
Transition Systems, Event Structures and
Unfoldings∗

M. Nielsen† G. Rozenberg‡ P.S. Thiagarajan§

September 1991

Introduction

Elementary transition systems were introduced in [NRT2] . They were proved
to be, in a strong categorical sense, the transition system version of elemen-
tary net systems. The question arises whether the notion of a region and the
axioms (mostly based on regions) imposed on ordinary transition systems to
obtain elementary transition systems were simply “tuned” to obtain the cor-
respondence with elementary net systems. Stated differently, one could ask
whether elementary transition systems could also play a role in characterizing
other models of concurrency.

We show here that by smoothly strenghtening the axioms of elementary
transition systems one obtains a subclass called occurrence transition systems
which turn out to be categorically equivalent to the well-known model of
concurrency called prime event structures. Thus there is more to elementary

∗Note: All correspondence to be sent to the first author
†Computer Science Department, Århus University, Ny Munkegade, DK-8000, Århus C,

Denmark
‡Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden,

The Netherlands
§School of mathematics, SPIC Science foundation, 92 G.N. Chetty Road, T.Nagar,

Madras 600 017, India

1

transition systems than just their (co-reflective) relationship to a basic model
of net theory, namely, elementary net systems.

Next we show that occurrence transition systems are to elementary tran-
sition systems what occurrence nets are to elementary net systems. We define
an “unfold” operation on elementary transition systems which yields occur-
rence transition systems. We then prove that this operation uniquely extends
to a functor which is the right adjoint to the inclusion functor from (the full
subcategory of) occurrence transition systems to (the category of) elemen-
tary transition systems. Thus the results of this paper also show that the
semantic theory of elementary net systems has a nice counterpart in the more
abstract world of transition systems.

In the next section a brief review — and a convenient reformulation —
of the category of elementary transition systems ETS is provided. Section
2 contains a quick introduction to the category of prime event structures,
PES , due to Winskel [W]. In the subsequent section we identify the sub-
category of occurrence transition systems, OTS , by a smooth strengthening
of the regional axioms for elementary transition systems. We then proceed
to establish a few properties of occurrence transition systems. Using these
properties, we show in Section 4 that OTS and PES are equivalent cate-
gories. Thus, in some sense, occurrence transition systems are the transition
system model of prime event structures (in the same sense that prime al-
gebraic, coherent domains, are the domain model of prime event structures,
Winskel [W]). In Section 5 we show that occurrence transition systems can
be used to define the unfoldings of elementary transition systems. Exploit-
ing some technical results from the theory of trace languages, we show that
the unfold operation, when applied to the objects in ETS , yields objects in
OTS . Moreover, we prove that this unfold operation uniquely extends to a
functor which is the right adjoint to the inclusion functor from OTS to ETS .
This result mirrors the strong result due to Winskel [W] on the side of net
theory which established the “correctness” of the unfolding of elementary
net systems (and in fact, 1-safe Petri nets) into occurrence nets proposed in
[NPW].

2

1 Elementary Transition Systems

The purpose of this section is to recall (and rephrase!) the main concepts
and results from [NRT2].

Definition 1.1. A transition system is a four-tuple TS = (S, E, T, sin)
where

S is the set of states,

E is the set of events,

T ⊆ S × E × S is the set of transitions, and

sin ∈ S is the initial state. 2

Definition 1.2. A region of a transition system TS = (S, E, T, sin) is
a subset of states, R ⊆ S, satisfying:

∀(s0, e, s
′
0), (s1, e, s

′
1) ∈ T.

(s0 ∈ R ∧ s′0 /∈ R) ⇔ (s1 ∈ R ∧ s′1 /∈ R)

and (s0 /∈ R ∧ s′0 ∈ R) ⇔ (s1 /∈ R ∧ s′1 ∈ R).

2

We shall use the following notation for a given a transition system TS =
(S, E, T, sin).

RTS — the set of nontrivial (proper, nonempty subsets of S) regions of
TS. Rs , where s ∈ S, — the set of nontrivial regions containing s; formally

Rs
def
= {R ∈ RTS | s ∈ R}.

◦R,R◦, where R ∈ RTS, — the set of events entering/leaving R resp.; formally

◦R
def
= {e ∈ E | ∃(s, e, s′) ∈ T. s /∈ R ∧ s′ ∈ R}, and

R◦ def
= {e ∈ E | ∃(s, e, s′) ∈ T. s ∈ R ∧ s′ /∈ R},

3

◦e, e◦, where e ∈ E , — the set of pre- and post-regions of e resp., i.e., the
set of regions which e is (consistently) leaving/entering; formally

◦e
def
= {R ∈ RTS | ∃(s, e, s′) ∈ T. s ∈ R ∧ s′ /∈ R}, and

e◦
def
= {R ∈ RTS | ∃(s, e, s′) ∈ T. s /∈ R ∧ s′ /∈ R},

Proposition 1.3. Let TS = (S, E, T, sin) be a transition system. Then

(i) R ⊆ S is a region iff S\R is a region

(ii) ∀e ∈ E. e◦ = {S\R | R ∈ ◦e},

(iii) ∀(s, e, s′) ∈ T . Rs \Rs′ = ◦/!e and Rs′ \Rs = e◦ and consequently
Rs′ = (Rs\◦e) ∪ e◦. 2

Given a Transition System TS = (S, E, T, sin) we s hall use the following
notation.

• For every e ∈ E,
e→ ⊆ S × S, where (s, s′) ∈ e→ ⇔ (s, e, s′) ∈ T .

• Let ρ ∈ E∗, ρ = e1e2 . . . en, n ≥ 1. Then ⇒ρ ⊆ S × S where (s, s′) ∈
⇒ρ iff ∃s0, s1, . . . , sn such that s = s0

e1→ s1 · · · sn−1
en→ sn = s′. By

convention, ⇒Λ = {(s, s) | s ∈ S},

where Λ denotes the null string.

• The computations of TS is defined as

CTS
def
= {ρ ∈ E∗ |⇒ρ ∩({sin} × S) 6= ∅}, and nonempty computations

of TS is defined as
CTS+

def
= CTS ∩ E+.

• → ⊆ S × S, where → def
= Ue∈E

e→, and

• ∗→ is the transitive and reflexive closure of →.

• For every s ∈ S, ↑s
def
= {s′ ∈ S | (s, s′) ∈ ∗→}.

4

So ↑s denotes the set of states reachable from s via the transitions of TS .

The results of [NRT2] show that the category of elementary transition
systems, ETS , introduced below is the category of the (sequential) case
graphs of elementary net systems. We recall that elementary net systems
is the basic system model of net theory in which fundamental behavioural
aspects of distribute systems such as causality, concurrency, conflict and con-
fusion can be made transparent [Th]. We also recall that there is a natural
way of associating a transition system with an elementary net system us-
ing the notion of a sequential case graph which explicates the operational
behaviour of elementary net system [Ro].

We present the definition of ETS as it was stated in [NRT2].

Definition 1.4. (ETS-objects)

A Transition System TS = (S, E, T, sin) is said to be elementary iff it
satisfies the following axioms:

(S1) ↑sin = S (every state reachable from sin).

(S2) ∀s, s′ ∈ S . Rs = Rs′ ⇒ s = s′ (regional separability of states).

(T1) ∀s ∈ S, e ∈ E. [◦e ⊆ Rs ⇒ ∃s′ ∈ S. (s, e, s′) ∈ T] (enabling of
transitions).

(T2) ∀(s, e, s′) ∈ T . s 6= s′ (i.e.,
e→ irreflexive for every e ∈ E).

(T3) ∀(s, e1, s1), (s, e2, s2) ∈ T . [s1 = s2 ⇒ e1 = e2)

(i.e., e1 6= e2 ⇒
e1→ ∩ e2→ = ∅).

(E) ∀e ∈ E . ∃(s, e, s′) ∈ T . (i.e.,
e→ nonempty). 2

Definition 1.5. (ETS-morphisms)

Let TS i = (Si, Ei, Ti, s
in
i) for i = 0, 1 be a pair of transition systems. A

morphism from TS 0 to TS 1, is a pair(f, η) where

f : S0 −→ S1 is a total function from S0 t o S1, and

η : E0 −→ E1 is a partial function from E0 to E1 such that

5

1. f(sin
0) = sin

1 ,

2. ∀(s0, e0, s
′
0) ∈ T0.

{
f(s0) = f(s′0), if η(e0) undefined.
(f(s0), η(e0), f(s′0)) ∈ T1, if η(e0) defined.

2

Composition of morphisms is componentwise composition of the total/partial
functions and identity is the pair of identity functions.

We let ETS denote the category of objects and morphisms as defined
in Definitions 1.4 and 1.5. In [NRT2] a category ENS of elementary net
systems as objects and suitably defined behaviour preserving net-morphisms
is introduced. We recall the main result from [NRT2].

Theorem 1.6. There exists a coreflection between ETS and ENS ,
where the rightadjoint is the well-known case-graph construction from Net
Systems, and the left adjoint constructs an elementary net system from an
ETS -object, in which the regions play the role of local states (conditions i n
net theory). 2

As stated earlier, the importance of this result is that the axioms from
Definition 1.4 identify a transition system based model of “true concurrency”
— not by adding structure, but by imposing the six axioms of Definition 1.4.
The reader will have noticed that the notion of regions play a central role
in the axiomatization (S2, T1), but that the axiomatization also contains
structural/syntactical axioms like T2,TS and E. For the purpose of the
following sections we provide here an almost purely regional axiomatization
of elementary transition systems.

Theorem 1.7. A transition system TS = (S, E, T, sin) is elementary iff
it satisfies axioms S1, S2, T1 from Definition 1.4, and

(E1) ∀e ∈ E. ◦e 6= ∅.

(E2) ∀e, e′ ∈ E. ◦e = ◦e′ ⇒ e = e′ (regional separability of events). 2

Proof.

⇒ The fact that E1 and E2 follow from the original ETS-axioms is imme-
diate from the proof of Proposition 4.2 in [NRT2].

6

⇐ Assume TS satisfies E1. Let R ∈ ◦e . From Definition this implies that
we must have (s, e, s′) ∈ T such that s ∈ R and s′ ∈ R. Hence axiom E
follows from E1 . Further assume (s, e, s′) ∈ T for some s, s′ ∈ S. This
implies s ∈ R, s′ /∈ R, i.e. s 6= s′ , and hence T2 also follows from E1.
Assume TS satisfies E2, (s, e1, s

′), (s, e2, s
′) ∈ T . Clearly this means

that ∀R ∈ RTS. [R ∈ ◦e1 ⇔ s ∈ R and s′ /∈ R ⇔ R ∈◦ e2].
I.e., assuming E2 we get e1 = e2, and hence T3 follows from E2. 2

It is maybe worth noticing that the “if part” of the proof above shows
that T2, T3 and E (the old structural axioms) follow from E1 and E2 (the
new regional axioms). The other direction of this implication does not hold
(the proof of the “only if part” from [NRT2] makes use of axioms S2 and
T1!).

2

2 Prime Event Structures

In this section we briefly introduce one of the fundamental models of concur-
rency, prime event structures, originally introduced in [NPW], and since then
studied extensively by primarily Winskel [W]. It is important to realize, that
event structures is basically a model of concurrency on the behavioural level,
i.e., events represent unique temporal occurrences of actions, as opposed to
the models mentioned in the previous section, ETS and ENS , both of which
are basically models on the system level, in which events may have repeated
occurrences at different times in different contexts. We now introduce the
category of prime event structures, PES .

Definition 2.1. (PES -objects)

A prime event structure is a triple ES = (E,≤, #) where

E is a set of events,

≤ ⊆ E × E is a partial order (causaltiy) ,

⊆ E × E is a symmetric relation (conflict) , where

7

(A1) ∀e0, e1, e2 ∈ E . e0 # e ≤ e ⇒ e0 # e2 (conflict inheritance) ,

(A2) ∀e ∈ E. [e] = {e ∈ E | e′ ≤ e}) is finite and #-free 2

Given ES as above - the configurations of ES are defined as

C(ES)
def
= {c ⊆ E | (∀e, e′ ∈ c. not (e # e′)) and ∀e, e′ ∈ E. e′ ≤ e ∈ c ⇒ e′ ∈ c}

So, configurations of ES are the downwards (w.r.t. ≤) closed and
conflict-free subsets of E. We use the notation FC (ES) for the set of fi-
nite configurations of ES. 2

Definition 2.2 (PES -morphisms)

Let ESi = (Ei,≤i, #i), for i = 0, 1 be two Prime Event Structures. A
morphism from ES0 to ES1 is a partial function from E0 to E1 satisfying
∀c ∈ C(ES0).

(∗) [η(c) ∈ C(ES1) and ∀e, e′ ∈ c.

[η(e) = η(e′)] (and both defined) ⇒ e = e′]]. 2

Composition of morphisms is normal composition of partial functions,
and the identity is the identity function. 2

We refer the reader to [W] for detailed intuition, explanation and results
for the category PES of prime event structures with objects and morphisms
defined in Definitions 2.1 and 2.2. We only mention that the configurations
of a prime event structure may be thought of as the states of a distributed
system, where the state is identified with the “events having occurred” at
the given state. The fundamental notions of causality (or rather dependence
of) and conflict (exclusion/choice among events) are captured directly by the
relations ≤ and # in the definition of a prime event independence) between
events structure. The notion of concurrency (or may be derived as follows:

e co e′
def⇔ not (e ≤ e′ or e′ ≤ e or e#e′).

We shall use the notation c0

e
−−−< c1 for a structure evolving from c0 to c1

through the occurrence of event e, i.e., for a prime event structure, ES, as in

8

Definition 2.1. Actually it is sufficient to consider just finite configurations.
−−−< ⊆ FC(ES)× E × FC(ES) is given by:

(c0, e, c1) ∈ −−−< iff c0 ⊆ c1 = c0 ∪ {e}.

As usual, we will often write c0

e
−−−< instead of (c0, e, c1) ∈ −−−<.

We shall use the following facts about prime event structures.

Proposition 2.3. Let ES = (E, <, #) be a prime event structure.
Then for every c ∈ FC(ES), and for every linearization e0, e1, . . . , en of the
events there exist configurations c, c1, . . . , cn such that

∅
e0−−−< c0

e1−−−< c1

e2−−−< · · · cn−1

en−−−< cn = c.

Proof. See [W].

Lemma 2.4. Let ESi be two Prime Event Structures as in Definition
2.2, and let η be a partial function from E0 to E1 . Then η is a morphism
from ES0 to ES1 iff the condition (∗) of Definition 2.2 is satisfied for all finite
configurations c of ES0 .

Proof.

The “only if” part of the Lemma is trivial, so we concentrate on the
nontrivial “if part”. Let η satisfy (∗) for all finite configurations and let c be
a (infinite) configuration of ES0 .

We first prove that η(c) ∈ C(ES1). Assume e1 ∈ η(c) and e′1 ≤1 e1.
e1 ∈ η(c) implies that we must have e0 such that η(e0) = e1, and since from
definition [e0] ∈ FC(ES0), we have from our assumption η([e0]) ∈ FC(ES1).
Now, from this we have e′1 ∈ η([e0]), and hence there must exist e′0 ∈ [e0] such
that η(e′0) = e′1. Since c is downwards closed, e′0 ∈ c, and hence e′1 ∈ η(c),
i.e., η(c) is downwards closed.

Assume η(e0), η(e′0) ∈ η(c), e0, e
′
0 ∈ c. Then it follows as above that

[e0] ∪ [e′0] ∈ FC(ES0), hence η([e0] ∪ [e′0]) ∈ FC(ES1) (from the assumption
of Lemma), and hence not (η(e0) # η(e′0)), i.e., η(c) is conflict free.

Finally, let e0, e
′
0 ∈ c and η(e0) = η(e′0) and both defined. Then again,

since [e0]∪ [e′0] ∈ FC(ES0), we get from assumption of Lemma, that not only
is η([e0] ∪ [e′0]) a configuration of ES1 , but also e0 = e′0. 2

9

3 Occurrence Transition Systems

In this section we introduce a (full) subcategory of ETS , called the category
of occurrence transition systems, OTS , and prove some properties of this
subcategory. The main point is that OTS is defined as a simple strength-
ening of the axiomatization of ETS -objects, and it will be proved in the
next section that OTS is (categorically) equivalent to the category of Prime
Event Structures. In this section we only prove some technical lemmas for
OTS , OTS and PES (the category of Prime Event Structures) are equivalent
categories to be used in the proofs of the main results of the next sections.

Definition 3.1. (OTS Category)
Let OTS denote the category consisting of

• objects : transition systems TS = (s, E, T, sin) satisfying axioms S1,
S2, and T1 of Definition 1.4 and
axiom 0 : ∀e ∈ E. ∃s ∈ S. [↑s ∈ RTS and ◦↑s = {e}], and

• morphisms: transition system morphisms as defined in Definition 1.5.

2

Proposition 3.2. OTS is a full subcategory of ETS .

Proof.

Follows immediately from Theorem 1.7, because axiom 0 trivially im-
plies (by Proposition 1.3) E1 and E2.

One might say that OTS is obtained from ETS by a strengthening of
axioms E1 and E2. E1 and E2 may be interpreted as “each event is charac-
terized by its nonempty set of pre-regions (or, of course, equivalently its set of
post-regions)”. Axiom 0 may be interpreted as “each event is charaterized
by one single post-reqion(or equivalently pre-region) of a particularly sim-
ple form (equal to ↑s for some s ∈ S)” . However, this seemingly innocent
strengthening implies some dramatic restrictions on the kind of allowable
transition systems.

Lemma 3.3. Let TS = (S, E, T, sin) be an OTS object. Then
∗→ ⊆

S × S is a partial order with sin as the least element.

10

Proof.

Transitivity and reflexivity of
∗→ follow from definition. We must only

prove antisymmetry. Take any (s′, e, s′′) ∈ T . From axiom 0 we have a
region R = ↑s for some s ∈ S such that ◦R = {e}, i.e., s′ /∈ R, s′′ ∈ R. Clearly,
this implies s′ /∈ ↑s′′ , from which antisymmetry of

∗→ follows. Minimality of
sin w.r.t.

∗→ follows directly from axiom S1. 2

Lemma 3.4. Let TS = (S, E, T, s′in) be an OTS -object. Assume ↑s
and ↑s′ are both regions of TS such that ◦ ↑s = ◦ ↑s′ = {e}. Then s = s′.

Proof.

Consider ↑s.

Since ↑s ∈ RTS, S1 implies that sin /∈ ↑s. But s ∈ ↑s and so, because
{e} = ◦ ↑s, there exist s̄,

=
s ∈ S such that s̄ /∈ ↑s, =

s ∈ ↑s and sin ∗→ s̄
e→ =

s
∗→ s. Since {e} = ◦ ↑s′, it must be that s′

∗→ =
s and consequently s′

∗→ s.

By symmetric arguments we get s
∗→ s′.

Hence, by Lemma 3.3, s = s′. 2

So, from Lemma 3.4, we may talk about the state s satisfying the prop-
erty of axiom 0 for a given e of an OTS object. We shall use the notation
se, e ∈ E, for this particular state. Obviously from the definition of ◦R, this
association is injective in the sense that se = se′ ⇒ e = e′. So, we may think
of se as “the state representation of e”.

Based on this, one may ask if there is also a natural way to talk about
the states of an OTS-object in terms of its events. One obvious idea seems
to be to associate with a state s the set of events e for which s belongs to
the characteristic region ↑se.

Definition 3.5. Let TS = (S, E, T, sin) be an OTS-object.
Let past : S → 2E be the function defined as past(s) = {e | s ∈ ↑se} . 2

The use o f the word “past” is justified by the following lemma.

Lemma 3.6. Let TS = (S, E, T, s) be an OTS object.

(a) past(sin) = ∅, and

(b) for every (s, e, s′) ∈ T, past(s) ⊂ past(s′) = past(s) ∪ {e}.

11

For every computation of the form sin = s0
e1→ s1

e2→ s2 · · ·
en→ sn = s we have

(c) 1 ≤ i < j ≤ n ⇒ ei 6= ej and

(d) {ei | 1 ≤ i ≤ n} = past(s).

Proof.

Clearly (c) and (d) follow from (a) and (b). Assume sin ∈ ↑se. From
axiom S1 we get ↑se = S, contradicting ↑se being a nontrivial region. Hence
we conclude (a).

Consider an arbitrary (s, e, s′) ∈ T .

Obviously s′ ∈ ↑s , and so past(s) ⊆ past(s′).

Since ↑se is a region such that ◦ ↑se = {e}, s /∈ ◦ ↑se and s′ ∈ ◦ ↑se.
Hence e ∈ past(s′)\past(s).

Now let e′ ∈ past(s′) be such that e 6= e′. Since e′ ∈ past(s′), s′ ∈ ↑se′ .
Since e 6= e′ and ◦ ↑se′ = {e′}, it must be that s ∈ ↑se′ which implies that
e′ ∈ past(s). Consequently past(s′) \ past(s) = {e}, and so (b) holds.

Lemma 3.7. Let TS = (S, E, T, sin) be an OTS object. The function
past from Definition 3.5 is injective.

Proof.

Let s ∈ S, and let R be any region of TS . Then from Lemma 3.6 ((c)
and (d)) we get

(∗) s ∈ R iff either (sin ∈ R and|R◦ ∩ past(s)| = |◦R ∩ past(s)|)
or (sin /∈ R and|R◦ ∩ past(s)|+ 1 = |◦R ∩ past(s)|),

where |M | denotes the cardinality of a set M .

From this we clearly get for two states s and s′ that

past(s) = past(s′) ⇒ ∀R ∈ RTS. [s ∈ R iff s′ ∈ R].

But then by axiom S2 (Definition 1.4) we conclude that s = s′ 2.

12

4 Equivalence between OTS and PES

In this section we prove that there is a very strong relationship between the
two categories OTS and PES ; they are basically one and the same thing in
the sense that they are categorically equivalent. So, one might conclude that
the axioms of OTS -objects identify the transition system version of prime
event structures.

It was indicated already in [NPW] that one may view a PES -object
as a transition system, where the states correspond to configurations, and

transitions to the
e

−−−< relations mentioned previously. We start by proving
that the idea may be formalized in the form of a functor T : PES → OTS.

Theorem 4.1. T defined as follows is a functor from PES to OTS:

• On objects : T (ES = (E,≤, #)) = (FC(ES), E,−−−<, ∅).

• On morphisms : Let η be a PES-morphism from ES0 to ES1. Then
T (η) = (f, η), where ∀c0 ∈ FC(ES0). f(c0) = η(c0).

Proof.

The only non-trivial part is to see that T (ES) as defined satisfies the
axioms for OTS objects.

(S1) ↑∅ = FC (ES) in T (ES).
Follows from Proposition 2.3.

(S2) Rc = Rc′ ⇒ c = c′ in T (ES), where c, c′ ∈ FC (ES).
Assume c 6= c′, e.g., there exists e ∈ c, e /∈ c′ . It i s easy to see that

Re
def
= {x ∈ FC (ES) | e ∈ x} is a region of T (ES) (such that ◦Re = {e}

and R◦
e = ∅). Clearly c ∈ R, c′ /∈ Re.

(T1) ◦e ⊆ Rc ⇒ ∃c′. [c
e

−−−< c′ in T (ES), e ∈ E, c ∈ FC (ES)].

Obviously all one must prove is that from the assumption c ∈ FC (ES) and
◦e ⊆ R in T (ES) we get c ∪ {e} ∈ FC (ES). (From ◦e ⊆ R and the fact that
FC (ES)\Re is a region we at once get e /∈ c (Re is the region constructed
above)).

13

c ∪ {e} can fail to be a configuration for two reasons.
Case 1. c ∪ {e} is not downwards closed, i.e., there exists e′ < e such that
e′ /∈ c∪{e}, i.e., e′ /∈ c. From e′ < e it is easy to see that R = {x ∈ FC (ES) |
e′ ∈ x, e /∈ x} is a region of T (ES) such that R ∈◦ e . But we have also
R /∈ Rc (since e′ /∈ c). Thus we get contradiction to our assumption ◦e ⊆ Rc.
Case 2. c ∪ {e} is not conflict free, i. e., there exists e′ ∈ c such that
e#e′ (remember c is configuration). From e#e′, it is again easy to see that
R = {x ∈ FC (ES) | e /∈ x and e′ /∈ x} is a region of T (ES) such that R ∈ ◦e
(and R ∈ ◦e′). But since e′ ∈ c we also have R /∈ Rc, and hence again a
contradiction to our assumption ◦e ⊆ Rc.
(0) ∀e ∈ E. ∃c ∈ FC (ES). [(↑c ∈ RT (ES) and ◦↑c = {e}) in T (ES)].

Given e ∈ E, define ce
def
= [e]. It follows immediately that [e] ∈ FC (ES).

It follows from proposition 2.3 that ↑[e] = {x ∈ FC (ES) | e ∈ x} = Re as
in the proof of S2 above. Now we have already seen that Re ∈ RT (ES) and
◦Re = {e}. 2

Theorem 4.2. The functor T determines an equivalence of categories
between PES and OTS.

Proof.

It follows from [Mac], theorem 4.4.1 that it is sufficient to prove that T
is full and faithful, and that for every OTS object TS there exists a PES-
object ES such that TS is isomorphic to T (ES). These three facts are proved
in three separate lemmas in the following. 2

Lemma 4.3. T is ful.

Proof.

Given two prime event structures ES i = (Ei,≤i, #i), i = 0, 1 and an
OTS -morphism (f, η) from T (ES 0) to T (ES 1), we must prove that there
exists a PES -morphism η̂ from ES 0 to ES 1 such that T (η̂) = (f, η) . Since
(f, η) is an OTS -morphism, we have from the definition of T that η is a
partial function from E0 to E1. Suppose η is itself an PES -morphism from
ES 0 to ES 1. Then, once again by the definition of T , T (η) = (g, η) is an
OTS -morphism from T (ES 0) to T (ES 1) where g : FC (ES 0) to FC (ES 1) is
given by g(c) = η(c) for every c ∈ FC (ES 0). But from [NRT2] it follows
that if (f1, η1) and (f2, η2) are a pair of OTS -morphisms from TS to TS ′

14

then η1 = η2 implies f1 = f2. Now (f, η) and (g, η) are a pair of morphisms
from T (ES 0) to T (ES 1). Hence we can conclude that f = g and this would
establish the fullness of T .

Thus it suffices to prove that η is a PES -morphism from ES 0 to ES 1.
So, to prove that η must be a PES -morphism from ES 0 to ES 1, we make use
of Lemma 2.4, i.e., we show that property (∗) of Definition 2.2 is satisfied for
every c ∈ FC (ES 0). By simple induction on the size of c we can show that
f(c) = η(c) and since f : FC (ES 0) → FC (ES 1) we have that η(c) ∈ C(ES 1).
Secondly, assume e, e′ ∈ c, e 6= e′ and that η(e) and η(e′) are both defined.

From Proposition 2.3 we may assume configurations c′
e

−−−< c′′ such that
e′ ∈ c′. From the arguments above we have f(c′) = η(c′), i.e., η(e′) ∈ f(c′).

But since (f, η) is a morphism and η(e) defined we have f(c′)
η(e)

−−−< f(c′′) in
ES1 but this implies η(e) /∈ f(c′), i.e., η(e) 6= η(e′) as required.

2

Lemma 4.4. T is faithful.

Proof.

Let η, η′ be two PES morphisms from ES0 to ES1. We must prove that
η 6= η′ implies that T (η) 6= T (η′). But this follows from the definition of T . 2

Lemma 4.5. For every OTS-object TS there exists an PES-object ES
such that TS and T (ES) are isomorphic.

Proof.

Given an OTS-object TS = (S, E, T, sin) we define ζ(TS) = (E,≤, #)
where ∀e, e′ ∈ E. [e ≤ e′ iff se

∗→ se′ in TS and e # e′ iff (↑ se∩ ↑ se′) =
∅ in TS] where se and se′ are the unique states associated with e and e′

respectively according to Lemma 3.1. First, we must prove that ζ(TS) is a
prime event structure. Lemma 3.1 tells us that ≤ is a partial order and from
definition we get that # is a symmetric relation such that ≤ ∩ # = ∅. # is
also clearly inherited by ≤ in the sense of A1 of Definition 2.1, and finally
A2 of Definition 2.1 follows from Lemma 3.6. So, η(TS) is a prime event
structure.

15

Next we prove that (past, idE) is the required isomorphism between TS
and T (η(TS)), where past : S → 2E is defined, in Definition 3.5, and idE :
E → E is the identity function. Clearly, past as defined is a function from S
to FC(η(TS)) (left for the reader to see) and it follows from Lemma 3.6 that
past is a TS-morphism. From Lemma 3.7 it follows that past is injective, and
hence has a partial inverse past−1. From Lemma 4.6 (to follow) we conclude
that past−1 is a total function on FC(η(TS)) and that (past−1, id) is the
categorical inverse of (past , id). This concludes the proof of Lemma 4.5. 2

Lemma 4.6. Let TS = (S, E, T, sin) ∈ OTS. Then for every finite
configuration c ∈ FC (ζ(TS))

(a) ∃sc ∈ S. past(sc) = c,

(b) ∀c1
e

−−−< c in ζ(TS). sc1
e→ sc in TS.

Proof.

We prove the lemma by induction on the size of configuration c.

c = ∅. Clearly past(sin) = ∅, and (b) is trivially satisfied.

c 6= ∅. Let c1 and e be such that c1
e

−−−< c in ζ(TS). Then clearly e is
maximal w.r.t. in c. We consider two subcases:

Case 1. ∀e′ ∈ c1. e′ ≤ e.

In this case we have c = {e′ ∈ E | e′ ≤ e} (remember c is a config-
uration). Hence past(s) = c where se is the unique state associated
with e from Lemma 3.4. From axiom S1, we must have a state s′ and
event e′ such that s′

e−→ se in TS . From axiom 0 we get from the
assumption e′ 6= e that s′ ∈ ↑se — contradicting Lemma 3.3. So e = e′,
and from Lemma 3.6 we get past(s′) = past(se)\{e} = c1 , and hence
from injectivity of past, s′ = sc1 .

Case 2. ∃e′ ∈ c1. e′ 6≤ e. We can assume without loss of generality that e′

is a maximal element (under ≤) of c1. It follows from Proposition 2.3
that in η(TS) we then have that c\{e, e′}, c\{e′}, and c\{e} = c′ all
belong to FC(η(TS)).

16

Figure 1:

So, from induction hypothesis we must have states s1, s2 and s3 such
that past(si) = ci, i = 1, 2, 3, and c1 = c \ {e}, c2 = c \ {e′}, and
c3 = c\{e, e′}.

Figure 2:

Now, from our assumptions we have that e and e′ are neither related
by ≤ or #, and hence from Lemma 4.7 (to follow) we get (◦e ∪ e◦) ∩
(◦e′ ∪ e′◦) = ∅ and hence from axiom T1 we have that there must exist
s ∈ S such that s1 e→ s. But now clearly from Lemma 3.6 we get
past(s) = {e} ∪ past(s1) = c1 ∪ {e} = c, and this concludes our proof.

2

Lemma 4.7. Let TS = (S, E, T, sin) ∈ OTS, and let e0, e1 ∈ E be two

17

events not related by either ≤ or # as defined in the proof of Lemma 4.5.
Then (◦e0 ∪ e◦0) ∩ (◦e1 ∪ e◦1) = ∅ in TS.

Proof.

From the assumptions of the lemma it follows that we have a state s
such that se0

∗→ s and se1

∗→ s in TS, where se0 , se1 are the unique states
associated with e0, e1, from Lemma 3.4. Choose s to be a minimal (w.r.t.
past) state satisfying this property. We want to argue that we must have
states s0 and s1 such that the situation shown in Figure 3 obtains.

Assume that no such s0 exists. Since se0

∗→ s, we must have from
Lemma 3.6 that any computation in TS to sin must contain exactly one e0-
occurrence. Now, consider any computation of the form sin ∗→ se1

∗→ s. Such
a computation cannot have an e0-occurrence before se1 since this would imply
se0

∗→ se1 contradicting our assumption that e0 and e1 are not ≤-related. So,
we must have states s′ and s′′ such that sin ∗→ se1

∗→ s′
e0→ s′′

∗→ s. But now
se1

∗→ s′′ and also from axiom 0, se0

∗→ s′′ and hence from the minimality
of s, we get s = s′′.

Figure 3:

Now, based on Figure 3, we want to argue for the conclusion of the lemma.
Assume R ∈ (◦e0 ∪ e◦0) ∩ (◦e1 ∪ e◦1) 6= ∅.
Case 1. R ∈ (◦e0 ∩ e◦0) ∪ (◦e1 ∩ e◦1).
This assumption leads to the immediate contradiction s ∈ R ⇔ s /∈ R.
Case 2. R ∈ ◦e0 ∩◦e1.
From the arguments of the proof of Lemma 4.6, Case 1 we must have se0 /∈ R
(from assumption R ∈◦ e0), and hence we must have (from the assumption
R ∈ ◦e1) that s1 ∈ R and hence the existence of some s′, s′′ ∈ S and e2 such

18

that R ∈ e◦2 and the situation shown in Figure 4 obtains.

Figure 4:

Now, from axiom 0 we know that s′′ ∈ ↑se2 and hence s ∈ (↑se0∩ ↑se1∩ ↑se2),
so we cannot have neither e2 # e0 nor e2 # e1. But from the existence of
R ∈ e◦2 ∩ (◦e0 ∩ e◦1) we must have from Case 1 of this proof that e2 must be
≤-related to both e0 and e1.

Assume e2 < e0 . This implies from definition, se0 ∈ ↑se2 and hence
s′ ∈ ↑se2 contradicting the fact that ↑se2 is a post-region of e2. So, we must
have e0 < e2.

Assume e1 < e2. This implies from definition, se2 ∈ ↑se1 and hence
s′′ ∈ ↑se2 (besause ↑se2 is post-region of e2) and also s1 ↑s′′ (see Figur 4.4),
we get s1 ↑se1 , contradicting the fact that ↑se1 is a post-region of e1. So, we
must have e2 < e1.

But now obviously e0 < e2 and e2 < e1 imply e0 < e1 contradicting our
assumption that e0 and e1 are not ≤-related. All in all, we have contradicted
the assumption of Case 2.

Case 3. R ∈ e◦0 ∩ e◦1.
In this case we would have R̄ (the complement of R) belonging to ◦e0 ∩◦e1 -
thus this case is reduced to Case 2 .

Since these three cases exhaust the assumption R ∈ (◦e0∪ e◦0)∩ (◦e1∪ e◦1)
we have proved Lemma 4.7 and hence our main Theorem 4.2. 2

19

5 Unfoldings of Elementrary Transition Sys-

tems

One of the nice aspects of net theory is that it provides a uniform formalism
in which both distributed systems and their behaviours can be defined. For
instance, one may define the behaviour of an elementary net system in terms
of its unfolding. The unfolding is simply an elementary net system called an
occurrence net. Hence occurrence nets can be defined as a subcategory of
the category of elementary net systems. Furthermore, the operation of un-
folding of an elementary net system (extended in a natural way to a functor)
was shown by Winskel to be not an arbitrary functor (from the category of
elementary net systems to the subcategory of occurrence nets) but infact,
the right adjoint to the inclusion functor from occurrence nets to elementary
net systems. Unfortunately the category in which this result was proved has
a notion of a net morphism which differs from (and which is in some sense
is weaker than) the net morphisms we have used to establish a co-reflection
between the category of elementary transitions systems (considered here)
and a category of elementary net systems [NRT1]. However, well-understood
(co-reflective) relationship to the category of occurence nets considered by
Winskel [W] . Moreover, by the strong result of the previous section this
category of prime event structures is the “same” as the subcategory of oc-
currence transition systems. Hence one could hope that the inclusion functor
from OTS to ETS would have a right adjoint resembling the unfoldings of
elementary net systems.

This hope is based on the fact that prime event structures are more
abstract than occurrence nets [W] and hence by the result of the previous
section, occurrence transition systems are more abstract than occurrence
nets. On the other hand, elementary transition systems are more abstract
than elementary net systems [NRT1]. Thus, at this more abstract level one
might be able to avoid the technical difficulties that arise when we try to
relate occurrence nets to elementary net systems in the presence of the strong
net morphims that we insist on. The aim of this section is to show that this
hope is entirely justified.

We shall use the theory of trace languages — originating from the work of
Mazurkiewicz [Maz] — to define unfoldings of elementary transition systems.

20

We will show that this “unfold” map produces occurrence transition
systems and it can be smoothly extended to become a functor from ETS to
OTS . More importantly we will prove that this functor is the right adjoint
of the inclusion functor from OTS to ETS .

In the literature, a number of authors have indecently shown that a
strong relationship exists between trace languages and prime event structures
[RT, Sh, B]. In what follows we will appeal to a number of technical results
that arise in the process of establishing that trace languages yield prime event
structures. We will not give detailed proofs of these results since they can
be found in or can be easily extracted from [RT]. For background material
on trace languages the reader is referred to [AR, Maz].

Until further notice, fix an elementary transition system TS = (S, E, T, sin).
Then FSTS the set of firing sequences of TS and the relation [>TS ⊆ {sin}×
FSTS × S are given inductively by:

• Λ ∈ FSTS and sin[Λ >TS sin.

• If ρ ∈ FSTS , sin[ρ >TS s and (s, e, s′) ∈ T , then ρe ∈ FSTS and
sin[ρe >TS s′.

Where TS is clear from the context we will write FS instead of FSTS

and [> instead of [>TS .

In fact, we will follow this convention for a number of relations that we
will soon define relative to TS. The independence relation ITS ⊆ E × E
associated with TS is given by:

ITS = {(e1, e2) | (◦e1 ∪ e◦1) ∩ (◦e2 ∪ e◦2) = ∅}

Clearly ITS is irreflexive and symmetric and hence induces an equivalence
relation (see [Maz]) over E∗. This equivalence relation will in fact be a
congruence w.r.t. the operation of concatenation over E∗. To be specific
.
=ITS

(written for convenience as
.
=TS) is the subset of E∗ × E∗ given by:

σ
.
=TS σ′ iff ∃σ1, σ2 ∈ E∗. ∃(e, e′) ∈ ITS. [σ = σ1 e e′ σ2 and σ′ = σ1 e′ e σ2].

The equivalence relation we want is denoted as =TS and it is the reflexive
transitive closure of

.
=TS. In other words, =TS = (

.
=TS)∗. For σ ∈ E∗

21

we let [σ]TS denote the equivalence class containing σ and call it a trace.
Formally, [σ]TS = {σ′ | σ =TS σ′}. As remarked earlier, we will often write
[σ] instead of [σ]TS. Unless otherwise stated, in what follows we let ρ, ρ′, ρ′′

with or without subscripts to range over FS ; we let σ, σ′, σ′′ with or without
subscripts to range over E∗; we let e, e′, e′′, e1, e2 to range over E. The result
we mention next is a well-known and very useful characterization of the
relation =TS (see, for instance, [AR] for a proof).

In stating the result we will use the following notations. For e ∈ E, #e(σ)
is the number of times the symbol e appears in σ. For X ⊆ E, Proj X(σ) is
the sequence obtained by erasing from σ all appearances of non-members of
X.

In other words,

• Proj X(Λ) = Λ.

• Proj X(σe) =

{
Proj X(σ)e, if e ∈ X,
Proj X(σ), otherwise.

Proposition 5.1. σ1 =TS σ2 iff the following two conditions are satis-
fied.

(i) ∀e ∈ E. #e (σ1) = #e(σ2).

(ii) ∀(e, e′) ∈ (E × E)− ITS. Proj {e,e′}(σ1) = Proj {e,e′}(σ2). 2

Next we recall the standard ordering over the traces generated by =TS.

[σ] ≤TS [σ′] iff ∃σ′′. σσ′′ =TS σ′. It is easy to check that ≤ is a partial
ordering relation with [Λ] = {Λ} as the least element. [σ] t [σ′] will denote
the least upper bound of [σ] and [σ′] under ≤, if it exists.

Given our purposes, a relation closely related to ≤ and denoted as −→TS

will turn out to very useful to have around.
−→TS ⊆ E∗ × E∗ is given by:

σ −→TS σ′ iff ∃σ′′. σσ′′ =TS σ′.

The next set of observations are easy to verify.

22

Proposition 5.2.

(i) [σ] ≤ [σ′] iff σ −→ σ′. Thus is a pre-order the equivalence relation
induced by which is exactly =TS.

(ii) ∀ρ ∈ FS. [ρ] ⊆ FS.

(iii) Suppose ρe, ρe′ ∈ FS with (e, e′) ∈ ITS. Then ρee′, ρe′e ∈ FS. 2

Part (iii) of this result leans on the fact that TS , being elementary,
satisfies the axiom T1.

The set {[ρ] | ρ ∈ FS} will serve as the set of states of Uf (TS), the un-
folding of TS , that we wish to construct. To identify the events of Uf (TS)
we must work with the prime intervals generated by TS denoted as PI TS .

It is the subset of Σ∗ × Σ∗ given by PI TS
def
= {(σ, σ′) | ∃e ∈ E. σe =TS σ′}.

Next we define the map ϕTS : PI → E as follows:

∀(σ, σ′) ∈ PI . ϕ(σ, σ′) = e provided σe =TS σ′.

Now suppose that σe =TS σe′. Then according to Proposition 5.1,
e = e′. Hence ϕ is well-defined. This map — or more precisely, our extension
of this map to certain equivalence classes of prime intervals — will turn out
to be crucial for linking up the behvaiour of Uf (TS) to that of TS ; but we
still need to identify the events of Uf (TS).

To this end, define the relation αTS ⊆ PI × PI by:

(σ1, σ
′
1) αTS (σ2, σ

′
2) iff ∃σ. [σ1σ =TS σ2 and σ′

1σ =TS σ′
2].

Set ≈TS = (αTSU(αTS)−1)∗. Clearly ≈TS is an equivalence relation over PI .
In what follows, we denote by < σ, σ′ >TS the equivalence class of prime
intervals containing the prime interval (σ, σ′). Again using Proposition 5.1
and the definitions, the next set of observations are easy to verify.

Proposition 5.3.

(i) αTS is a pre-order.

(ii) Suppose (σ1, σ
′
1), (σ2, σ

′
2) ∈ PI . Then (σ1, σ

′
1) αTS (σ2, σ

′
2), and (σ2, σ

′
2)

αTS (σ1, σ
′
1) iff ϕ(σ1, σ

′
1) = ϕ(σ2, σ

′
2) and σ1 =TS σ2.

23

(iii) Suppose (σ1, σ
′
1) αTS (σ2, σ

′
2). Then ϕ(σ1, σ

′
1) = ϕ(σ2, σ

′
2). 2

Extend ϕ to ≈TS-equivalence classes of prime intervals as follows (by
abuse of notation, this extension will also be denoted as ϕ) :

∀(σ1, σ
′
1) ∈ PI. ϕ(< σ1, σ

′
1 >) = ϕ(σ1, σ

′
1).

According to Proposition 5.3, this extension of ϕ is also well-defined. Some of
the equivalence classes of prime intervals will serve as the events of Uf (TS).

Definition 5.4. Uf (TS), the unfolding of TS , is the transition system

Uf (TS) = (Ŝ, Ê, T̂ , ŝin) where

Ŝ = {[ρ] | ρ ∈ FS},
Ê = {< ρ, ρ′ >| ρ, ρ′ ∈ FS and (ρ, ρ′) ∈ PI},
T̂ = {([ρ], < ρ, ρ′ >, [ρ′]) |< ρ, ρ′ > ∈ Ê}, and

ŝin = {Λ}. 2

Our first task will be to prove that Uf (TS) is an occurrence transition
system. As mentioned earlier, in doing so, we will appeal to a number of
technical results without giving proofs. These proofs can be found in or can
be easily extracted from [RT]. However we will provide sufficient information
so that an enterprising reader can work out the details for herself/himself.

Lemma 5.5.

(i) Suppose σe1σ1 =TS σe2σ2, with e1 6= e2. Then (e1, e2) ∈ ITS . Moreover
there exists σ′ such that σe1σ1 =TS σe1e2σ1 =TS σe2e1σ

′ =TS σe2σ2.
Consequently, [σe1] t [σe2] = [σe1e2].

(ii) Suppose σ1 −→ σ and σ2 −→ σ. Then [σ1] t [σ2] exists.

(iii) Suppose ρ −→ σ and ρ′ −→ σ (with ρ, ρ′ ∈ FS, σ ∈ E∗).
Then [ρ] t [ρ′] ∈ Ŝ. 2

The property captured in part (i) of this result is the so-called forward
diamond property. The relevant situation is shown in Figure 5. The proof
follows easily by repeated applications of Proposition 5.1. Part (ii) of the
result foll ows by repeated appl ications of part (i) of the result. Part (iii)

24

Figure 5:

of the result follows from part (ii) and repeated applications of Proposition
5.2.

Lemma 5.6. Suppose σ1e1 =TS σ2e2 with e1 6= e2. Then (e1, e2) ∈ ITS .
Moreover there exists σ such that σe2 =TS σ1 and σe1 =TS σ2. 2

This is the so-called backward diamond property. This result also follows
easily through repeate applications of Proposition 5.1. The relevant situation
is shown in Figure 6.

For introducing the next result we need a notation. This notation will

25

Figure 6:

be used extensively in the sequel. Let (σ, σ′) ∈ PI . Then Base (< σ, σ′ >
) ⊆< σ, σ′ > is the set:

{(σ0, σ
′
0) | (σ0, σ

′
0) ∈< σ, σ′ > and ∀(σ1, σ

′
1) ∈< σ, σ′ > · (σ0, σ

′
0) αTS (σ1, σ

′
1)}.

Recall that according to Proposition 5.2, if (σ1, σ
′
1), (σ2, σ

′
2) ∈ Base(<

σ, σ′ >), then σ1 =TS σ2 and σ′
1 =TS σ′

2. Hence Base(< σ, σ′ >) identi-
fies in some sense the “least” elements of < σ, σ′ > under αTS modulo the
equivalence relation =TS .

Lemma 5.7.

(i) ∀(σ, σ′) ∈ PI. Base(< σ, σ′ >) 6= ∅.

(ii) ∀ê ∈ Ê. Base(ê) ⊆ FS × FS . 2

The first part of the result follows fairly easily from Lemma 5.6. The
main observation exploiting Lemma 5.6 (and the definition of ≈TS) can be
depicted graphically as shown in Figure 7.

The second part of the result follows from the first part and the ob-
servation that FS is prefix-closed. Thanks to Lemma 5.7 we can injectively

26

Figure 7:

associate with each element of Ŝ (in Uf (TS)) a set of events in E; the events
that have ‘occurred so far”. To see this, define Ev : FS → P (E) (to be soon
extended to Ŝ!) as: ∀ρ ∈ FS . Ev(ρ) = {ê | ∃(ρ1, ρ

′
1) ∈ ê. ρ′1 → ρ}. To be

precise, we must define Ev(ρ) as {ê | ∃(σ1, σ
′
1) ∈ ê. σ′

1 → ρ}. But, once again,
the fact that FS is prefix-closed guarantees that our definition captures the
intended meaning. Ev is extended to a map — also denoted as Ev by abuse
of notation — from Ŝ to P (Ê) via:

∀ρ ∈ FS . Ev([ρ]) = Ev(ρ).

It is easy to verify that this extension is well-defined.

Lemma 5.8.

(i) Suppose ρe ∈ FS . Then < ρ, ρe >/∈ Ev(ρ). Moreover Ev(ρe) = Ev(ρ) ∪
{< ρ, ρe >}.

(ii) ∀ρ, ρ′ ∈ FS . ρ → ρ′ iff Ev(ρ) ⊆ Ev(ρ′). Hence ρ =TS ρ′ iff Ev(ρ) =
Ev(ρ′). Thus Ev : Ŝ → P (Ê) is injective.

27

(iii) Suppose ([ρ], ê, [ρ′]) ∈ T̂ (in Uf (S).) Then ê /∈ Ev([ρ]). Moreover,
Ev([ρ′]) = Ev([ρ]) ∪ {ê}.

(iv) Suppose [σ] t [σ′] exists. Then Ev([σ] t [σ′] = Ev([σ]) ∪ Ev([σ′]). 2

This result follows from Lemma 5.5 and Lemma 5.7. The details are a
bit tedious but straight forward. This completes the chain of technical results
we shall borrow from the literature. We now turn to the task of proving that
Uf (TS) is an occurrence transition system.

Recall the functor T going from PES to OTS . We will show that there
exists a prime event structure ES such that T (ES) and Uf (TS) are iso-
morphic transition systems (relative to the notion of morphisms specified in
Definition 1.5).

Since T (ES) is an OTS -object we would have then established that
Uf (TS) is also an OTS -object. Define ES = (Ê,≤, #) where ≤, # ⊆ Ê× Ê
are defined as follows:

(i) ê1 ≤ ê2 iff ∀(ρ, ρ′) ∈ Base(ê2). ê1 ∈ Ev(ρ′),

(ii) ê1 # ê2, iff there does not exits ρ ∈ FS such that ê1 ∈ Ev(ρ) and
ê2 ∈ Ev(ρ).

It is easy to verify that ES is indeed a prime event structure in the sense
of Definition 2.1. Recall that T (ES) = (FC (ES), Ê,−−−<, ∅).

The proof of the fact that T (ES) and Uf (TS) are isomorphic can be
split into two steps.

Lemma 5.9. Let ê1, ê2 ∈ Ê be such that not (ê1 ≤ ê2 or ê2 ≤ ê1 or
ê1 # ê2. Then (ϕ(ê1), ϕ(ê2)) ∈ ITS.

Proof.

Let (ρi, ρ
′
i) ∈ Base(êi) and ϕ(êi) = ei for i = 1, 2. Since neither ê1 ≤ ê2

nor ê2 ≤ ê1 it must be the case that [ρ′1] and [ρ′2] are incomparable. Since it
is not the case that ê1 # ê2, there exists ρ ∈ FS such that ê1, ê2 ∈ Ev(ρ).
Consequently ρ′1 → ρ and ρ′2 → ρ. Hence [ρ1]t [ρ2], [ρ1]t [ρ′2], [ρ′1]t [ρ2] and
[ρ′1] t [ρ′2] all exist. Let ρ11 ∈ [ρ1] t [ρ2], ρ′12 ∈ [ρ′1] t [ρ2], ρ′21 ∈ [ρ1] t [ρ′2] and
ρ22 ∈ [ρ′1] t [ρ′2]. From previous results, it is easy to verify the following:

28

(i) Ev(ρ′12) = Ev(ρ11 ∪ {ê1} and Ev(ρ′21) = Ev(ρ11) ∪ {ê2},

(ii) Ev(ρ′12) ∪ {ê2} = Ev(ρ11) ∪ {ê1, ê2} = Ev(ρ′12) ∪ {ê1},

(iii) ρ11e1 =TS ρ′12 and ρ11e2 =TS ρ′21 and ρ′12e2 =TS ρ22 =TS ρ′21e1.

From (iii), it follows at once that ρ11e1e2 =I ρ11e2e1 which leads to
(e1, e2) ∈ ITS. 2

Lemma 5.10. The map Ev : Ŝ → P (Ê) is in fact a bijection from S to
FC (ES).

Proof.

From the definition of ES it follows easily that Ev([ρ]) ∈ FC (ES) for
every ρ ∈ FS . This map is injective according to Lemma 5.9. Let c ∈
FC (ES). We must show that there exits ρ ∈ FS such that Ev(ρ) = c. We
proceed by induction on k = |c|.

k = 0. Then c = ∅ and we can set ρ = Λ.

k > 1. Suppose there exists ê ∈ c such that ê1 ≤ ê for every ê1 ∈ c. (In
other words, c has a unique maximal element). Let (ρ′, ρ) ∈ Base(ê).
Then it is easy to check, using the definition of ES , that Ev(ρ) = c.

So assume that c contains (at least) two distinct maximal elements ê1,
and ê2. Let c0 = c \ {ê1, ê2}, c1 = c \ {ê2}, and c2 = c \ {ê1}. Then by the
induction hypothesis there exist ρi ∈ FS such that Ev(ρi) = ci for i = 0, 1, 2.
It is also clear from Lemma 5.8 that ρ0e1 =TS ρ1 and ρ0e2 =TS ρ2 where
ϕ(ê1) = e1 and ϕ(ê2) = e2. Clearly not (ê1 ≤ ê2 or ê2 ≤ ê1 or e1 # e2) holds.
Hence by the previous lemma (e1, e2) ∈ ITS. According to Proposition 5.2,
ρ0e1e2, ρ0e2e1 ∈ FS . It is now straight forward to verify that Ev(ρ0e1e2) = c.

2

Theorem 5.11. Uf (TS) is an occurrence transition system.

Proof.

We know that T (ES) = (FC (ES), Ê,−−−<, ∅) is an occurrence transition
system where ES is as constructed above. Consider the pair of maps (Ev , id)

29

where id is the identity map over Ê. By the previous lemma Ev is a bijection.

It is now easy to verify that ([ρ], ê, [ρ′]) ∈ T̂ iff Ev(ρ)
ê

−−−< Ev(ρ′). From
this it follows that (Ev , id) is a transition system morphism, and hence is in
fact an isomorphism. From this it follows that Uf (TS) is also an occurrence
transition system. 2

To proceed towards the main result we next define the notion of folding
as a morphism from Uf (TS) to TS . This map will turn out to be the co-unit
of the co-reflection between OTS and ETS that we are trying to establish.

Let TS and Uf (TS) be as defined previously. Let foldTS = (f, η) be
given by:

(i) f : Ŝ → S is such that ∀ρ ∈ FS. f([ρ]) = s, where sin[ρ > s in TS.

(ii) η : Ê → E is such that ∀ < ρ, ρ′ > ∈ Ê. η(< ρ, ρ′ >) = ϕ(< ρ, ρ′ >).

Proposition 5.12. foldTS is a transition system morphism from Uf (TS)
to TS .

Proof.

It follows easily from the fact that TS is an ETS -object that f and η
are well-defined total functions. It i s then routine to verify that foldTS is
indeed a morphism. 2

The following lemma will turn out to be useful for proving the main
theorem of this section.

Lemma 5.13. Let TS 0 = (S0, E0, T0, s0) be an occurrence transition
system and TS = (S, E, T, sin) be an elementary transition system. Let
(g, µ) be a morphism from TS 0 to TS . Suppose s0[ρ > s and s0[ρ

′ > s in
TS 0 (i.e., ρ and ρ′ are two computations – firing sequences – leading to a
common states). Then µ(ρ) =TS µ(ρ′).

Proof. By Lemma 3.6, we know that |ρ| = |ρ′]. We now proceed by
induction on k = |ρ|.

k = 0. Then clearly µ(ρ) = Λ = µ(ρ′).

k > 0. Let ρ = ρ1e and ρ′ = ρ′1e
′. Assume s0[ρ1 > s1 and s0[ρ

′
1 > s′1.

Suppose e = e′. Then once again from Lemma 3.6 it follows that

30

past(s1) = past(s′1) and hence by Lemma 3.7, it must be the case that
s1 = s′1. Now by the induction hypothesis, µ(ρ1) =TS µ(ρ′1). Clearly,
it now follows that µ(ρ1e) =TS µ(ρ′1e

′), since we have assumed e = e′.

So suppose that e 6= e′. Let s0[ρ1 > s1 and s0[ρ
′
1 > s′1 as before.

Consider the PES -object ζ(TS) defined in the proof of Lemma 4.5. It now
follows directly from the properties of the function past that there must exist
a state s′ in TS 0 such that the following situation shown in Figure 8 obtains.

Figure 8:

Let s0[ρ
′′ > s′ as indicated in the figure. Suppose µ(e) is undefined.

Then µ(ρ1e) = µ(ρ1). By the induction hypothesis, µ(ρ1) =TS µ(ρ′′e′). But
then µ(ρ′′e) =TS µ(ρ′1) by the induction hypothesis. Since µ(e) is undefined
we get µ(ρ′′) = µ(ρ′′e) =TS µ(ρ′1). Consequently µ(ρ′′e′) =TS µ(ρ′1, e

′) and we
have now µ(ρ1e) =TS µ(ρ′1e

′). By a symmetric argument the result follows if
µ(e′) is undefined.

So suppose that both µ(e) and µ(e′) are defined. First suppose that

µ(e) = µ(e′). Then in TS , we would get g(s′)
µ(e)−→ g(s′1)

µ(e)−→ g(s). This is
impossible since TS is elementary (see [NRT2]). Thus µ(e) 6= µ(e′). But then
this at once would imply, once again by the fact that TS is elementary that
(e, e′) ∈ ITS . Hence µ(ρ′′ee′) = µ(ρ′′e′e). From the induction hypothesis, we
get, µ(ρ1) =TS µ(ρ′′e′) so that µ(ρ1e) =TS µ(ρ′′e′e). Similarly µ(ρ′1e

′) =TS

µ(ρ′′ee′). The desired conclusion is now immediate. 2

We are now prepared to prove the main result. According to [Mac], The-
orem 4.1.2, proving that unfold is the right adjoint to the inclusion functor

31

from OTS to ETS boils down to establishing the following result.

Theorem 5.14. Let TS be an elementary transition system and Uf (TS)
and foldTS = (f, η) be as defined previously. Suppose TS 0 = (S0, E0, T0, s0)
is an occurrence transition system and (g, µ) is a morphims from TS 0 to TS .
Then there exists a unique morphism (h, θ) from TS 0 to Uf (TS) so that the
following diagram commutes.

Figure 9:

Proof.

We propose the following definition (h, θ).

h : S0 → Ŝ is given by : ∀s ∈ S0. hs = [µ(ρ)]TS where s0[ρ > s (in TS 0).

θ : E0 → Ê is given by :

∀e ∈ E0. θ(e) =


undefined , if µ(e) is undefined,
< µ(ρ), µ(ρe) >, otherwise where s0[ρe > se

in TS 0.

Recall that se is the unique state in TS 0 with the property that ↑se is a
non-trivial region with ◦(↑se) = {e}. By the previous lemma, h and θ are
well-defined total and partial functions respectively. We need to prove:

(i) (h, θ) is a morphism from TS 0 to Uf (TS),

(ii) (f, η) ◦ (h, θ) = (g, µ), and

32

(iii) (h, θ) is unique w.r.t. the properties (i) and (ii).

Proof of (i).

Let e ∈ E0 and (s′, e, s) ∈ T0 . Suppose θ(e) is undefined. We must show
that h(s) = h(s′). Assume that s0[ρ

′ > s′ in TS 0. Then µ(ρ′) =TS µ(ρ′e).
Hence (h(s′) = [µ(ρ′)] = [µ(ρ′e)] = h(s) as required.

So suppose that θ(e) is defined. We then prove that (h(s′), θ(e), h(s)) ∈
T̂ . Let s0[ρ0 e > se in TS0. Then θ(e) =< µ(ρ0), µ(ρ0 e) >. Since e ∈
Past(s), we must have ρ′′ ∈ E∗

0 such that se[ρ
′′ > s in TS0.

We now proceed by induction on k = |ρ′′|.

k = 0. Then s = se and therefore s0[ρ0 e > s′ in TS. Consequently h(s′) =
[µ(ρ0)], h(s) = [µ(ρ0 e)], and θ(e) =< µ(ρ0, µ(ρ0 e) >. Clearly (h(s′),
θ(e), h(s)) ∈ T̂ .

k > 0. Let ρ′′ = ρ1e1. Then from the results of Section 4 it follows that
(◦e ∪ e◦) ∩ (◦e1 ∪ e◦1) = ∅ in TS 0 and there exits states s1 and s′1 such
that the situation shown in Figure 10 obtains.

Figure 10:

By the induction hypothesis, (h(s1), θ(e), h(s′1)) ∈ T̂ . If θ(e1) is unde-
fined, then by the previous argument dealing with the case θ(e) undefined,
we must have h(s1) = h(s′) and h(s′1) = h(s). Thus (h(s′), θ(e), h(s)) ∈ T̂ as
required.

33

So suppose that θ(e1) is defined. Then from the fact that (g, µ) is a
morphism from TS 0 into the elementary transition system TS , we at once
get (µ(e), µ(e′)) ∈ ITS . Therefore by the definition of the equivalence relation
on prime intervals, we get < µ(ρ0ρ1e1), µ(ρ0ρ1e1e) > = < µ(ρ0ρ1), µ(ρ0ρ1e) >
= θ(e) (induction hypothesis). This leads, by the definition of (h, θ) to the
desired conclusion that (h(s′), θ(e), h(s)) ∈ T̂ .

Proof of (ii). As observed in [NRT2], to prove that (f, η) ◦ (h, θ) =
(g, µ), it suffices to prove that f ◦h = g. But this identity follows immediately
from the definitions of f and h.

Proof of (iii) Let (h′, θ′) be some morphism from TS 0 to Uf (TS) which
also satisfies the properties (i) and (ii).
As observed above, it suffices to show that h = h′, because by [NRT2] this
would imply θ = θ′. Let s ∈ S0 and s0[ρ > s in TS0 . We proceed by
induction on k = |ρ|.

k = 0. Then s = s0 and the two morphisms (h, θ) and (h′, θ′) must satisfy
h(s0) = [Λ] = h′(s0).

k > 0. Let ρ = ρ1e1 and s0[ρ1 > s1 in TS0. Then (s1, e1, s) ∈ T0 . By the
induction hypothesis h(s1) = h′(s1).

Suppose µ(e1) is undefined. Since η ◦θ = µ and η is total, it must be the
case that θ(e1) is undefined. Similarly from η ◦ θ′ = µ and the totality of η
we can conclude that θ′(e1) is also undefined. Now (h, θ) being a morphism,
we must have h(s1) = h(s) and similarly h′(s1) = h′(s). Thus h(s) = h′(s).

So suppose that µ(e1) is defined. Then once again from η◦θ = µ = η◦θ′

we conclude that both θ(e1) and θ′(e1) are defined. Since (h, θ) and (h′, θ′) are
morphisms we get (h(s1), θ(e1), h(s)) ∈ T̂ and (h′(s1), θ

′(e1), h
′(s)) ∈ T̂ . Now

h(s1) = [µ(ρ1)] by the definition of h and h(s) = [µ(ρ1)µ(e1)]. From property
(ii) and the definition of Uf (TS), it now follows that h(s) = [µ(ρ1)η(θ(e1)]
and h′(s) = [µ(ρ1)η(θ′(e1)]. But η(θ(e1) = η(θ′(e1)) at once implies that
h(s) = h′(s) as required.

Theorem 5.15. The map unfold uniquely extends to a functor which
is the right adjoint of the inclusion functor from OTS to ETS , i.e., OTS is
a co-reflective full subcategory of ETS .

34

Proof. Follows easily from the previous theorem according to [Mac]. 2

35

Acknowledgements

This work has been part of joint work of ESPRIT Basic Research Actions
CEDISYS and DEMON from which support is acknowledged.

The third author acknowledges support from the Dutch National Con-
currency Project REX sponsored by NFI.

36

References

[AR] Aalbersberg, IJ. J., and Rozenberg, G., (1986), Theory of traces, Tech-
nical report no. 86-16, Institute of Applied Mathematics and Computer
Science, Leiden University, Leiden, The Netherlands.

[B] Bednarczyk, M.A., (1988), Categories of Asynchronous Systems, Ph.D.
Thesis, University of Sussex.

[Mac] MacLane, S., (1971), Categories for the working mathematician, Grad-
uate Texts in Mathematics 5, Springer-Verlag.

[Maz] Mazurkiewicz, A., (1989), Basic notions of trace theory, Lecture Notes
in Computer Science 354, 285–363, Springer-Verlag.

[NPW] Nielsen, M., Plotkin, G., and Winskel, G., (1981), Petri nets, event
structures and domains, part I, Theoretical Computer Science 13, 85–
108

[NRT1] Nielsen, M., Rozenberg, G., and Thiagarajan, P.S., (1990), Be-
havioural notions for elementary net systems, Distributed Computing.

[NRT2] Nielsen, M., Rozenberg, G., and Thiagarajan, P.S., (1990), Elemen-
tary Transition Systems, DAIMI-PB 310, Aarhus University, to appear
in Theoretical Computer Science.

[Ro] Rozenberg, G., (l987), Behaviour of elementary net systems, Lecture
Notes in Computer Science 254, 60–94, Springer-Verlag.

[RT] Rozoy, B., and Thiagarajan, P.S., (1987), Event Structures and Trace
Monoids, report 87–47, LITP, University of Paris VII, Paris, France (to
appear in Theoretical Computer Science).

[Sh] Shields, M.W., (1988), Behavioural Presentations, Lecture Notes in
Computer Science 354, 673–689, Springer-Verlag.

[Th] Thiagarajan, P.S., (l987), Elementary net systems, Lecture Notes in
Computer Science 254, 26–59, Springer-Verlag.

[W] Winskel, G., (1987), Event Structures, Lecture Notes in Computer Sci-
ence 235, 325–392, Springer-Verlag.

37

