.

The labels will be source code with gaps in place of occurrences of class
names. Recall that a class name may occur before new, after instanceOf, and
inside type expressions. We shall also replace occurrences of selfClass with
gaps.

12

The root label of a class representation is the gapped source code of the class.
Let the classes in the program be C1, . . . , Cn and the corresponding root
labels be L1, . . . , Ln. The trees tree(C1) . . . ,tree(Cn) are defined through
the following regular equation system:

tree(C1) = L1(X̄1)
...

tree(Cn) = Ln(X̄n)

Each X̄i is a list of subtrees, which is obtained as follows. Every subtree
corresponds to a gap in the label Li. If the gap replaced the class Cj, then
the subtree is tree(Cj); if the gap replaced selfClass, then the subtree is
tree(Ci). It is well-known that such an equation system has a unique solu-
tion [19], which clearly is an L-tree. If any part of a class is recursive, then
the tree will be infinite.

Quite often, recursive types are represented as regular trees with nodes la-
beled by type constructors [2]. This is in fact what we have done, with the
proviso that we consider every class as a user-defined type constructor—
rather than as a user-defined type.

We have now abstracted away from the class names, which obviously cannot
be uniquely recovered. We can, however, transform a tree T back into an
equivalent program, prog(T), by selecting a class name for every different
subtree in T and reconstructing the syntax. We then have the property that
T ∈ U if and only if prog(T) is statically correct. Note that the structural
equivalence on classes simply says that two classes are equivalent if their trees
are equal.

It might be considered that the trees are not sufficiently abstract to deserve
attention. For instance, we distinguish the order in which methods are imple-
mented, and type expressions are interpreted as sequences rather than sets.
Some tidying up is certainly possible: methods could be ordered in a canon-
ical way, and type expressions could be normalized. For the purposes of this
paper, however, such improvements are not really necessary. We shall mainly
look at classes obtained as modifications of other classes, in which particular
arbitrary choices are always carried along. The behavior of a class, for exam-
ple an element of a Scott-domain, is clearly not a feasible representation—it
is too abstract.

13

We can now define a universe of classes as follows:

U = {tree(C) | C is a class in some statically correct program}

This is a mathematical object on which we later shall observe an interesting
structure.

3.4 Examples

We now provide some short examples of the above definitions. Consider

class Object
end Object

class A
var x: Object

end A

class B
var x: Object
method set(y:Object) returns selfClass

x := y ; self
end B

Figure 4: Example classes

the classes A and B in figure 4. Let us first consider what the corresponding
trees look like. We shall use the abbreviations

LA = var x : •
LB = var x : • method set(y : •) returns • x := y; self

The equation system for the trees is now

tree(Object) = Ω()
tree(A) = LA(tree(Object))
tree(B) = LB(tree(Object), tree(Object), tree(B))

14

The corresponding trees are pictured in figure 5. We can finally observe that

tree(B)[3, 3, 2] = Ω
tree(B)[3, 3, 3] = LB

Figure 5: Example trees.

4 Inheritance

Inheritance is reuse of class definitions. It may significantly increase pro-
grammer productivity and decrease source code size. In this section we add
inheritance to our example language, discuss its properties, and show that
we can use the universe of class representations from the previous section to
represent also the classes defined by inheritance.

4.1 Syntax

To introduce inheritance we extend the grammar in figure 3 as showed in
figure 6.

The class name following inherits is called the superclass of the class being
defined; the latter is called a subcluss of the superclass.

15

(Class) C ::= class ClassId inherits ClassId
var D1 . . . Dk M1 . . . Mn

end ClassId

Figure 6: Syntax of Inheritance.

The subclass is a modification of the superclass: it may add variables and
methods, and if a method name coincides with an existing one, then the
new method definition overrides the old one. The body of a new method
definition may refer to both the existing variables and the existing methods.
It has been argued by Snyder [52] that much better encapsulation is achieved
if only the existing methods can be referred; we ignore this consideration in
this paper. For a denotational semantics of inheritance, see [17, 47, 31, 14].

4.2 Properties

Inheritance can be used in various ways, ranging from undisciplined code-
grabbing to disciplined program structuring based on a hierarchical design
method [21, 3, 13]. Common to all approaches is that the superclass is cre-
ated before the subclass. We will henceforth use the terminology that the
subclass is temporally dependent on its superclass.

A class can be a subclass of another class which itself is defined by inheritance.
The chain of superclasses is always finite, however, because the program is
finite. Also, the superclass chain will contain no cycles; we will say that
it is temporally acyclic. Note that any non-empty class can be defined as
a subclass of the empty class, which we will call Object. This is actually
enforced in Smalltalk. In this situation, the inheritance hierarchy is a
tree, otherwise it is a forest.

If C is the superclass and D is the subclass, then it is common to say that D
is-a C [6, 54]. For example, if Student is a subclass of Person, then it seems
reasonable to say that Student is-a Person. It is convenient to let is-a denote
the transitive closure of this relation. The other possible relation between
classes is has-a. If a class C declares a variable of a type which contains
the class D, then we will say that C has-a D. For example, if the Student
declares a graduate variable of type Boolean, then Student has-a Boolean.

16

We will also say that C has-a D if C mentions D in a parameter list or as an
argument of new or instanceOf. Analogously with is-a, we let has-a denote
the transitive closure of this relation.

It is crucial not to confuse is-a and has-a. If C has-a D and D has-a
C, then we will say that C and D are mutually recursive. In comparison, it
is impossible to have both C is-a D and D is-a C because that would be
a temporal cycle. To make any sense, mutually recursive classes must be
defined simultaneously by the programmer.

Together, is-a and has-a impose a temporal order on the classes in a pro-
gram. The intuition is that a class D depends temporally on a class C if
C has to be created before D. We will formalize this order in the following
subsection, where we also show that a program that uses inheritance can
be transformed into one which does not. Our reason for doing this is that
when all classes are represented as elements of our universe of class repre-
sentations, then it makes sense to analyze this universe in order to discover
other relations between classes besides is-a and has-a. Such relations will
be independent both of class names and of the particular shorthands that can
be used in program texts. So far, the only shorthand we have encountered
is inheritance, but later on we will define another called class substitution.
Pedersen [46] proposed the notion of generalization which is the inverse of
inheritance.

The loss of an explicit class hierarchy may at first seem to cause severe
problems, since some programming mechanisms depend on exactly this. In
particular, we think about redefinition of method bodies in subclasses, and
about the constructs super [25] and inner [33, 36]. However, these mechanisms
depend primarily on the existence of multiple implementations of methods.
This we can certainly handle, since a label contains a sequence of implemen-
tations of methods—several of which may have the same name. The dynamic
behavior of a message send is to search the label from right to left, and to
execute the first implementation of the method that is found. This gives the
correct semantics of method redefinitions. The construct super can be viewed
as a directive to search from the location of the present method implemen-
tation towards the left. Dually, the construct inner directs the search to go
from the present location towards the right. This will nearly give the usual
semantics, and is certainly in line with the explanation given in [5].

17

When expanding the inheritance shorthand it is necessary to be careful when
encountering recursive occurrences of a class. A class C is recursive if C has-
a C. If a class D inherits this class C, then after expansion, all occurrences of
C must have been transformed into D. The reason is that a variable of a type
which contains C could be assigned to a variable which contains selfClass.
Since selfClass always denotes the class it appears in, it will automatically
denote D after the expansion. Hence, C must be transformed into D to
preserve static correctness. The complications get worse when considering
mutually recursive classes; the algorithm in the following subsection gives a
detailed solution to the general case.

While it is often the natural choice to transform all recursive occurrences dur-
ing inheritance, one can certainly find program examples where the opposite
choice is preferable. However, with our structural equivalence on classes
recursive occurrences must be transformed in order to make the subclass
statically correct. The problem could be solved by introducing opacity op-
erators on classes, in line with [43]. In this paper we will not explore this
aspect further.

4.3 The Expansion Algorithm

We now present the algorithm that expands a program using inheritance into
an equivalent one that does not. The idea behind the algorithm is simple: it
rewrites the program in the same fashion that a programmer would have to
if the program should be implemented in a language that does not support
inheritance.

In view of the preceding discussion, the program will be represented as a
directed graph. There is one node for every class definition in the program.
Each node has a label which is the gapped source code of the corresponding
implementation. There will be two kinds of edges: is-a (drawn with ordinary
arrows) and has-a (drawn with dashed arrows). We have an is-a edge from
every subclass to its immediate superclass, and a has-a edge from every gap
in the label to the node representing the missing class.

By a temporal dependency we shall understand a path between two nodes
containing at least one is-a edge. A temporal dependency from D to C
means that C must be created before D.

18

From previous arguments we know that the graph has the following proper-
ties:

• every node has at most one outgoing is-a edge.

• there are no temporal cycles; that is, no cycle in the graph can involve
an is-a edge.

The algorithm will transform this graph (V, E) into a pair (Q, ρ) where Q is
an equation system on regular trees, and ρ is a map from nodes in the graph
to variables in Q. The meaning is that a class with node w will denote the
tree corresponding to the value of ρ(v) in the unique solution of Q.

The algorithm proceeds iteratively, by processing the nodes of the graph in
batches and removing them. A batch consists of all temporally independent
nodes; that is, those nodes that have no outgoing path involving an is-a
edge. Since the graph is temporally acyclic, this is a non-empty set.

Such a batch has two special properties:

• all outgoing is-a edges from nodes in the batch lead to earlier processed
nodes.

• all outgoing has-a edges from nodes in the batch lead to earlier pro-
cessed nodes or to other nodes in the batch.

The first follows easily from the nodes in the batch being temporally inde-
pendent. The second can be seen from figure 7 where the general situation is
sketched. Suppose we have a has-a edge from the node v in the current batch
to an unprocessed node w. Since w is not temporally independent, then it
has a temporal dependency to some other node u. By composing paths, we
see that v also has a temporal dependency to u. But this contradicts that v
belonged to the current batch of temporally independent nodes.

Thus we can expand the nodes in the current batch simultaneously. We
maintain the invariant that the processed nodes are in the domain of ρ and
that Q is a minimal equation system, i.e., no two variables denote the same
tree.

19

Figure 7: A stage in the algorithm.

Assume that the current batch consists of the nodes {b1, b2, . . . , bn} with
associated labels L1, L2, . . . , Ln. To perform the expansion, we first intro-
duce n new variables B1, B2, . . . , Bn. We also generate n independent copies
Q1, Q2, . . . , Qn of the equation system Q; such a copy Qi is identical to the
original, except that it has a fresh set of variables.

Looking at a particular node bi we have two cases.

• If bi has no superclass, then we simply introduce the equation

Bi = Li(. . .)

• If bi inherits the processed node v, then we look at the Qi-version of
the equation for ρ(v), say

X = L(Ȳ)

The equation is modified to

X = L Li(Ȳ , . . .)

Bi = X

In both cases the extra arguments are determined as follows. If an argument
corresponds to a has-a edge to a node bj in the current batch, then it is

20

Bj. If it corresponds to a has-a edge to a processed node w, then it is the
Qi-version of ρ(w).

Next, we update p such that ρ(bi) = Bi, and finally we minimize (Q, ρ). This
may involve that several variables in Q become identified, which is reflected
in ρ by several nodes being mapped to the common variable.

When the iteration terminates, then all nodes in the graph have been pro-
cessed; hence, we have a tree associated with every class definition. In this
general setting, we define tree(C) to be the unique solution of ρ(C) in Q.
The entire algorithm is summarized in figure 8.

Input A program graph: (V, E)
Output The expansion: (Q, ρ)

Algorithm: P, Q, ρ← ∅, ∅, ∅
doP �= V →

let {b1, b2, . . . , bn} be the temporally
independent nodes in (V \ P, E)

Q← Q ∪Q1 ∪Q2 ∪ . . . ∪Qn

for i = 1..n do
add the equation for bi

end
update ρ
minimize (Q, ρ)
P ← P ∪ {b1, b2, . . . , bn}

end

Figure 8: A summary of the expansion algorithm.

One may wonder how much larger a program can become after expansion.
The crucial factor is the shape of the is-a tree. If we have n classes, then we
must maximize the sum ∑

i

depth(Ci)

over all trees with nodes C1, . . . , Cn. The worst-case is a linear tree, which
expands to size O(n2). A perfectly balanced tree only expands to size O(n).

We may view the algorithm as giving a map expand from classes with in-
heritance to classes without inheritance. If we consider a standard dynamic

21

semantics of inheritance [17, 47, 31, 14], then we obtain a map sem from
classes—with and without inheritance—to denotations of meaning.

We now claim that the equation sem(C) = sem(expand(C)) holds for all
classes C. We will not present a (rather voluminous) proof of this result, but
move on to explore the structure of our universe of classes. First, however,
we give an example.

4.4 Example

This subsection contains an example of how the expansion algorithm works.

class U class W
var a: U var c: V

end U end W

class V inherits U class R inherits V
var b : W var d: W

end V end R

Figure 9: Classes with inheritance.

Figure 10: The program graph with inheritance.

Consider the classes in figure 9. We shall subject them to the expansion
algorithm. The corresponding program graph is shown in figure 10. The
reader is invited to try to expand the program by hand before reading on.
We use the abbreviations

22

LU = var a : •
LV = var b : •
LW = var c : •
LR = var d : •

Initially, we start out with the following triple

P Q ρ

∅ ∅ ∅

The first batch of temporally independent nodes is {U}. Since no inheritance
is involved, the first iteration gives us the triple

P Q ρ

{U} U = LU(U) {(U, U)}

The next batch is {V, W}. We first create the necessary copies of Q, yielding
the triple

P Q ρ

{U} U = LU(U) {(U, U)}
U1 = LU(U1)
U2 = LU(U2)

Next, we introduce the proper new equations

P Q ρ

{U} U = LU(U) {(U, U), (V, V), (W, W)}
U1 = LULV(U1, W)
V = U1

U2 = LU(U2)
W = LW(V)

After minimizing Q we have

23

P Q ρ

{U, V, W} U = LU(U) {(U, U), (V, V), (W, W)}
V = LULV(V, W)
W = LW(V)

The final batch is {R}. We first create a copy of Q

P Q ρ

{U, V, W} U = LU(U) {(U, U), (V, V), (W, W)}
V = LULV(V, W)
W = LW(V)
U1 = LU(U1)
V1 = LULV(V1, W1)

W1 = LW(V1)

Then we modify the equations

P Q ρ

{U, V, W} U = LU(U) {(U, U), (V, V), (W, W), (R, R)}
V = LULV(V, W)
W = LW(V)
U1 = LU(U1)
V1 = LULVLR(V1, W1, W1)
R = V1

W1 = LW(V1)

After minimizing Q we end up with

P Q ρ

{U, V, W, R} U = LU(U) {(U, U), (V, V), (W, W), (R, R)}
V = LULV(V, W)
W = LW(V)
R = V1

W1 = LW(V1)

The resulting classes are shown in figure 11. Notice the need for the class
W1. The corresponding program graph is pictured in figure 12.

24

class U class R
var a: U var a: R

end U var b: W1
var d: W1

class V end R
var a : V
var b : W class W1

end V var c: R
end W1

class W
var c : V

end W

Figure 11: Classes without inheritance.

Figure 12: The program graph without inheritance.

5 Generalized Subclassing

The main purpose of providing an independent notion of classes is to define
a generalized, structural notion of subclassing. This arises directly from the
application on 24 of a partial order on general L-trees.

25

5.1 A Generalized Interpreter

In the paper [45] we present a generalization of the standard Smalltalk
interpreter. The standard interpreter supports inheritance through a method
lookup—a run-time search for implementations of methods. Our extended
interpreter also does a run-time search for arguments to new and instanceOf
operations. This clearly allows a more general form of code reuse, which we
can express through a partial order � on classes. In [45] we give a precise
description of the run-time environments of the extended interpreter, and we
show the following property: if T1 �T2 holds, then any run-time implementa-
tion of T1 can be extended to yield a runtime implementation of T2. The code
reuse that can be expressed through inheritance corresponds to a suborder
of �.

In this section we shall define the partial order � and show a number of
its formal properties. In the following sections we shall develop a program-
ming mechanism that is complementary to inheritance; as we shall see, their
combination realizes all of �.

5.2 A Partial Order on Trees

Intuitively, the relation � imposes three different constraints on subclasses.
Each of these reflect that the subclass reuses the implementation of the
superclass.

• the labels may only be extended: this simply means that the subclass
can only extend the implementation and not modify existing parts.
This also ensures that all early checks will remain satisfied.

• equal classes must remain equal: this ensures that all subtype checks
will remain satisfied; hence, the code of the superclass can only be
reused in a manner that preserves static correctness.

• the recursive structure must be preserved: this is essential for allowing
the code to be reused since different code is generated for selfclass and
other classes [45].

26

The partial order � is our generalized notion of subclassing, such that if A is
the superclass and B is the subclass, then A � B. It may seem strange that
super is smaller than sub, but this is a common confusion of terminology.
Clearly, the subclass has a larger implementation than the subclass; equally
clearly, the superclass is more general than the subclass. We choose to re-
tain the usual terminology, while employing the mathematically suggestive
ordering �.

To be able to define � formally, we introduce some auxiliary concepts. The
first is a simple partial order on L-trees.

Definition 5.1: The usual prefix order on finite strings is written as ≤. The
partial order T1 � T2 on L-trees over Σ holds exactly when

• ∀α ∈ T1 : α ∈ T2

• ∀α ∈ T1 : T1[α] ≤ T2[α]

Note that � is the node-wise extension of ≤. ✷

The order � reflects that labels may only be extended. We next provide a
simple, finite representation of an L-tree.

Proposition 5.2: Every L-tree T can be represented by a finite, partial,
deterministic automaton with labeled states, with language {α | α ∈ T},
and where a is accepted in a state labeled T [α].
Proof: The finitely many different subtrees all become accept states with
the label of their root. The transitions of the automaton are determined by
the fan-out from the corresponding root. ✷

These automata provide finite representations of L-trees. The idea of repre-
senting a regular tree as an automaton is also exploited in [50, 51]. All later
algorithms will in reality work on such automata.

Proposition 5.3: The partial order � is decidable.
Proof: The algorithm is a variation of the standard one for language inclu-

27

sion on the corresponding automata. ✷

The second auxiliary concept is the notion of a generator for an L-tree.

Definition 5.4: If T is an L-tree over Σ, then its generator gen(T) is
another L-tree which is obtained from T by replacing all maximal, proper
occurrences of T itself by a singleton tree with the special label ✸; it is as-
sumed that ✸ is incomparable with all other labels in the ≤-ordering. We
say that T is recursive when T �= gen(T). Note that the generator itself
may be an infinite tree, and that the original tree can readily be recovered
from its generator. ✷

The generator of a class makes explicit all the recursive occurrences of the
class itself. For example, all occurrences of selfClass in its source code are
replaced by ✸, but also mutual recursion is captured.

We are now ready to define � using the order � which is a subset of �.

Definition 5.5: The relation T1 � T2 on L-trees is the largest subset of �
such that the following stability condition holds

• ∀α, β ∈ T1 : T1 ↓α = T1 ↓ β ⇒ T2 ↓α = T2 ↓β

The relation T1 � T2 on L-trees holds exactly when

• ∀α ∈ T1 : gen(T1 ↓α) � gen(T2 ↓α)

Note that if T1 � T2 then for any α ∈ T1 we also have T1 ↓α � T2 ↓α. ✷

Since � is a subset of �, it reflects that labels may only be extended. Fur-
thermore, the stability condition ensures that equal classes remain equal.
The relation � is then defined so that the generators at all levels are in the
� relation. This ensures that the recursive structure is preserved.

28

Proposition 5.6: The relations � and � are decidable, partial orders.
Proof: Clearly, � is a partial order since stability is reflexive and transitive;
also, � is a partial order because � is.

Since by proposition 5.3 we know that � is decidable, we must only show that
stability is, too. On minimized automata, representing the trees T1 and T2,
stability translates to the property that any two words α, β accepted in the
same state by the T1-automata must also be accepted in the same state by
the T2-automata. This property can be decided for general automata using
a simple, linear-time dynamic programming algorithm.

To decide � we can rely on decidability of � and the fact that L-trees have
only finitely many different subtrees, all of which can easily be constructed.
✷

5.3 Properties

The subclassing order � has the same characteristic properties as inheritance:
it has a least element, has finite intervals, does not allow temporal cycles,
and preserves subtyping. In this subsection we prove these claims.

Proposition 5.7: The partial order � has a least element ⊥.
Proof: Clearly, ⊥ is just the singleton tree with the label Ω. ✷

In a class hierarchy, ⊥ corresponds to the empty class Object. To show that
� has finite intervals, we need a notion of unfolding directed graphs.

Definition 5.8: Let G be a directed, rooted graph containing a path from
the root to each vertex. A particular unfolding of G, which we shall call
unfold(G), is obtained by the following variation of the standard depth-
first search algorithm [1] starting in the root. The modification is that if
the current edge leads to a previously visited vertex in a different strongly
connected component, then a fresh copy of that entire component is inserted
in the graph. See for example figure 13, where (v1, v3) is the current edge.
The graph unfold(G) can be understood as a tree of possibly multiple copies
of the strongly connected components of G. ✷

29

Figure 13: A step in the construction of unfold(G).

Lemma 5.9: A depth-first traversal of unfold(G) has the property that if
the current edge leads to a previously visited vertex, then that vertex is on
a cycle of already processed edges and the current edge.
Proof: Let (v, w) be the current edge. If we have previously visited w, then,
by construction of unfold(G), v and w are in the same strongly connected
component. Because of the depth-first strategy, there is a path of already
processed edges from w to v. The result follows. ✷

Proposition 5.10: For any L-tree T2 the interval {T1 | T1 � T2} is finite.
Proof: For the purposes of this proof, we shall represent L-trees by their
canonical automata. This is obtained by subjecting the minimal automaton
to the unfolding described in definition 5.8. Clearly, this new automaton will
have the same language and represent the same L-tree; in particular, the
L-tree can be recovered from the automaton.

Now, assume that T1 � T2. Let A1 and A2 be their canonical automata. We
shall construct a total function h from states of A1 to states of A2 with the
following properties

• h maps the initial state of A1 to that of A2

30

• if x
i→ y is a transition in A1, then h(x)

i→ h(y) is a transition in A2

• the label of x is ≤ that of h(x)

• h is injective

The construction works iteratively through a depth-first traversal of A1. At
any stage the current h will satisfy all of the above properties, but it may be
partial. We start with just the pair of initial states, which is clearly legal.

We proceed by examining the current unexplored depth-first A1-transition

x
i→ y from a state x in the domain of h. This is matched by an A2-transition

h(x)
i→ z, since the label of x is ≤ than that of h(x). The function h is now

extended to h′ = h ∪ {y �→ z}. Only two necessary properties are not
immediate: that h′ is still a function, and that h′ is still injective.

Assume that we have already seen y before; we must assure that z = h(y).
Having seen y before means, from lemma 5.9, that we have a cycle from y
to y. Now look at the generator of the subtree of T1 that corresponds to y.
The cycle that we have traversed is here a path from the root to a ✸-label.
In the h(y)-generator of T2 the same path must also lead to a ✸-label, since
no other label can satisfy the �-requirement. Hence, the path from y to y in
A1 translates to a path from h(y) to h(y) in A2. It follows that z = h(y).

Similarly, injectivity follows. If for some x′ we have z = h(x′), then the cycle
from z to z in A2 must correspond to a cycle in A1, from which it follows
that x = x′.

Since all states in a canonical automaton can be reached from the initial
state, this construction will terminate with a total function.

To proceed, we observe that the existence of any injective function from
states of A1 to states of A2 assures that there are no more states in A1 than
in A2. Since any label in A1 must be ≤ than some label in A2, and we
know that ≤ has finite intervals, then any A1 must be built out of a bounded
number of states and a finite set of labels. For simple combinatorial reasons,
there can only be finitely many such automata.

Since different L-trees yield different canonical automata, the result follows.
✷

31

In particular, this result means that any class can only have finitely many
superclasses.

Corollary 5.11: For any two L-trees T1, T2 we have that the closed interval
{S | T1 � S � T2} is finite.

Proof: This is just a subset of the finite interval in proposition 5.10. ✷

Next, we can show that our generalized notion of subclassing does not allow
any temporal cycles. Since in our framework

T1 has-a T2 iff ∃α : T1 ↓α = T2

and

T1 is-a T2 iff T2 � T1 ∧ T2 �= T1

then, to eliminate temporal cycles of the form T has-a S is-a T , we must
show that no tree can be strictly �-less than one of its subtrees. Longer cycles
are handled by transitivity and essentially the same argument.

Figure 14: A temporal cycle.

Theorem 5.12: Let T by an L-tree. If T � T ↓α then T = T ↓α.
Proof: Assume that S = T ↓ α, T � S, and T �= S. Let S ′ = S ↓ α. We
must have S � S ′, as illustrated in figure 14. If S = S ′ then the generator of
S has a ✸-label in position α. But then the generator of T must also have

32

a ✸-label in position α, which implies that T = S. Since we have assumed
the opposite, we conclude that S �= S ′. But then we can iterate the above
construction and obtain a strictly �-increasing chain

T � T ↓α � T ↓α2 � ↓α3 � · · · � T ↓αi � · · ·

In particular, this means that T has infinitely many different subtrees, which
contradicts its being an L-tree. The result follows. ✷

A final property can be phrased as the slogan subclassing preserves sub-
typing. Intuitively, this means that subtype relationships will be preserved
in subclasses.

Proposition 5.13: A type expression in a class T consists of, say, n classes
located as the subtrees at addresses α1, α2, . . . , αn; that is, the expression
denotes the set

A = {T ↓α1, T ↓α2, . . . , T ↓αn}
Suppose also we have another type expression denoting the set

B = {T ↓β1, T ↓β2, . . . , T ↓βm}

and that the inclusion A ⊆ B holds. Let S be any subclass of T . We then
have two corresponding sets

A′ = {S ↓α1, S ↓α2, . . . , S ↓αn} B′ = {S ↓β1, S ↓β2, . . . , S ↓βm}

and we are guaranteed that the inclusion A′ ⊆ B′ will also hold.
Proof: This follows immediately from the stability requirement on �. ✷

5.4 Examples

To illustrate the concepts introduced in this section we continue the example
from subsection 3.4.

The automata cokresponding to the classes A and B are shown in figure 15.
We can also observe that tree(A) � tree(B).

33

Figure 15: Example automata.

class C
var h: B
var t: selfClass

end C

class C inherits C
var z: Object

end D

Figure 16: Example classes.

Figure 17: Example trees.

We next program two new classes C and D shown in figure 16. As before, we

34

Figure 18: Relating generators.

define

LC = var h : • var t : •
LD = var z :

The corresponding trees, shown in figure 17, are defined by the equations

tree(C) = LC(tree(B),tree(C))

tree(D) = LCLCD(tree(B),tree(D),tree(Object))

Let us show that tree(C)� tree(D). We have three different situations
where a generator in tree(C) must be� than a similar generator in tree(D).
Examples of all three situations are shown in figure 18. A tree that is � than
tree(D) but not � is shown in figure 19; it is not recursive, while tree(D)
is.

35

Figure 19: A non-recursive tree.

6 The Orthogonality Result

Inheritance is a programming mechanism which can realize only part of �;
more precisely, it captures a suborder.

6.1 Two Suborders

Definition 6.1: The partial order T1 � T2 holds exactly when

• T1 � T2 ∧ ∀α ∈ T1 : T1 ↓α �= T1 ⇒ T1[α] = T2[α]

This states that only the root label—and its recursive occurrences—may
change. ✷

The �I-part of � is just inheritance.

Proposition 6.2: If C1 is inherited by C2 in any program, then tree(C1)�I

tree(C2). Conversely, if T1 �I T2 then any C1 such that tree(C1) = T1 can
be modified by inheritance to yield a (C2) such that tree(C2) = T2.
Proof: Consider the isomorphism between L-trees and minimal equation
systems. It is quite easy to see that �I in this framework exactly captures
the constructions performed by the expansion algorithm. ✷

36

The remaining part of � can be characterized in a satisfying manner: as an
orthogonal complement of �I , in the following sense.

Definition 6.3: Let P be a partial order on a set S. We use the notation
�(S) for the diagonal {(s, s) | s ∈ S}, and the notation A∗ for the reflexive,
transitive closure of a relation A. We write Q⊥P R, if Q and R are partial
orders such that Q∩R = �(S) and (Q∪R)∗ = P . We call Q, R an orthogonal
basis for P when

• Q⊥P R

• Q′⊥P R⇒ Q ⊆ Q′

• Q⊥P R′ ⇒ R ⊆ R′

This generalizes the notion of basis in [26]. ✷

For example, if (S1,≤1) and (S2,≤2) are partial orders, then ≤1 × � (S2)
and �(S1)× ≤2 form an orthogonal basis for ≤1 × ≤2.

The remaining part of � can be captured by the following suborder.

Definition 6.4: The partial order T1 �S T2 holds exactly when

• T1 � T2 ∧ T1[λ] = T2[λ]

This states that the root label must remain unchanged. ✷

6.2 Orthogonality

We can now show that �I , �S is an orthogonal basis for �. This result is
important, since it allows us to simply search for a programming mechanism
that relates to �S in the same fashion that inheritance relates to �I ; the less
appealing choice was to find a mechanism directly for the awkward set dif-
ference of � and �I . Furthermore, when we have such a �S-mechanism, then
it is orthogonal to inheritance in a formal sense. The next chapter discloses

37

that as yields a form of genericity. We have thus shown that inheritance and
genericity are independent, orthogonal components of generalized subclass-
ing.

To prove the result we need a series of lemmas.

Lemma 6.5: The relations �I , �S as are both partial orders, and �I ∩ �S =
�(U).
Proof: Clearly, �S is a partial order. The extra condition on T1 �I T2 simply
means that for every α ∈ gen(T1) we have gen(T1)[α] = gen(T2)[α], except
for the root labels which are ≤-related. Hence, �I is a partial order. If also
T1 �S T2 then all labels must be equal, so the generators, and the trees, are
equal. ✷

Figure 20: Orthogonal suborders.

Lemma 6.6: Whenever T1 � T2 then there is a unique A ∈ U such that
T1 �S A �S T2.
Proof: Suppose T1 � T2. Then gen(T1) � gen(T2). Let L1 be the root
label of gen(T1). Then the root label of gen(T2) must look like L1L2. Let
gen(A) be obtained from gen(T2) by removing the L2-part of the root label
and the subtrees that correspond to its gaps. Since subtrees with the same
address in �-related trees also will be �-related, it follows that T1 � A. Since

38

T1, T2 ∈ U , then clearly A ∈ U . But since they both have root label L1, we
also have T1 �S A. It is trivially the case that A �I T2, so we have shown that
T1 �S A �I T2.

For the uniqueness of A, suppose we also have T1 �S B �I T2. Then for every
α ∈ gen(T2) we have gen(T2)[α] = gen(A)[α] = gen(B)[α], except for the
root labels; but we also have T1[λ] = A[λ] = B[λ], so A = B. ✷

Lemma 6.7: (�I ∪ �S)∗ = �
Proof: Immediate from lemma 6.6. ✷

Lemma 6.8: No partial order �M which is a proper subset of �S satisfies
(�I ∪ �M)∗ = �. Also, no partial order �N which is a proper subset of �I

satisfies (�N ∪ �S)∗ = �.
Proof: suppose we have such a �M . Choose (x, y) ∈ �S \ �M . Then
x[λ] = y[λ], so no �I � (U) steps can take place on a path from x to y.
Hence, (x, y) ∈ �∗M = �M which is a contradiction. The other half of the
result is proved similarly. ✷

Lemma 6.9: Let P be a partial order, where all closed intervals are finite.
Whenever P1, P2 ⊆ P and P ∗

1 = P ∗
2 = P , then (P1 ∩ P2)

∗ = P .
Proof: Clearly, (P1 ∩P2)

∗ ⊆ P . For the opposite inclusion, suppose (x, y) ∈
P . The proof is by induction in the size of the open interval over P from x to
y. If the interval is empty, then either (x, y) ∈ (P1∩P2)

0, or (x, y) ∈ (P1∩P2).
Now, suppose the interval contains n + 1 elements. Choose z in it. Then
both the open interval from x to z and that from z to y contain at most n
elements. Hence, by the induction hypothesis, (x, z), (z, y) ∈ (P1 ∩ P2)

∗. By
transitivity of (P1 ∩ P2)

∗ we conclude (x, y) ∈ (P1 ∩ P2)
∗. ✷

Lemma 6.10: If �M ⊥� �S as then �I ⊆ �M . Also, if �I ⊥� �N then as
�S ⊆ �N . Proof: Suppose �M ⊥� �S as. By corollary 5.11, all closed �-
intervals of U are finite, so by lemmas 6.7 and 6.9, � = ((�I ∪ �S)∗) ∩ (�M ∪
�S))∗ = ((�I ∩ �M)∪ �S)∗. By lemma 6.8, �I ∩ �M cannot be a proper subset
of �I . Hence, �I ∩�M = �I , so �I ⊆ �M The other half of the lemma is proved
similarly. ✷

39

Theorem 6.11: �I , �S is an orthogonal basis for �.
Proof: Combine lemmas 6.5, 6.7, and 6.10. ✷

The significance of this result is that a programming mechanism realizing
�S, together with inheritance which realizes �I , allow the programming of
all subclasses. Furthermore, two such programming mechanisms would be
completely non-redundant; neither could emulate the other. The situation
is illustrated in figure 20, which shows how all subclasses can be reached in
axis-parallel moves.

7 Class Substitution

The suborder �S requires that the root label cannot change. In terms of
classes, this means that only type information may change, and not the im-
plementation itself. This is precisely what intuitively characterizes genericity.
This section introduces a programming mechanism that corresponds to �S.
It is called class substitution and implements a general form of genericity.

7.1 Syntax

The syntax for class substitution is as follows. If C, Ai, and Bi are classes,
then

C[A1, . . . , An ← B1, . . . , Bn]

is a class substitution which specifies a class D such that C �S D and all
occurrences of Ai are substituted by Bi. If such a class does not exist, then
the specification is statically incorrect.

7.2 Semantics

In this section we define precisely what class substitution means, and we
show that it exactly realizes �S.

The algorithm to expand a substitution specification is summarized in figure
21. Intuitively, the relation M collects all the individual substitutions that
must be performed. The requirement that M is �-increasing is necessary in

40

Input A substitution specification: C[A1, . . . , An ← B1, . . . , Bn]
Output Either fail or a resulting class: D

Algorithm: M ← {(Ai ↓α, Bi ↓α) | 1 ≤ i ≤ n, α ∈ Ai, α ∈ Bi}
if M is not a ✁-increasing, partial function then fail
apply M to the maximal subtrees of C in dom(M)

yielding D
if not D ∈ U and C ✁S D then fail

Figure 21: Expanding substitutions.

order for D to be a subclass of C. The requirement that M is a function is
necessary to avoid inconsistent substitutions. Note that the maximal sub-
trees of C that belong to the domain of M is a uniquely determined set of
disjoint subtrees. Note also that failed substitutions can be determined on
compile-time.

Proposition 7.1: If C �S D then

D = C[A1, . . . , An→ B1, . . . , Bn]

for some Ai, Bi.
Proof: Clearly, D = C[C← D]. ✷

Hence, all �S-related subclasses can be expressed in this manner. Note though
that the specification given in the proof of proposition 7.1 is rather useless
for practical programming: it corresponds to writing class D from scratch.
There are often many different specifications of the same class substitution,
however, and in the following section we will see how easy it is to select a
convenient one.

It is also for pragmatic reasons that we allow multiple, simultaneous substitu-
tions. With this mechanism conflicting substitutions will cause compile-time
errors; in contrast, a sequence of individual substitutions will always succeed
but may yield an unexpected result.

41

7.3 Pragmatics

The fact that class substitution realizes �S is not sufficient to ensure that
class substitution is a useful and pleasant programming mechanism. Only
pragmatic arguments can really justify such a claim. In this section we at-
tempt to give such arguments by showing some example programs which use
class substitution, and by comparing class substitution with parameterized
classes.

Figure 22: Programming with class substitution.

In figure 22 is shown a subclass hierarchy as it can be programmed using
inheritance and class substitution. An arrow is labeled by “I” when the
subclass is obtained by inheritance, and “S” if by class substitution. The
detailed code for the classes will be given subsequently. We assume that the
classes Boolean, Integer, and Array has been programmed already, and that
Array instances respond to messages as specified in figure 23.

In the class Stack, the element type is Object, see figure 23. The classes
Booleanstack and Integerstack are class substitutions of Stack. For example,

42

Booleanstack is the class obtained from Stack by substituting all occurrences
of Object by Boolean, including those in Array. Thus, Stack acts like a pa-
rameterized class but is just a class, not a second-order entity. This enables
gradual generic-instantiations, as demonstrated in the following.

class Array
method at(i: Integer) returns Object . . .
method atput(i: Integer ; x: Object) returns selfClass . . .
method initialize(size: Integer) returns selfClass . . .
method arraysize returns Integer . . .
. . .

end Array

class Stack
var space: Array
var index: Integer
method push(x: Object) returns selfClass

index := index succ ; space.atput(index,x) ; self
method top returns Object

space.at(index)
method pop returns selfClass

index := index pred ; self
method initialize(size: Integer) returns selfClass

space := (Array new).initialize(size) ; index := 0 ; self
. . .

end stack

class Booleanstack is Stack[Object ← Boolean]
class Integerstack is Stack[Object ← Integer]

Figure 23: Stack classes.

The use of parameterized classes is the traditional approach to genericity
[38, 39, 49, 34, 48, 42]. Similar constructs are found in conventional proce-
dural languages, for example ADA generic packages [24], and parameterized
Clu clusters [35]. A parameterized class is a second-order entity which is
generically-instantiated to specific classes when actual type parameters are
supplied. Generic-instantiation of parameterized classes is less flexible than

43

inheritance, since any class can be inherited but is not in itself parameterized.
In other words, code reuse with parameterized classes requires planning; code
reuse with inheritance does not.

In general, we will say that a genericity mechanism is a construct which
allows the substitution of types in a class. Thus, class substitution is also
a genericity mechanism, and in contrast to parameterized classes it is the
orthogonal complement of inheritance. This indicates that class substitution
gives more expressive power to an object-oriented language than parameter-
ized classes, and indeed Meyer [38] argued that parameterized classes can be
simulated by inheritance.

class Ring
var value: Object
method plus(other: selfClass) returns selfClass

self
method zerro returns selfClass

self
method getvalue returns Object

value
. . .

end Ring
class BooleanRing inherits Ring[Object ← Boolean]
method plus(other: selfClass) returns selfClass

value := value.or(other.getvalue) ; self
method zero returns selfClass

value := false ; self
. . .

end BooleanRing

Figure 24: Ring classes.

Note that class substitution is not textual substitution; in general, textual
substitution will not yield a statically correct subclass. For example, if we
try to obtain Booleanstack by textually substituting occurrences of Object
by Boolean, then among others the expression space.atput.(index,x) (in push)
becomes statically incorrect; it will have an Boolean instance where an Object
instance is required. For further examples, see [43].

44

Another drawback of parameterized classes is that they cannot be gradually
generically-instantiated. This makes it awkward to, for example, declare a
class Ring, then specialize it to a class Matrix, and finally specialize Matrix
to a class Booleanmatrix. In the following we show how it can be done using
inheritance and class substitution. The history of a class developed with
inheritance and substitution can be thought of as an element of the language
(I + S)∗ ; in comparison, parameterized classes restrict the possible histories
to S.I∗.

class DoubleArray is Array[Object ← Array]
class DoubleRingArray is DoubleArray[Object ← Ring]

class Matrix inherits Ring[Object ← DoubleRingArray]
var i,j: Integer
var r: Array[Object ← Ring]
method plus(other: selfClass) returns selfClass
for i := 1 to value.arraysize do

r := value.at(i) ;
for j := 1 to r.arraysize do

r := r.atput(j, r.at(j).plus(other.at(i).at(j)))
od ;
value.atput(i,r)

od ;
self

. . .
end Matrix

class Booleanmatrix is Matrix[Ring ← Booleanring]
class Matrixmatrix is Matrix[Ring ← Matrix]

Figure 25: Matrix classes.

Consider the ring classes in figures 24 and 25. The class Booleanring inherits a
class substitution of class Ring; thus, Booleanring is a subclass of Ring. This
illustrates how class substitution and inheritance complement each other:
first Object is substituted by Boolean; then the inherited procedures are im-
plemented appropriately. This is further illustrated by the matrix classes,

45

see figure 25. Again, the class Matrix is obtained through a class substitu-
tion followed by an application of inheritance. We take the liberty of using
a for-statement, even though is has not been included in the syntax. Class
Matrixmatrix is obtained through class substitution alone.

It seems that class substitution could solve the problems in the Eiffel type
system that were reported by Cook [15], since attributes cannot be redeclared
in isolation in subclasses, there are no symmetries as with declaration by
association, and generic-instantiation can be expressed as subclassing.

8 Separate Compilation and Infinite Types

One common aspect of many existing object-oriented languages has so far
not been captured by our framework.

We have restricted our types to be finite sets. We argued that this was quite
adequate, since in a given program any predicate could only be satisfied by
finitely many classes.

With this type system we have developed a general notion of subclassing, un-
der which any subclass can be implemented as an extension of its superclass.
This is the fundamental idea of code reuse in object-oriented programming.

The concept of separate compilation, however, introduces a different level of
code reuse, which does not fit as smoothly into our framework. When a class
is separately compiled, then predicates cannot be expanded into finite sets,
since only a part of the program is known at the time of compilation.

The traditional solution is to introduce a limited form of infinite sets; in
particular, cones of the form

↑ T = {S ∈ U | T � S}

are employed. It is possible to generalize slightly: finite unions of cones and
singletons can be used. The important restriction is that the sets can be
finitely represented, and that membership and mutual inclusions are decid-
able. For cones, membership is just subclassing, and inclusion coincides with
reverse subclassing, i.e.

↑ S ⊆ ↑ T iff T � S

46

A perfect match is not possible, but the types in a language such as Beta
correspond closely to either singletons or cones [37].

Recall the important property of our framework that can be stated as the
slogan: subclassing preserves subtyping. In the presence of cones, the picture
changes dramatically. There exist classes T � S such that for some α, β we
have

↑ (T ↓α) ⊆ ↑ (T ↓β) but ↑ (S ↓α) �⊆ ↑ (S ↓β)

This unfortunately means that subclasses cannot be guaranteed to remain
statically correct. A simple example is shown in figure 26, in which S is a
statically incorrect subclass of the statically correct class T.

class T
var x: ↑Object
var y: ↑Integer
method Assign returns selfClass

x := y ; self
end T

class S
var x: ↑Object
var y: ↑Integer
method Assign returns selfClass

x := y ; self
end S

Figure 26: A statically incorrect subclass.

There seem to be three possible solutions.

• restrict subclassing to preserve ⊆: unfortunately, only trivial subclasses
can be allowed.

• restrict subtyping to be preserved by �: unfortunately, only trivial sub-
types can be allowed.

• find a useful compromise between both subclassing and subtyping : un-
fortunately, no such compromise seems to be forthcoming.

47

The situation does not look hopeful. The choice made by real-life languages
is to keep both ⊆ and �, which leads to an statically unsound type system.
The reactions to such a predicament fall on a spectrum ranging from C++, in
which these loop-holes are simply ignored, to Beta, in which the necessary
run-time type-checks are inserted into the code of the superclass, yielding a
dynamically sound type system.

We consider a more satisfactory solution to the problem of separate compi-
lation to be an extremely hard challenge.

9 Conclusion

Our type system for object-oriented languages is conceptually simple and it
ensures that programs are readable, reliable, and more efficient. Our sub-
classing order can be implemented straightforwardly and it contains inheri-
tance and class substitution as an orthogonal basis.

It is too preliminary to judge the pragmatics of class substitution, but sev-
eral examples indicate that it may be a useful alternative to parameterized
classes. Future work includes implementation and experimentation with the
mechanism.

The expansion algorithm for transforming a program that uses inheritance
into one which does not may be of interest in itself. It can be useful for
programmers who want to use inheritance but are required to implement
their programs in a language which does not support it.

Acknowledgement. The authors thank Ole Lehrmann Madsen, Peter Mosses,
and Flemming Nielson for helpful comments on drafts of the paper.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
und Analysis of Computer Algorithms. Addison-Wesley Publishing Com-
pany, 1974.

48

[2] Roberto M. Amadio and Luca Carcelli. Subtyping recursive types. In
Eightteenth Symposium on Principles of Programming Languages. ACM
Press, January 1991.

[3] Grady Booth. Object-Oriented Design with Applikations. The Ben-
jamin/Cummings Publishing Company, 1991.

[4] Alan H. Borning and Daniel H. H. Ingalls. A type declaration and in-
ference system for Smalltalk. In Ninth Symposium on Principles of
Programming Languuges, pages 133–141. ACM Press, January 1982.

[5] Gilad Bracha and William Cook. Mixin-based inheritance. In Proc.
OOPSLA/ECOOP’90, ACM SIGPLAN Fifth Annual Conference on
Object-Oriented Programming Systems, Languages and Applications;
European Conference on Object-Oriented Programming, 1990.

[6] Ronald J. Brachman. “I lied about the trees” or, defaults and definitions
in knowledge representation. The AI Magazine, Fall, 1985.

[7] Kim B. Bruce. The equivalence of two semantic definitions for inheri-
tance in object-oriented languages. In Proc. Mathmatical Foundations
of Programming Semantics. Springer-Verlag (LNCS 442), 1991.

[8] Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G.
Olthoff. Interfaces for strongly-typed object-oriented programming. In
Proc. OOPSLA’84, Fourth Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications. ACM, 1989.

[9] L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. Mac-
Queen, and Gordon Plotkin, editors, Semantics of Data Types, pages
51–68. Springer-Verlag (LNCS 173), 1984.

[10] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys, 17(4), December 1985.

[11] Luca Cardelli. Typeful programming. Technical report, Digital Equip-
ment Corporation, 1989.

[12] Luca Cardelli and John C. Mitchell. Operations on records. In Proc.
Mathmatical Foundations of Programming Semantics, pages 22–52.
Springer-Verlag (LNCS 442), 1989.

49

[13] Peter Coad and Edward Yourdon. Object-Oriented Analysis. Prentice
Hall, 1991.

[14] W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis,
Brown University, 1989.

[15] William Cook. A proposal for making Eiffel type-safe. In Proc.
ECOOP’89, European Conference on Object-Oriented Programming,
1989.

[16] William Cook, Walter Hill and Peter Canning. Inheritance is not sub-
typing. In Seventeenth Symposium on Principles of Programming Lan-
guages. ACM Press, January 1990.

[17] William Cook and Jens Palsberg. A denotational semantics of inheri-
tance and its correctness. In Proc. OOPSLA’89, ACM SIGPLAN Fourth
Annual Conference on Object-Oriented Programming Systems, Lan-
guages and Applications, 1989. To appear in Information and Compu-
tation.

[18] William R. Cook, Walter L. Hill, and Peter S. Canning. F-bounded
polymorphism for object-oriented programming. In Proc. Conference on
Functional Programming Languages and Computer Architecture, 1989.

[19] Bruno Courcelle. Infinite trees in normal form and recursive equations
having a unique solution. Mathematical Systems Theory, 13:131–180,
1979.

[20] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical
Computer Science, 25(1), 1983.

[21] Brad J. Cox. Object Oriented Programming, an Evolutionary Approach.
Addison-Wesley Publishing Company, 1986.

[22] O. J. Dahl, B. Myhrhaug, and K. Nygaard. Simula 67 common base lan-
guage. Technical report, Norwegian Computing Center, Oslo, Norway,
1968.

[23] Scott Danforth and Chris Tomlinson. Type theories and object-oriented
programming. ACM Computing Surveys, 20(1), March 1988.

50

[24] J. D. Ichbiah et al. Reference Manual for the Ada Programming Lan-
guage. US DoD, July 1982.

[25] A. Goldberg and D. Robson. Smalkalk-80—The Language and its Im-
plementation. Addison-Wesley, 1983.

[26] George Grätzer. General Lattice Theory. Birkhäuser, 1978.

[27] Justin O. Graver and RaIph E. Johnson. A type system for Smalltalk.
In Seventeenth Symposium on Principles of Programming Languages,
pages 136–150. ACM Press, January 1990.

[28] Justin Owen Graver. Type-Checking and Type-Inference for Object-
Oriented Programming Languages. PhD thesis, Department of Com-
puter Science, University of Illinois at Urbana-Champaign, August 1989.
UIUCD-R-89-1539.

[29] R. E. Johnson. Type-checking Smalltalk. In Proc. OOPSLA’86, Object-
Oriented Programming Systems, Languages and Applications. Sigplan
Notices, 21(11), November 1986.

[30] Ralph E. Johnson and Brian Foote. Designing reuable classes. Journal
of Object-Oriented Programming, June/July, 1988.

[31] S. Kamin. Inheritance in Smalltalk-80: A denotational definition. In
Fifteenth Symposium on Principles of Programming Languages, pages
80–87. ACM Press, January 1988.

[32] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, and K. Nygaard.
The Beta programming language. In B. Shriver and P. Wegner, editors,
Research Directions in Object-Oriented Programming, pages 7–48. MIT
Press, 1987.

[33] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, and K. Ny-
gaard. Classification of actions or inheritance also for methods. In
Proc. ECOOP’87, European Conference on Object-Oriented Program-
ming. Springer-Verlag (LNCS 276), 1987.

[34] Karl J. Lieberherr and Arthur J. Riel. Contributions to teaching object-
oriented design and programming. In Proc. OOPSLA’89, Fourth Annual
Conference on Object-Oriented Programming Systems, Languages and
Applications. ACM, 1989.

51

[35] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Scaffert. Ab-
straction mechanisms in CLU. Communications of the ACM, 20(8):564–
576, August 1977.

[36] Ole L. Madsen and Birger Møller-Pedersen. Virtual classes: A power-
ful mechanism in object-oriented programming. In Proc. OOPSLA’89,
Fourth Annual Conference on Object-Oriented Programming Systems,
Languages and Applications. ACM, 1989.

[37] Ole Lehrmann Madsen, Boris Magnusson, and Birger Møller-Pedersen.
Strong typing of object-oriented languages revisited. In Proc. OOP-
SLA/ECOOP’90, ACM SIGPLAN Fifth Annual Conference on Object-
Oriented Programming Systems, Languages and Applications; European
Conference on Object-Oriented Programming, 1990.

[38] Bertrand Meyer. Genericity versus inheritance. In Proc. OOPSLA’86,
Object-Oriented Programming Systems, Languages and Applications.
Sigplan Notices, 21(11), November 1986.

[39] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[40] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer und System Sciences, 17, 1978.

[41] John C. Mitchell. Toward a typed foundation for method specialization
and inheritance. In Seventeenth Symposium on Principles of Program-
ming Languages. ACM Press, January 1990.

[42] Atsushi Ohori and Peter Buneman. Static type inference for parametric
classes. In Proc. OOPSLA’89, Fourth Annual Conference on Object-
Oriented Programming Systems, Languages and Applications. ACM,
1989.

[43] Jens Palsberg and Michael I. Schwartzbach. Type substitution for
object-oriented programming. In Proc. OOPSLA/ECOOP’90, ACM
SIGPLAN Fifth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications; European Conference on Object-
Oriented Programming, 1990.

52

[44] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type infer-
ence. In Proc. OOPSLA’91, ACM SIGPLAN Sixth Annual Conference
on Object-Oriented Programming Systems, Languages and Applications,
1991.

[45] Jens Palsberg and Michael I. Schwartzbach. What is type-safe code
reuse? In Proc. ECOOP’91, Fifth European Conference on Object-
Oriented Programming, 1991.

[46] Claus H. Pedersen. Extending ordinary inheritance schemes to include
generalization. In Proc. OOPSLA’89, ACM SIGPLAN Fourth Annual
Conference on Object-Oriented Programming Systems, Languages and
Applications, 1989.

[47] U. S. Reddy. Objects as closures: Abstract semantics of object-oriented
languages. In Proc. ACM Conference on Lisp and Functional Program-
ming, pages 289–297. ACM, 1988.

[48] David Sandberg. An alternative to subclassing. In Proc. OOPSLA’86,
Object-Oriented Programming Systems, Languages and Applications.
Sigplan Notices, 21(11), November 1986.

[49] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie
Wilpolt. An introduction to Trellis/Owl. In Proc. OOPSLA’86, Object-
Oriented Programming Systems, Languages and Applications. Sigplan
Notices, 21(11), November 1986.

[50] Michael I. Schwartzbach. Static correctness of hierarchical procedures.
In Proc. International Colloquium on Automata, Languages, and Pro-
gramming 1990. Springer-Verlag (LNCS 443), 1990.

[51] Michael I. Schwartzbach. Type inference with inequalities. In Proc.
TAPSOFT’91. Springer-Verlag (LNCS 493), 1991.

[52] A. Snyder. Inheritance and the development of encapsulated software
components. In B. Shriver and P. Wegner, editors, Research Directions
in Object-Oriented Programming. MIT Press, 1987.

[53] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
1986.

53

[54] David S. Touretzky. The Mathematics of Inheritance Systems. Morgan
Kaufmann Publishers, 1986.

[55] P. Wegner. Dimensions of object-based language design. In Proc. OOP-
SLA’87, Object-Oriented Programming Systems, Languages and Appli-
cations, 1987.

[56] P. Wegner and S. B. Zdonik. Inheritance as an incremental modification
mechanism or what like is and isn’t like. In Proc. ECOOP’88, European
Conference on Object-Oriented Programming. Springer-Verlag (LNCS
322), 1988.

[57] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, New York,
1985.

54

