
An overview of the Mjølner BETA System∗

Lars Bak,†Jørgen Lindskov Knudsen,‡

Ole Lehrmann Madsen†‡, Claus Nørgaard†,
Elmer Sandvad†

April 1991

∗Presented at: Conference on Software Engineering Environments, 25-27 March 1991,
Aberystwyth, Wales, Great Britain.

†Mjølner Informatics ApS, Sience Park Aarhus, Gustav Wiedsvej 10, DK-8000 Århus
C, Denmark, Phone: +45 86 20 20 00, Fax: +45 86 20 12 22, E-mail: larsp@mjolner.dk,
cn@mjolner.dk, ess@mjolner.dk

‡Computer Science Department, Aarhus University, Ny Munkegade 116, DK-8000
Århus C, Denmark, Phone: +45 86 12 71 88, Fax: + 45 86 13 57 25, E-mail: jlknud-
sen@daimi.aau.dk, olmadsen@daimi.aau.dk

1

Abstract

The Mjøner BETA System is an integrated and interactive program-
ming environment with support for industrial object oriented programming.
The Mjølner BETA System is a result of the Scandinavian research project
Mjølner.

The integration of the various tools in the Mjølner BETA System is es-
tablished by insisting that all tools in the system utilizes one single represen-
tation of the program. This representation is abstract syntax trees (ASTs).
All manipulations of the ASTs by the various tools are done, utilizing the
metaprogramming system, which defines an interface to the AST, and ways
to manipulate the AST.

The Mjølner BETA System includes an implementation of the BETA
programming language. In addition it includes a set of grammar-based tools,
which can be used for any formal language that is defined by a context-
free grammar. The grammar-based tools include a hyper structure editor,
a metaprogramming system, and a fragment system. Finally, the system
includes a system browser, a source level debugger, a graphics system, an user
interface system, an application builder, a general interface to the underlying
operating system and interface to external routines.

The BETA programming language is a block structured, strongly typed
object oriented programming language. The language supports procedural,
object oriented, concurrent and to some extent functional programming.

The hyper structure editor is an integrated text and syntax-directed ed-
itor with extensive facilities for abstract presentation, browsing, and hyper-
text.

The fragment system makes it possible to split a program into arbitrary
modules called fragments. The fragment system supports separate compila-
tion and separation of interface and implementation fragments.

The metaprogramming system defines a unique representation of pro-
grams in the form of a set of classes defined by the abstract syntax of the
language. This makes it possible to write programs that manipulate other
programs.

The Mjølner BETA System is grammar-based, implying that most com-
ponents of the system exists in the form of tool generators, that given a
context-free grammar for a language, will generate a language specific tool.

All tools in the Mjølner BETA System (including the compiler) are writ-
ten in BETA (except the run-time system and a few other routines written
in C and assembly language).

2

1 Introduction

The Mjølner BETA System is a highly integrated programming environment
for object oriented programming. The objective is to support development
of large, efficient industrial programs. The Mjølner BETA System is a result
of the Scandinavian research project Mjølner.

The Mjølner BETA System includes an implementation of the BETA
programming language [8, 7]. In addition it includes a set of grammar-based
tools, which can be used for any formal language that is defined by a context-
free grammar. The grammar-based tools include a hyper structure editor, a
metaprogramming system, and a fragment system.

The BETA programming language is a block structured, strongly
typed object oriented programming language. The language supports pro-
cedural, object oriented, concurrent and to some extent functional program-
ming.

The hyper structure editor is an integrated text and syntax-directed
editor with extensive facilities for abstract presentation, browsing, and hyper-
text. The hypertext facility combined with structure editing of documents
makes the editor particularly well suited to support program documenta-
tion. Furthermore, an graphical extension to the hyper structure editor is
currently being developed such that the editor can be used as an integrated
diagram editor, too. The diagram editor will inherit all facilities from the
hyper structure editor.

The fragment system makes it possible to split a program into axbi-
trary modules called fragments. This is used to share code in the form of
libraries. In addition it is used to split a program into an interface part and
an implementation part. For a class it is thus possible to separate the de-
scription of the interface from the description of the implementation. Since
a fragment may have several different implementation parts, the fragment
system also supports having several variants of a program.

The metaprogramming system defines a unique representation of pro-
grams in the form of a set of classes defined by the abstract syntax of the
language. This makes it possible to write programs that manipulate other
programs. In addition application programs may manipulate programs by
means of this representation. The metaprogramming system has been de-
signed to allow for “Lisp-like” representation of programs as data.

3

The system includes a system browser, a source level debugger, a
graphics system, an user interface system, an application builder, a general
interface to the underlying operating system and interface to external rou-
tines.

The Mjølner BETA System is grammar-based, implying that most
components of the system exists in the form of tool generators, that given a
context-free grammar for a language, will generate a language specific tool.

All tools in the Mjølner BETA System (including the compiler) are
written in BETA (except the run-time system and a few other routines writ-
ten in C and assembly language). The Mjølner BETA System is implemented
under Macintosh and UNIX workstations. The Macintosh version is imple-
mented under MacOS and MPW for MacII series work-stations. The UNIX
versions uses the X Window System and is available for SUN3 series worksta-
tions, Apollo DN3500 series workstations and HP9000 series workstations.

2 Overview of the Mjølner BETA System

The Mjølner BETA System is an integated and interactive programming
environment with support for industrial object oriented programming.

The integration of the various tools in the Mjølner BETA System is
established by insisting that all tools in the system utilizes one single rep-
resentation of the program. This representation is abstract syntax trees
(ASTs). All manipulations of the ASTs by the various tools are done, uti-
lizing the metaprogramniing system, which defines an interface to the AST,
and ways to manipulate the AST. The overall structure of the Mjølner BETA
System is illustrated in figure 1.

The Mjølner BETA System is based on the notion of program fragment
(or just fragment). The notion of fragments is based on the context-free
grammar for the programming language. In principle, any sentence derived
from any nonterminal in the grammar may be a fragment. Non-terminals are
the natural units of the syntax-directed editor. Fragments and nonterminals
are the units of manipulation in major parts of the entire system, and the
BETA compiler translates BETA fragments into native code. The system
is also using fragments as a powerful notion of separate compilation, that
enables the system to ensure full consistency across compilation units. This

4

Figure 1: Mjølner BETA System overview

enables the programmer to make changes to the program, and the system
will only compile or check the affected compilation units.

The hyper structure editor is a highly interactive tool for manipulating
fragments. The user interface toolkit and graphics system is available to
the application programmer in order to support the development of highly
interactive and graphical applications by means of the Mjøner BETA System.

3 A Grammar-based System

Major parts of the system (e.g. editor, parser, pretty-printer, metaprogram-
ming system, fragment system) are grammar-based in the sense that tool
generators exists that given a specific grammar for a language will define
a specific tool, that is able to manipulate programs written in that specific
language. Such language specific tools have been generated for the BETA
language, and form the basis for the Mjølner BETA System. Furthermore,
the generators have been used to create tools for Simula, Modula, SQL,
OSDL, Pascal, FelixPascal and others.

A variant of context-free grammars, called structured context-free gram-
mars, are used for specifying the context-free syntax. Structured context-free

5

grammars are like ordinary BNF grammars except that productions must be
one of:

<A> ::= w0 <t1:A1> w1 . . . <tn: An> wn construction rule
<A> ::| <A1> w1 | <A2> | . . . <An> alternation rule
<A> ::∗ w list zero rule
<A> ::+ w list one rule
<A> ::? w optional rule

where <A> denotes nonterminals, <t:B> denotes nonterminals with a tag-
name, and w denotes terminals. A construction rule specifies that the non-
terminal on the left-hand side of the rule may be replaced by the string w0

<t1:A1> w1 . . . <tn:An> wn. An alternation rule specifies that the nonter-
minal on the left-hand side of the rule may be replaced by either of the
nonterminals <A1>, . . . , <An> on the right-hand side. A list zero rule speci-
fies that the nonterrninal on the left-hand side of the rule may be replaced by
zero or more instances of the nonterminal on the right-hand side, separated
by the string w (i.e. nothing, , w , w w , etc.).
A list one rule is like the list zero rule, except that there must be at least
one element in the list. An optional rule specifies that the nonterminal on
the left-hand side of the rule may either be replaced with nothing or by the
nonterminal on the right-hand side. A nonterminal may only appear once on
the left-hand side of a production.

In the rest of this paper, we will use the BETA language as the vehicle
for all examples and describe the grammar-based tools by describing the
BETA specfic tools, generated from the tool generators. Nearly all that
is said about these tools apply to all tools being generated from the tool
generators. The exceptions are the static semantic parts and the integration
with the BETA compiler. This implies, that in order to create a highly
integrated environment based on these tool generators (like the BETA specific
environment), one needs cooperation with the compiler.

An example of a BETA program is given in figure 2. The program
defines three identifiers: Private, Push and Pop. Private is a static object
(caused by the @), and Push and Pop are routines. Push takes one integer

argument. Special grammar symbols are shown enclosed by << and >> These
symbols are called placeholders. Placeholders are always associated with a
nonterminal of the grammar. A placeholder may have a tag-name in order to
be able to distinguish between several instances of the same nonterminal in

6

a program. I.e. <<Push:Descriptor>> is a placeholder, where Descriptor

specifies the syntactic category and Push is the tag-name.

Figure 2: Example of a BETA program

Generally, programs may contain placeholders of three different types:
nonterminals, slots or contractions. Nonterminals and slots denote unexpand-
ed nonterminals of the underlying grammar, whereas contractions denote
expanded nonterminals.

Nonterminals (e.g. <<Attributes>>) are indications that these parts
of the program have not been specified yet. The ability to handle non-
terminals in a program is the means for allowing syntax-directed editing.

Slots (e.g. <<SLOT Push:Descriptor>>) are indications of parts of
the program that deliberately have been kept open. Slots are the means
for modularization of a program in order to support information hiding and
separate compilation. The program parts to by located in slots will reside
in another fragment. The fragment system for BETA (which takes care of
slots) will be described in section 4.

Contractions (e.g. <<...ActionPart...>>) are placeholders indicat-
ing that this part of the program, derived from the nonterminal, is not shown.
I.e. contractions are a means for suppressing details that are present in the
program. Note that contractions may suppress other placeholders, i.e. within
a contraction, nonterminals, slots and other contractions may reside.

4 The Fragment System

The foundation of the fragment system is syntaxdirected program modu-
larization as described in [6]. Syntax-directed program modularization is a

7

very general principle for program modularization. The fragment system
is a concrete, but limited implementation of syntax-directed program mod-
ularization, applied to the BETA programming language. The aim of the
fragment system is to support modularization, information hiding and sepa-
rate compilation of programs.

The basic level of the environment is the fragment library, that is the
storage system for fragments. The fragment system is language independent
implying that modularization, information hiding and separate compilation
need not be defined as part of the programming language. The fragment
system supports:

Modularization and Information Hiding: The fragment system enables
the programmer to define the granularity of modularization and infor-
mation hiding that suits his particular problem. Fragments are the
modules of the Mjølner BETA System and fragments are any legal
derivation, implying that both coarse- and fine-grained modularization
is possible.

Separation of the interface and the implementation: The programmer
may define fragments containing the interface definition of a program
part and other fragments decking the implementation part. One impli-
cation hereof is that the interface of a class may be separated from its
implementation.

Variant control: There may be several implementation fragments corre-
sponding to, say, a class specification. This facility may be used to
support variants of a program.

Separate compilation: Fragments are the basic entities handled by the
compiler. Fragments may be separately compiled. When a fragment is
compiled, all fragments it is depending on will be checked for modifica-
tions in the source code since last compilation of these fragments, and
if such changes have been made, these fragments will be automatically
recompiled.

Code sharing: In general the mechanism is useful for splitting programs
into parts that may be shared by several other program parts. This is
a useful and orthogonal feature to the class/sub-class mechanism.

8

4.1 Fragments

The modularization language is called the fragment language, since it de-
scribes the organization of programs in terms of fragments. (The notion
of fragment will be introduced below.) The fragment language is used for
communicating with the fragment system, which is the component of the
Mjølner BETA System that handles storing and manipulation of fragments.
The terms fragment language and fragment system are used interchangeably
when this causes no confusion.

The fragment language is independent of the language that is used for
specifying the programs that are manipulated by the fragment system. The
principles behind the fragment language can be used to describe modulariza-
tion of most programming languages. The fragment language is grammar-
based. The idea is that any correct sequence of terminal and nonterminal
symbols defined by the grammar is a legal module (i.e. fragment). The
fragment language describes how such strings may be combined into larger
strings. The fragment language is presented here using a graphical syntax,
though the fragment language also has a textual syntax which is currently
used by the Mjølner BETA System. A future version of the Mjølner BETA
System will include support for a graphical syntax like the one used in this
paper.1

4.1.1 Forms

A string of terminal and nonterminal symbols derived from a nonterminal A
is called an A-form2 or sometimes just a form. The derived strings in figure
3 are all examples of forms.

Forms are the basic elements used to define modules in the Mjølner
BETA System. Consider e.g. the forms 2 and 3 in figure 3. By substituting
the DoPart nonterminal of form 2 by form 3 we get the form in figure 4.

1In addition to the use of graphical syntax, the fragment language described in this
paper is slightly more general than the actual implementation. For details, see Mjølner
BETA System manuals.

2In formal language theory, this is called a sentential form.

9

Figure 3: Nonterminals and corresponding derived forms

Figure 4: The FOO form

4.1.2 Slots

In the Mjøner BETA System, several tools manipulate forms, but not all
nonterminals are necessarily to be used by the fragment system. The nonter-
minals used by the fragment language are the slots since they define openings
where other forms may be inserted.

Forms may contain slots, and the fragment langage contains constructs
for binding slot names with forms, thus combining forms into composite forms
and eventually complete programs.

Slot names and program names belong to different languages. There
is thus no possibility of confusing program names and slot names. In figure
5 there is a routine called Push and a slot called Push. As we shall see later
it is convenient to use identical names in this manner.

4.1.3 Fragment Form

In the fragment language, each form must be given a name and its syntactic
category must be specified. A fragment form is a form associated with a
name and a syntactic category. Figure 5 shows a fragment form. Counter

is the name of the fragment form, Attributes is the syntactic category, and
Counter: (# . . . #) is a form (i.e. a string of terminal and nonterminal

10

symbols derived from Attributes).

Figure 5: Counter fragment form

4.1.4 Fragment Group

It is often convenient to defme a set of logically related fragment forms to-
gether. For this purpose it is possible to define a group of fragments, called
a fragment group.3 The syntax of a fragment group is shown in figure 6. It
defines two fragment forms. The name of fragment forms are Up and Down,
both with syntactic categories DoPart and the actual fragment forms are do
n + 7 -> n and do n - 5 -> n.

Figure 6: A fragment group

4.1.5 Fragment Library

The fragment system handles the storing of fragments in a library, called The
fragment library. The fragment library is usually implemented on top of a
file system or a data base system. The fragment language refers to fragments

3The term fragment will be used to refer to either a fragment form or a fragment group.
No confusion should be possible

11

stored in the fragment library. A fragment resides in a specific location in the
fragment library. Fragments are named using a hierarchical naming scheme
in the style of UNIX or Macintosh file systems. The location of a fragment
is given by means of a hierarchical name. The name /home/smith/Counter

denotes a fragment Counter. Counter resides in the directory /home/smith.
In the following examples, the location of a fragment will often be given
together with the definition of the fragment as shown in figure 7.

Figure 7: The Counterbody group

4.1.6 Origin of a Fragment

The origin part of a fragment specifies a fragment that is used when binding
fragment forms to slots. Consider figure 7. The origin of CounterBody is the
fragment /home/smith/Counter (c.f. figure 7). The origin must have free
slots corresponding to Up and Down. The origin construct specifies that the
fragment forms Up and Down are substituted for the corresponding slots in
Counter. The result of this substitution is a form, called the extent of the
fragment. The extent of Counter is shown in figure 8.

Figure 8: Extent of Counterbody

12

Extent

A fragment defines a unique form, called the extent of the fragment. The
extent of the above fragment is a combination of CounterBody and Counter.
The combination is obtained by filling in the slots in the origin with the
corresponding fragment forms.

4.1.7 The Basic Environment

The Mjølner BETA System provides a basic environment that defines the
most important standard patterns and objects. In addition, this environ-
ment initiates and terminates the execution of enay BETA program. The
basic BETA environment is the fragment betaenv4 shown in figure 9. This
fragment defines a number of standard patterns, In addition, the fragment
has two slots: /textttProgram and Lib.

Figure 9: The basic BETA environment.

4In the rest of this paper, simple names (i.e. without any directory specified) are used
for specifying locations of fragments

13

Simple programs

A complete BETA program that makes use of betaenv may be defined by
specifying the Program slot. The fragment form in figure 10 is an example
of a very simple BETA program.

Figure 10: The basic BETA environment.

The extent of the fragment mini1 is shown in figure 11. The Program

fragment has been substituted for the Program slot in betaenv. In the
Program fragment it is therefore possible to use any name which is visi-
ble at the point of the Program slot in betaenv. PutLine is visible at the
Program slot and is therefore visible in the Program fragment. It would also
have been posible to make use of patterns like Integer, Char, Text etc.

Figure 11: Extent of mini1

Simple libraries

The Lib slot in betaenv is intended for making a set of general patterns
to be used by other programs. The difference between such a library and a
program is that the library is a list of patterns whereas the program is a single
object descriptor. Figure 12 contains an example of a library consisting of

14

two patterns. By substituting the Lib slot in betaenv with the Lib fragment
form, we obtain figure 13.

Figure 12: mylib library

Figure 13: Extent of mylib

The library patterns are inserted at the point of the Lib slot. This
means that in the Lib fragment form it is possible to see all names visible at
the point of the Lib slot in betaenv. Note that the extent of mylib is not
an executable program, since the Program slot has not been defined.

4.1.8 Include

When making libraries like mylib, we need a mechanism for combining sev-
eral fragments into one fragment. The include construct makes this possible.
Figure 14 contains a program that makes use of the library mylib.

The effect of include mylib is that the patterns defined in myLib

can be used in the Program fragment form. Formally, the fragment forms of
mylib become part of the fragment mini2. In the above example, mini2 may
be understood as a fragment group consisting of the fragment forms in mylib

and the Program fragment form. This implies that the extent of mini2 is
obtained by substituting the Lib slot in betaenv by the Lib fragment form
in mylib and by substituting the Program slot in betaenv by the Program

fragment form in mini2. This gives the form in figure 15.

15

Figure 14: mini2 program

Figure 15: Extent of mini2

Since the patterns in mylib are inserted at the point of the Lib slot,
they are visible at the point of the Program slot. This is where the Program

fragment form in mini2 is inserted. I.e. the patterns Hello and World are
visible inside the Program fragment form.

A fragment form may have more than one include. This makes it
possible to use several library fragments in the same fragment (c.f. section
3.4).

4.1.9 Body

When defining a fragment it is often desirable to be able to specify one or
more fragments that always must be included when using the fragment. This
is often the case when a fragment is separated into an interface fragment and
one or more implementation fragments. Here we introduce the construct for
specifying this; but delay further explanation until section 3.2. The body
construct specifies a fragment that is always part of the extent. Consider
figure 16. The counter fragment has a body specification that specifies that
a fragment called counterbody is always part of the extent of counter.

16

The counterbody fragment could be described as in figure 17. The counter
fragment could be used as illustrated in figure 18.

Figure 16: Using body

Figure 17: A body fragment

Figure 18: mini3 program

The extent of mini3 is obtained by combining the Program fragment
form in mini3, origin betaenv and include counter. In addition, the

17

Figure 19: Extent of mini3

Figure 20: Domain of mini3

body counterbody in counter implies that the counterBody fragment is
also included in the extent. The resulting form looks as in figure 19.

As stated earlier, the patterns defined in Lib are visible in mini3

through the use of include. However, the counterbody is not visible from

18

mini3. This means that an evaluation like C.Priv.V+1->C.Prim.V is not
possible within mini3. That is even if the extent of mini3 includes the
counterbody fragment, it is not visible within mini3.

Domain

The domain of a fragment F is the part of the extent of F which is visible
within F. The domain of F consists of the fragment forms in F, plus the
domain of the origin of F plus the domain of possible included fragments.
The domain of mini3 is the form shown in figure 20. The domain of mini3
is constructed as follows:

• The domain of mini3 consists of the Program fragment form in mini3

plus the domain of betaenv (its origin), plus the domain of the included
fragment counter (c.f. figure 20)

• The domain of betaenv is the form in figure 9.

• The domain of the counter fragment consists of the form defining the
pattern Counter, plus the domain of betaenv. Note that the body
part of Counter does not contribute to the domain.

4.2 Separation of Interface and Implementation

Encapsulation and separation or interface and implementation saves com-
pilation time. In the Mjølner BETA System, as in many other systems,
fragments (modules) can be separately compiled. A change in an imple-
mentation module can then be made without recompilation of the interface
module and modules using the interface module. This can yield significant
savings in compilation time. On the other hand, a change in an interface
module implies that all modules using it must be recompiled. This can be
extremely time consuming. The fragment system manages these dependen-
cies between fragments automatically and the BETA compiler utilizes this
information to reduce recompilations to a minimum.

Programming takes place at different abstraction levels. The interface
part of a module describes a view of objects and patterns meaningful at
the abstraction level where the module is used. The implementation level

19

describes how objects and patterns at the interface level are realized using
other objects and patterns.

The fragment language supports encapsulation and separation of in-
terface and implementation. One fragment defines the interface while others
define the implementation. The Counter fragment in figure 16 is an exam-
ple of one such interface fragment, and the CounterBody fragment in figure
17 is an example of an implementation fragment. The fragment system en-
sures (in cooperation with the compiler), that the fragment mini3 in figure
18 cannot utilize the information located in the implementation fragment
(CounterBody).

4.2.1 Abstract Data Types

One of the fundamental concepts in program development is the notion of
abstract data type. In the context of BETA, an abstract data type is a class
pattern whose instances are completely characterized by a set of (procedure)
pattern attributes — sometimes referred to as its operations. These opera-
tions constitute the outside view of the objects whereas reference attributes
and details of the pattern attributes belong to the inside view (the imple-
mentation).

The fragments in figure 21 and figure 23 shows an example of an
abstract data type in BETA. The fragments define the interface and imple-
mentation of a stack of text references. A stack is completely characterized
by its operations Push, Pop, New and isEmpty. The stack may be used as
shown in figure 22. Note, that libuser2 is not a complete program, since
no implementations for stack are specified yet.

Since the domain of stack does not include its implementation, the
stack can only be used by means of its operations. It is good practice to define
most class patterns as “abstract data types”, i.e. restrict their interface to
be pattern operations. In some languages, e.g. Smalltalk, class patterns are
always abstract data types.

4.3 Alternative Implementations

It is possible to have several implementations of a given interface module. In
general this means that different fragments may define different bindings for

20

Figure 21: The interface part of pattern Stack

slots in a given fragment.

Suppose that we want to define an alternate implementation of the
stack from the previous section. In the alternate implementation, stack

objects are represented as linked lists. The list implementation is shown in
figure 24.

Selecting the proper stack implementation is done by means of a
body specification as illustrated in figure 26. Naturally, this body speci-
fication could have been given in libuser2, but then would all libuser2
programs be using the arraystack implementation.

4.4 Using Several Libraries

The examples of libraries until now have only shown how to use one li-
brary from a program. The syntactic category of a slot like <<SLOT Lib:

attributes>> describes a list of declarations. It is thus possible to bind
an arbitrary number of Lib fragments to such a slot. Figure 25 shows a
fragment that includes two libraries.

21

Figure 22: A fragment using the stack interface

Figure 23: Array implementation of Stack

22

Figure 24: List implementation of stack

Figure 25: Example of a fragment using more than one fragment

Figure 26: A complete stack program using the array implementation

4.5 Program Variants

Often several variants of a given program are needed. This is usually the case
if variants of a given program have to exist for several computers. The major

23

Figure 27: A complete stack program using the list implementation

Figure 28: A complete stack program with two compile-time variants

part of the program is often the same for each computer. For maintenance
purposes it is highly desirable to have only one version of the common part. In
the Mjølner BETA System, program variants can be handled in the same way
as alternative implementations of a module are handled. That is, different
variants of a module bind some of the slots differently (as illustrated in figure
26 and 27).

However, often one wants to specify that a given fragment can have
several variants (i.e. alternative body specifications), and postpone the de-
cision on which variant to select until compile-time. This is done by a special
body specification (as shown in figure 28). When compiling a program, it
is possible to specify a set of tokens (e.g. Array) and the compiler will then
select those bodies, that correspond to the specified tokens (e.g. arraystack
for token Array). Program variants can in this way be maintained and pro-
duced efficiently.

4.6 Current implementation

The most important limitations of the present implementation of the frag-
ment system in Mjøner BETA System are:

It does not support all nonterminals of the BETA grammar. Only two
nonterminals of the BETA grammar are supported, namely <Attributes>

and <Descriptor>.5

The naming scheme for fragments is a direct reflection of the file sys-

5This restriction is not a serious limitation in practice

24

tem, such that locations are spectications of files in the underlying hierarchi-
cal file system.

The selective body directive is currently only implemented for ma-
chine dependent tokens like Sun3, HP, Mac, etc. with the compiler automat-
ically selecting the proper variant (identical to the machine type the compiler
is running) unless the compiler is asked to cross-compile to another machine
type.

It is important to note, that the fragment system in the current Mjøner
BETA System implementation is able to handle large program, and supports
the separate compilation of these large systems. The best proof of this is
that the entire Mjølner BETA System is managed using the fragment system.
The system consists of more than 1.000 fragments, distributed in more than
220 fragment groups, with a total of more 64.000 lines of BETA code. The
fragment system is used in the Mjølner BETA System implementation to
enable the automatic administration of machine specific fragments for four
different target architectures on the same physical file system.

A full description of the fragment system as implemented in Mjølner
BETA System can be found in the Mjøner BETA System manuals.

5 The Hyper Structure Editor

The editor has the following characteristics:

Structure and text editing: The syntax-directed editor is fully integrated
with a text editor, allowing the user to switch freely between structure
and text editing.

Incremental Parsing: The editor makes use of an incremental parsing al-
gorithm when switching from textual editing to syntax-directed editing
in order to ensure that the text being edited (by text editing) is syn-
tactically valid within the given context. Only the edited text needs to
be considered by the incremental parser to ensure this consistency.

Adaptive pretty-printing: The internal representation of a program is an
abstract syntax tree (AST) as defined by the Mjølner BETA System.
Pretty-printing, i.e. textual presentation of the AST is done adaptively,

25

which means that as much as possible is printed on each line in the
editing window, The adaptive pretty-printing can be controlled by the
user by tailoring the editor to conform with his needs.

Hyper Linking: The editor supports various types of hypertext facilities.
These facilities include program semantical links, links to comments,
links to other program fragments, links to text documents, etc. The
linking facilities are fully symmetric.

Annotation: Comments in a program are handled as links to text objects.
Instead of mixing comments with the program text, comments are pre-
sented and manipulated in separate text editing windows. Comments
may also be included directly in the program text in the form of ordi-
nary program comments.

Abstract presentation and browsing: Abstract presentation is provided
by supporting placeholders of type contraction. Abstract presentation
is similar to the ability to compress a whole sentence into one word
(holophrastic). Abstract presentation has two applications: browsing
and documentation. Browsing is supported by letting the user selec-
tively go into further details of contractions. Printing a program at
different abstraction levels provides good documentation facilities for
e.g. functional specifications.

Grammar-based: The editor is grammar-based, which means that it may
support any language that can be described by means of a context-free
grammar.

Metaprogramming system: The editor is built upon the metaprogram-
ming system, which is available for the user (see section 6). The user
has the possibility to program her own metaprogramming tools. Due
to a high degree of tailorability in the editor, it is possible to integrate
such tools with the editor or simply to add functionality to the edi-
tor. This tailorability is available in the editor by providing special
hooks to be expanded by the user and in general by the object oriented
implementation language (BETA) of the editor [11].

The editor makes use of almost all other tools in the system: the
BETA compiler, the pretty-printer, the parser, the user interface toolkit, the
metaprogramming system, and the fragment system.

26

5.1 Syntax-directed Editing

Syntax-directed editing is supported through placeholders of kind nonter-
minals. During the editing of a program, nonterminals may appear, either
specified explicitly by the user or as a result of another syntax-directed editing
command. When a nonterminal is selected, the editor offers the possible
derivations of that nonterminal as templates (i.e. the right-hand sides of all
productions with the selected nonterminal on left side). This is done in a
pop-up menu. If one of these productions are selected, the editor replaces
the nonterminal with the right-hand of the selected production and editing
may continue by selecting nonterminals in this template or by other editing
tasks.

If a terminal in the program is selected, the smallest sentential form
containing this terminal is selected. If a sentential form is selected, it may
be deleted (i.e. replaced with the nonterminal from which it was originally
derived). Special treatment is offered far nonterminals that are defined by
optional or list zero productions.

5.2 Text Editing

Textual editing can be performed at any time instead of structural editing.
Any sentential form can be selected for text editing, and when the textual
editing of the sentential form is completed, the modified text is parsed ac-
cording to the syntactic category of the sentential form. The parsing of the
modified text is done using incremental parsing techniques.

5.3 Hyper Structure Editing

The editor supports hyper structure editing in four different ways:

Abstract Presentation: Most non-trivial fragments are normally too big
to fit into a window on the screen, even if the window occupies the
whole screen space. Abstract presentation can be considered as sup-
porting intrafragment organizational links. The user has the possibility
manually to substitute any structure in the fragment by a contraction,
which acts as a link to the suppressed details. Abstract presentation of

27

a program fragment or a documentation fragment has several advan-
tages:

Overview: ; It provides an overview of the document. The whole
document can be surveyed at once in one window without scrolling
through pages of text. This facility is also known in some word
processing systems as outlining.

Browsing: Browsing is done by interactively detailing parts of an
abstract presentation. If the document is a technical report with
chapters and sections and the like, the highest abstraction level
can actually be an interactive table of contents.

Documentation: Snapshots of a program at different abstraction lev-
els can be very useful for documentation purposes. The user can
select an appropriate abstraction level by detailing or abstract-
ing the relevant constructs of the document and save the actual
abstraction level including comments on textual form.

Annotations: Comments in a program are handled by means of links to
simple text objects, so-called annotations. Any point in the program
can be linked to a text object. If a construct in a program fragment
is selected, a text window can be opened and the annotation can be
entered. After finishing the annotation a special annotation mark (∗)
is inserted in the construct to indicate a link from the construct to
a text object. Whenever the user selects a program construct with
a annotation link, a text window can be activated (e.g. by double
clicking with the mouse) and the annotation can be read or modified.
Annotations may also be included directly in the program text in the
form of ordinary program comments.

Program Semantical Linkage: The program semantical links are used
to reflect the static semantic information of a program. For exam-
ple definition-use relationships and super-/subclass relationships. Such
relationships are automatically deductible from the program. In the
Mjøner BETA System, program semantical links are set up by the
checker. These links are used in the checking and coding processes, but
are also available to the user in the editor. When a construct is se-
lected in a program fragment a menu presents the available links from

28

that construct (if any). Note that program semantical relationships go
across the fragment structure.

Figure 29: Editor User Interface

Interactive program analysis is normally not considered being part of
program documentation, but language specific inspection of a program
is often useful when trying to understand it. This kind of program
traversal can be considered as non-hierarchical browsing.

Documentation Linkage: Documentation links are used to support all
other kinds of relationships between documentation fragments mutu-
ally and between documentation fragments and program fragments.
This link type is manually created by the user. The documentation
link type is the basic mechanism for supporting integration of program
and documentation. Any point in a program or fragment can be linked
to another point in the same or another fragment. When a construct
in a fragment is selected, the construct can be marked as a link source.
The link destination is chosen by selecting another construct in the
same or another fragment (possibly after activating an editor instance
on the destination fragment) and then make it the link destination. A

29

link mark (̂) is inserted in the source construct as well as the desti-
nation construct. A descriptive text can be associated with either end
of the link. The hypertext facilities of the editor is based on the ideas
presented in [13].

Figure 29 illustrates these linkage facilities. The lower left window is
an editor window, showing the program being edited. The upper left
window shows the comment annotation that is indicated just before
Record in the editor window. Having followed the program semantic
links from putInt in the editor window, have resulted in the upper right
window, showing part of the basic BETA library. PutInt is defined
in the first line shown (which was automatically selected when the
putInt link was followed). In the upper right window, the hyper link
shown at Stream has been followed, resulting in a document editor
being opened in the lower right window, where the destination link
is shown immediately after Stream in the text. Notice that the lower
right window is a structure editor on the documentation. The structure
editor for documentation is based on the hyper structure editor with
the facilities for abstract presentation (which in this case will work like
a outline processor), browsing, linking, etc.

With the graphical extensions currently being developed (and dis-
cussed shortly in section 7.8, the Mjølner BETA System will support an
integrated editor for text, programs and documentation with support for
graphical, structure, and text editing of all three types of documents, and
with full support for linkage between internals of all three document types.
Furthermore, the editor supports abstract presentation, browsing and anno-
tation of all three document types.

5.4 Tailorability

The editor is implemented in BETA and the advanced user is supposed to
have programming experience in BETA. If the user wishes to make “real”
extensions to the editor, some knowledge of the metaprogramming system
and the BETA user interface toolkit is required.

The tailorability of the editor is obtained mainly by applying object
oriented design principles extensively throughout the entire editor. In fact,

30

the editor is designed as a class, and major tailorability is often made by
creating a subclass of the editor and specify the tailoring in the subclass.
The BETA editor is an example hereof, see section 5.5. For a more detailed
discussion of tailorability of the Mjølner BETA System, see [11].

5.5 The BETA Editor

The BETA editor is an example of extensive tailoring of the general structure
editor in order to fully support handling BETA programs. The BETA spe-
cific extension of the hyper structure editor provides the following additional
facilities:

Automatic abstract presentation of BETA programs: When editor in-
stances are activated with BETA program fragments, these are pre-
sented abstractly. The abstraction levels are object descriptors, at-
tribute lists and imperative lists. Contractions explicitly defined within
the AST are preserved across editing sessions.

Integration with the BETA compiler: Each BETA editor instance is able
to activate the BETA compiler and to activate the resulting executable
BETA program. Notice that the compiler does not have to perform
lexical and syntactical analysis but uses the AST that the editor has
produced. When the compiler is activated, the current fragment is
marked as changed. The whole fragment group, which this fragment
is a part of, is “delivered” to the compiler. If there are static semantic
errors, the user can browse through these.

Simple static program analysis: The checker part of the BETA compiler
sets up static semantic information in the AST, (e.g. references from
name applications to the corresponding declaration). This information
can be used from the editor by means of the program semantic linkage
facilities. E.g. if a name application is selected, the corresponding
name declaration can be found. If the name declaration is located in
another program fragment, the editor is able to open another editor
instance on it.

A more thorough description of the hyper structure editor can be
found in the Mjølner BETA System manuals.

31

6 The Metaprogramming System

One of the objectives of the Mjøner project has been to obtain some of the
flexibility of Lisp environments. One of the most significant features of Lisp
is the fact that Lisp functions are represented and manipulated as data. This
makes Lisp an excellent language for writing programs that manipulate other
programs, i.e. metaprograms. In a program environment it is essential to
have strong support for metaprogramming.

All metaprogramming tools in the Mjølner BETA System manipulate
programs through a common representation that is abstract syntax trees
(ASTs). The common representation eases the integration of different tools
in the environment e.g. the static semantic checker and the code generator.
This well-defined representation also facilitate construction of metaprograms
seen from the users point of view.

An AST is modeled as an instance of a class. The classes describing
the ASTs are organized in a class hierarchy, which makes it possible to access
an AST at 3 levels:

Tree level: The most general set of classes describe the AST as a traditional
data structure in the form of a tree with the usual operations. The
operations defined by the classes from the tree level includes operations
to enable the substitution of one subtree in the AST with any other
AST, irrespectively of the syntactic vadility of that substitution. This
level is used by tools that need not know details about the AST. Using
only the tree level enables the editor tool to be language independent.
Accessing ASTs at this level corresponds to manipulate S-expressions
in Lisp.

Context-free level: This level imposes a context-free structure on the AST.
The operations defined by the classes from the context-free level in-
cludes operations to substitute one subtree of an AST with another
AST with ensurence that the substitution corresponds to a syntacti-
cally legal substitution of the grammar. Tools using this level allow
only syntactically legal operation on the AST. The context-free level
is generated from the grammar of the language. The set of classes are
subclasses of the classes from tree level. The interface is uniquely deter-
mined by the grammar and the generated classes need not be consulted

32

since the grammar may function as a specification of the interface.

Semantic level: The semantic level makes it possible to add semantic at-
tributes and operations to the AST. As an example the static semantic
checker of the BETA compiler use this level to decorate the ASTs with
static semantic information.

6.1 ASTs and Classes

The tree level classes are predefined classes, corresponding to the five types of
productions: construction, alternation, list zero, list one and optional. Given
a specific grammar, the context-free level is defined by subclasses of these
tree level classes, since any nonterminal will be modeled by a class that is a
subclass of the tree level class corresponding to the production rule applied
in the grammar.

Figure 30: Simple grammar

The tree level classes are predefined and context-free level classes are
generated automatically from the grammar specification. The semantic level
is somewhat different. Instead of defining the semantic level as subclasses to
the classes from the context-free level, the semantic level is defined by aug-
menting the automatically defined context-free level classes with attributes
containing the semantic information.

To illustrate the correspondence between a grammar and the gener-
ated the class hierarchy, a simple grammar is given in figure 30.

33

The nonterminals <NameAppl>, <NameDcl>, <Type>, and <Exp> will
not be defined. This grammar gives rise to the class hierarchy in figure 31.
Indentation defines the subclass relation and the attributes of each class are
shown in parentheses. The attributes of the classes Cons and List are defined
by the metaprogramming system. In these classes, several mechanisms for
manipulating the AST are also defined.

For a more thorough description of the metaprogramming system, see
[9]. The metaprogramming system is among others inspired by the GRAMS
system [3].

Figure 31: Simple grammar hierarchy

7 Other Tools in the Mjølner BETA System

To complete the overview of the Mjølner BETA System, the remaining parts
of the system are shortly described.

7.1 The BETA Compiler

The BETA programming language supports the object oriented perspective
on programming and contains comprehensive facilities for procedural and
functional programming. Research is going on with the aim of including

34

constraint oriented constructs. BETA replaces classes, procedures, functions
and types by a single abstraction mechanism called the pattern. It generalizes
virtual procedures to virtual patterns, streamlines linguistic notions such as
nesting and block structure, and provides a unified framework for sequen-
tial, coroutine, and concurrent execution. BETA is a modern language in
the SIMULA tradition. The resulting language is smaller than SIMULA in
spite of being considerably more expressive. A full description of the BETA
programming language is outside the scope of this paper. The language is
described in detail in [8, 7].

The compiler for BETA is an effective implementation of the BETA
language (except concurrency). The major effort have been put into creating
a production compiler for the sequential and alternation parts of the language
in order to offer an effective implementation vehicle for the Mjølner BETA
System.

The main components of the BETA compiler are the semantic ana-
lyzer and the code generator. The semantic analyzer checks the correctness of
the context sensitive syntax (static semantics) of an AST, and performs stor-
age allocation. The code generator translates an AST into executable code
(native machine code). The code generator is divided into two components:
the synthesizer and the coder. The synthesizer contains a machine indepen-
dent model of the code generation, and the coder takes care of the machine
dependent parts of the code generation. The synthesizer is the largest part
of the code generator. This implies that porting the compiler to another
machine can be done with a reasonable effort.

A symbol table is constructed during semantic analysis. The sym-
bol table is defined by means of the semantic level of the metaprogramming
system. I.e. the AST decorated with semantic attributes. In this way the
symbol table information is an integrated part of the AST and thereby avail-
able for other tools accessing the AST (e.g. the editor).

In order to manipulate the ASTs, the compiler makes extensive use
of the metaprogramming system. Furthermore, in order to generate ASTs
from textual program representations, the compiler makes use of the parser.
Finally, the compiler makes use of the pretty-printer to generate a textual
representation of parts of the AST (e.g. in order to indicate program errors).

The runtime system for the BETA language is based on garbage col-
lection. The garbage collection scheme is based on generation scavenging.

35

The compiler uses the fragment system to enable programs to be di-
vided into smaller fragments for separate compilation. The compiler makes
an automatic dependency analysis on the fragment structure. When a frag-
ment has been changed, the system keeps track of the dependent fragments
that must be recompiled.

7.2 The Source Level Debugger

Mjølner BETA System contains a source level debugger for the BETA lan-
guage. It contains facilities for specifying break-points, single stepping, in-
spection of object states, inspection of the run-time organization, etc. The
debugger is available both with a command-driven interface and with a
graphical interface.

7.3 Parser and Pretty-Printer

Two tools exist for converting between textual and abstract syntax tree rep-
resentations of a program. Both tools are grammar-based and can be applied
to any language with a context-free grammar. The parser translates a text
stream into an AST and the pretty-printer translates an AST into a text
stream. The parser is based on LALR(1) parsing algorithms and the BOBS
compiler generator system [5]. The pretty-printer is an adaptive pretty-
printer based on the adaptive algorithxn presented in [12]. The pretty-printer
is using a pretty-printing specification to guide the format of the output. For
each production in the grammar, pretty-printing directives are given on the
layout of sentences, derived from that nonterminal. This specification can be
specified by the user. Both tools are used by the compiler and the editor.

7.4 The BETA User Interface Toolkit

Two object oriented user interface toolkits are available: MacEnv for the
Macintosh Toolbox and XtEnv for the X Window System. They provide
high level interaction concepts, such as hierarchical windows, icons, menues,
dialog boxes, etc. The reason for having two different toolkits is that we want
application writers to be aware of the limitations and to be able to utilize

36

the strengths of each user interface system. It is planned to create specializa-
tions of XtEnv to support Motif and Open-Look/OpenWindows in the future.
Furthermore, it is planned to create a platform independent user interface
toolkit for easy portability of applications (using the program variant facility
of the fragment system to select proper implementation platform). However,
it is forseen that this toolkit will be some sort of minimal toolkit for creating
relative simple applications.

7.5 The Bifrost Graphics System

The Bifrost graphics system [2] is a device independent, interactive, exten-
sible, and tailorable graphics system based on the stencil & paint imaging
model. The graphics system supports graphics modeling, interaction with
graphics (creation, reshaping, translation, scaling, and rotation), graphics
contexts (local, shared and global), and automatic damage repair.

Besides being a fragment library available for programmers, a MacDraw-
like drawing application has been build based on Bifrost.

7.6 The Ensemble

The Mjøner BETA System has an object oriented interface to the operating
system called the ensemble. The ensemble has three major goals:

1. To access the file system.

2. To control processes in the operating system.

3. To communicate between these processes.

The ensemble is written in BETA, and is therefore accessible to application
programmers. The ensemble consists of a operating system independent
part and several operating system dependent parts. A UNIX ensemble is
extensively used in the UNIX implementations of the Mjølner BETA System,
and a MacOS ensemble is used in the Macintosh implementation. For a full
description of the Mjølner BETA System manuals.

37

7.7 Interface to Other Languages

Besides the ensemble interface to the operating system, there exists interfaces
to routines written in C and Pascal. This interface enables the programmer to
invoke routines written in these languages. Furthermore, there are interfaces
to data structures in C (struct) and in Pascal (record). Furthermore, there
are support for call-back from C or Pascal routines to BETA routines.

These interfaces defines a clean interface to these languages, and en-
ables reuse of existing systems, written in other languages. An interface
exists also for specifying machine code as part of the actions of an object.
These interfaces are sufficient general that interfaces to other stack-based
languages can be created with reasonable effort.

The existence of the ensemble and the extern routine interface makes
the Mjølner BETA System highly portable across platforms.

7.8 Graphical Hyper Structure Editor

In order to support graphical editing of programs and fragments, and in
order to support object oriented analysis and design, a graphical editor is
being developed, partly based on a proposal for a syntax-directed graphical
editor with extensive support for object oriented analysis and design, see
[14, 15]. The editor is developed on top of the hyper structure editor, and
will therefore facilitate abstract browsing, documentation, and hyper linking
within graphical documents as well as symmetric linkage between programs,
documentation and design diagrams. Furthermore, since the editor will use
the same underlying structure for programs, documentation and design di-
agrams, consistency between these documents can easily be ensured. This
tool will be a valuable CASE tool for object oriented analysis and design.

7.9 Application Builder

An application builder for the integrated construction of the user interface
and functionality of an application is being developed. The user interface is
constructed using direct manipulation, and the application builder generates
BETA code that makes it easy for the designer to insert his own application
code using the hyper structure editor. The generated code and the applica-

38

tion code are kept separated using the fragment system. Furthermore, the
application builder will enable the modification of the interface code through
the application builder while preserving the application code.

7.10 Future Developments

The Mjølner BETA System will be further developed in the future. Several
new developments are under consideration:

Incremental Compilation: The present system supports only separate com-
pilation. Incremental compilation techniques, as those developed in the
Swedish part of the Mjølner project [10] will be examined in order to
investigate their application in the Mjølner BETA System.

Dynamic Linking: Dynamic linking is one technique to minimize startup
time for large programs and to minimize storage consumption of pro-
grams.

Persistent Objects: One of the very active research areas within object
oriented programming is persistent objects. Presently, we are exam-
ining several approaches to persistent objects in the Mjølner BETA
System, one of which is the use of extensible programs as the vehicle
for persistence [1].

Extensible Programs: The ability to specify additional program fragments
during run time of a program, and compile and link that fragment into
the running program is currently under investigation [1] . Currently an
experimental implementation of this technique have been completed
with promising results.

Acknowledgements

The work reported here has been partly supported the Nordic Mjølner project.
The Mjølner project [4] is funded by the participating organizations and
supported by grants from The Nordic Fund for Technology und Industrial
Development. The Danish team consisted of the authors, Ole Agesen, Pe-
ter Andersen, Karen Borup, Svend Frølund, Kim Jensen Møller, Claus H.

39

Pedersen and Per Fack Sørensen. The BETA language design team consists
of Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen
and Kristen Nygaard. Finally, we would like to express our thanks to Ap-
ple Computer for supporting the Macintosh implementation, and to Apollo
Computer and Hewlett-Packard for support at various stages in the project.

References

[1] O. Agesen, S. Frølund, M.H. Olsen: Persistent and Shared Objects in
BETA, Computer Science Department Technical Report IR-89, Aarhus
University, April 1989.

[2] P. Andersen, K. Jensen Møller, J. Rask: Bifrost: An Interactive Object
Oriented Device Independent Graphics System, Computer Science De-
partment Technical Report IR-100, Aarhus University, February 1991.

[3] R.D. Cameron, M. Robert Ito: Grammar-based Definition of Metapro-
gramming Systems, ACM Transactions on Programming Languages and
Systems, Vol. 6, No. 1, January 1984.

[4] H.P. Dahle, M. Løfgren, O.L. Madsen, B. Magnusson (eds): The Mjølner
Project, In Proceedings of EUROSOFT ’87, London, June 1987.

[5] S.H. Eriksen, B.B. Jensen, B.B. Kristensen, O.L. Madsen: The BOBS
System, Computer Science Department Technical Report PB-71, Aarhus
University, March 1977.

[6] B.B. Kristensen, O.L Madsen, B. Møller-Pedersen, K. Nygaard: Syntax-
directed Program Modularization, In P. Degano, E. Sandewall (Eds.):
Interactive Computing Systems, North-Holland, 1983

[7] B.B. Kristensen, O.L. Madsen, B. Møller-Pedersen, K. Nygaard: Ob-
ject Oriented Programming in the BETA Programming Language, Book
Draft, Computer Science Department, Aarhus University, January 1991.

[8] O.L. Madsen, B. Møller-Pedersen: Basic Principles of the BETA Pro-
gramming Languuge, In Gordon Blair et. al (Eds.): Object Oriented
Languages, Systems and Applications, Pitman, 1991.

40

[9] O.L. Madsen, C. Nørgaard: An Object Oriented Metaprogramming Sys-
tem, In B.D. Shriver (ed.): Hawaii International Conference on System
Sciences – 21, IEEE, January 1988.

[10] B. Magnusson et al.: An Overview of the Mjølner/ORM Environment:
Incremental Language and Software Development, TOOLS’90, Technol-
ogy of Object Oriented Languages and Systems, Paris, 1990.

[11] C. Nørgaand, E. Sandvad: Reusability and Tailorability in the Mjølner
BETA System, TOOLS’89: Technology of Object Oriented Languages
and Systems, Paris, Nov. 1989.

[12] D.C. Oppen: Prettyprinting, ACM Transactions on Programming Lan-
guages and Systems, Vol. 2 No. 4, Oct. 1980.

[13] E. Sandvad: Hypertext in an Object Oriented Programming Environ-
ment, Woodman’89: Workshop on Object Oriented Document Manipu-
lation, Rennes, May 1989.

[14] E. Sandvad: Syntax-directed Graphical Editing, Computer Science De-
partment, Aarhus University, June 1989 (DRAFT).

[15] E. Sandvad: Object Oriented Development — Integrating Analysis, De-
sign and Implementation, Computer Science Department Technical Re-
port PB-302, Aarhus University, April 1990.

41

