
Modelling and Simulation of a
Network Management System using
Hierarchical Coloured Petri Nets.

Extended version

Søren Christensen
Computer Science Department

Aarhus University
Ny Munkegade, Bldg. 540

DK-8000 Århus C
Denmark

Leif Obel Jepsen
RC International
Klamsagervej 19
DK-8230 Åbyhøj

Denmark

April 1991

Abstract

Development of distributed software systems is a complex task.
This paper argues that design and specification can be supported by
modelling and simulation using Hierarchical Coloured Petri Nets (CP-
nets). This conclusion is based on a case study of a project in which
CP-nets were used in the detailed design of a software module. The
software module is part of the Network Management System of the
RcPAX X.25 wide area network.

The module was designed using the Design/CPN tool which allows
editing and simulation of CP-nets. Furthermore invariant techniques
were used to prove properties of the module.

1

Introduction

High Level Petri Nets have been used to model many different kinds of
concurrent systems, a number of examples can be found in: [Shapiro 1990]
hardware; [Hartung 1988] software; [Chehaibar 1990] protocols and [Shapiro,
Pinci and Mameli 1990] formal behaviour of people — often called Command
and Control systems. The main purpose of these models has been to analyze
the behaviour of existing systems.

The main conclusion of this paper is that modelling and simulation by
means of CP-nets can be used as an integrated part of the design phases
of the development of distributed software systems. Using CP-nets as a
specification technique allows the developer to simulate the design proposals
very early in the project, hereby discovering the possible advantages and
disadvantages of the proposals. Increasing the understanding of the dynamics
of the system early in a project will enable the designer to discover logical
design flaws before the actual coding starts. These statements are based on
experiences using the Design/CPN tool [Albert, Jensen and Shapiro 1989] to
model and simulate a software module during the design phase.

Since prior knowledge of neither CP-nets nor Network Management Sys-
tems is assumed, we will introduce the concepts necessary to understand the
problem area and the presented model. Readers who have a prior knowl-
edge of CP-nets or Network Management Systems can skip the introductory
sections on these subjects.

The project was part of a large software development project carried
out by RC International. The aim of the total project was to develop the
RcPAX X.25 wide area network to provide the International X.25 Infrastruc-
ture Service (IXI Service) [Popper 1990]. IXI is the first major activity in
the implementation of the Eureka COSINE Project. The IXI network spans
19 countries in Europe and connects 20 private and 11 public X.25 networks.

The RcPAX network consists of a number of network nodes handling
access traffic tolfrom users of the network and transit traffic internally in the
network. The RcPAX Network Management System (NMS) enables opera-
tors at the Network Management Centre (NMC) to monitor and control all
modules of the total network. The NMS is a distributed application which
is an integrated part of all network nodes. The local network management

2

Figure 1: The Network Management Centre monitor and control all modules
of the network nodes.

system will monitor and control the individual modules in the network node.
Figure 1 shows an overview of the network.

The rest of the paper contains an introduction to the architecture of
the network nodes and the concepts used in CP-nets. After the introductory
sections we discuss how modelling, simulation and formal verification using
CP-nets were used in the project. Finally we conclude by discussing benefits
and problems in our approach.

A Network Node

Each network node needs to be able to communicate with the NMC. To fa-
cilitate this communication the network nodes have a software module which
handles the communication between the NMC and the different software
modules local to the network node. At the basic level, the NMS works by
means of three types of information: the NMC can issue a request to a spe-

3

cific software module, the request will trigger an answer send back to the
NMC and finally information on events at the network nodes will be sent to
the NMC.

The structure of the network management part of the individual network
nodes is shown in figure 2.

In our case the network node is a single machine which consists of a num-
ber of boards: one management board and a number of transputer boards.
The transputer boards are running all software responsible for access and
transit traffic. The local management system represents each software mod-
ule as a Local Control Probe (LCP). The management board is running the
Network Control Probe (NCP) which is responsible for the communication
to the NMC. The function of the Sub NCP (SNCP) and the LCP Adaptor is
to connect the LCPs with the NCP across the local bus called the Linkbus.

In the development project CP-nets were used in the design of the SNCP
module. A detailed description of the behaviour of the SNCP was made.
More rudimentary descriptions of the behaviour of the LCPs and the LCP
Adaptor were added as an environment for the simulation of the behaviour
of the SNCP.

Hierarchical Coloured Petri Nets

This section will introduce the concepts used in Hierarchical Coloured Petri
Nets. We focus on the concepts needed to understand the model of the
SNCP. For a more detailed introduction see [Jensen 1990].

Structure of CP-nets

The structure of all kinds of Petri Nets consists of three basic elements called
places, transitions and arcs. Places represent states and a place is usually
drawn as an ellipse. Transitions represent actions and are usually drawn as
boxes. An arc represents a relation between a place and a transition, arcs
are usually drawn as directed connectors.

The current state of a Petri Nets is represented as a distribution of

4

Figure 2: The structure of the Network Management System of a single
network node.

tokens to the places. The dynamics of the model is represented as transitions
removing or adding tokens to places. An arc directed from a place to a
transition is called an input-arc. Input arcs represent restrictions on the
transition — the transition will only be enabled if all places of input-arcs for

5

the transition contain enough tokens. An arc directed from a transition to a
place is called an output-arc. When a transition occurs tokens are removed
from the places of input-arcs and tokens are added to the places of output-
arcs.

The initial state of the model is specified by attaching an initial-marking
to places. Usually we omit the empty initial markings.

The graphical layout of nets does not have a formal semantics. This
means that the modeller can create a layout which will increase the readabil-
ity of the net, without changing the semantics of the model.

Inscriptions of CP-nets

In Coloured Petri Nets the ability of attaching information — called a colour
— to the tokens allows a more compact description. Instead of having a place
for each value of the tokens we now have a single place which can carry all
tokens of a specific colour-set. The initial-marking of a place now specifies a
number of coloured tokens.

Having tokens which carry values — or information — makes it possible
to perform more elaborated actions. This is done by attaching expressions
to the arcs, called arc-expressions. The arc-expressions can contain vari-
ables. A transition is enabled if it is possible to bind the variables of the
surrounding arc-expressions to values in such a way that the arc-expressions
of all input arcs evaluate to tokens which are present at the corresponding
input places. Furthermore we demand that a Boolean expression called the
guard-expression of the transition must evaluate to true. If we omit the
guard-expression, this is a short cut for the guard-expression which always
evaluates to true.

When a transition occurs with a given binding, the tokens specified by
the evaluation of the arc-expressions of the input arcs are removed from the
corresponding input places, and the tokens specified by the evaluation of the
arc-expressions of the output arcs are added to the corresponding output
places.

6

Hierarchies of CP-nets

Models of systems using Coloured Petri Nets can still be very large and it
can be convenient to have a number of formally related and smaller nets
instead of a single large net. In [Huber, Jensen and Sharpiro 1990] a number
of different hierarchical relations are defined, here we will introduce the two
we have used in our modelling.

The main kinds of hierarchical relations that we used in the project
is called transition-substitution. The action corresponding to an ordinary
transition is specified by the arcs and by the guard, but for a substitution
transition the corresponding action is specified by a separate sub page. The
places surrounding the substitution transition are called socket places. Each
socket place will be assigned to a port place of the sub page.

We also use the concept of place fusion: if a set of places belong to
the same fusion set they will share the same tokens. This means that if a
transition removes a token from one of the places in the fusion set, it will be
removed from all other places in the same fusion set.

In figure 3 we show how the next operation to be performed is selected by
the SNCP module. The graphical layout of the net has no formal semantics,
we use it as a way of increasing the readability, in this example we use bold
arcs to indicate the control structure, and plain arcs to indicate data access.

The page contains six places which each has a colour set attached. The
colour sets correspond to the concept of type in programming languages.
Some of the colour sets are simple values such as E and BOOL, others are
more complex like BUF and LBUF. In the figure we have included the
declarations of the colour sets to illustrate how these could look. Normally
the declarations would not be distributed in the net, but collected in a set
of declarations for the total net. Only Id16 mbx waiting has a non-empty
initial marking, the initial value of this place is a token representing an empty
list denoted []. Three of the places have been defined as port places, marked
with a B-tag. Each of the port places has a specific relationship to the
environment. Idl6Finished is an input port place which means that it can be
assigned to an input place of the substitution transition related to this sub-
page. Ready is an output port place and main-mbx is an inputloutput port
place. Furthermore Idl6-mbx-waiting is a fusion place, which means that the

7

Figure 3: Detailed subnet specifying how the next operation is selected in
the SNCP module.

tokens in this place will be shared with other places — on other pages — in
the model.

8

The page also contains four transitions which each has one or more input
arcs and output arcs. The bi-directed arc is an abbreviation for an input
arc and an output arc having the same arc-expression. The arc expressions
contain constants, variables, operations and functions. The constants are:
true, false, e, empty (the empty set) and [] (the empty list). The variables
are b and lb. The operations are :: (constructs a list from an element and a
list). 1`e the set of one e token.

When a token arrives at the Idl6Finished place, the colour of it specifies
if the internal mailbox called Id16 mbx waiting should be checked or not.
The check is done by the transition CheckId16 which inspects the list, and
only if it contains at least one element we try to read it. In contrast to this
we do not check the main mbx before starting a read. The reason for this
difference is that we want to model the fact that the system will wait until
a new buffer arrives. The result will be a buffer which contains the new
operation at the place ready.

The Project

The aim of the project in which we used CP-nets was to implement the
SNCP module. This task was accomplished in four phases using the following
amount of time (person-weeks).

Analysis: 4
Design: 2 + 2
Coding: 2
Testing: 2

The analysis phase produced a conventional textual specification of the
SNCP Access Protocol in which the LCPs are acting as users of the SNCP
services. The SNCP services were specified as a number of functions with
layout of the buffers needed for communication in the protocol. We call these
buffers for protocol elements. The services included connect, disconnect,
send event, receive request and send answer. A textual specification of the
LCP-Adaptor Access Protocol was made as a part of another sub-project.

9

For each service in the protocols the typical use was illustrated in an
arrow diagram as the one shown in figure 4.

Figure 4: Specification of a typical sequence of messages.

When an LCP is created it must inform the NMC. In figure 4 it is shown
how this is done. First the LCP sends a connect lcp to the SNCP which will
send an lcp init to the LCP-Adaptor. The reply from the LCP-Adaptor with
either an lcp init not done or an lcp init done. Finally the SNCP returns the
connect lcp including the corresponding result to the LCP. It is important
to notice that arrow diagrams only specify a typical sequence of protocol
events. If error handling should be documented, it would be necessary to
create additional arrow diagrams. Since arrow diagrams only show examples
of sequences of protocol events it is also hard to describe how concurrent
events are handled, e.g. if a new request for the LCP is received before the
connect lcp answer is returned.

10

The task of the next phase was to design the SNCP module according
to the specification of the SNCP and LCP Access protocols. Although the
functions of the module were well understood, this was a complex task.

The main difficulties were:

• The SNCP should handle the communication with the LCP Adaptor
on another CPU board including re-transmission of lost messages, ac-
knowledges, etc.

• The SNCP should handle all LCPs and the LCP Adaptor in parallel.

• Error situations and corresponding actions should be identified.

The complexity of the problem implied a need to work on the control
structure and the internal state of the module at the design level, without
going into too much detail of the coding. This was the original motivation
for the use of CP-nets.

The Design/CPN tool was used to develop the detailed design of the
control structure and the internal state of the SNCP module. Furthermore a
rudimentary description of the surrounding components was added to provide
an environment making it possible to evaluate both the internal and external
behaviour of the SNCP.

The project was carried out by one of the authors. Prior to the project
he had no experience using CP-nets for modelling. The other author was an
experienced user of Design/CPN. His primary task was to assist the modeller
using the tool and to discuss how CP-nets could be used in the modelling
of the system. Learning to use the tool was part of the design phase. We
estimate the learning part of the design phase to be 2 of the 4 person weeks
used.

The resulting model of the SNCP was used as a basis for the coding
of the module. The implementation language was a variant of Pascal called
Real Time Pascal (RTP). RTP includes facilities for concurrent processes,
mailbox handling and buffers for communication between processes.

The coding and test phases followed the usual development procedure
and the module is now a running component of the network nodes.

11

Modelling

The aim of the modelling phase was to design the control structure and
internal status information of the SNCP module. The starting point of the
design was the textual protocol specifications made in the analysis phase.
The resulting model was the basis for the implementation. This meant that
it was very important that the constructs used in the model could be realised
in the language used for the implementation and that the structure of the
model could easily be mapped to the structure of the program. The model
was also used to evaluate the design proposal. An experienced developer
without knowledge of CP-nets had less than an hour of informal introduction.
After this he was able to understand the CP-net model and to give qualified
feedback in the form of proposals for changes to the model.

Top Down Modelling — Hierarchical Decomposition

When you develop a model of a complex system it is necessary to be able
to focus your attention on different aspects of the system as the modelling
progresses.

In our case we modelled the system in a Top-Down way. The top level
illustrates the different hardware components and how they are intercon-
nected. Figure 2 showed the structure of a single network node and figure 5
shows how this was actually done in the CP-net model.

If we compare figure 2 and figure 5 we notice some differences: The
LCP-adaptor Access state has been expanded to include an active compo-
nent, called the Linkbus. This was necessary since we would like to be able to
model errors which could occur in the transmission between the management
board and the transputer boards. We did not need to distinguish between
the LCP adaptor and the NMC in the modelling of the environment for the
SNCP, thus we have described the management board as a single compo-
nent. We have modelled all the LCPs as having the same internal structure.
Therefore we had to add a place holding the identity of the individual LCPs.

The rest of the structure is due to the fact that mailboxes had to be
handled explicitly in the model.

12

Figure 5: The top level in the CP-net model (main#1).

From the start of the modelling activities we knew that mail-boxes and
buffers were important for the implementation. The implementation lan-
guage contains a number of high-level constructs to handle communication

13

Figure 6: First level of decomposition of the SNCP (sncp#7).

between processes using mail-boxes and buffers.

Since our main interest was to design the SNCP module, we started out
by defining the first level of decomposition of this module. In figure 6 this
level is shown, here we see that it contains one ordinary transition called

14

Initialize and two substitution transitions called Get Next Operation and
Process Operation. The arcs surrounding the substitution transitions are
only used to define which places are sockets for the sub-page. The sub-page
of the Get Next Operation was shown in figure 3. To increase the readability
of the net we have given corresponding port places and socket places the same
names. If you develop your model top-down, the system will automatically
support this naming scheme. Figure 6 provides an overview of the overall
control structure while all information on state variable is hidden inside the
lower levels of decomposition.

The sub-page of the transition called Process Operation contains one
substitution transition for each operation in the SNCP module. This hierar-
chical decomposition allowed us to model and simulate each of the operations
in full detail before the rest of the design was done. The first operation we
designed was the connect lcp. The experience from modelling and simula-
tion of the connect lcp operation was utilized in the design of the rest of the
operations.

When you create a CP-net consisting of many pages, it can be hard to
keep track of the relation between pages. The Design/CPN editor provides
an overview of the pages and the relations between pages. The overview
of a model is represented as a page-hierarchy, see figure 7. In the page
hierarchy each node represents a page in the diagram, the name and number
of the corresponding page are shown in the nodes. The relations between
pages which are created by use of transition substitution are represented by
a page connector. The page that is the source of the connector contains
a substitution transition which has the destination of the connector as a
sub-page.

We have designed the model in such a way that each page has been
implemented as a separate process or procedure.

Representation of Protocol Elements

From the initial specification of the SNCP access protocol and the LCP-
Adaptor access protocol it was known what information the protocol elements
should contain. This information could be used in the design of the module:
Each of the basic types in the protocol elements was modelled by a corre-

15

Figure 7: The Page Hierarchy of the CP-net model.

sponding colour declaration and then all protocol elements were constructed
from these.

In the textual protocol specification we get a fixed layout of the data
independent of the implementation language. In the CP-net model we have
abstracted away from the actual representation on the machine level. All
protocol elements are specified as a common record type having a field which
specifies the operation contained in the buffer.

16

Representation of Internal State Information

It was important that the CP-net model could be used to analyse the data
needed to implement the SNCP module and to what extent this should be
local or global. From the start of the modelling we expected to store relative
complex information on the internal state of the individual LCPs but during
the modelling it turned out that much less information was needed. Thus the
explicit modelling of internal state information led to a simpler representation
in the final program.

Level of Detail

Most of the concepts from the implementation language can be modelled
directly using CP-nets, but for the mailbox handling we had to include this
explicitly in our model, to have a model of the behaviour of the resulting
system.

IF idl6.finished THEN

IF open (idl6.waiting em)

THEN

wait (main msg,idl6.waiting em)

ELSE

wait (main msq,main mbxˆ)
ELSE

wait (main m sg,main mbxˆ);

Figure 8: Actual implementation of Get Next Operation.

It was important that the model could be used as a specification of how
the actual implementation should be done. To illustrate that it could be
done, figure 8 shows the code from the implementation which corresponds to
the sub-net in figure 3.

It may be noticed that each statement in the implementation corre-
sponds to a set of transitions, but it is also important to notice that the code

17

is not just a simple translation from the CP-net model — it still requires
refinement of the specification.

When you model a system you have to abstract a number of details away.
It is important to be aware of what you do not model and it is often hard to
find an appropriate level of detail in the model. In our case one of the details
we abstracted away was the concrete representation of buffers and data in the
implementation. This meant that we did not model the different aspects of
data conversion — between the data representation of the transputer boards
and the management board.

We could abstract away from these details without losing information
necessary for designing the program structure and the internal state of the
SNCP module.

Even though the implementation language placed strong restrictions on
the concepts used in the CP-net model it was without major problems to
create the model. The main problem was due to the explicit modelling of
the mailboxes.

It is important to be able to evaluate the dynamic behaviour of a model
early in the modelling process. In the next section we describe how we used
simulation to gain insight in the dynamics of the CP-model.

Simulation

Creating a model gives a lot of insight into the structure of the system, in
particular with models like CP-nets where you have the possibility of checking
the consistency of the model. But it is hard to gain information about the
dynamic behaviour of the system without simulating.

Simulation gives the same possibilities as early prototypes in the sense
that it provides the possibility of testing the behaviour of the system, before
making an expensive and time consuming implementation. In the project it
would be very difficult to use prototyping as the hardware used was special
purpose machines with a very limited possibility of interacting with a test
environment.

18

Modelling of the environment

It is important that a model is prepared for simulation and it is often neces-
sary to include parts of the environment in the model to give the possibility
of interacting with the model. This also gives an explicit representation of
the assumptions of the behaviour of the environment.

In our case we included a rudimentary description of the LCPs and the
LCP-Adaptor/NMC. It is essential that the description of the environment
can be much more rudimentary and fragmented than the rest of the model
— otherwise it would not be possible to simulate models as part of a complex
environment.

Simulation as Debugging

We think of simulation as a way of debugging a model. The main similarity
between simulation and debugging is the focus on the dynamic aspects of
the system. Simulation and debugging are not formal verification methods
in the sense that you can prove properties of a system to hold for all possible
states of the system, but they are very powerful ways of gaining insight in
the dynamics of the system and getting more correct models.

A good simulator should provide the same range of possibilities as a
good debugger. This means that you should be able to:

• Inspect the model while simulating, both information on the current
state and possible future actions.

• Single step and decide in all situations where choice is possible and
resolve all conflicts in this manner.

• Automatic run where conflicts are resolved by random choice.

• Execute until a specified situation is reached.

It is possible to use the graphical layout of a CP-net directly in a simu-
lation. The state of the system can be shown as current marking of places.
The possible events can be shown as enabled transitions, and the dynamics

19

as tokens being removed or added to the current markings. This is in con-
trast to simulation/debugging of a textual programming language in which
an execution cannot be understood in a local execution of the instructions,
but often needs to include knowledge about the state of the total store.

The Basic step of a Simulation

Figures 9–11 show a part of a net being simulated. The current marking of
a place is shown as a small circle showing the number of tokens which reside
on the place and the text next to it shows the actual colour of the token.
If the current marking is empty nothing is shown. The graphical layout of
these tokens is controlled by options which allow the user to set up a number
of defaults, e.g. position, size and shape. These defaults can always be
overwritten for the individual objects. In figure 9 the Wait main place has
the current marking of one e token and the main mbx has one empty list as
the marking. This means that the transition Next Operation cannot occur.

Figure 9: The process is waiting at the Wait main, but the main mbx is
empty.

Next Operation will not be enabled until the main-mbx is updated.
When the transition occurs all variables surrounding it must be bound to
values in such a way that all input arc-expressions evaluate to tokens which

20

are present in the current marking of the corresponding places, and if the
transition have a guard this must also evaluate to true.

In figure 10 it is shown how Next Operation is occurring with the variable
b bound to the value of the buffer in the main mbx and lb bound to the empty
list.

Figure 10: Next Operation is occurring and we can inspect the tokens being
moved along the different arcs.

The tokens on the arcs indicate the tokens being moved along this arc,
the number in the circle shows the number of tokens and the text gives
the actual colour of the tokens, these colours are the evaluation of the arc-
expressions with the specified values of b and lb. The occurrence of the
transition will then update the surrounding markings and the new current
markings can be calculated from the previous ones by subtracting the token
of the input arcs and adding the token of the output arcs. The means that
the situation will look like figure 11 after the occurrence of the transition.

During a simulation a number of choices have to be made: In a given
situation more transitions can be enabled. If these are in conflict – i.e.
compete for the same input tokens – it must be decided which one should
occur. If they can occur concurrently it must be decided whether this should
happen or whether some of the enabled transitions should be postponed. In
the next section we will discuss different ways of making these decisions.

21

Figure 11: After Next Operation has been performed the main mbx is empty
and the content of the received buffer in now at the place ready.

Modes of simulating

As the purpose of simulating a model changes as the modelling process pro-
gresses this implies changes in the way the simulation is performed. Early
in the process the modeller often uses the simulations to test the behaviour
of specific transitions and small sub-systems. Later the focus can change to
include the inputloutput relation of the total model.

The Design-CPN simulator allows a range of modes of simulating the
model. The basis of all simulations is the possibility of inspecting the current
marking of all places and of directly observing which transitions are enabled.
If the user wants explicitly to control all parts of the simulation he has
to select an enabled transition and specify a binding of variables for this
transition. This will include the transition in the set of transitions to occur in
the next step. In the other extreme the user just starts an automatic sequence
of simulation steps and then observes the simulation without interfering in
the simulation. When you move to a more automated simulation you need a
way of controlling this new level of automation. In the Design-CPN simulator
this is done by setting a number of options. A simulation can be in a range
from a total sequential simulation to a simulation where a maximal set of

22

transitions will occur in the following step.

In the project, we used the simulator very early in the modelling process.
In the beginning only a small sub-model was available and all simulation was
done manually. The first sub-model included the initial situation where an
LCP made a connect request to the NMC.

After more of the model had been made we started to simulate more
automatically, just triggering an automatic run of our model by specifying
an input from an LCP and/or from the NMC. Here we used the specification
of typical sequences from the initial protocol specification.

During the simulations we discovered a number of different kinds of bugs
in our model, and especially in the beginning we had to remodel parts of the
system. The bugs that we discovered during the simulations can be divided
into a number of categories including the following: Erroneous or insufficient
tests before services were performed, buffers disappearing, the model not
being specified in sufficiently detail or simply referring to missing parts of
the model.

We did not use fully automatic simulations since this would require a
much more detailed modelling of the environment and only be of little interest
for the design of the interior of the SNCP module. In situations where the
modeller focuses more on inputloutput relations of the model and less on
the internal state and actions of the model, it could be useful to set up the
simulation in a more automatic way, hiding the details of the simulation of
the model. An example of this can be found in [Shapiro 1990] in which a
model of a VLSI design was investigated by means of both manual and fully
automatic simulation.

In the project we used simulation as a way of validating our design. This
gave us very detailed insight in the dynamics of the module before the actual
implementation was done. By simulation the modeller can gain insight in the
dynamics of the model and hereby be able to discover and remove bugs in
the model. Another reason why it is important to use simulation early in the
project is that it allows the modeller to use the knowledge of the behaviour of
the model in the further modelling process. Furthermore, in projects where
both hardware and software are developed it is often impossible to evaluate
prototypes until very late in the project. In these cases simulation can be of
even more interest.

23

It is not possible to formally validate a model by simulation. To formally
verify properties of the model it is necessary to apply other techniques. In
the next section we describe how place-invariants have been used to verify
properties of the model.

Formal Validation

Using a specification method with a formal semantics like CP-nets makes it
possible to make formal validation of properties of the model. In this section
we give some examples of the kind of formal analysis we have performed.

There exists a number of different ways to perform formal analysis of CP-
nets, especially by means of occurrence-graphs and place-invariants. Without
tool support it is only practically possible to perform place invariant analysis,
so this is what we have done. For a discussion on the different analysis
methods see [Jensen 1987]; [Jensen 1990].

When you define a place invariant you specify a weight-function for each
place in the model and verify that the weight of the tokens removed by an
occurrence of a transition is equal to the weight of the tokens produced. This
means that the sum of all weighted tokens will be constant for all possible
states of the model.

Properties of buffers

An important property of the management of the buffers in the system is that
they do not disappear. This can be expressed directly as a place invariant.
We define a function which counts the number of tokens residing on a place
and attach this to all places containing buffers. We call this function Count.
In our model we have allowed buffers to be “pushed” on top of each other.
To calculate the right number of buffers we need to count buffers which have
an additional buffer pushed as two buffers. For all mailboxes which were
represented as a list we need to traverse the list to calculate the number of
buffers in the mailbox. We call this function Length. For all other places
we will attach a Zero function just specifying that these should not be taken
into consideration.

24

After specifying the weight-functions for all places, we need to go through
all transitions and check that they preserve the weighted-token count. In fig-
ure 12 it is shown how the invariant would look around a single transition.
To validate transition Next Operation we must show that it preserves the
weighted token count:

Weight of input tokens:
Length (b::lb) + Zero (e) =
Length (b::lb) + 0 =
Count (b) + Length (lb)

which is the weight of the output tokens.

In this way we have proved that the number of buffers in the model is
constant, i.e. no buffers appear or disappear.

Figure 12: Weight functions attached to places. Occurrences of the transition
will leave the total weight unchanged.

Deadlock free

Software modules must often fulfil the property of being free of deadlocks.
This means that it is not possible to bring these into a state where no transi-
tion is enabled. In the case of the SNCP module the module should contain

25

a deadlock: All activity in the module must cease if the environment does
not produce any requests. We would like the module to stop in the state.
The only possible action is to receive a request from the environment.

Place Invariants can also be used in the proof of absence of deadlock,
but the arguments are a little different from the ones used in the previous
section. We need to prove that all markings which lead to dead situations
will violate an invariant.

Information lost on the linkbus can be re-established

The content of buffers can get lost during the transmission through the
linkbus. Thus we must be able to reestablish the contents of the buffer. To
prove that the necessary information was present we made small extensions
to the CP-net model which allowed us to compare the information which
was actually lost with the information which was re-established. Using the
extended model it was possible to use invariants to prove that all buffers
which could get lost could also be reestablished.

Tool Support

In the project we only made very limited use of formal validation. After the
model was built we used invariants to prove a number of the most important
properties of the model. One of the main reasons why we only proved a
relatively small set of properties of the model is the lack of tools supporting
this effort. This means that the formal analysis has been done in a total
manual way.

Having had the right tool support could have made it possible to use
the formal validation as an integrated part of the modelling. This could be a
valuable supplement to the simulation of the models. Currently a large effort
is put into the development of tools supporting formal validation.

26

Using CP-nets in the project

After the SNCP software module has been developed the use of CPnets is
viewed as a success. The implementation of the module was fast, it was easy
to extend it afterwards, and only a few bugs were found in the test phase.
We conclude that the use of CP-nets in the design phase contributed to the
development of a better product using fewer resources.

In general it is very hard to test programs distributed on special-purpose
hardware in a wide area network. It is impossible to create debugging en-
vironments and this makes it even more important to validate the detailed
design of new programs to run in this environment. The alternative of us-
ing CP-nets for modelling and simulation could be a prototyping approach.
But in our case the module should fit in an environment of Hardware and
Software being developed in parallel to the module.

General guide-lines for modelling and case descriptions from similar
projects could be useful, especially at the start of a project. If we com-
pare the project to experiences from similar projects, it looks as if the design
phase was more time consuming and the actual coding much faster.

The model built in the project was well suited as a basis for the imple-
mentation. Much of the implementation was straightforward “translation”
of the model to the programming language, even though we do not think it
would be possible to generate the code automatically from the CP-net. This
would require the model to be much more detailed.

References

[Albert, Jensen and Shapiro 1989] Albert, K.; K. Jensen and R.M. Shapiro.
1989. “DesignICPN. A tool package supporting the use of Coloured Petri
Nets.” Petri Net Newsletter 32 (April), 22—36.

[Chehaibar 1990] Chehaibar, G. 1990. “Validation of Phase-executed proto-
cols modelled with coloured Petri nets.” In Proceedings of the llth In-
ternational Conference on Application and Theory of Petri Nets, (Paris
1990), 84—103.

27

[Christensen and Jepsen 1991] Christensen, S and L.O. Jepsen. 1991. “Mod-
elling and Simulation of a Network Management System using Hierar-
chical Coloured Petri Nets.” In Proceedings of the 1991 European Sim-
ulation Conference, (Copenhagen 1991).

[Hartung 1988] Hartung, G. 1988. “Programming a closely coupled multi-
processor system with high level Petri nets.” In Advances in Petri Nets
1988, G. Rozenberg, eds. Lecture Notes in Computer Science vol. 340,
Springer-Verlag 1989, 154—174.

[Huber, Jensen and Sharpiro 1990] Huber, P.; K. Jensen and R.M. Shapiro.
1990. “Hierarchies in coloured Petri nets.” In Advances in Petri Nets
1990, G. Rozenberg eds. Lecture Notes in Computer Science, vol. 483,
Springer-Verlag 1991, 313—341.

[Jensen 1987] Jensen, K. 1981. “Coloured Petri nets and the invariant
method.” Theoretical Computer Science 14, 317—336.

[Jensen 1987] Jensen, K. 1987. “Coloured Petri nets.” In Petri Nets: Central
Models and Their Properties, Advances in Petri Nets 1986 Part I, W.
Brauer; W. Reisig and G. Rozenberg eds. Lecture Notes of Computer
Science vol. 254, Springer-Verlag 1987, 248—299.

[Jensen 1990] Jensen, K. 1990. “Coloured Petri nets: A high-level language
for system design and analysis.” In Advances in Petri Nets 1990, G.
Rozenberg eds. Lecture Notes in Computer Science, vol. 483, Springer-
Verlag 1991, 342—416.

[Jepsen 1990] Jepsen, L.O. 1990. “X25/X75 Access pa RC5000, Forslag til
LCP Adaptor gendringer.” PN: ENG-MEGA.LEJ.272, May 2 1990. (In
Danish)

[Klausen and Jepsen 1990] Klausen, M.B. and L.O. Jepsen. 1990. “X25/X75
Access pa RC5000, Udkast til SNCP (EM Handler) Reference Manual.”
PN: RCA.MEGA.LEJ.273, Feb. 2 1990. (In Danish)

[Pinci and Shapiro 1990] Pinci, V. and R.M. Shapiro. 1990. “Development
and implementation of a strategy for electronic funds transfer by means
of hierarchical coloured Petri Nets.” In Proceedings of the 11th Inter-
national Conference on Application and Theory of Petri Nets, (Paris
1990), 161—179.

28

[Popper 1990] Popper, P. 1990. “Provision of X.25 Infrastructure (1x1) CO-
SINE S1” iesnews, Issue No 28, June 90, 15.

[Shapiro 1990] Shapiro, R.M. 1990. “Validation of a VLSI chip using hier-
archical coloured Petri Nets.” In Proceedings of the l l t h International
Conference on Application and Theory of Petri Nets, (Paris 1990), 224—
243.

[Shapiro, Pinci and Mameli 1990] Shapiro, R.M.; V. Pinci and R. Mameli.
1990. Modelling a NORAD command post using coloured Petri Nets.
IDEF users group, Washington DC, May 1990.

29

