Contents

1 Introduction .. 1

2 Types ... 3
 2.1 Types are Sets of Classes 4
 2.2 Subtyping is Set Inclusion 5
 2.3 Inheritance is Not Subtyping 6
 2.4 Other Type Systems 7

3 The Example Language ... 8
 3.1 Informal Semantics .. 8
 3.2 Static Correctness 10
 3.3 Tree Representations of Classes 12
 3.4 Examples .. 14

4 Inheritance .. 15
 4.1 Syntax .. 15
 4.2 Properties ... 16
 4.3 The Expansion Algorithm 18
 4.4 Example .. 22

5 Generalized Subclassing 25
 5.1 A Generalized Interpreter 26
 5.2 A Partial Order on Trees 26
 5.3 Properties .. 29
 5.4 Examples .. 33
6 The Orthogonality Result

6.1 Two Suborders ... 36
6.2 Orthogonality ... 37

7 Class Substitution ... 40

7.1 Syntax .. 40
7.2 Semantics ... 40
7.3 Pragmatics .. 42

8 Separate Compilation and Infinite Types 46

9 Conclusion .. 48
Static Typing for Object-Oriented Programming

Jens Palsberg Michael I. Schwartzbach
palsberg@daimi.aau.dk mis@daimi.aau.dk

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Arhus C, Denmark

June 1991

Abstract

We develop a theory of statically typed object-oriented languages. It represents classes as labeled, regular trees, types as finite sets of classes, and subclassing as a partial order on trees. We show that our subclassing order strictly generalizes inheritance, and that a novel genericity mechanism arises as an order-theoretic complement. This mechanism, called class substitution, is pragmatically useful and can be implemented efficiently.

1 Introduction

Object-oriented programming is becoming widespread. Numerous programming languages supporting object-oriented concepts are in use, and theories about object-oriented design and implementation are being developed and applied [21, 3, 13].
An important issue in object-oriented programming is to obtain reusable software components [30]. This is achieved through the notions of object, class, inheritance, late binding, and the imperative constructs of variables and assignments. Such features are found for example in the SMALLTALK language [25] in which a large number of reusable classes has been written. SMALLTALK, however, is untyped. Though this is ideal for prototyping and exploratory development, a static type system is required to ensure that programs are readable, reliable, and efficient.

This paper studies an idealized subset of SMALLTALK, which we equip with a novel static type system. Our analysis results in the definition of a new genericity mechanism, called class substitution, which we prove to be the order-theoretic complement of inheritance.

In the following section we briefly review the benefits of static typing. We argue that the choice of finite sets of classes as types can provide exactly those benefits. Furthermore, in this setting subtyping can be seen to be simply set inclusion. Finally, we compare this notion of type with others that have been proposed.

In section 3 we outline the example language. It is an idealized subset of SMALLTALK, in which variables and parameters are declared together with types. The language has been simplified by the omission of blocks; instead, a primitive if-then-else is provided. We also give precise requirements for static correctness of programs, and introduce a mathematical framework in which we represent classes as labeled, regular trees. These representations abstract away from class names.

In section 4 we discuss inheritance and its interaction with mutually recursive classes. We also show that a program using inheritance can be transformed into one which does not.

In section 5 we structure the class representations with a partial order which generalizes inheritance. The intuition behind the order is that a subclass may extend the implementation and redefine the types consistently, while preserving the recursive structure of the superclass. All such generalized subclass relationships can be exploited by an implementation to provide reusable software components. The suggested implementation is a generalization of the SMALLTALK interpreter. We show that the partial order has the same characteristic properties as its subset inheritance: it is decidable, has a least
element, has finite intervals, does not allow temporal cycles, and preserves subtyping.

In section 6 we prove that the generalized subclassing order is strictly more powerful than ordinary inheritance. We characterize the extra possibilities by showing that they form a suborder which is an order-theoretic orthogonal complement to the suborder formed by inheritance relationships.

In section 7 we develop the orthogonal complement of inheritance into a programming mechanism, called class substitution, which turns out to be a genericity mechanism. This means that our simple type system, though voided of e.g. type variables, still supports genericity. We extend the example language with syntax for class substitution, give example programs, and compare with parameterized classes.

Finally, in section 8 we use our framework to analyze the kind of type system which is common in existing object-oriented languages, for example C++ and SIMULA/BETA. The analysis yields an explanation of why these languages often allow loop-holes in the type system or resort to run-time type-checking in some cases.

2 Types

Types are introduced into untyped languages because an untyped program may be unreadable, unreliable, and inefficient. Any choice of type system for a language must be able to remedy some or all of the above deficiencies [29].

Types may be used as annotations, and those can be read not only by humans but also by the compiler which may be able to exhibit a safety-guarantee and perform compile-time optimizations. The safety-guarantee will typically state that operations are only performed on arguments of the proper types; in other words, certain run-time errors will not occur.

In this section we present a new, simple type system for object-oriented languages and we argue why it yields the benefits stated above. We also examine other type systems and discuss similarities and differences.
2.1 Types are Sets of Classes

The basic metaphor in object-oriented programming is the object. An object groups together variables and procedures (called methods), and prevents direct outside access to the variables; it may be thought of as a module [57]. Objects are instances of classes, see for example figure 1. The class Record specifies a pattern from which all Record objects will be created. Such an object is created for example in class File by the expression “Record new” and it gets a separate copy of all variables. Note that also Integer is a class, though specified elsewhere, and that each method returns the result of its last expression. If nothing needs to be returned, then usually one returns the object itself, denoted by self.

```plaintext
class Record
  var key: Integer
  method getKey returns Integer
    key
  method setKey(k: Integer) returns Record
    key := k ; self
end Record

class File
  var buffer: Record
  method initialize returns File
    buffer := Record new ; buffer.setKey(17) ; self
end File
```

Figure 1: Records and Files.

The only possible interaction with an object is when sending a message to it—when invoking one of its methods. For example, in class File the expression buffer.setKey(17) expresses the sending of the message setKey with argument 17 to the object in the variable buffer. If the object does not understand the message—if its class does not implement a method with the specified name—then the run-time error message NotUnderstood occurs. In a pure object-oriented language this is the only run-time error that can occur.

The purpose of a type system is to allow the programmer to annotate programs with information about which methods are available in a given object,
and to allow the compiler to guarantee the error message `messageNotUnderstood` will never occur [4, 8]. The latter immediately enables compile-time optimizations because a number of checks need not be inserted into the code.

In SMALLTALK, any object can be assigned to any variable. Message sending is implemented by *late binding*, i.e., the message send is dynamically bound to an implementation depending on the class of the receiver. The fundamental question is: which messages will an object residing in a variable be able to respond to. Ignoring the possibility of doing flow analysis, the answer is: those methods that are common to the classes of the possible objects in that variable. This set of methods can be specified by simply listing the classes of the possible objects, because only finitely many classes occur in a given program. These observations lead us to define the notion of type that will be analyzed throughout this paper.

\[
\text{A type is a finite set of classes.}
\]

Note that a type can only contain classes that are part of the program. This corresponds to a “closed-world” assumption.

Our types are more general than they may seem at first. Any kind of type expressions may be employed, providing that they can be interpreted as predicates on classes. In a given program only finitely many classes will satisfy any given predicate. The type can now be identified with the finite set; hence, we are justified in viewing our type system as being quite general.

As an example of a type, consider again figure 1, where class `File` specifies a variable `buffer` of type `Record`. The type contains a single class, hence, only `Record` objects are allowed to reside in the variable.

2.2 Subtyping is Set Inclusion

An object may have more than one type. Consider for example an instance of class `Record`. The singleton type containing just `Record` is a type of that instance, but so is also any superset. Henceforth, we will call a superset for a *supertype*, and a subset for a *subtype*.

When type-checking an assignment \(x := e \) (and similarly for a parameter passing), then it suffices to check that the static type of \(x \) is a supertype of
the static type of e. This is because the assignment then will not violate the requirement that only objects of the static type of x can reside in x.

If we had a more advanced kind of type expressions, then subtyping must be defined to coincide with—or at least to respect—inclusion of the corresponding sets.

The nil object requires special attention. In SMALLTALK it is an instance of the class undefinedObject, and it is the initial contents of variables when objects are created. This implies that we should want undefinedObject to be a member of all types. In this paper, we do not want to rely on any predefined classes, however, so we will treat nil in another way. Instead of having undefinedObject as an explicit member of all types, we will define nil to be a special primitive value which implicitly has the empty type and, hence, has all types. Treating nil as a non-instance is in line with its implementation in typed languages such as C++ [53], EIFFEL [39], and SIMULA [22]/BETA [32]. In the language we later present, nil is in fact the only constant value. The language can be viewed as simply a calculus of pointers, in which it is quite natural that nil should enjoy a special status.

2.3 Inheritance is Not Subtyping

Object-oriented programming differs from other programming paradigms in offering inheritance as a means for reusing class definitions. Inheritance can be viewed as a shorthand: it allows the definition of a class to be a modification of an existing one. More specifically, it allows the construction of subclasses by adding variables and methods, and by overriding method bodies [25, 56]. A thorough discussion of inheritance is given in a later section.

The difference between inheritance and subtyping is illustrated in figure 2 which displays a class hierarchy discussed in [37], together with the corresponding type hierarchy. Notice that we turn the class hierarchy “upside-down” in order to get the smallest class at the bottom, and that the figure uses the notation ↑C for the set of all subclasses of C, even potential ones. The class hierarchy is a tree, whereas the type hierarchy is a lattice.

Note that the BETA group interprets nil as an instance of an auxiliary class on top of the class hierarchy [37]. This is awkward because it implies that
this class can be obtained by some sort of multiple inheritance of all other classes. This again implies that instances of this auxiliary class should be able to respond to any message; clearly \texttt{nil} is \textit{not} able to do this. Our explanation of \texttt{nil} as a value having the empty type is more satisfactory: it reflects that \texttt{nil} can \textit{not} respond to all messages, and that it can be assigned to any variable.

\section*{2.4 Other Type Systems}

Usually, formal models of typed object-oriented programming are based on the lambda calculus. They represent objects as records and methods as functions, and involve coercions together with subtypes \cite{9, 41}, polymorphic types \cite{40, 10, 23}, or F-bounded constraints \cite{18, 16, 7} in the description of inheritance. In contrast, traditional object-oriented languages are not based on coercions and do not support methods as values.

Furthermore, the coercion models—while being very general in some respects—do not support variables and assignments, because variable (mutable) types
have no non-trivial subtypes, as observed by Cardelli [11]. In a functional language, an assignment must be emulated by the creation of an updated copy, and it is extremely hard to preserve the type of the original value. It was long believed that bounded parametric polymorphism was sufficient [10], but it has been realized that considerably more fine-grained type systems are required to handle even simple updates [12].

Graver and Johnson’s type system for SMALLTALK [27, 28] has much in common with ours. Their types are essentially finite sets of classes, but they have to axiomatize a subtype relation that corresponds exactly to set inclusion because the type system involves type variables. They also employ a notion of signature type which essentially denotes the finite set of subclasses of a given class, under a “closed-world” assumption.

One strength of our type system is that it can avoid type variables and exclusively use the simple notion of sets of classes as types. The issue of genericity will instead be handled by generalizing the notion of subclassing.

3 The Example Language

Our example language is an idealized subset of SMALLTALK, except that variables and parameters are declared together with a type, see figure 3. We also leave the issue of inheritance to the following section. In this section we briefly discuss the semantics of the language and state the precise rules for static correctness. We also introduce a convenient representation of classes.

3.1 Informal Semantics

A program is a set of classes followed by an expression whose value is the result of executing the program. A class can contain variables and methods; a method consists of a name, an argument-list, a result-type, and an expression. The result of an assignment is the assigned value. A message send is executed by evaluating the receiver and the arguments, and if the class of the receiver implements a method for the message, then a normal procedure call takes place; otherwise, the error messageNotUnderstood occurs. The result of a sequence is the result of the last expression in that sequence. The if-then-else
| (Program) | $P ::= C_1 \ldots C_n \ E$ |
| (Class) | $C ::= \textbf{class} \ \text{ClassId}$
| | $\quad \textbf{var} \ D_1 \ldots D_k \ M_1 \ldots M_n$
	$\quad \textbf{end} \ \text{ClassId}$
(Method)	$M ::= \textbf{method} \ \text{MethodId} \ (D_1 \ldots D_k) \ \textbf{returns} \ T \ E$
(Declaration)	$D ::= \text{Id} : T$
(Type)	$T ::= [\text{selfClass}] \ \text{ClassId}_1 \ldots \text{ClassId}_n$
(Expression)	$E ::= \text{Id} ::= E \mid E \ . \ \text{MethodId} \ (E_1 \ldots E_n) \mid E ; E \mid$
	$\quad \text{if} \ E \ \text{then} \ E \ \text{else} \ E \mid \text{ClassId} \ \textbf{new} \mid \text{selfClass} \ \textbf{new} \mid$
	$\quad E \ \text{instancdOf} \ \text{ClassId} \mid \text{self} \mid \text{Id} \mid \text{nil}$

Figure 3: Syntax of the example language.

expression tests if the condition is non-nil. The expression “selfClass new” yields an instance of the class of self. The expression “E instanceof ClassId” yields a run-time check for class membership. If the check fails, then the expression evaluates to nil. The expression self denotes the receiver of the message, Id refers to instance variables and parameters, and nil is a primitive value.

Note that selfClass always can be replaced by the name of the enclosing class. This is a convenient way of making recursion explicit. It is not sufficient for expressing mutually recursive classes, however. For that, it is necessary to use the class names directly.

We have no primitive types (like integer and boolean) nor type constructors (like list) because we can program classes that encode them, see [44].

Note that we ignore the issues of concurrency and persistence [55].
3.2 Static Correctness

We define correctness of a method body with respect to the name of the enclosing class, and global and local environments. These can be uniquely determined from the program syntax.

The global environment maps class names to class descriptions. A class description maps method names to method descriptions. A method description maps argument numbers to their declared types; for convenience, the result type is assumed to have number zero.

The local environment is a finite map from names of instance variables and parameters to their declared types.

We shall use the notation

\[E :: \tau \]

to denote that the expression \(E \) is statically correct and has type \(\tau \). This property will be defined by means of a number of rules of the form

- Condition\(_1\)
 : Condition\(_k\)
 \[E :: \tau \]

with the obvious interpretation: if all the conditions can be satisfied, then the conclusion follows.

The following rules exhaust the syntactic possibilities; the enclosing class has name \(C \), the global environment is denoted by \(\mathcal{G} \), and the local environment is denoted by \(\mathcal{E} \).

- \(\text{nil ::= \{\} \} \)
- \(\text{self ::= C\}} \)
- \(\text{selfclass new ::= \{C\}} \)
Now, a program is statically correct when all method bodies have a typing in the corresponding environments.

Note that really only two kinds of checks are performed:

- **Early checks**, which require the existence of certain declared names.
- **Subtype checks**, which require inclusions between certain types.

With this definition of static correctness, it should be obvious that variables of type T can only contain objects of type T; that if an expression is evaluated to a non-nil result, then the class of that result is contained in the type of the expression; and that we can guarantee that any message is sent to either nil
or an instance of a class which implements a method for that message. Note that we ignore keeping track of nil-values; this can be treated separately by flow analysis.

A formal proof of these claims should be based on a dynamic semantics of the example language [47, 31]. We will not go into the details in this paper, however, but move on to define a convenient representation of classes.

3.3 Tree Representations of Classes

We shall work with a slightly abstracted form of classes, which will allow us to give a formal treatment of their relationships.

The mathematical framework is a kind of labeled trees, which we shall call L-trees.

Definition 3.1: Let Σ be a finite alphabet. An L-tree over Σ is an ordered, node-labeled, regular tree. We recall that a tree is regular when it has only finitely many different subtrees [20]. The labels are finite strings over $\Sigma \cup \{\bullet\}$, where it is assumed that $\bullet \notin \Sigma$. The empty label is denoted by Ω. We shall refer to the special symbol \bullet as a gap. It is further required that any node in an L-tree has exactly one subtree for each gap in its label. ◻

We have some notation associated with such trees.

Definition 3.2: Let T be an L-tree. A tree address is a sequence of integers denoting a path from the root to a node; each integer denotes the number of a subtree in the given order. We write $\alpha \in T$ when α is a valid tree address in T. The empty tree address is denoted by λ. If $\alpha \in T$ then $T[\alpha]$ denotes the label with address α in T, and $T \downarrow \alpha$ denotes the subtree of T whose root has address α. Note that $T \downarrow \lambda = T$. ◻

We can now separate a class from its surrounding program and represent it as an L-tree. Intuitively, the tree is a possibly infinite unfolding of the source code of the class.

The labels will be source code with gaps in place of occurrences of class names. Recall that a class name may occur before `new`, after `instanceOf`, and inside type expressions. We shall also replace occurrences of `selfClass` with gaps.
The root label of a class representation is the gapped source code of the class. Let the classes in the program be \(C_1, \ldots, C_n \) and the corresponding root labels be \(L_1, \ldots, L_n \). The trees \(\text{TREE}(C_1) \ldots \text{TREE}(C_n) \) are defined through the following regular equation system:

\[
\begin{align*}
\text{TREE}(C_1) &= L_1(\bar{X}_1) \\
& \vdots \\
\text{TREE}(C_n) &= L_n(\bar{X}_n)
\end{align*}
\]

Each \(\bar{X}_i \) is a list of subtrees, which is obtained as follows. Every subtree corresponds to a gap in the label \(L_i \). If the gap replaced the class \(C_j \), then the subtree is \(\text{TREE}(C_j) \); if the gap replaced \texttt{selfClass}, then the subtree is \(\text{TREE}(C_i) \). It is well-known that such an equation system has a unique solution [19], which clearly is an L-tree. If any part of a class is recursive, then the tree will be infinite.

Quite often, recursive types are represented as regular trees with nodes labeled by type constructors [2]. This is in fact what we have done, with the proviso that we consider every class as a user-defined type \textit{constructor}—rather than as a user-defined type.

We have now abstracted away from the class \textit{names}, which obviously cannot be uniquely recovered. We can, however, transform a tree \(T \) back into an \textit{equivalent} program, \(\text{PROG}(T) \), by selecting a class name for every different subtree in \(T \) and reconstructing the syntax. We then have the property that \(T \in \mathcal{U} \) if and only if \(\text{PROG}(T) \) is statically correct. Note that the structural equivalence on classes simply says that two classes are equivalent if their trees are equal.

It might be considered that the trees are not sufficiently abstract to deserve attention. For instance, we distinguish the order in which methods are implemented, and type expressions are interpreted as sequences rather than sets. Some tidying up is certainly possible: methods could be ordered in a canonical way, and type expressions could be normalized. For the purposes of this paper, however, such improvements are not really necessary. We shall mainly look at classes obtained as \textit{modifications} of other classes, in which particular arbitrary choices are always carried along. The \textit{behavior} of a class, for example an element of a Scott-domain, is clearly not a feasible representation—it is too abstract.
We can now define a universe of classes as follows:

\[\mathcal{U} = \{ \text{TREE}(C) \mid C \text{ is a class in some statically correct program} \} \]

This is a mathematical object on which we later shall observe an interesting structure.

3.4 Examples

We now provide some short examples of the above definitions. Consider

```plaintext
class Object
end Object

class A
  var x: Object
end A

class B
  var x: Object
  method set(y: Object) returns selfClass
    x := y ; self
  end B
```

Figure 4: Example classes

the classes A and B in figure 4. Let us first consider what the corresponding trees look like. We shall use the abbreviations

\[
L_A = \text{var } x : \bullet \\
L_B = \text{var } x : \bullet \text{ method set}(y : \bullet) \text{ returns } \bullet x := y; \text{self}
\]

The equation system for the trees is now

\[
\text{TREE}(\text{Object}) = \Omega() \\
\text{TREE}(A) = L_A(\text{TREE}(\text{Object})) \\
\text{TREE}(B) = L_B(\text{TREE}(\text{Object}), \text{TREE}(\text{Object}), \text{TREE}(\text{B}))
\]

The corresponding trees are pictured in figure 5. We can finally observe that

\[
\text{TREE}(B)[3, 3, 2] = \Omega \\
\text{TREE}(B)[3, 3, 3] = L_B
\]

4 Inheritance

Inheritance is reuse of class definitions. It may significantly increase programmer productivity and decrease source code size. In this section we add inheritance to our example language, discuss its properties, and show that we can use the universe of class representations from the previous section to represent also the classes defined by inheritance.

4.1 Syntax

To introduce inheritance we extend the grammar in figure 3 as showed in figure 6.

The class name following inherits is called the superclass of the class being defined; the latter is called a subclass of the superclass.
(Class) C ::= class ClassId inherits ClassId
 var D1 ... Dk M1 ... Mn
 end ClassId

Figure 6: Syntax of Inheritance.

The subclass is a modification of the superclass: it may add variables and
methods, and if a method name coincides with an existing one, then the
new method definition overrides the old one. The body of a new method
definition may refer to both the existing variables and the existing methods.
It has been argued by Snyder [52] that much better encapsulation is achieved
if only the existing methods can be referred; we ignore this consideration in
this paper. For a denotational semantics of inheritance, see [17, 47, 31, 14].

4.2 Properties

Inheritance can be used in various ways, ranging from undisciplined code-
grabbing to disciplined program structuring based on a hierarchical design
method [21, 3, 13]. Common to all approaches is that the superclass is cre-
atated before the subclass. We will henceforth use the terminology that the
subclass is temporarily dependent on its superclass.

A class can be a subclass of another class which itself is defined by inheritance.
The chain of superclasses is always finite, however, because the program is
finite. Also, the superclass chain will contain no cycles; we will say that
it is temporarily acyclic. Note that any non-empty class can be defined as
a subclass of the empty class, which we will call Object. This is actually
enforced in SMALLTALK. In this situation, the inheritance hierarchy is a
tree, otherwise it is a forest.

If C is the superclass and D is the subclass, then it is common to say that D
is-a C [6, 54]. For example, if Student is a subclass of Person, then it seems
reasonable to say that Student is-a Person. It is convenient to let is-a denote
the transitive closure of this relation. The other possible relation between
classes is has-a. If a class C declares a variable of a type which contains
the class D, then we will say that C has-a D. For example, if the Student
declares a graduate variable of type Boolean, then Student has-a Boolean.
We will also say that C has-a D if C mentions D in a parameter list or as an argument of new or instanceOf. Analogously with is-a, we let has-a denote the transitive closure of this relation.

It is crucial not to confuse is-a and has-a. If C has-a D and D has-a C, then we will say that C and D are mutually recursive. In comparison, it is impossible to have both C is-a D and D is-a C because that would be a temporal cycle. To make any sense, mutually recursive classes must be defined simultaneously by the programmer.

Together, is-a and has-a impose a temporal order on the classes in a program. The intuition is that a class D depends temporally on a class C if C has to be created before D. We will formalize this order in the following subsection, where we also show that a program that uses inheritance can be transformed into one which does not. Our reason for doing this is that when all classes are represented as elements of our universe of class representations, then it makes sense to analyze this universe in order to discover other relations between classes besides is-a and has-a. Such relations will be independent both of class names and of the particular shorthands that can be used in program texts. So far, the only shorthand we have encountered is inheritance, but later on we will define another called class substitution. Pedersen [46] proposed the notion of generalization which is the inverse of inheritance.

The loss of an explicit class hierarchy may at first seem to cause severe problems, since some programming mechanisms depend on exactly this. In particular, we think about redefinition of method bodies in subclasses, and about the constructs super [25] and inner [33, 36]. However, these mechanisms depend primarily on the existence of multiple implementations of methods. This we can certainly handle, since a label contains a sequence of implementations of methods—several of which may have the same name. The dynamic behavior of a message send is to search the label from right to left, and to execute the first implementation of the method that is found. This gives the correct semantics of method redefinitions. The construct super can be viewed as a directive to search from the location of the present method implementation towards the left. Dually, the construct inner directs the search to go from the present location towards the right. This will nearly give the usual semantics, and is certainly in line with the explanation given in [5].
When expanding the inheritance shorthand it is necessary to be careful when encountering recursive occurrences of a class. A class \(C \) is recursive if \(C \) has-a \(C \). If a class \(D \) inherits this class \(C \), then after expansion, all occurrences of \(C \) must have been transformed into \(D \). The reason is that a variable of a type which contains \(C \) could be assigned to a variable which contains \texttt{selfClass}. Since \texttt{selfClass} always denotes the class it appears in, it will automatically denote \(D \) after the expansion. Hence, \(C \) must be transformed into \(D \) to preserve static correctness. The complications get worse when considering mutually recursive classes; the algorithm in the following subsection gives a detailed solution to the general case.

While it is often the natural choice to transform all recursive occurrences during inheritance, one can certainly find program examples where the opposite choice is preferable. However, with our structural equivalence on classes recursive occurrences \textit{must} be transformed in order to make the subclass statically correct. The problem could be solved by introducing \textit{opacity} operators on classes, in line with [43]. In this paper we will not explore this aspect further.

4.3 The Expansion Algorithm

We now present the algorithm that expands a program using inheritance into an equivalent one that does not. The idea behind the algorithm is simple: it rewrites the program in the same fashion that a programmer would have to if the program should be implemented in a language that does not support inheritance.

In view of the preceding discussion, the program will be represented as a directed graph. There is one node for every class definition in the program. Each node has a label which is the gapped source code of the corresponding implementation. There will be two kinds of edges: \texttt{is-a} (drawn with ordinary arrows) and \texttt{has-a} (drawn with dashed arrows). We have an \texttt{is-a} edge from every subclass to its immediate superclass, and a \texttt{has-a} edge from every gap in the label to the node representing the missing class.

By a \textit{temporal dependency} we shall understand a path between two nodes containing at least one \texttt{is-a} edge. A temporal dependency from \(D \) to \(C \) means that \(C \) must be created before \(D \).
From previous arguments we know that the graph has the following properties:

- every node has at most one outgoing IS-A edge.
- there are no temporal cycles; that is, no cycle in the graph can involve an IS-A edge.

The algorithm will transform this graph \((V, E)\) into a pair \((Q, \rho)\) where \(Q\) is an equation system on regular trees, and \(\rho\) is a map from nodes in the graph to variables in \(Q\). The meaning is that a class with node \(w\) will denote the tree corresponding to the value of \(\rho(v)\) in the unique solution of \(Q\).

The algorithm proceeds iteratively, by processing the nodes of the graph in batches and removing them. A batch consists of all temporally independent nodes; that is, those nodes that have no outgoing path involving an IS-A edge. Since the graph is temporally acyclic, this is a non-empty set.

Such a batch has two special properties:

- all outgoing IS-A edges from nodes in the batch lead to earlier processed nodes.
- all outgoing HAS-A edges from nodes in the batch lead to earlier processed nodes or to other nodes in the batch.

The first follows easily from the nodes in the batch being temporally independent. The second can be seen from figure 7 where the general situation is sketched. Suppose we have a HAS-A edge from the node \(v\) in the current batch to an unprocessed node \(w\). Since \(w\) is not temporally independent, then it has a temporal dependency to some other node \(u\). By composing paths, we see that \(v\) also has a temporal dependency to \(u\). But this contradicts that \(v\) belonged to the current batch of temporally independent nodes.

Thus we can expand the nodes in the current batch simultaneously. We maintain the invariant that the processed nodes are in the domain of \(\rho\) and that \(Q\) is a minimal equation system, i.e., no two variables denote the same tree.
Assume that the current batch consists of the nodes \(\{b_1, b_2, \ldots, b_n\} \) with associated labels \(L_1, L_2, \ldots, L_n \). To perform the expansion, we first introduce \(n \) new variables \(B_1, B_2, \ldots, B_n \). We also generate \(n \) independent copies \(Q_1, Q_2, \ldots, Q_n \) of the equation system \(Q \); such a copy \(Q_i \) is identical to the original, except that it has a fresh set of variables.

Looking at a particular node \(b_i \) we have two cases.

- If \(b_i \) has no superclass, then we simply introduce the equation

\[
B_i = L_i(\ldots)
\]

- If \(b_i \) inherits the processed node \(v \), then we look at the \(Q_i \)-version of the equation for \(\rho(v) \), say

\[
X = L(\bar{Y})
\]

The equation is modified to

\[
X = L L_i(\bar{Y}, \ldots) \\
B_i = X
\]

In both cases the extra arguments are determined as follows. If an argument corresponds to a HAS-A edge to a node \(b_j \) in the current batch, then it is
B_j. If it corresponds to a has-a edge to a processed node w, then it is the Q_i-version of $\rho(w)$.

Next, we update p such that $\rho(b_i) = B_i$, and finally we minimize (Q, ρ). This may involve that several variables in Q become identified, which is reflected in ρ by several nodes being mapped to the common variable.

When the iteration terminates, then all nodes in the graph have been processed; hence, we have a tree associated with every class definition. In this general setting, we define $\text{TREE}(C)$ to be the unique solution of $\rho(C)$ in Q. The entire algorithm is summarized in figure 8.

<table>
<thead>
<tr>
<th>Input</th>
<th>A program graph: (V, E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>The expansion: (Q, ρ)</td>
</tr>
</tbody>
</table>

Algorithm:

$P, Q, \rho \leftarrow \emptyset, \emptyset, \emptyset$

do $P \neq V$ →

let $\{b_1, b_2, \ldots, b_n\}$ be the temporally independent nodes in $(V \setminus P, E)$

$Q \leftarrow Q \cup Q_1 \cup Q_2 \cup \ldots \cup Q_n$

for $i = 1..n$ do

add the equation for b_i

end

update ρ

minimize (Q, ρ)

$P \leftarrow P \cup \{b_1, b_2, \ldots, b_n\}$

end

Figure 8: A summary of the expansion algorithm.

One may wonder how much larger a program can become after expansion. The crucial factor is the shape of the is-a tree. If we have n classes, then we must maximize the sum

$$\sum_i \text{depth}(C_i)$$

over all trees with nodes C_1, \ldots, C_n. The worst-case is a linear tree, which expands to size $O(n^2)$. A perfectly balanced tree only expands to size $O(n)$.

We may view the algorithm as giving a map EXPAND from classes with inheritance to classes without inheritance. If we consider a standard dynamic
semantics of inheritance [17, 47, 31, 14], then we obtain a map SEM from classes—with and without inheritance—to denotations of meaning.

We now claim that the equation $\text{SEM}(C) = \text{SEM}(\text{EXPAND}(C))$ holds for all classes C. We will not present a (rather voluminous) proof of this result, but move on to explore the structure of our universe of classes. First, however, we give an example.

4.4 Example

This subsection contains an example of how the expansion algorithm works.

Consider the classes in figure 9. We shall subject them to the expansion algorithm. The corresponding program graph is shown in figure 10. The reader is invited to try to expand the program by hand before reading on. We use the abbreviations

$$
\begin{array}{ll}
\text{class } U & \text{class } W \\
\text{var } a: U & \text{var } c: V \\
\text{end } U & \text{end } W \\
\text{class } V \text{ inherits } U & \text{class } R \text{ inherits } V \\
\text{var } b: W & \text{var } d: W \\
\text{end } V & \text{end } R
\end{array}
$$

Figure 9: Classes with inheritance.

Figure 10: The program graph with inheritance.
Initially, we start out with the following triple

\[
\begin{array}{ccc}
P & Q & \rho \\
0 & 0 & 0
\end{array}
\]

The first batch of temporally independent nodes is \{U\}. Since no inheritance is involved, the first iteration gives us the triple

\[
\begin{array}{ccc}
P & Q & \rho \\
\{U\} & U = L_U(U) & \{(U,U)\}
\end{array}
\]

The next batch is \{V, W\}. We first create the necessary copies of \(Q\), yielding the triple

\[
\begin{array}{ccc}
P & Q & \rho \\
\{U\} & U = L_U(U) & \{(U,U)\} \\
& U_1 = L_U(U_1) & \{(U,U)\} \\
& U_2 = L_U(U_2) & \{(U,U)\}
\end{array}
\]

Next, we introduce the proper new equations

\[
\begin{array}{ccc}
P & Q & \rho \\
\{U\} & U = L_U(U) & \{(U,U),(V,V),(W,W)\} \\
& U_1 = L_U L_V(U_1,W) & \\
& V = U_1 & \\
& U_2 = L_U(U_2) & \\
& W = L_W(V) & \\
\end{array}
\]

After minimizing \(Q\) we have
The final batch is \{R\}. We first create a copy of \(Q\)

\[
\begin{array}{|c|c|c|}
\hline
P & Q & \rho \\
\{U, V, W\} & U = L_U(U) & \{(U, U), (V, V), (W, W)\} \\
 & V = L_U L_V(V, W) & \\
 & W = L_W(V) & \\
\hline
\end{array}
\]

Then we modify the equations

\[
\begin{array}{|c|c|c|}
\hline
P & Q & \rho \\
\{U, V, W\} & U = L_U(U) & \{(U, U), (V, V), (W, W), (R, R)\} \\
 & V = L_U L_V(V, W) & \\
 & W = L_W(V) & \\
 & U_1 = L_U(U_1) & \\
 & V_1 = L_U L_V(V_1, W_1) & \\
 & W_1 = L_W(V_1) & \\
\hline
\end{array}
\]

After minimizing \(Q\) we end up with

\[
\begin{array}{|c|c|c|}
\hline
P & Q & \rho \\
\{U, V, W, R\} & U = L_U(U) & \{(U, U), (V, V), (W, W), (R, R)\} \\
 & V = L_U L_V(V, W) & \\
 & W = L_W(V) & \\
 & R = V_1 & \\
 & W_1 = L_W(V_1) & \\
\hline
\end{array}
\]

The resulting classes are shown in figure 11. Notice the need for the class \(W_1\). The corresponding program graph is pictured in figure 12.
5 Generalized Subclassing

The main purpose of providing an independent notion of classes is to define a generalized, structural notion of subclassing. This arises directly from the application on 24 of a partial order on general L-trees.
5.1 A Generalized Interpreter

In the paper [45] we present a generalization of the standard SMALLTALK interpreter. The standard interpreter supports inheritance through a method lookup—a run-time search for implementations of methods. Our extended interpreter also does a run-time search for arguments to new and instanceOf operations. This clearly allows a more general form of code reuse, which we can express through a partial order \(\prec \) on classes. In [45] we give a precise description of the run-time environments of the extended interpreter, and we show the following property: if \(T_1 \prec T_2 \) holds, then any run-time implementation of \(T_1 \) can be extended to yield a runtime implementation of \(T_2 \). The code reuse that can be expressed through inheritance corresponds to a suborder of \(\prec \).

In this section we shall define the partial order \(\prec \) and show a number of its formal properties. In the following sections we shall develop a programming mechanism that is complementary to inheritance; as we shall see, their combination realizes all of \(\prec \).

5.2 A Partial Order on Trees

Intuitively, the relation \(\prec \) imposes three different constraints on subclasses. Each of these reflect that the subclass reuses the implementation of the superclass.

- the labels may only be extended: this simply means that the subclass can only extend the implementation and not modify existing parts. This also ensures that all early checks will remain satisfied.

- equal classes must remain equal: this ensures that all subtype checks will remain satisfied; hence, the code of the superclass can only be reused in a manner that preserves static correctness.

- the recursive structure must be preserved: this is essential for allowing the code to be reused since different code is generated for selfclass and other classes [45].
The partial order "\(\triangleleft\)" is our generalized notion of subclassing, such that if \(A\) is the superclass and \(B\) is the subclass, then \(A \triangleleft B\). It may seem strange that super is smaller than sub, but this is a common confusion of terminology. Clearly, the subclass has a larger implementation than the subclass; equally clearly, the superclass is more general than the subclass. We choose to retain the usual terminology, while employing the mathematically suggestive ordering "\(\triangleleft\)".

To be able to define "\(\triangleleft\)" formally, we introduce some auxiliary concepts. The first is a simple partial order on L-trees.

Definition 5.1: The usual prefix order on finite strings is written as \(\leq\). The partial order \(T_1 \sqsubseteq T_2\) on L-trees over \(\Sigma\) holds exactly when

- \(\forall \alpha \in T_1 : \alpha \in T_2\)
- \(\forall \alpha \in T_1 : T_1[\alpha] \leq T_2[\alpha]\)

Note that \(\sqsubseteq\) is the node-wise extension of \(\leq\). ✷

The order \(\sqsubseteq\) reflects that labels may only be extended. We next provide a simple, finite representation of an L-tree.

Proposition 5.2: Every L-tree \(T\) can be represented by a finite, partial, deterministic automaton with labeled states, with language \(\{\alpha \mid \alpha \in T\}\), and where \(a\) is accepted in a state labeled \(T[\alpha]\).

Proof: The finitely many different subtrees all become accept states with the label of their root. The transitions of the automaton are determined by the fan-out from the corresponding root. ✷

These automata provide finite representations of L-trees. The idea of representing a regular tree as an automaton is also exploited in [50, 51]. All later algorithms will in reality work on such automata.

Proposition 5.3: The partial order \(\sqsubseteq\) is decidable.

Proof: The algorithm is a variation of the standard one for language inclu-
sion on the corresponding automata. □

The second auxiliary concept is the notion of a generator for an L-tree.

Definition 5.4: If T is an L-tree over Σ, then its *generator* $\text{GEN}(T)$ is another L-tree which is obtained from T by replacing all maximal, proper occurrences of T itself by a singleton tree with the special label \Diamond; it is assumed that \Diamond is incomparable with all other labels in the \leq-ordering. We say that T is *recursive* when $T \neq \text{GEN}(T)$. Note that the generator itself may be an infinite tree, and that the original tree can readily be recovered from its generator. □

The generator of a class makes explicit all the recursive occurrences of the class itself. For example, all occurrences of `selfClass` in its source code are replaced by \Diamond, but also mutual recursion is captured.

We are now ready to define \prec using the order \preceq which is a subset of \subseteq.

Definition 5.5: The relation $T_1 \preceq T_2$ on L-trees is the largest subset of \subseteq such that the following *stability* condition holds

- $\forall \alpha, \beta \in T_1 : T_1 \downarrow \alpha = T_1 \downarrow \beta \Rightarrow T_2 \downarrow \alpha = T_2 \downarrow \beta$

The relation $T_1 \prec T_2$ on L-trees holds exactly when

- $\forall \alpha \in T_1 : \text{GEN}(T_1 \downarrow \alpha) \preceq \text{GEN}(T_2 \downarrow \alpha)$

Note that if $T_1 \prec T_2$ then for any $\alpha \in T_1$ we also have $T_1 \downarrow \alpha \prec T_2 \downarrow \alpha$. □

Since \preceq is a subset of \subseteq, it reflects that labels may only be extended. Furthermore, the stability condition ensures that equal classes remain equal. The relation \prec is then defined so that the generators at all levels are in the \preceq relation. This ensures that the recursive structure is preserved.
Proposition 5.6: The relations \preceq and \prec are decidable, partial orders.

Proof: Clearly, \preceq is a partial order since stability is reflexive and transitive; also, \prec is a partial order because \preceq is.

Since by proposition 5.3 we know that \subseteq is decidable, we must only show that stability is, too. On minimized automata, representing the trees T_1 and T_2, stability translates to the property that any two words α, β accepted in the same state by the T_1-automata must also be accepted in the same state by the T_2-automata. This property can be decided for general automata using a simple, linear-time dynamic programming algorithm.

To decide \prec we can rely on decidability of \preceq and the fact that L-trees have only finitely many different subtrees, all of which can easily be constructed.

\[\square\]

5.3 Properties

The subclassing order \prec has the same characteristic properties as inheritance: it has a least element, has finite intervals, does not allow temporal cycles, and preserves subtyping. In this subsection we prove these claims.

Proposition 5.7: The partial order \prec has a least element \bot.

Proof: Clearly, \bot is just the singleton tree with the label Ω. \[\square\]

In a class hierarchy, \bot corresponds to the empty class Object. To show that \prec has finite intervals, we need a notion of unfolding directed graphs.

Definition 5.8: Let G be a directed, rooted graph containing a path from the root to each vertex. A particular unfolding of G, which we shall call $\text{UNFOLD}(G)$, is obtained by the following variation of the standard depth-first search algorithm [1] starting in the root. The modification is that if the current edge leads to a previously visited vertex in a different strongly connected component, then a fresh copy of that entire component is inserted in the graph. See for example figure 13, where (v_1, v_3) is the current edge. The graph $\text{UNFOLD}(G)$ can be understood as a tree of possibly multiple copies of the strongly connected components of G. \[\square\]
 Lemma 5.9: A depth-first traversal of UNFOLD\((G)\) has the property that if the current edge leads to a previously visited vertex, then that vertex is on a cycle of already processed edges and the current edge.

Proof: Let \((v, w)\) be the current edge. If we have previously visited \(w\), then, by construction of UNFOLD\((G)\), \(v\) and \(w\) are in the same strongly connected component. Because of the depth-first strategy, there is a path of already processed edges from \(w\) to \(v\). The result follows. □

Proposition 5.10: For any L-tree \(T_2\) the interval \(\{T_1 \mid T_1 \triangleleft T_2\}\) is finite.

Proof: For the purposes of this proof, we shall represent L-trees by their canonical automata. This is obtained by subjecting the minimal automaton to the unfolding described in definition 5.8. Clearly, this new automaton will have the same language and represent the same L-tree; in particular, the L-tree can be recovered from the automaton.

Now, assume that \(T_1 \triangleleft T_2\). Let \(A_1\) and \(A_2\) be their canonical automata. We shall construct a total function \(h\) from states of \(A_1\) to states of \(A_2\) with the following properties

- \(h\) maps the initial state of \(A_1\) to that of \(A_2\)
• if \(x \rightarrow y \) is a transition in \(A_1 \), then \(h(x) \rightarrow h(y) \) is a transition in \(A_2 \)

• the label of \(x \) is \(\leq \) that of \(h(x) \)

• \(h \) is injective

The construction works iteratively through a depth-first traversal of \(A_1 \). At any stage the current \(h \) will satisfy all of the above properties, but it may be partial. We start with just the pair of initial states, which is clearly legal.

We proceed by examining the current unexplored depth-first \(A_1 \)-transition \(x \rightarrow y \) from a state \(x \) in the domain of \(h \). This is matched by an \(A_2 \)-transition \(h(x) \rightarrow z \), since the label of \(x \) is \(\leq \) than that of \(h(x) \). The function \(h \) is now extended to \(h' = h \cup \{ y \mapsto z \} \). Only two necessary properties are not immediate: that \(h' \) is still a function, and that \(h' \) is still injective.

Assume that we have already seen \(y \) before; we must assure that \(z = h(y) \).

Having seen \(y \) before means, from lemma 5.9, that we have a cycle from \(y \) to \(y \). Now look at the generator of the subtree of \(T_1 \) that corresponds to \(y \). The cycle that we have traversed is here a path from the root to a \(\Diamond \)-label. In the \(h(y) \)-generator of \(T_2 \) the same path must also lead to a \(\Diamond \)-label, since no other label can satisfy the \(\sqsubseteq \)-requirement. Hence, the path from \(y \) to \(y \) in \(A_1 \) translates to a path from \(h(y) \) to \(h(y) \) in \(A_2 \). It follows that \(z = h(y) \).

Similarly, injectivity follows. If for some \(x' \) we have \(z = h(x') \), then the cycle from \(z \) to \(z \) in \(A_2 \) must correspond to a cycle in \(A_1 \), from which it follows that \(x = x' \).

Since all states in a canonical automaton can be reached from the initial state, this construction will terminate with a total function.

To proceed, we observe that the existence of any injective function from states of \(A_1 \) to states of \(A_2 \) assures that there are no more states in \(A_1 \) than in \(A_2 \). Since any label in \(A_1 \) must be \(\leq \) than some label in \(A_2 \), and we know that \(\leq \) has finite intervals, then any \(A_1 \) must be built out of a bounded number of states and a finite set of labels. For simple combinatorial reasons, there can only be finitely many such automata.

Since different \(L \)-trees yield different canonical automata, the result follows. \(\square \)
In particular, this result means that any class can only have finitely many superclasses.

Corollary 5.11: For any two L-trees T_1, T_2 we have that the closed interval $\{S \mid T_1 \triangleleft S \triangleleft T_2\}$ is finite.

Proof: This is just a subset of the finite interval in proposition 5.10. □

Next, we can show that our generalized notion of subclassing does not allow any temporal cycles. Since in our framework

$$T_1 \text{ has-a } T_2 \text{ iff } \exists \alpha : T_1 \downarrow \alpha = T_2$$

and

$$T_1 \text{ is-a } T_2 \text{ iff } T_2 \triangleleft T_1 \land T_2 \neq T_1$$

then, to eliminate temporal cycles of the form $T \text{ has-a } S \text{ is-a } T$, we must show that no tree can be strictly $<$-less than one of its subtrees. Longer cycles are handled by transitivity and essentially the same argument.

![Figure 14: A temporal cycle.](image)

Theorem 5.12: Let T be an L-tree. If $T \triangleleft T \downarrow \alpha$ then $T = T \downarrow \alpha$.

Proof: Assume that $S = T \downarrow \alpha$, $T \triangleleft S$, and $T \neq S$. Let $S' = S \downarrow \alpha$. We must have $S \triangleleft S'$, as illustrated in figure 14. If $S = S'$ then the generator of S has a $\hat{\diamond}$-label in position α. But then the generator of T must also have
a ◦-label in position α, which implies that \(T = S \). Since we have assumed
the opposite, we conclude that \(S \neq S' \). But then we can iterate the above
construction and obtain a strictly \(\prec \)-increasing chain

\[
T \prec T \downarrow \alpha \prec T \downarrow \alpha^2 \prec T \downarrow \alpha^3 \prec \cdots \prec T \downarrow \alpha^i \prec \cdots
\]

In particular, this means that \(T \) has infinitely many different subtrees, which
contradicts its being an L-tree. The result follows. □

A final property can be phrased as the slogan \textit{subclasiing preserves sub-
typing}. Intuitively, this means that subtype relationships will be preserved
in subclasses.

\textbf{Proposition 5.13:} A type expression in a class \(T \) consists of, say, \(n \) classes
located as the subtrees at addresses \(\alpha_1, \alpha_2, \ldots, \alpha_n \); that is, the expression
denotes the set

\[
A = \{ T \downarrow \alpha_1, T \downarrow \alpha_2, \ldots, T \downarrow \alpha_n \}
\]

Suppose also we have another type expression denoting the set

\[
B = \{ T \downarrow \beta_1, T \downarrow \beta_2, \ldots, T \downarrow \beta_m \}
\]

and that the inclusion \(A \subseteq B \) holds. Let \(S \) be any subclass of \(T \). We then
have two corresponding sets

\[
A' = \{ S \downarrow \alpha_1, S \downarrow \alpha_2, \ldots, S \downarrow \alpha_n \} \quad B' = \{ S \downarrow \beta_1, S \downarrow \beta_2, \ldots, S \downarrow \beta_m \}
\]

and we are guaranteed that the inclusion \(A' \subseteq B' \) will also hold.

\textbf{Proof:} This follows immediately from the stability requirement on \(\prec \). □

\section{5.4 Examples}

To illustrate the concepts introduced in this section we continue the example
from subsection 3.4.

The automata corresponding to the classes \(A \) and \(B \) are shown in figure 15.
We can also observe that \texttt{TREE}(A) \(\subseteq \) \texttt{TREE}(B).
We next program two new classes C and D shown in figure 16. As before, we
Figure 18: Relating generators.

define

\[
L_C = \text{var } h : \bullet \text{ var } t : \bullet
\]

\[
L_D = \text{var } z : \bullet
\]

The corresponding trees, shown in figure 17, are defined by the equations

\[
\begin{align*}
\text{tree}(C) &= L_C(\text{tree}(B), \text{tree}(C)) \\
\text{tree}(D) &= L_C L_C L_D(\text{tree}(B), \text{tree}(D), \text{tree}(\text{Object}))
\end{align*}
\]

Let us show that tree(C) □ tree(D). We have three different situations where a generator in tree(C) must be \(\preceq \) than a similar generator in tree(D). Examples of all three situations are shown in figure 18. A tree that is \(\preceq \) than tree(D) but not □ is shown in figure 19; it is not recursive, while tree(D) is.
6 The Orthogonality Result

Inheritance is a programming mechanism which can realize only part of \prec; more precisely, it captures a suborder.

6.1 Two Suborders

Definition 6.1: The partial order $T_1 \prec T_2$ holds exactly when

- $T_1 \prec T_2 \land \forall \alpha \in T_1 : T_1 \downarrow \alpha \neq T_1 \Rightarrow T_1[\alpha] = T_2[\alpha]$

This states that only the root label—and its recursive occurrences—may change. □

The \prec_I-part of \prec is just inheritance.

Proposition 6.2: If C_1 is inherited by C_2 in any program, then $\text{tree}(C_1) \prec_I \text{tree}(C_2)$. Conversely, if $T_1 \prec_I T_2$ then any C_1 such that $\text{tree}(C_1) = T_1$ can be modified by inheritance to yield a (C_2) such that $\text{tree}(C_2) = T_2$.

Proof: Consider the isomorphism between L-trees and minimal equation systems. It is quite easy to see that \prec_I in this framework exactly captures the constructions performed by the expansion algorithm. □
The remaining part of \prec can be characterized in a satisfying manner: as an orthogonal complement of \prec_I, in the following sense.

Definition 6.3: Let P be a partial order on a set S. We use the notation $\triangle(S)$ for the diagonal $\{(s, s) \mid s \in S\}$, and the notation A^* for the reflexive, transitive closure of a relation A. We write $Q \perp_P R$, if Q and R are partial orders such that $Q \cap R = \triangle(S)$ and $(Q \cup R)^* = P$. We call Q, R an orthogonal basis for P when

- $Q \perp_P R$
- $Q' \perp_P R \Rightarrow Q \subseteq Q'$
- $Q \perp_P R' \Rightarrow R \subseteq R'$

This generalizes the notion of *basis* in [26]. □

For example, if (S_1, \leq_1) and (S_2, \leq_2) are partial orders, then $\leq_1 \times \triangle(S_2)$ and $\triangle(S_1) \times \leq_2$ form an orthogonal basis for $\leq_1 \times \leq_2$.

The remaining part of \prec can be captured by the following suborder.

Definition 6.4: The partial order $T_1 \prec_S T_2$ holds exactly when

- $T_1 \prec T_2 \land T_1[\lambda] = T_2[\lambda]$

This states that the root label must remain unchanged. □

6.2 Orthogonality

We can now show that \prec_I, \prec_S is an orthogonal basis for \prec. This result is important, since it allows us to simply search for a programming mechanism that relates to \prec_S in the same fashion that inheritance relates to \prec_I; the less appealing choice was to find a mechanism directly for the awkward set difference of \prec and \prec_I. Furthermore, when we have such a \prec_S-mechanism, then it is orthogonal to inheritance in a formal sense. The next chapter discloses
that as yields a form of \textit{genericity}. We have thus shown that inheritance and genericity are independent, orthogonal components of generalized subclassing.

To prove the result we need a series of lemmas.

\textbf{Lemma 6.5:} The relations \(\triangleleft_I, \triangleleft_S\) as are both partial orders, and \(\triangleleft_I \cap \triangleleft_S = \bigtriangleup(U)\).

\textbf{Proof:} Clearly, \(\triangleleft_S\) is a partial order. The extra condition on \(T_1 \triangleleft_I T_2\) simply means that for every \(\alpha \in \text{GEN}(T_1)\) we have \(\text{GEN}(T_1)[\alpha] = \text{GEN}(T_2)[\alpha]\), except for the root labels which are \(\leq\)-related. Hence, \(\triangleleft_I\) is a partial order. If also \(T_1 \triangleleft_S T_2\) then \textit{all} labels must be equal, so the generators, and the trees, are equal. \(\blacksquare\)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{orthogonal_suborders.png}
\caption{Orthogonal suborders.}
\end{figure}

\textbf{Lemma 6.6:} Whenever \(T_1 \triangleleft T_2\) then there is a unique \(A \in U\) such that \(T_1 \triangleleft_S A \triangleleft_S T_2\).

\textbf{Proof:} Suppose \(T_1 \triangleleft T_2\). Then \(\text{GEN}(T_1) \preceq \text{GEN}(T_2)\). Let \(L_1\) be the root label of \(\text{GEN}(T_1)\). Then the root label of \(\text{GEN}(T_2)\) must look like \(L_1L_2\). Let \(\text{GEN}(A)\) be obtained from \(\text{GEN}(T_2)\) by removing the \(L_2\)-part of the root label and the subtrees that correspond to its gaps. Since subtrees with the same address in \(\prec\)-related trees also will be \(\prec\)-related, it follows that \(T_1 \triangleleft A\). Since
$T_1, T_2 \in U$, then clearly $A \in U$. But since they both have root label L_1, we also have $T_1 \triangleleft_S A$. It is trivially the case that $A \triangleleft_I T_2$, so we have shown that $T_1 \triangleleft_S A \triangleleft_I T_2$.

For the uniqueness of A, suppose we also have $T_1 \triangleleft_S B \triangleleft_I T_2$. Then for every $\alpha \in \text{GEN}(T_2)$ we have $\text{GEN}(T_2)[\alpha] = \text{GEN}(A)[\alpha] = \text{GEN}(B)[\alpha]$, except for the root labels; but we also have $T_1[\lambda] = A[\lambda] = B[\lambda]$, so $A = B$. \square

Lemma 6.7: $(\triangleleft_I \cup \triangleleft_S) = \triangleleft$

Proof: Immediate from lemma 6.6. \square

Lemma 6.8: No partial order \triangleleft_M which is a proper subset of \triangleleft_S satisfies $(\triangleleft_I \cup \triangleleft_M)^* = \triangleleft$. Also, no partial order \triangleleft_N which is a proper subset of \triangleleft_I satisfies $(\triangleleft_N \cup \triangleleft_S)^* = \triangleleft$.

Proof: Suppose we have such a \triangleleft_M. Choose $(x, y) \in \triangleleft_S \setminus \triangleleft_M$. Then $x[\lambda] = y[\lambda]$, so no $\triangleleft_I \Delta (U)$ steps can take place on a path from x to y. Hence, $(x, y) \in \triangleleft_M^* = \triangleleft_M$ which is a contradiction. The other half of the result is proved similarly. \square

Lemma 6.9: Let P be a partial order, where all closed intervals are finite. Whenever $P_1, P_2 \subseteq P$ and $P_1^* = P_2^* = P$, then $(P_1 \cap P_2)^* = P$.

Proof: Clearly, $(P_1 \cap P_2)^* \subseteq P$. For the opposite inclusion, suppose $(x, y) \in P$. The proof is by induction in the size of the open interval over P from x to y. If the interval is empty, then either $(x, y) \in (P_1 \cap P_2)^0$, or $(x, y) \in (P_1 \cap P_2)$. Now, suppose the interval contains $n + 1$ elements. Choose z in it. Then both the open interval from x to z and that from z to y contain at most n elements. Hence, by the induction hypothesis, $(x, z), (z, y) \in (P_1 \cap P_2)^*$. By transitivity of $(P_1 \cap P_2)^*$ we conclude $(x, y) \in (P_1 \cap P_2)^*$. \square

Lemma 6.10: If $\triangleleft_M \perp_{\triangleleft} \triangleleft_S$ as then $\triangleleft_I \subseteq \triangleleft_M$. Also, if $\triangleleft_I \perp_{\triangleleft} \triangleleft_N$ then as $\triangleleft_S \subseteq \triangleleft_N$. Proof: Suppose $\triangleleft_M \perp_{\triangleleft} \triangleleft_S$ as. By corollary 5.11, all closed \triangleleft-intervals of U are finite, so by lemmas 6.7 and 6.9, $\triangleleft = ((\triangleleft_I \cup \triangleleft_S)^*) \cap (\triangleleft_M \cup \triangleleft_S)^* = ((\triangleleft_I \cap \triangleleft_M) \cup \triangleleft_S)^*$. By lemma 6.8, $\triangleleft_I \cap \triangleleft_M$ cannot be a proper subset of \triangleleft_I. Hence, $\triangleleft_I \cap \triangleleft_M = \triangleleft_I$, so $\triangleleft_I \subseteq \triangleleft_M$. The other half of the lemma is proved similarly. \square
Theorem 6.11: \(\triangleleft_I, \triangleleft_S \) is an orthogonal basis for \(\triangleleft \).

Proof: Combine lemmas 6.5, 6.7, and 6.10. □

The significance of this result is that a programming mechanism realizing \(\triangleleft_S \), together with inheritance which realizes \(\triangleleft_I \), allow the programming of all subclasses. Furthermore, two such programming mechanisms would be completely non-redundant; neither could emulate the other. The situation is illustrated in figure 20, which shows how all subclasses can be reached in axis-parallel moves.

7 Class Substitution

The suborder \(\triangleleft_S \) requires that the root label cannot change. In terms of classes, this means that only type information may change, and not the implementation itself. This is precisely what intuitively characterizes genericity. This section introduces a programming mechanism that corresponds to \(\triangleleft_S \). It is called class substitution and implements a general form of genericity.

7.1 Syntax

The syntax for class substitution is as follows. If \(C, A_i, \) and \(B_i \) are classes, then

\[
C[A_1, \ldots, A_n \leftarrow B_1, \ldots, B_n]
\]

is a class substitution which specifies a class \(D \) such that \(C \triangleleft_S D \) and all occurrences of \(A_i \) are substituted by \(B_i \). If such a class does not exist, then the specification is statically incorrect.

7.2 Semantics

In this section we define precisely what class substitution means, and we show that it exactly realizes \(\triangleleft_S \).

The algorithm to expand a substitution specification is summarized in figure 21. Intuitively, the relation \(M \) collects all the individual substitutions that must be performed. The requirement that \(M \) is \(\triangleleft \)-increasing is necessary in
Figure 21: Expanding substitutions.

order for D to be a subclass of C. The requirement that M is a function is necessary to avoid inconsistent substitutions. Note that the maximal subtrees of C that belong to the domain of M is a uniquely determined set of disjoint subtrees. Note also that failed substitutions can be determined on compile-time.

Proposition 7.1: If $C \ll_S D$ then

$$D = C[A_1, \ldots, A_n \leftarrow B_1, \ldots, B_n]$$

for some A_i, B_i.

Proof: Clearly, $D = C[C \leftarrow D]$. □

Hence, all \ll_S-related subclasses can be expressed in this manner. Note though that the specification given in the proof of proposition 7.1 is rather useless for practical programming: it corresponds to writing class D from scratch. There are often many different specifications of the same class substitution, however, and in the following section we will see how easy it is to select a convenient one.

It is also for pragmatic reasons that we allow multiple, *simultaneous* substitutions. With this mechanism conflicting substitutions will cause compile-time errors; in contrast, a sequence of individual substitutions will always succeed but may yield an unexpected result.
7.3 Pragmatics

The fact that class substitution realizes $<_S$ is not sufficient to ensure that class substitution is a useful and pleasant programming mechanism. Only pragmatic arguments can really justify such a claim. In this section we attempt to give such arguments by showing some example programs which use class substitution, and by comparing class substitution with parameterized classes.

![Diagram](image.png)

Figure 22: Programming with class substitution.

In figure 22 is shown a subclass hierarchy as it can be programmed using inheritance and class substitution. An arrow is labeled by “I” when the subclass is obtained by inheritance, and “S” if by class substitution. The detailed code for the classes will be given subsequently. We assume that the classes Boolean, Integer, and Array has been programmed already, and that Array instances respond to messages as specified in figure 23.

In the class Stack, the element type is Object, see figure 23. The classes Booleanstack and Integerstack are class substitutions of Stack. For example,
Booleanstack is the class obtained from Stack by substituting all occurrences of Object by Boolean, including those in Array. Thus, Stack acts like a parameterized class but is just a class, not a second-order entity. This enables gradual generic-instantiations, as demonstrated in the following.

```plaintext
class Array
  method at(i: Integer) returns Object ...
  method atput(i: Integer ; x: Object) returns selfClass ...
  method initialize(size: Integer) returns selfClass ...
  method arraysize returns Integer ...

end Array

class Stack
  var space: Array
  var index: Integer
  method push(x: Object) returns selfClass
    index := index succ ; space.atput(index,x) ; self
  method top returns Object
    space.at(index)
  method pop returns selfClass
    index := index pred ; self
  method initialize(size: Integer) returns selfClass
    space := (Array new).initialize(size) ; index := 0 ; self

end stack

class Booleanstack is Stack[Object ← Boolean]
class Integerstack is Stack[Object ← Integer]
```

Figure 23: Stack classes.

The use of parameterized classes is the traditional approach to genericity [38, 39, 49, 34, 48, 42]. Similar constructs are found in conventional procedural languages, for example ADA generic packages [24], and parameterized CLU clusters [35]. A parameterized class is a second-order entity which is generically-instantiated to specific classes when actual type parameters are supplied. Generic-instantiation of parameterized classes is less flexible than
inheritance, since any class can be inherited but is not in itself parameterized. In other words, code reuse with parameterized classes requires planning; code reuse with inheritance does not.

In general, we will say that a genericity mechanism is a construct which allows the substitution of types in a class. Thus, class substitution is also a genericity mechanism, and in contrast to parameterized classes it is the orthogonal complement of inheritance. This indicates that class substitution gives more expressive power to an object-oriented language than parameterized classes, and indeed Meyer [38] argued that parameterized classes can be simulated by inheritance.

```
class Ring
  var value: Object
  method plus(other: selfClass) returns selfClass
    self
  method zero returns selfClass
    self
  method getValue returns Object
    value
  ...
end Ring

class BooleanRing inherits Ring[Object ← Boolean]
  method plus(other: selfClass) returns selfClass
    value := value.or(other.getValue) ; self
  method zero returns selfClass
    value := false ; self
  ...
end BooleanRing
```

Figure 24: Ring classes.

Note that class substitution is not textual substitution; in general, textual substitution will not yield a statically correct subclass. For example, if we try to obtain BooleanStack by textually substituting occurrences of Object by Boolean, then among others the expression space.atput.(index,x) (in push) becomes statically incorrect; it will have a Boolean instance where an Object instance is required. For further examples, see [43].

44
Another drawback of parameterized classes is that they cannot be gradually generically-instantiated. This makes it awkward to, for example, declare a class `Ring`, then specialize it to a class `Matrix`, and finally specialize `Matrix` to a class `BooleanMatrix`. In the following we show how it can be done using inheritance and class substitution. The history of a class developed with inheritance and substitution can be thought of as an element of the language \((I + S)^*\); in comparison, parameterized classes restrict the possible histories to \(S.I^*\).

```
class DoubleArray is Array[Object ← Array]
class DoubleRingArray is DoubleArray[Object ← Ring]

class Matrix inherits Ring[Object ← DoubleRingArray]
var i:j: Integer
var r: Array[Object ← Ring]
method plus(other: selfClass) returns selfClass
   for i := 1 to value.arraysize do
      r := value.at(i) ;
      for j := 1 to r.arraysize do
         r := r.atput(j, r.at(j).plus(other.at(i).at(j)))
      od ;
      value.atput(i,r)
   od ;
self

end Matrix

class Booleanmatrix is Matrix[Ring ← Booleanring]
class Matrixmatrix is Matrix[Ring ← Matrix]
```

Figure 25: Matrix classes.

Consider the ring classes in figures 24 and 25. The class `Booleanring` inherits a class substitution of class `Ring`; thus, `Booleanring` is a subclass of `Ring`. This illustrates how class substitution and inheritance complement each other: first `Object` is substituted by `Boolean`; then the inherited procedures are implemented appropriately. This is further illustrated by the matrix classes,
see figure 25. Again, the class Matrix is obtained through a class substitution followed by an application of inheritance. We take the liberty of using a for-statement, even though is has not been included in the syntax. Class Matrix is obtained through class substitution alone.

It seems that class substitution could solve the problems in the EIFFEL type system that were reported by Cook [15], since attributes cannot be redeclared in isolation in subclasses, there are no symmetries as with declaration by association, and generic-instantiation can be expressed as subclassing.

8 Separate Compilation and Infinite Types

One common aspect of many existing object-oriented languages has so far not been captured by our framework.

We have restricted our types to be finite sets. We argued that this was quite adequate, since in a given program any predicate could only be satisfied by finitely many classes.

With this type system we have developed a general notion of subclassing, under which any subclass can be implemented as an extension of its superclass. This is the fundamental idea of code reuse in object-oriented programming.

The concept of separate compilation, however, introduces a different level of code reuse, which does not fit as smoothly into our framework. When a class is separately compiled, then predicates cannot be expanded into finite sets, since only a part of the program is known at the time of compilation.

The traditional solution is to introduce a limited form of infinite sets; in particular, cones of the form

$$\uparrow T = \{ S \in U \mid T \triangleleft S \}$$

are employed. It is possible to generalize slightly: finite unions of cones and singletons can be used. The important restriction is that the sets can be finitely represented, and that membership and mutual inclusions are decidable. For cones, membership is just subclassing, and inclusion coincides with reverse subclassing, i.e.

$$\uparrow S \subseteq \uparrow T \iff T \triangleleft S$$
A perfect match is not possible, but the types in a language such as BETA correspond closely to either singletons or cones [37].

Recall the important property of our framework that can be stated as the slogan: \textit{subclassing preserves subtyping}. In the presence of cones, the picture changes dramatically. There exist classes $T \triangleleft S$ such that for some α, β we have

$$\uparrow (T \downarrow \alpha) \subseteq \uparrow (T \downarrow \beta) \quad \text{but} \quad \uparrow (S \downarrow \alpha) \not\subseteq \uparrow (S \downarrow \beta)$$

This unfortunately means that subclasses cannot be guaranteed to remain statically correct. A simple example is shown in figure 26, in which S is a statically \textit{incorrect} subclass of the statically \textit{correct} class T.

```
class T
  var x: \uparrow Object
  var y: \uparrow Integer
  method Assign returns selfClass
    x := y ; self
  end T

class S
  var x: \uparrow Object
  var y: \uparrow Integer
  method Assign returns selfClass
    x := y ; self
  end S
```

Figure 26: A statically incorrect subclass.

There seem to be three possible solutions.

- \textit{restrict subclassing to preserve} \subseteq: unfortunately, only trivial subclasses can be allowed.

- \textit{restrict subtyping to be preserved by} \triangleleft: unfortunately, only trivial subtypes can be allowed.

- \textit{find a useful compromise between both subclassing and subtyping}: unfortunately, no such compromise seems to be forthcoming.
The situation does not look hopeful. The choice made by real-life languages is to keep both \subseteq and \triangleleft, which leads to a statically unsound type system. The reactions to such a predicament fall on a spectrum ranging from C++, in which these loop-holes are simply ignored, to BETA, in which the necessary run-time type-checks are inserted into the code of the superclass, yielding a dynamically sound type system.

We consider a more satisfactory solution to the problem of separate compilation to be an extremely hard challenge.

9 Conclusion

Our type system for object-oriented languages is conceptually simple and it ensures that programs are readable, reliable, and more efficient. Our subclassing order can be implemented straightforwardly and it contains inheritance and class substitution as an orthogonal basis.

It is too preliminary to judge the pragmatics of class substitution, but several examples indicate that it may be a useful alternative to parameterized classes. Future work includes implementation and experimentation with the mechanism.

The expansion algorithm for transforming a program that uses inheritance into one which does not may be of interest in itself. It can be useful for programmers who want to use inheritance but are required to implement their programs in a language which does not support it.

Acknowledgement. The authors thank Ole Lehrmann Madsen, Peter Mosses, and Flemming Nielson for helpful comments on drafts of the paper.

References

