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Abstract

In this paper we define an equivalence and a modal logic for real-
time systems. The equivalence is based on timed processes and the
timing specifications they have to satisfy. While the equivalence we
define is not a congruence, it does satisfy many laws.

1 Introduction

While process formalisms such as CCS [4], cannot express time delays be-
tween events (actions), there are extensions [6, 9] which do. Most of these
extensions are called real-time extension. We feel that while the addition of
time is an important step towards characterizing real-time, it is by no means
sufficient. As [2] explain a real-time system is one which has to satisfy certain
properties given certain resource restrictions. The properties that a system
is to satisfy play an important role in building architectures/schedulers for
it.

∗To appear in the 16th International Symposium on Mathematical Foundations of
Computer Science (MFCS 1991)
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Various notions of equivalence in a concurrent setting have been well estab-
lished. Consider for example the notion of bisimilarity [8]. If two concurrent
terms are bisimilar it means that any behavior exhibited by one can be ex-
hibited by the other. If the bisimulation is a congruence, one item can be
substituted for the other in ‘arbitrary’ contexts without affecting ‘behavior’.
Real-time systems have timing requirements and if context includes timing
requirements, two terms to be equivalent in all contexts will necessarily have
identical timing. For example, let timing constraints impose an upper bound
on the time by which an execution must terminate. If two terms are equiv-
alent under all timing constraints, they will have to terminate at the same
time, as one can specify the upper bound for all times.

While the definitions which are a straight generalization of those used in
concurrency results in a general theory which can be used in arbitrary con-
texts, it is not useful for specific real-time systems. Systems rarely impose
precise times when actions are to be taken. Usually, they permit a range of
times in which the actions can be taken. So one could define equivalence un-
der a given set of timing constraints rather than arbitrary timing constraints.
The notion of predictability is important in real-time systems. Thus, simu-
lation must be defined in a more deterministic context. As a scheduler is an
important implementation feature that introduces determinacy, simulation
should consider schedulers. In the definition of simulation for concurrent
systems, the definition of equivalence etc. is quite general. For example, ((a
| b) | c) is trace equivalent to (a | (b | c)) meaning that any trace exhibited
by the first can also be exhibited by the second and vice versa. However in
the presence of timing constraints and a scheduler the effect of replacing one
by the other could have disastrous effects on the safety of the system. Con-
tinuing with the above example, let (a after 10) be the timing specification
t1 and (a before 30) be the timing specification t2. Let a scheduler for a
uniprocessor environment for the above processes translate them as follows:
sched((a | b) | c) = c·a·b, sched(a | (b | c)) = a·b·c.

If each · takes 20 units of time (starting at 0), then p1 is equivalent to p2
given the scheduler and timing constraint t1 but not under timing constraint
t2. While this example may be rather contrived, the scheduler may behave in
this particular fashion due to the presence of certain other timing constraints
that it is trying to satisfy. In this paper we introduce definitions which
are relevant in a real-time setting. As we are interested in implementation
of real-time processes, we concentrate on simulations with bisimulation (or
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replaceability) defined as a symmetric simulation.

The aim of this paper is to propose a calculus for real-time systems which
expresses delays between events and also properties that the system has to
satisfy. The calculus assumes a time domain wee ordered by ≤. We like [6, 9]
use CCS as the basic untimed language. We also outline how the effect of a
scheduler and architecture on a real-time program can be studied.

In section 2 we describe the syntactic elements of our calculus viz., a lan-
guage to express behavior and a language to express timing constraints. In
section 3 we describe an operations semantics for the behavioral aspect of
the calculus. In section 4 we develop a notion of equivalence induced by the
timing constraints, while in section 5 we present a logical characterization of
the equivalence. In section 6 we outline how these ideas can be used to study
system issues such as schedulers.

2 Syntax

We define our language RTCCS (for real-time CCS). We as in [4, 5, 6, 9],
assume a set of atomic actions Λ on which a bijection ·̄ can be defined such
that for all a ∈ Λ¯̄a = a. The time domain we assume is integers (actually
any discrete well ordered set would suffice).

The basic syntax of our language is as follows.

P = Nil | a; P | (P | P) | P + P | P \ H | X | recX̃ : Ẽ

Nil is a process which can exhibit no further action. a;P is a process which
performs action a and then evolves to process P. The action a is atomic
and takes unit time. (It can also be defined to take time greater than 1.)
(t)P defines a process which can behave as P after time t. P | Q denotes
parallel composition. P + Q denotes non-deterministic choice, P \ H restricts
the behavior of P to those actions not in H. recX̃ : Ẽ represents guarded
recursion and we only consider closed terms.

The language defined above is similar to that in [6]. Unlike [9] we do not
consider passing of time as values to processes. Rather we specify timing
constraints which processes have to satisfy. Generally speaking, there are
two types of constraints in real-time systems 1) absolute and 2) relative [1].
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Absolute constraints are expressed in terms of what actions must or must not
happen in time intervals. For example, A(a,t1,t2)=T requires an ‘a’ action
to occur in the time interval [t1,t2] while A(a,t1,t2)=F requires that an ‘a’
action should not occur in the interval. An absolute constraint (represented
by A) is an element of Λ × Time × Time → {T, F}. Relative constraints
are expressed in terms of what actions must or must not happen in time
intervals after a particular action has occurred. For example, R(a,b,t1,t2)
= T requires a ‘b’ action to occur after t1 time units and within t2 time
units after ‘a’ has occurred viz., t1 and t2 are to be measured after the oc-
currence of ‘a’. Similarly, R(a,b,t1,t2)=F requires that a ‘b’ action should
not occur in the duration interval [t1,t2] after ‘a’ has occurred. A relative
constraint (represented by R) is an element of Λ×Λ×Time×Time → {T, F}.

Example 1 Consider the following process definitions: A = (1 )a + (2 )a+
(3 )a + . . . + (10 )a. B = (2 )b + (4 )b + (6 )b + (8 )b + (10 )b. Let the con-
straint on the process (A | B) be: R(a, b, 0 , 5 ) = T . If an execution of
(A | B) is to satisfy the temporal constraint given one professing element,
it cannot select (2)a and (10)b or (10)a and (1)b. The first selection violates
the quantitative requirement, while the second violates ordering. However
it can choose, (2)a and (4)b or (4)a and (8)b etc. So the available non-
determinism is restricted by the temporal constraints.

Example 2 Periodic tasks which are common in real-time systems can be
specified as: PT = a; B; b; PT , where a and b indicate the start and
finish of the periodic task of periodicity P and B a purely sequential pro-
cess (sequence of atomic actions). The constraints on it are ∀ i in 0 .. :
A(a, i∗P, (i + 1)∗P ) = T which requires the task to start in the assigned pe-
riod and ∀ i in 0 .. : A(b, i∗P, (i+1)∗P ) = T which requires the task to finish
appropriately.

Example 3 While a periodic task might be interrupted by a scheduler, (i.e.,
interleaved with other processes) there may be certain parts of the task which
once started should finish quickly (such as reading a sensor which has contin-
uous input). This can be specied as PT = a; B1; s; B2; f; B3; b; PT with a
timing constraint R(s, f, 0, ε) = T , where ε is the maximum permissible delay.

Example 4 Jitter control is also an important aspect in real-time systems
and can be specified as: PT = a; B1; s; B2; b; PT with the constraint
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R(s, s, (P − ε1), (P + ε2)) = T , where ε1 and ε2 represent the permissible
jitter.

3 Semantics

Given the set of basic actions (Λ), define a set of actions Act = Λ ∪ {τ, δ},
where τ represents synchronization and δ idling (or stepping of time without
executing an action). Let P be the set of all processes

Definition: 1 Define a transition relation −→ as the smallest sub-set of
(P × Act × P), which satisfies the rules in figure 1.

We do not define an operational semantics for the timing constraints;
rather we define relations induced by them. The semantics of processes is
almost identical to the usual semantics of timed CCS. The only difference
is that we take a different view regarding the passing of time than [6]. As
a waiting process does not need the processor, one can deduct time from it
when executing other processes. Towards that we define a function called
Translate as follows:

Translate(P ) =




(t − 1)Q if P is (t)Q
Translate(P1) + Translate(P2) if P is P1 + P2
Translate(P1) | Translate(P2) if P is P1 | P2
Translate(Q) \ H if P is Q \ H

rec X̃ : Translate(Ẽ) if P is recX̃ : Ẽ
P otherwise

Example 5 Notice that Translate forces the elapsing of time across choice.
Our intuition behind the semantics can be interpreted as that the execution of
an action can wait as long as the resource is not allocated. But delaying does
not require the processor. Thus, a | ((1 )b + c) after exhibiting a can exhibit
b as the next action.

An informal explanation of the transition rules follows. a;P performs ‘a’
and then behaves as P. Though not shown in the operational rules, this takes
unit time. An execution of a step is treated as one clock tick. Hence if a
process has to wait for time t, after a step it has to wait for only (t− 1); but
the processor was unused during that step. The rule for non-determinism
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Figure 1: Operational Semantics
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exhibiting an action is as usual. However, if both branches of the choice
can delay, the choice can be delayed. The rules that determine the behavior
under parallel composition are as follows. The first two require the behaviors
of processes P and Q to either be synchronizable or at least one of them is
idling for the parallel composition to be successful. The third interleaves the
execution. The rules for hiding and recursion are as usual.

4 Simulations

In this section we define simulations induced by temporal constraints. [6]
show that strong bisimulation of a timed process (defined as: P ∼ Q iff

P
a−→ then ∃ Q′ such that Q

a−→ and P ′ ∼ Q′ and if P
t

❀ P ′ then ∃ Q′

such that Q
t

❀ Q′ and P ′ ∼ Q′ and vice versa) is a congruence. Thus, the
definition requires identical timing of actions for two terms to be bisimilar.

Our concern here is to define a simulation which is more flexible hence
which is substitutive in restricted contexts viz., the contexts defined by timing
constraints. For example, if a takes 10 units of time in P and a takes 12 units
of time in Q, and the constraint is that a occurs no later than 15 units, P
can be replaced by Q and vice-versa. However this is not the case if the
requirement is that a occurs no later than 11 units of time.

Clearly such a definition cannot be a congruence. What is the use of
such a definition? We believe that our work will be relevant in two areas:
1) Reasoning about implementations satisfying specifications and 2) Fault-
tolerant real-time systems.

The application of approximations to discuss implementations satisfying
specifications is well understood. For example, it is required that any behav-
ior exhibited by the implementation is permitted by the specification, but
every behavior permitted by the specification need not be exhibited by the
implementation. Real-time systems which have to be fault-tolerant clearly
have to satisfy temporal constraints. Also, as they have to be fault tolerant,
the occurrence of a fault requires one to ‘replace’ all the affected processes
by ‘equivalent’ ones. Thus the equivalence need only be defined within the
given system and the equivalence need not hold in general.

What are the possible scenarios? Consider two processes P and Q which
are to satisfy the timing constraint A(a,0,n)=T. Let P perform an action
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different from ‘a’, and evolve to P’, while Q be forced to delay for time t and
become Q’. Q’ should have the option of performing the same action as P
and evolve to Q”. How should P’ and Q” be related? Firstly they must be
observationally related. As P and Q should be related if and only if both
satisfy the given constraint the same should hold for P’ and Q”. However as
Q consumed time t units of time while P consumed only 1 unit of time, Q”
should be able to produce an ‘a’ action in time (n−t) while P’ should produce
an ‘a’ action within time (n − 1). So P’ and Q” are no longer related by a
single timing constraint. They are related by two constraints which differ
only in the timing aspect of the constraint and not the observation part.

To accommodate the fact that one needs (bi)similarity under a pair of
timing constraints, we define (bi)similarity as induced by a pair of timing
constraints. In the next few paragraphs we introduce a definition of simu-
lation indexed by a pair of constraints (indicated by

❁∼C1,C2). If
❁∼C1,C2 is a

symmetric relation we write ∼C1,C2 . For notational convenience we write P
❁∼C Q, iff P

❁∼C,C Q and P ∼C Q iff P ∼C,C Q. These definitions use obser-
vational simulation which is defined as follows.

Definition: 2 Define P
t

❀ Q if there is a sequence of transitions rules

such that P
δ−→ P1 . . . Pt−1

δ−→ Q. If t is 0, then P is identical to Q.

Definition: 3 Define P
❁∼ Q (i.e., P observationally simulates Q) iff

P
t1
❀ P ′ a−→ P ′′ t2

❀ P1 then ∃ Q1 such that Q
t3
❀ Q′ a−→ Q′′ t4

❀ Q1.

Definitions 4, 5, 6 and 7 define the four types of equivalences induced by
the four types of timing constraints.

Definition: 4 P
❁∼A(a,t1,t2)=T,A(a,t3,t4)=T Q iff

1. If P
tp
❀ P ′ b−→ P ′′ and tp ≤ (t1−1) ∃ Q

tq
❀ Q′ b−→ Q′′ and tq ≤ (t3−1)

and P ′′ ❁∼A(a,x1,x2)=T,A(a,y1,y2)=T Q′′ where x1 = t1 − tp − 1, x2 = t2 −
tp − 1, y1 = t3 − tq − 1, y2 = t4 − tq − 1

2. If P
tp
❀ P ′ a−→ P ′′ and (t1 − 1) ≤ tp ≤ (t2 − 1) ∃ Q

tq
❀ Q′ a−→ Q′′ and

(t3 − 1) ≤ tq ≤ (t4 − 1) and P ′′ ❁∼ Q′′

3. If P
tp
❀ P ′ b−→ P ′′ and a �= b and (t1 − 1) ≤ tp ≤ (t2 − 1) ∃ Q

tq
❀

Q′ b−→ Q′′ and (t3 − 1) ≤ tq ≤ (t4 − 1) and
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P ′′ ❁∼A(a,x1,x2)=T,A(a,y1,y2)=T Q′′ where x1 = 0, x2 = t2 − tp − 1, y1 = 0,
y2 = t4 − tq − 1

The first rule relates the behavior before the interval while the second and
third relates relevant behavior within the interval. Once the required action
is observed then processes are only required to be ‘observationally’ related.
Note that only processes which ‘satisfy’ the condition are related and thus P
�❁∼C(0,0),C(0,0) Q as each action takes at least unit time.

Example 6 Consider the two processes (10)a and (1)a + (3)a. They are
bisimilar under the constraint A(a,0,11)=T; as both of them will always sat-
isfy the turning constraint. Thus (10) a ∼A(a,0,11)=T , (1)a + (3)a. Similarly,

(4)a
❁∼A(a,3,9)=T (1)a + (6)a.

Proposition 1 P ∼A(a,t1,t2)=T Q implies 1) P ∼A(a,t1−1,t2)=T Q and 2)
P ∼A(a,t1,t2+1)=T Q

Example 7 The above propositions are intuitive but would not be valid if
P and Q were related if both violated the constraint as shown by the following
example. (10)a ∼A(a,4,6)=T (2)a would be true if processes which violated the
requirement were related. However, A(a,3,6) would be satisfied by (2)a but
not (10)a and hence no longer bisimilar. Similarly (1)a would be bisimilar to
(2)a under the above constraint but not under A(a,3,6). If processes which
violate the condition have to be related one has to define similarity between
the type and magnitude of error magnitude of error and is not considered
here.

Definition: 5 P
❁∼A(a,t1,t2)=F,A(a,t3,t4)=F Q iff

1. P
❁∼ Q implies

❁∼A(a,0,0)=F,A(a,0,0)=F Q

2. If P
tp
❀ P ′ b−→ P ′′ tp ≤ (t1 − 1) ∃ Q

tq
❀ Q′ b−→ Q′′ and tq ≤ (t3 − 1)

and P ′′ ❁∼A(a,x1,x2)=F,A(a,y1,y2)=F Q′′ where x1 = t1 − tp − 1, x2 = t2 −
tp − 1, y1 = t3 − tq − 1, y2 = t4 − tq − 1

3. P
tp
❀ P ′ b−→ P ′′ and tp ≥ t2 then ∃ Q

tq
❀ Q′ b−→ PJ ′′ and tq ≥ t4 and

P ′′ ❁∼ Q′′
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4. P
tp
❀ P ′ b−→ P ′′ and a �= b and (t1 − 1) ≤ tp ≤ (t2 − 1) then ∃ Q

tq
❀

Q′ b−→ Q′′ and (t3− 1) ≤ tq ≤ (t4− 1) and P ′′ ❁∼A(a,x1,x2)=F,A(a,y2,y2)=F

Q′′ where x1 = 0, x2 = t2 − tp − 1, y1 = 0, y2 = t4 − tq − 1

The first rule relates processes with are observationally related. As all ac-
tions take at least unit time, no action can occur in the interval [0, 0]. The
second and third ryes relate processes outside the interval, while the final
rule requires that the desired action not occur in the interval.

Proposition 2 P ∼A(a,t1,t2)=F Q implies 1) P ∼A(a,t1+1,t2)=F Q and 2)
P ∼A(a,t1,t2−1)=F Q.

Example 8 It is easy to check that (1)a + (2)a + (10)a ∼A(a,5,9)=F (3)a
+ (12)a. Note that (2)a is not bisimilar under the above constraint to (12)a,
as the definition requires that behavior before and aver the range be similar.

This finishes the definitions for the absolute case. Now we turn our atten-
tion to the relative case.

Definition: 6 P
❁∼R(a,b,t1,t2)=T,R(a,b,t3,t4)=T Q iff

1. P
tp
❀ P ′ a−→ P ′′ ∃ Q

tq
❀ Q′ a−→ Q′′ and P ′′ ❁∼NC Q′′ and

P ′′ ❁∼R(a,b,t1,t2)=T,R(a,b,t3,t4)=T Q′′ where NC is
A(b, t1 , t2 ) = T ,A(b, t3 , t4 ) = T

2. P
tp
❀ P ′ c−→ P ′′ and a �= c ∃ Q

tq
❀ Q′ c−→ Q′′ and

P ′′ ❁∼R(a,b,t1,t2)=T,R(a,b,t3,t4)=T Q′′

The first condition starts the clock when an a occurs. The processes after
the result of an ‘a’ action are required to be similar under two conditions.
The first condition (NC) is that b occurs within the specified time woe the
second requires that the relative constraint be satisfied in future. The second
condition in the definition ensures conditional similarity in the future if an
‘a’ action was not performed.

Proposition 3 P ∼R(a,b,t1,t2)=T Q implies 1) P ∼R(a,b,t1−1,t2)=T Q and 2)
P ∼R(a,b,t1,t2+1)=T Q

Definition: 7 P
❁∼R(a,b,t1,t2)=F,R(a,b,t3,t4)=F Q iff

10



1. P
tp
❀ P ′ a−→ P ′′ ∃ Q

tq
❀ Q′ a−→ Q′′ and P ′′ ❁∼NC Q′′ and

P ′′ ❁∼R(a,b,t1,t2)=F,R(a,b,t3,t4)=F Q′′ where
NC is A(b, t1 , t2 ) = F ,A(b, t3 , t4 ) = F

2. P
tp
❀ P ′ c−→ P ′′ and a �= c then ∃ Q

tq
❀ Q′ c−→ Q′′ and

P ′′ ❁∼R(a,b,t1,t2)=F,R(a,b,t3,t4)=F Q′′

As in the previous definition, the first condition starts the clock when an
‘a’ occurs (but now disallowing ‘b’), while the second ensures conditional
similarity in the future.

Proposition 4 P ∼R(a,b,t1,t2)=F Q implies 1) P ∼R(a,b,t1+1,t2)=F Q and 2)
P ∼R(a,b,t1,t2−1)=F Q

Proposition 5 Though ∼C is not a congruence, the following hold.

• if P
❁∼C(t1,t2) Q, where C(t1 , t2 ) is A(a, t1 , t2 ) = T then

1) (t)P
❁∼C(t1+t,t2+t) (t)Q 2) b; P

❁∼C(t1+1,t2+1) b; Q

3) P + R
❁∼C(t1,t2) Q + R 4) P | R

❁∼C(t1,t2) Q | R

• if P
❁∼C(t1,t2) Q, where C(t1 , t2 ) is A(a, t1 , t2 ) = F then

1) (t)P
❁∼C(t1+t,t2+t) (t)Q 2) b; P

❁∼C(t1+1,t2+1) b; Q

3) P + R
❁∼C(t1,t2) Q + R 4) P | R

❁∼C(t1,t2) Q | R

• if P
❁∼C(t1,t2) Q, where C(t1 , t2 ) can either be R(a, t1 , t2 ) = T or

R(a, b, t1 , t2 ) = F then

1 ) (t)P
❁∼C(t1+t,t2) (t)Q 2 ) c; P

❁∼C(t1,t2) c; Qand c �= a

3 ) P + R
❁∼C(t1,t2) Q + R 4 ) P | R

❁∼C(t1,t2) Q | R

5 Logic

In this section, we introduce an extension of the Hennessy-Milner logic with
recursion [3] to handle time. The formulae in our logic are defined as follows

L =< a > L | ∧
i∈I Li | ¬L | [t]L | {t}L | X | νX :L
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True is defined to be the conjunction over an empty index set, while Ter-
minated is defined to be the conjunction over the set of actions of (¬ < a >
True).

The formulae are interpreted on processes and is defined as follows. Let P
represent the set of all processes.

[[< a > L]] = {P ∈ P ∃ P′, P
a−→ P′ and P′ ∈ [[L]]}

[[
∧

i∈I Li]] =
⋂

i∈I [[Li]]
[[¬L]] = P − [[L]]

[[[t]L]] = {P ∈ P ∃ Q : P
a−→ P1 . . . Pt−1

at−→ Q and Q ∈ [[L]]}
[[{t}L]] = {P ∈ P ∃ Q : with n ≤ t, P

a1−→ P1 . . . Pn−1
an−→ Q and Q ∈ [[L]]}

[[νX : L]] = ∪{Pr ⊆ P such that [[L]] ⊇ Pr}

The intuition in using [t] and {t} is that the first characterizes the passing
of exactly t units of time woe {t} characterizes behavior with in the interval
[0, t]. The other components have their usual meaning.

The temporal constraints that we have used can be translated into the
above logic as follows.

A(a, t1 + 1, t2 + 1) = T = [t1]{t2} < a > True

A(a, t1 + 1, t2 + 1) = F = ¬([t1]{t2} < a > True)

R(a, b, t1 + 1, t2 + 1) = T = νC : ( (< a > True → [t1]{t2} < b > True))∧
(Terminated ∨ [1]C)

R(a, b, t1 + 1, t2 + 1) = F = νC : (¬(< a > True ∧ [t1]{t2} < b > True))∧
(Terminated ∨ [1]C)

As expected, R(a, b, t1, t2) = T/F represent safety properties and map to
a maximal fixed point formula.

Proposition 6 P ∼C Q implies that P ∈ [[L]] and Q ∈ [[L]] where L is
the translation of C.

Proposition 7 (∀L, (P |= L) iff (Q |= L) ) implies P ∼st Q. where ∼st

represents strong timed bisimulation.

12



6 System Issues

The above definitions can be used to develop a system for reasoning about
timed processes. We outline how the concepts of schedulers can be formal-
ized. Note that we do not present a language in which schedulers can be
defined.

Definition: 8 A scheduler, Sch, is a function which given a process P ,
yield a process such that Sch(P )

❁∼ P .

Schedulers as defined above, can be considered to be implementors of a
specification [7]. The general problem of optimal scheduling is usually NP-
complete and hence very rarely used. Usually, one either uses a scheduler
which is ‘satisfactory’ or requires more information from the process. Thus,
we do not require an implementation to satisfy the timing constraints speci-
fied for a system. However, the notion of equivalence is considered only for
schedulers which can satisfy a given constraint, i.e., as there are many ways
of implementing a specification, it is natural to identify similar satisfactory
ones.

Definition: 9 Two schedulers S1 and S2 are defined to be similar with
respect to a process P and timing constraint C written as (S1 ∼P,C S2 ), iff
S1 (P ) ∼C S2 (P ).

Definition: 10 Process P and Q are similar under scheduler Sch and a
given constraint C written as (P ∼Sch,C Q), iff Sch(P ) ∼C Sch(Q).

Example 9 a | b is not similar to b | a under A(a, 0, 1) = T and a ‘FCFS’
scheduler defined as follows scheduler(p | q) = schedule(p);schedule(q) and
schedule(a) = a.

Proposition 8 Given a timing constraint C. If S1 ∼P,C S2 and P ∼S1,C Q
then S1 ∼Q,C S2 iff P ∼S2,C Q.

We extend the above definitions to capture the process of translating a
program in a high level language into a more low level language in the context
of developing a real-time system. We consider a compilation as converting a
program in a some language into a process in RTCCS. We assume that this
process of compilation has knowledge of the architecture and hence assigns
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times to each action, i.e., prefixes each action by (n) for some n. It could
assign a range by using the non-deterministic operator. Thus, a compiler
might assign times ranging from 5 to 10 for an action a, while another might
assign times ranging from 20 to 30.

Given a program (with timing constraints), and a scheduler one can define
‘equivalence’ of compilations as follows.

Definition: 11 Given a program Pgm, a timing constraint C and a scheduler
S. Compiler1 ∼C,Pgm,S Compiler2 iff S(Compiler1 (Pgm)) ∼C

S(Compiler2 (Pgm))

Proposition 9 Given a program Pgm and timing constraint C and sched-
ulers S1 and S2 . If Cmp1 ∼C,Pgm,S1 Cmp2 and S1 ∼Cmp1(Pgm),C S2 then
Cmp1 ∼C,Pgm,S2 Cmp2 iff S1 ∼ −Cmp2(P ), C S2.
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