
Real-Time Action∗

Padmanabhan Krishnan
Department of Computer Science

Ny Munkegade 540
Aarhus University

DK 8000, Aarhus C Denmark
E-mail: paddy@daimi.aau.dk

April 1991

Abstract

The behavior of a real-time system depends on the scheduler used.
The order in which tasks are executed depends on its characteristics
such as ready time, deadline etc. We describe a language in which the
readiness and deadlines can be specified. A scheduling policy using the
task characteristics can be defined. To study the effect of schedulers
on a system a notation should allow for the specification of time,
processes and scheduling. In this paper we show the applicability of
the Action Notation for specifying real-time behavior.

1 Introduction

The importance of scheduling in real-time need not be reiterated. As pointed
out in [4], a real-time system is one which, given limited resources, has per-
formance requirements. The general problem of scheduling can be stated

∗To appear in the Euromicro 1991 Workshop on Real-Time Systems, June 12-14,
France.

1

as “how best to utilize the resources in order to meet the performance re-
quirements.” Time is one of the primary resources which has been studied
extensively. Scheduling algorithms are techniques for managing the use of
time given timing constraints such as deadlines. Therefore, the choice of
scheduling algorithm could affect the timing behavior of the real-time system
significantly. Hence when the behavior of a real-time system is described, it
is necessary to specify the scheduler under which the behavior was observed.

Therefore, the programmer must have some control over the type of
scheduler used in implementing the system being developed. This aspect has
been largely ignored by programming language designers and the scheduling
being left completely to the implementation. For example, the language Ada
[1] only permits the specification of tasks and leaves the scheduling to the
implementation. While the priority inheritance algorithm has been suggested
in [3], it is neither mandated by the language nor is it under the control of the
programmer. This leads to the situation where the programmer is completely
at the mercy of the compiler and the programs developed may exhibit vastly
different behavior on different systems thus affecting portability. Mandating
a scheduler for a particular language will only restrict the types of systems
that can be programmed in it. If the real-time system developer is allowed
to specify a scheduler, the language need not mandate a scheduling policy
nor will program behavior vary across implementations due to differences in
the choice of scheduling policy. In [11] the need for ‘schedulability check’ for
real-time systems is stated, which is ensuring that the constraints specified in
the program can be satisfied by a scheduler. For this goal to be satisfied, the
specification of the scheduler to be used must be allowed. This is similar to
specifying the types of objects/operations. In this paper we outline a simple
language which permits the specification of schedulers.

Given that scheduling affects the behavior of a program, it is important
to have a unified framework, in which the effect of a program and the effect of
a scheduler on it, can be defined. To define the effect of a real-time program
requires a notion of time. In [5], the programmer is allowed to define a clock
and the execution of the clock acts as the time-keeper for the system. We
adopt a similar approach and define the ticking of time as a construct in
our formalism. In this paper, we show that the Action Notation [9, 10] is a
framework in which a scheduler, time and their effects on the behavior of a
program can be described.

2

This paper outlines a simple language in which one can define tasks
which are to be controlled by certain types of schedulers and its semantics
in the Action Notation. The paper is organized as follows. In section 2
we describe a syntax to describe tasks with deadlines and readiness and the
scheduler to be used. In section 3 we present a brief outline of the Action
Notation and in section 4 the semantics for these constructs is explained.
Appendices A and B contain the formal details. In appendix C the effect of
the semantics on behavior is explained via two examples.

2 Model and Language

Traditionally, real-time systems have been assumed to consist of a set of
tasks. Each of these tasks have an associated deadline. Tasks can either be
repetitive or non-repetitive. Repetitive tasks can be periodic or sporadic.
Periodic tasks in the system have an associated periodicity, while sporadic
tasks have a particular arrival characteristic with a least bound on periodicity.

As we are interested in a general model, we assume that every task has
an associated deadline which indicates the time by which a task must termi-
nate and an associated readiness which indicates when the task is ready to
execute. Both the deadline and the readiness are represented by general ex-
pressions thus enabling the specification of a wide variety of timed behaviors.
A periodic task can be defined by specifying that is ready at the beginning
of its period and the deadline is the end of period (or earlier). Similarly, a
task whose readiness is a random variable can simulate a sporadic task.

Tasks can also be classified in two categories 1) Non Preemptable and
2) Preemptable. Tasks which one scheduled are to run to completion are non
preemptable tasks while tasks which can be interrupted to schedule other
tasks are preemptable. In preemptable tasks it is essential to know the
granularity of execution. As we are describing schedulers, it is necessary to
identify schedulable points, i.e., where schedulers can be invoked.

There have been a number of schedulers for systems of this nature, e.g.
deadline-first, rate-monotonic, minimum laxity, FCFS to name a few. See [2]
for details. In this paper we do not discuss the relative merits of the various
schedulers. Our primary task to allow the programmer to specify a scheduler
and not to use a fixed scheduler. As mentioned earlier, the language to

3

describe a scheduler will involve deadlines and readiness, i.e., schedulers in
our language define an ordering on the execution based on the deadlines and
periodicity of the process.

We assume some well defined language for defining the building blocks
(Basic-Unit) of tasks and the expressions (Expression, Operator) that appear
in the following abstract syntax for the language.

comment: Grammar

Basic-Unit = ✷

Expression = ✷

Operator = ✷

Body = [[Basic-Unit “->” Body]] | Basic-Unit

Task = [[“∗”? Body “Within” I-Expression “Readyat” I-Expression]]

I-Expression = [[“I”]] | Expression | [[I-Expression Operator I-Expression]]

Feature = [[“D”]] | [[“R”]] | [[“T”]] | [[“I”]] | Expression

Evaluation = Feature | [[Evaluation Operator Evaluation]]

Sched = Evaluation

Process = Task | [[Process “;” Process]]

System = [[Process “:” Sched]]

A Basic-Unit represents the basic schedulable unit, i.e., a unit which
cannot be preempted. Body is a sequence of basic-units defining the exe-
cutable part of the task. A Task consists of the executable part, and the
deadline/ready time. The expressions following Within and Readyat repre-
sents the deadline and ready time respectively. A “∗” indicates iteration of
the body with the ready-time/deadline computed before every iteration. The
scheduler is defined as an expression over “D”, “I”, “R”, “T” and other other

4

expressions. “D” and “R” extract the deadline and readiness respectively,
while “T” refers to the current time and “I” in both I-expression and Feature
refers to the iterative count of the task, which is initialized to 1 before the
start of execution. The execution of the scheduler is as follows. The evalu-
ation function is applied to all tasks in the system. The task which yields
the lowest value is selected for execution. The evaluation of a task need not
yield an integer value as a scheduler can be composed of general expressions.
The specifier has to be provide a comparison function for the type of value
used by the scheduler.

Example: 1

[[“D”]] represents earliest deadline first,

[[[[“D”]] − [[“R”]]]] represents minimum laxity first with laxity based on dead-
line and readiness

[[[[“D”]] − [[“ T”]]]] represents minimum laxity first with laxity defined as dif-
ference of deadline and the current time

[[“R”]] represents first come first serve.

Example: 2 Consider the definition [[“∗” B; “Within” [[E1 ∗ [[“I”]]]] “Readyat”
[[E2 ∗ [[[[“I”]] - 1]]]]]] For the first iteration the task is ready at time 0 and
should finish by time E1. For the second iteration the task is ready at time
E2 and should finish by 2∗E1 etc. If E1 and E2 are equal constants, the usual
definition of a periodic task is achieved. By defining E1 and E2 appropriately
(using general expressions), a sporadic task can be defined.

Example: 3 A periodic task’s ready time is defined as [[C∗[[“I”]]]], where
C is a constant (the period) and its deadline is defined as [[C∗[[[[“I”]] + 1]]]].
That is, the deadline of an iteration is the same as the start of the next iter-
ation. The expression [[[[“R”]]“/”[[“I”]]]], extracts the period of the task. The
rate monotonic algorithm [7] can be defined as follows. Define the evaluation
function to be [[[[“I”]] “tuple” P]] where, P is the period of the task. “tuple”
is an operator which given two values returns a 2 tuple. The ordering on
these values is (X1 “tuple” Y1) is less than (X2 “tuple” Y2) if and only if

5

X1 is less than X2 or if X1 = X2 then Y1 is less than Y2. In appendix C,
the efject of the scheduler on a periodic task system is defined.

3 The Action Notation

Action Notation which has evolved from Abstract Semantic Algebras [8] al-
lows descriptions of realistic programming languages. Actions are objects
which when “performed” process information and are used to represent se-
mantics of programs. Actions can be combined using the action combinators
to derive a compositional semantics.

Actions are classified into the following facets: 1) Control 2) Functional
3) Declarative 4) Imperative and 5) Communicative. We give a brief and
informal introduction to the above facets.

The control actions include complete , diverge , fail escape , commit .
complete is an action that always completes, while diverge always diverges.
The fail action fails which corresponds to abandoning the current alternative.
The commit action corresponds to cutting away all alternatives, while escape
corresponds to raising an exception.

The combinators include or , and , and then and trap . or represents
non-deterministic choice. An alternative to the chosen action is performed
when the chosen action fails unless a commit has been performed. and is
an combinator which performs the two actions with arbitrary interleaving.
and then corresponds to sequential performance, while trap corresponds to
trapping the exception.

The functional actions process transient (as opposed to input/output)
data and give/are given data. The actions include give D which yields the
datum D, regive which gives any data given to it. choose D gives an element of
the data of sort D. The principal combinator is then . A1 then A2 corresponds
to functional composition, i.e., A2 is given the data produced by A1.

The declarative actions process scoped information. The actions include
bind T to D, which produces a binding of token T to datum D and rebind
which reproduces all the bindings it received. The combinators include more-
over , hence and before . A1 moreover A2 corresponds to letting bindings
produced by A2 override those produced by A1. A1 hence A2 restricts the

6

bindings received by A2 to those produced by A1. A1 before A2 corresponds
to letting bindings accumulate.

The imperative actions deal with storage or stable information. The
actions include store and allocate . store D1 in D2 which stores the datum
D1 in cell D2 and allocate D which corresponds to the allocation of a cell of
sort D.

The action notation also provides primitives to model parallelism. Agents
form the basic unit of parallelism. The actions for this facet include send D
which sends a message of sort D, receive D which receives a message of sort
D and subordinate D which corresponds to creating a agent of sort D which is
then sent an message containing actions which are to be executed. However
in this paper, we concentrate on uniprocessors and this facet is not used. A
generalization of our scheme to handle distributed real-time systems is pos-
sible. N.B. The Action notation may appear informal, but it has a formal
signature and is specified in [9].

4 Semantics

In this section we explain the basic structure of the semantics of the con-
structs. The notational details are presented in appendix A and B.

The semantics of the system consists of 1) compiling the defined pro-
cesses 2) creating the scheduler and 3) starting the execution from an initial
state.

The process of compiling a task is to create an object representing the
task and inserting it into the list of tasks in the system. The creation is
defined by the function Compile, while the insertion is defined by Register.
There are two types of task objects O-tasks (for non-iterative (non-∗) task
to be executed once) and I-tasks (for iterative (with ∗) tasks). Both O-task
and I-task objects have: 1) the abstraction representing the compiled body,
2) the abstraction for the expressions associated with the deadline and ready
time, and 3) A field representing the iteration which is initialized to 1.

If one is considering only non-preemptable tasks, the iteration field for
an O-task is not necessary (it can be assume to be 1). However, when a task
is preempted, the ‘rest of the task’ is treated as a new noniterative task. As

7

the scheduling algorithm could involve the iteration field, the iteration field.
is copied in the O-task. This ensures that the valuation of the task under
the scheduling algorithm does not change due to preemption.

The process of generating a scheduler can be described as constructing
an evaluation function. This function when applied to a task yields a value.
The scheduler abstraction is bound to %scheduler, which can be thought of
as generating the code and storing the start address in %scheduler.

The actual scheduling (defined by the function Scheduler) consists of the
following:

1. Apply the scheduler function to all the tasks in the system. This is
defined by Map-to-all.

2. Select the task which yielded least value. This is defined by Select-min-
index. This requires the comparison of values returned by the scheduler.
To achieve this a function Compare is required by the semantics. The
precise definition depends on the type of values it handles. The only
restriction is that such a function be ‘transitive’.

3. Remove the task from the system which is defined by Remove.

4. Add the next iteration (if any) to the system which is defined by Next-
Itr. If the object is an O-task, Next-Itr is a no-op, otherwise a new task
is added to the system by Form-new-system.

5. Wait till the task is ready to run defined by Process. That is, as the
selected task may not be ready (but the evaluation function yields the
minimum value) the system idles till the task is ready to run.

6. Run the task withing the deadline defined by Run.

If the task being executed is preemptable, a scheduling point will be
reached. The remainder of the task (if any) is put back into the system
and the scheduler is run again on the system. The remainder of the task is
treated as a ‘new’ non-iterative task. Reschedule and Form-new-system effect
the above behavior.

As mentioned in the introduction, it is essential to define time against
which scheduling is defined. A reference to an external notion of time, is

8

not acceptable. If this were allowed, different implementations could have
different definitions of time thus leading to unpredictable behavior across
implementations. If the semantics defines ‘time’, a ‘correct implementation’
will have to account for time when translating the operators in the Action
Notation to machine code. Our approach is: 1) to represent the incrementing
of time as an action, 2) to define a minimum time an atomic action can take
and, 3) running composite actions within the available time.

The ticking of time is represented by the functions Tick and Tick-for.
The execution of one Tick increments time by one unit. Tick-for takes an
integer argument (n) and ticks for n-units. Delay-till n delays till the current
time is greater than equal to n. Both Tick-for and Delay-till could have been
defined to increment time directly; but we define it as a sequence of steps to
maintain ‘regularity’ of time.

The function Run executes the given action within the specified dead-
line. We assume that each atomic action requires a fixed time to execute
(threshold). If the execution of an action cannot be completed within the
deadline, the result is fail. Due to this, our semantics can be considered to
be describing hard real-time systems. One can define soft real-time systems
by changing fail to trap (an exception) and specifying a handler for the trap.
By varying the handler different behavior can be specified. For example, if
the handler was a no-op imprecise computation is specified [6].

Composite actions are ordered. For example, the and combinator which
permits arbitrary interleaving between the subactions is restricted to and
then. The time available for a later action depends on the consumed by the
preceding actions, thus modeling execution on a single processor.

5 Conclusion

We have presented a language in which schedulers can be specified. We
have also given a semantics for real-time systems which incorporates time
and scheduling. Our definitions can be basis for defining ‘correctness’ of a
real-time compiler. It can also be used to perform schedulability check, viz.,
whether the given scheduler is adequate for the given set of tasks. This
can be done using an interpreter as time is defined in the semantics and the
interpretive overhead (wall clock time) does not interfere with the time taken

9

to execute the actions.

However, our approach has the following drawback. In our description
the scheduler is applied to all the tasks at every scheduling point. This is
because the language allows general expressions, due to which one is not
certain if the ordering on tasks is preserved with time. If the scope of the
expressions for specifying deadlines/readiness is restricted a more ‘efficient’
technique can be used.

We have assumed that the real-time system executes in a uni-processor
environment. By defining a scheduler for each processor and mapping a
process to a processor, distributed execution of real-time programs can be
described.

Acknowledgement

The author is grateful to Peter Mosses for his comments and help in present-
ing the semantics.

References

[1] Ada programming language (ANSI/MIL-STD-1815A), Washington,
D.C. 20301, January 1983. AJPO : DOD, OUSD(R&D).

[2] S. C. Cheng, J. A. Stankovic, and K. Ramamritham. Scheduling al-
gorithms for hard real-time systems: A brief survey. In J. A. Stankovic
and K. Ramamritham, editors, Tutorial Hard Real-Time Systems. IEEE,
1988.

[3] J. B. Goodenough and L. Sha. The priority ceiling protocol: A method
for minimizing the blocking of high priority Ada tasks. Ada Letters, 8(7),
Fall 1988.

[4] M. Joseph and A. Goswami. What’s ‘Real’ about real-time systems? In
IEEE Real-Time Systems Symposium, pages 78–85, 1988.

10

[5] P. Krishnan and R. A. Volz. A distributed real-time language and its op-
erational semantics. In The 10th IEEE Real-Time Systems Symposium,
1989.

[6] K. Lin, S. Natarajan, and J. W. Liu. Imprecise results: Utilizing partial
computations in real-time systems. In IEEE Real-Time Systems Sympo-
sium, pages 210–217, 1987.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the Association for
Computing Machinery, pages 46–61, February 1973.

[8] P. Mosses. Abstract semantics algebras. In D. Bjoerner, editor, Pro-
ceeding of the IFIP TC2 Working Conference on Formal Description of
Programming Concepts II, pages 63–88. North Holland, 1982.

[9] P. D. Mosses. Action semantics. Technical report, DAIMI: Aarhus Uni-
versity, 1990.

[10] P. D. Mosses. Action Semantics. Cambridge Univesity Press (in the se-
ries Tracts in Theoretical Computer Science), to appear in 1991.

[11] J. A. Stankovic. Misconceptions about real-time computing: A serious
problem for next-generation systems. IEEE Computer, pages 10–19, Oc-
tober 1988.

11

A Semantic Equations

A.1 Compilation

Complie :: Process → Act

Compile [[B “Within” E1 “Readyat” E2]] =

give abstraction (P-execute B) label # 1
and
give abstraction (Evaluate E1) label #2

and
give abstraction (Evaluate E2) label #3

then
give O-task(the abstraction #1,

the abstraction #2,
the abstraction #3, 1) then

Register it

Compile [[“∗” B “Within” E1 “Readyat” E2]] =

give abstraction (P-execute B) label # 1
and
give abstraction (Evaluate E1) label #2

and
give abstraction (Evaluate E2) label #3

then
give I-task(the abstraction #1,

the abstraction #2,
the abstraction #3, 1) then

Register it

Compile [[P1 “;” P2]] =

Compile P1 hence Compile P2

12

A.2 Compilation of Scheduler

Create-Scheduler :: Sched → Act
Create-Scheduler [[Sched]] =

give abstraction (Evaluate Sched) then
bind %scheduler to it

A.3 Expression Evaluation

Evaluate :: Evaluation → Act

Evaluate [[“I”]] = give lteration(it)

Evaluate [[“T”]] = the datum bound to %time

Evaluate [[“D”]] = enact (Deadline it)

Evaluate [[“R”]] = enact (Readiness it)

Evaluate [[F1 O F2]] =
Evaluate F1 then give it label #1

and
Evaluate F2 then give it label #2

then
give result-of O

A.4 Execution

P-execute :: Body → Act

P-execute [[Bu “->” B]] = execute Bu and then
Reschedule B

P-execute Bu = execute Bu

Reschedule :: Body → Act

13

Reschedule B =

give abstraction (P-execute B) label # 1
and

give (the datum bound to %current-task)
then

give Deadline label #2
and
give Readiness(it) label #3

and
give lteration(it) label #4

then
give 0-task(the abstraction #1,

the abstraction #2,
the abstraction #3,
the number #4) then

Register it

A.5 Running the System

Begin :: System → Act

Begin [[P “:” S]] = Initialize
before

Compile P
and
Create-Scheduler S

hence
Run-System

14

B Semantic Entities

B.1 Initialization

Initialize = bind %system to empty-list moreover
bind %time to 0

B.2 Scheduler

Run-System =
unfolding

check (the datum bound to %system
is not the empty-list)

and then
Scheduler hence unfold

or
check (the datum bound to %system

is the empty-list)

Scheduler = give (the datum bound to %system) then
Map-to-all (the datum bound to %scheduler) to it

then
Select-min-index from it then give it label # 1

and
give (the datum bound to %system) label #2

then
Remove (the integer #1) (the list #2) then
rebind

moreover
bind %system to it

hence
Process (the integer #1) at (the list #2)

Register :: Task → Act

15

Register T =
give (the datum bound to %system) label #1

then
concatenate (list T) (the list #1) then
rebind moreover bind %system to it

Process :: Task → Act

Process Tsk = Next-Itr Tsk moreover (bind %current-task to Tsk)
before

enact (Readiness Tsk) then Delay-until it
before

enact (Deadline Tsk) then give it
then
Run (Body Tsk) it

Next-ltr :: Task → Act

Next-ltr Tsk = choose (I-task & Tsk)
and then
give Step-I-task Tsk then
Form-new-system it

or
choose (O-task & Tsk)

B.3 Time

Tick = indivisibly
give (the datum bound to %time) then
give (its successor) then
bind it to %time

Tick-for :: Integer → Act

16

Tick-for n =
unfolding

check (n is not 0) and then
Tick 1

before
give (predecessor of n) then unfold

or
check (n is 0)

Delay-till :: Integer → Act

Delay-till n =
unfolding

give the datum bound to %time
then

check (it is less than n) and then
Tick before unfold

or
check (it is not less than n)

Run :: Act, integer → Act

17

Run (A:Atomic) Dline =
indivisibly

bind the current-transients to %save-data
before

give the datum bound to %time then
give sum it threshold

then
check (the datum is less than Dline)

and then
Tick-for threshold

before
reflect the datum bound to %save-data

then
A

or
check (it is is greater than Dline) and then
fail

Run (A and then B) Dline = Run A Dline
before
Run A Dline

Run (A and B) Dline = Run A Dline
before
Run A Dline

comment: Other composite actions can be defined analogously

B.4 Tasks

I-task ≤ datum

I-task :: datum, datum, datum, integer → I-task

O-task ≤ datum

18

O-task :: datum, datum, datum → O-task

Task = I-Task | O-Task

I-Task(B,D,R,I) = T ⇒
Body(T) = B, Deadline(T) = D,
Readiness(T) = R, Itr(T) = 1

O-Task(B,D,R) = T ⇒
Body(T) = B, Deadline(T) = D,
Readiness(T) = R, Itr(T) = 1

Step-I-Task Tsk =
give Body(Tsk) label #1

and
give Deadline(Tsk) label #2

and
give Readiness(Tsk) label #3

and
give Itr(Tsk) then
give its successor label #4

then
give I-Task (the abstraction #1,

the abstraction #2,
the abstraction #3,the integer #4)

Form-new-system Tsk =

give (the datum bound to %system) # 1
then
give contactenate (list Tsk) (the list #1) then
rebind moreover bind %system to it

19

B.5 List Manipulation

Remove ix L =

check (ix is 1) and then give (tail L)
or

check (ix is not 1)
and then

give list (head ix) label #1
and
Remove (predecessor of ix) (tail L) then
give it label #2

then
give concatenate (list #1) (list #2)

Map-to-all A L = check (L is empty-list) and then give L
or

check (L is not empty-list L)
and then

enact A with (head L) then give it label #1
and
Map-to-all A (tail L) then give it label #2

then
give concatenate (the list #1) (the list #2)

Compare :: value, value → truth-value

Compare(v1,v2) = true; Compare(v2,v3) = true

⇒ Compare(v1,v3) = true

Select-min-index L = I; J : [less than or equal][length of L]

⇒ Compare (L at I) (L at J) = true

20

C Examples

In this section we present two eximples which demonstrate the applicability
of the semantics. To show this we use the operational intuition of the actions.
The operational semantics for the notation is defined in [9] and this behavior
can be formally derived from it. The first example describes a rate monotonic
scheduler while the second describes a earliest deadline first scheduler.

C.1 Rate Monotonic Scheduler

Consider a system with two periodic (and hence iterative) tasks. Let the
readiness associated with task T1 be 40 ∗ “I” and deadline be 40∗(I+1). Task
T2’s readiness is defined as 50∗I and deadline as 50∗(I+1). Define the rate
monotonic scheduler as I “tuple R/I with the ordering defined as (X1,Y1) ≤
(X2,Y2) iff (X1 ≤ X2) or (X1 = X2 and y1 ≤ Y2). (We have omitted the
brackets [[]]to enhance readability.)

Compiling (Compile) this system creates two I-task objects I-task(B1,
D=40∗(1+1), R=40∗I, I=1) and I-task(B2, D=50∗(I+1), R=50∗I, I=1) where
B1 and B2 are the compiled bodies which is bound to %system. The scheduler
abstraction is bound to %scheduler.

Running the system (Run-System) executes the Scheduler. The scheduler
applies the evaluation function to the two tasks and selects the first task for
further processing. Process alters the state of the %system to I-task(B1,
D=40∗(I+1), R=40∗I, 1=2) and I-task(B2, D=50∗(I+1), R=50∗I, I=1). The
next iteration of the current task is added to the task set by Next-ltr. The
current task I-task(B1, D=40∗(I+1), R=40∗I, I=1) is bound to %current-
task. The readiness and the deadline expressions are evaluated and the task
is run (Run). If B1 were preemptable (i.e., of the form B11 -> B12), after the
execution of B11, Reschedule is executed. It adds 0-Task(B12, D=40∗(I+1),
R=40∗I, I=1) to the system. Run-System operates on the modified system.

The scheduler does not differentiate between I-tasks and O-Tasks and it
selects the O-Task for B12. The effect is thus to execute B1 without preemp-
tion as defined by the rate monotonic algorithm. When B1 terminates, the
state of the system is I-task(B1, D=40∗(I+1), R=40∗I, I=2) and I-task(B2,
D=50∗(I+1), R=50∗I, I=1). As task T2’s iteration is still 1, it is selected
over T1 and B2 is executed till completion and the cycle is repeated. The

21

above behavior assumes that the task body completed its execution within
time. That is, Run B1 80, etc. did not fail. However, if one of the tasks does
not finish its execution, the entire system terminates abnormally (fail).

If the first iteration of B1 took only 5 units of time, T2 will idle for 5
time units as it is ready to execute at time 50. If B2 took 10 units of time,
the next iteration of T1 will idle for 20 units and so on.

C.2 Deadline First Scheduler

In this example we concentrate only on the behavior. The effect of the
semantic equations at each step is as in the above example. Consider a system
with two iterative tasks. Task 1 has readiness 40 ∗I and deadline 40∗I+10,
while task 2 has readiness 50∗I and deadline 50∗I+20. These are not periodic
tasks as the beginning of one iteration is not the deadline of the previous
iteration. Let the scheduler be D, viz. the deadline first scheduler. Initially
there are two tasks in the system: I-task(B1, D=40∗I+10, R=40∗I, I=1) and
I-task(B2, D=50∗I+20, R=50∗I, I=1) where B1 and B2 are the compiled
bodies. Assume that B1 and B2 take 5 and 10 units of time respectively. Task
1 will be executed first and the system will idle for 5 time units. T2 will be
executed next and at time 60 the state of the system is as foIlows: I-task(B1,
D=40∗I+10, R=40∗I, 1=2) and I-task(B2, D=50∗I+20, R=50∗I, I=2). The
system idles for 20 units and then executes task1 and so on. In state I-
task(B1, D=40∗I+10, R=40∗I, I=4) I-task(B2, D=50∗I+20, R=50∗I, I=4),
T1 is executed leading to I-task(B1, D=40∗I+10, R=40∗I, I=5) I-task(B2,
D=50∗I+20, R=50∗I, I=4). T1’s deadIine is 210 and T2’s deadline is 220.
Thus, T1 is executed, and the cyclic execution of the tasks is not exhibited.

22

