
Properties of Unfolding-based Meta-level Systems

Torben Amtoft

Computer Science Department

Aarhus University

Ny Munkegade, building 540

DK-8000 Århus C, Denmark

e-mail: tamtoft@daimi.aau.dk

Abstract

It is well known that the performance of a program can
often be improved by means of program transformation.
Several program transformation techniques, eg. partial
evaluation, work as follows: it is recognized that the
original program often, when executed, enters states
with common components. From these components
alone it may be possible to do a lot of computations
once and for all, which otherwise would have to be done
again and again.

The evaluation of the common components mentioned
above may itself benefit from identifying common com-
ponents and evaluating them separately once and for all.
Even this evaluation process may possess common com-
ponents, etc. . . – an arbitrarily high level of “nesting”
can be achieved, at least in theory.

The purpose of this paper is threefold:

1. A multilevel transition semantics for a logic lan-
guage will be set up, expressing the ideas above.
When restricted to two levels (the number of lev-
els employed by most program transformation sys-
tems) the semantics gives a framework general
enough to incorporate many program transforma-
tion tactics. The framework also includes “run
time” - of the original program, of the transformed
one and the transformation itself. So one can rea-
son (in a limited way, of course) about efficiency
improvements.

2. It has long been suspected that certain kinds of
program transformations are able to speed up exe-
cution by (at most) a constant factor only: when an
interpreter is partially evaluated a constant corre-
sponding to the “interpreter overhead” disappears,

0

when two loops are combined a factor 2 is typically
saved, etc. On the other hand, it is easy to come
up with examples where execution time is reduced
by an order of magnitude. The reason for this can
be identified as being either “strong” transforma-
tion techniques or a non-optimal execution strategy
for the original program. Under certain conditions,
reflecting the absence of these factors, it can be
rigorously shown that at most a constant factor is
achieved. As a simple corollary, it can be shown
that by the use of (two-level) program transforma-
tion total execution time (ie. transformation time
plus execution of the transformed program) can not
be smaller than the square root of the execution
time of the original program. More generally, by
the use of n-level program transformation total ex-
ecution time can not be reduced to less than the
nth root of the original execution time.

3. After a program transformation based on the un-
fold/fold framework has been performed, it may
easily happen that the definition domain of the
transformed program is strictly smaller than the
definition domain of the original program. We will
show that this - when a certain rather weak condi-
tion is met - cannot happen within the meta-level
framework.

Keywords: Partial evaluation, program transforma-
tion, transition semantics, reduction of complexity.

1 Introduction

Consider the append program with the basic rules

append([A|X],Y,[A|Z]) ← append(X,Y,Z).

append([],Y,Y).

Evaluation of a query append(x,y,Z) (where x and y are
ground lists, Z a variable) requires n+1 logical inference

1

steps, where n is the length of the list x. On the other
hand, using the basic rules it is possible to deduce eg.
the meta rule (written in the same language as the basic
rules)

append([A,B,C|X],Y,[A,B,C|Z]) ← append(X,Y,Z)

in 3 inference steps. Exploiting this rule, the query
append(x,y,Z), x of lenght n, can be evaluated using
about n/3 inference steps (on the other hand, the unifi-
cation performed during each inference step will be more
time-consuming than the unification done when the ba-
sic rules are applied). So the addition of the meta rule
above speeds up execution by a factor 3, corresponding
to the meta rule representing a shortcut in the compu-
tation of length 3.

Of course, it is possible to do arbitrarily long short-
cuts. If a shortcut is made of length p, query evaluation
can be done in time n/p, the total number of inference
steps being p + n/p. It is easy to see that for all p, this
number is larger than (twice) the square root of n.

On the other hand, in the process of making the meta
rule representing a shortcut of length p a meta-meta rule
representing intermediate shortcuts of length q may be
useful, thus increasing the number of levels present to 3.
Doing that, the total number of inference steps becomes
n/p + p/q + q. Now it is easy to see that this number
cannot be less than thrice the cube root of n.

Trivial and useless as they may seem, the observations
above exhibit some very general properties for transfor-
mations based on unfolding and folding only. Firstly,
these kind of transformations are - when performed with
a fixed finite set of meta rules (and meta-meta etc, with
a generic name simply called meta rules) - able to reduce
execution time with at most a constant (depending on
this fixed set); secondly, no matter how one chooses this
fixed set, the total number of inference steps cannot be
less than the nth root of the number of inference steps
made when using the basic rules only, where n is the
number of levels employed. These claims will be made
precise and stated as provable theorems in the subse-
quent sections.

1.1 Meta-level systems

We now make preparations for formalizing the ideas ex-
pressed above. As we want to reason about complex-
ity, the meaning of programs will be expressed in terms
of transitions (between various program configurations).
The following entities are involved in a meta-level sys-
tem:

• A sequence of sets of transitions: T= T1 T2 . . . Ti

where t ∈ Ti means that t is a valid transition at
level i.

• A sequence of set of meta-rules (where a meta-rule
takes the same form as a transition): M= M0 M1

M2 . . . Mi. M0 is a representation of the original
program, while Mi is the set of meta-rules at level
i. We demand that Mi is finite for each i > 0.
Furthermore, we require that for all t ∈ Mi, i > 0,
it holds that t ∈ Ti (ie. that all meta-rules are valid)

A specification of a meta-level system (M,T) can natu-
rally be broken into two parts:

1. Rules defining Ti as function of M0. . . Mi−1 (when
working at level i only meta-rules at lower levels
can be exploited). These rules will naturally be
given as a Plotkin-style transition semantics.

2. A specification of M0M1. . . (first the basic rules in
M0 are given, thereby T1 is implicitly defined via
(1), then M1 must be chosen as a subset of T1 etc.)

(1) is supposed to be done once and for all (thus speci-
fying the semantics of the system).

1.2 Specifying and Implementing a

Meta-level system

In order to specify and implement a meta-level system a
number of issues, some of which are listed below, must
be settled. These decisions will then implicitly define
the Mi sequence. We will not go into details, as the
results in this paper do not depend on the form of the
meta-level system.

• Given that a transition at level i with “source” s is
wanted, it remains to find the corresponding “tar-
get”, ie. a t such that s → t is a valid transition at
level i. Many such t will exist, representing various
degrees of “reduction”. Often one will reduce s un-
til some sort of “normal form” is reached; of course
care has to be taken to ensure termination.

• For any i ≥ 1, it must be settled which configura-
tions will be sources of transitions in Mi, and when
these meta-rules are to be generated. Roughly
speaking, there are two ways to proceed:

– To compute the meta-rules bottom up, ie.
start to compute all the rules wanted as mem-
bers of M1, then (if any) the rules in M2, etc.
When all meta-rules are stored, the system is
able to solve queries (now working at the top
level). This is the tabulation method and is
the one used in most program transformation
systems.

– To use a top-down (or call-by-need) approach:
meta-rules are generated only when needed to
solve a given query (in an efficient way). This
is the technique corresponding to classical me-
moization.

1.3 Related work

At least when restricted to two levels, meta-level sys-
tems as defined in this paper bear a strong resemblance
to the expression procedures invented by Scherlis [Sch80]
in a functional setting (he, however, made no attempt
to measure the efficiency improvements). One of his
reasons for preferring the framework of expression pro-
cedures to the unfold/fold framework of [BurDar77] was
that transformation based on expression procedures are
guaranteed to preserve termination properties. We will
show something analogous in the context of meta-level
systems in section 6.

1.4 Overview of the paper

The rest of this paper is organized as follows: In section
2 a couple of known transformation/evaluation strate-
gies are shown to be expressible in terms of meta-level
systems. In section 3 an transition semantics is set up,
assigning cost measures to each transition. In section 4
some theorems concerning an upper bound on how much
can be gained by working on a higher level are given.
In section 5 we discuss the applicability of those theo-
rems and the limitations of the framework. Section 6 is
devoted to the problem of whether one when working
on a higher level risks to enter an infinite computation
not present at level 1. Section 7 briefly discusses how to
extend the framework to deal with an unrestricted use
of folding, as well as how to translate it to a functional
setting. Section 8 concludes.

For a full version of this paper, including all proofs
omitted here, see [Amt91].

2 Examples

Loop Combining

Consider the set of Horn clauses (which adds one to each
element of a list of unary numbers)

a1([],[]).

a1([N|R],[s(N)|R1]) ← a1(R,R1).

a suitable representation of which being M0. Since
the conjunction a1(X,Y), a1(Y,Z) either reduces to the
empty conjunction (denoted 2) via the substitution
{X/[], Y/[], Z/[]} or to the conjunction a1(X1,Y1),
a1(Y1,Z1) via the substitution {X/[N|X1], Y/[s(N)|Y1],
Z/[s(s(N))|Z1]}, (a representation of) the clauses

a1([],[]),a1([],[]).

a1([N|X1],[s(N)|Y1]),a1([s(N)|Y1],[s(s(N))|Z1])
← a1(X1,Y1),a1(Y1,Z1).

will qualify as constituting M1. We can now expect
resolution of a query a1([0,s(0)],Y), a1(Y,Z) to be faster
at level 2, ie. when the clauses in M1 can be employed,
than at level 1.

What really happens in practice is of course that an
“eureka”-definition

a2(X,Y,Z) ≡ a1(X,Y),a1(Y,Z)

is made, and then the meta-rule is expressed in terms of
a2 (the introduction of a2 on the right sides representing
a folding step). Then the meta-rule takes the following
form

a2([],[],[]).

a2([N|X1],[s(N)|Y1],[s(s(N))|Z1]) ← a2(X1,Y1,Z1).

and the query above now will be a2([0,s(0)],Y,Z). (Fur-
thermore, if one is not interested in the Y parameter of
a2 one could remove it).

We have thus seen a classical program transformation
based on the fold/unfold framework without “where-
abstractions” [BurDar77] that can be expressed in terms
of meta-level systems. We conjecture that almost all ex-
amples of applications of the fold/unfold framework can
be made to fit into this scheme - see [Sch80] for a further
discussion on the subject.

A sufficient condition for a transformation in general
to be expressible is that the predicates in question are
divided into two classes, A (the “eureka predicates”)
and P , where all predicates (in A as well as in P) are
defined solely in terms of predicates belonging to P -
the intuition being that P is the “real” program, while a
member of A is just an abbreviation. Folding is allowed
against predicates in A only.

Partial Evaluation

Let f(X,Y,Z) be a predicate with input parameters X
and Y and output parameter Z, and let f(a,b,Z) be a
query to be solved. Instead of directly working on this
query at level 1, one can instead work on the query
f(a,Y,Z) at level 1, thus partially evaluating f with re-
spect to its first parameter being a. The result of this
partial evaluation is then stored as a residual function
in M1, and finally the original query can be solved at
level 2 using this residual function.

The behavior of a “naive” polyvariant partial evalua-
tor (ie. one employing no stronger techniques than first
doing some unfolding and then folding back into resid-
ual functions) thus fits into the meta-level framework.

The Fibonacci function

Now consider the fibonacci program defined by the fol-
lowing basic rules (where the input is given as unary
numbers, and where add is left unspecified):

fib(0,1).

fib(s(0),1).

fib(s(s(N)),R) ← fib(s(N),R1),fib(N,R2),add(R1,R2,R).

It is well known that evaluation using this program di-
rectly (ie. working at level 1) suffers from exponential
time behavior. However, evaluation of fib(n,R) can be
done in constant time at level n, provided the Mi’s are
as follows:

• M1 contains (a representation of) fib(s(s(0)),2)

• M2 contains (a representation of) fib(s(s(s(0))),3)

etc. On the other hand one must also take account of
the time used to derive those meta-rules. Each of those
can be derived in constant time (using “lower” rules),
so we end up by stating that evaluation of fib(n,R) at
level n can be done in linear time.

As discussed in section 1.2, meta-rules can basically
be computed either bottom-up or top-down. If the
top-down method is chosen, we in effect simulate the
well-known memoization technique for computing the
fibonacci function.

3 Defining the semantics

We will now define Ti as function of M0,. . . ,Mi−1. To do
so, we first need (as we work within a logic language)
to discuss the properties of substitutions a bit. The
treatment is mainly borrowed from [Pal89].

3.1 Substitutions

A substitution is a mapping α from variables into terms
such that xα = x for all but a finite number of x, those
x where xα 6= x called the domain of α. E(α) is de-
fined to be the equation system (x1 = t1, . . . , xn = tn)
where ti = xiα and where {x1 . . . xn} is the domain of
α. Substitutions can be composed in the natural way.
Substitutions are ordered by saying that α ¹ β iff there
exists a γ such that αγ = β; this makes a preorder.

In our treatment we only need to consider the class
of idempotent substitutions, where α is idempotent iff
αα = α. By

• identifying substitutions α and β such that α ¹ β
and β ¹ α (ie. converting the preorder into a partial
order)

• adding an extra element > and stipulating α ¹ >
for all α

we get a complete lattice I (where the empty substitu-
tion ε is the bottom element). In fact, the least upper
bound (of two elements 6= >) is given by

α ↑ β = mgu(E(α) ∪ E(β)) (1)

If an equation E is not unifiable, mgu(E) is taken to be
>.

Example 3.1
Let α be the substitution {x/f(y, a), z/g(b)} and let β
be {x/f(b, w), z/g(y)}. Then

E(α) ∪ E(β)

= {x = f(y, a), z = g(b), x = f(b, w), z = g(y)}

so α ↑ β = {y/b, w/a, x/f(b, a), z/g(b)}.
On the other hand, {x/a} ↑ {x/b} = >.

It is in fact possible (as done in [BKPR89] and implic-
itly in [Fra85]) to build a theory of logic programming
in terms of the least-upper-bound operation. The ad-
vantage of this is that then all the nice properties of a
complete lattice are inherited, and the use of composi-
tion - having bad algebraic properties, as almost nothing
but associativity and the existence of a neutral element
holds - can be avoided.

3.2 The transition system

A transition in Ti takes the form

(~G, φ)
i:c→ (~H1, ψ1); . . . ; (~Hn, ψn)

Here ~G is a conjunction of atomic goals, and φ ∈ I
6= > can be thought of as “the substitutions made be-
fore the transition”. A pair of the form (~G, φ) will be
called a configuration. After the transition is made, the
“search-tree” is split into n branches, each branch again
consisting of a conjunction of atomic goals (~Hi) and a
substitution ψi (which may be >). c is intended to de-
note the number of inference steps performed during the
transition. We also say that c is the cost of the transi-
tion. Notice that we - in contrast to most operational
semantics for logic languages where a transition repre-
sents one branch only - keep track of the entire search
tree (c can be interpreted as the size of this tree). This
is done in order to be able to measure the complexity
of the computation process as a whole. For technical
reasons, in a configuration (~G, φ) we will demand the

different atomic goals in ~G to have disjoint variable sets,
variables really identical must be glued together by φ.

We feel free to drop right hand side configurations
containing a >, thus eg.

(~G, φ)
i:c→ (~H1, ψ1); (~H2,>); (~H3, ψ3) and

(~G, φ)
i:c→ (~H1, ψ1); (~H3, ψ3)

are identified.
To indicate how programs - ie. collection of Horn

Clauses - should be stored as members of M0, it is best
to consider an example: the program

p(0,A,s(A)).

p(s(N),A,R) ← p(N,A,E),p(N,E,R).

(computing 2n with unary numbers) will be represented
as

(p(N,A,R), ε)
0:0→

(2, φ1); ((p(N1, A,E1), p(N2, E2, R)), φ2)

where
φ1 = {N/0, R/s(A)}, φ2 = {N/s(N2), N1/N2, E1/E2}
(the choice of the cost c for “transitions” in M0 is im-
material).

We now present the 4 inference rules:

The “compose-rule”

(~G, φ)
i:c0→ (~H1, ψ1); . . . ; (~Hn, ψn),∀j ∈ {1 . . . n} :

(~Hj , ψj)
i:cj→ (~Kj1, θj1); . . . ; (~Kjmj

, θjmj
)

(~G, φ)
i:c→ (~K11, θ11); . . . ; (~Knmn

, θnmn
)

where c = c0 + c1 + . . . + cn. Each branch in the search
tree can thus be developed further on. Notice that the
cost assigned to the transition in the conclusion mirrors
that the different branches are supposed to be searched
sequentially; to model or-parallism the definition of c
should be changed into c = c0+ max(c1, . . . , cn).

The “and-rule”

(~G1, φ)
i:c1→ (~H11, ψ11); . . . ; (~H1n, ψ1n)

(~G2, φ)
i:c2→ (~H21, ψ21); . . . ; (~H2m, ψ2m)

(~G1
~G2, φ)

i:c→ . . . ; (~H1j
~H2k, θjk); . . .

where c = c1 + c2, θjk = ψ1j ↑ ψ2k for 1 ≤ j ≤ n,
1 ≤ k ≤ m. Notice that reduction of a conjunction not
necessarily takes place from left to right, in contrary to
what is the case in most current logic languages. This is
done to model the fact that eg. a partial evaluator may
work on the second goal in a conjunction before having
solved the first goal completely. The significance of this
discrepancy will be discussed in section 5. Again the
model does not cater for and-parallism, to do so the
definition of c should be changed into c = max (c1, c2).

The “unfold-rule”

(~G, φ)
i′:c′

→ (~G1, φ1); . . . ; (~Gn, φn) is
(a renamed version of) a rule in Mi′ , i

′ < i, φ ¹ ψ

(~G,ψ)
i:c→ (~G1, ψ1); . . . ; (~Gn, ψn) where ψj = ψ ↑ φj

Here c is the number of j such that ψj 6= >, however
c = 1 if this number is zero, and the renaming is done
in order to avoid name clashes.

Our model does not attempt to estimate the complex-
ity of a given unification process, but only counts the
number of branches that are created.

Finally a rule, expressing that just nothing can hap-
pen:

(~G, φ)
i:0→ (~G, φ)

Observation 3.2 It can easily be proven by induction
in the derivation tree that in a transition

(~G, φ)
i:c→ (~H1, ψ1); . . . ; (~Hn, ψn)

it for all i holds that φ ¹ ψi.

3.3 “Loop Combining” revisited

We will now go through the a1 example from section
2 in details. As the substitutions involved can become
quite large, involving many intermediate (later on su-
perfluous) items, we will cheat a bit and only show the
relevant items present in a given substitution.

M0 contains the a1 procedure represented as the tran-
sition

(a1(X,Y), ε)
0:0→ (2, φ1); (a1(X1, Y 1), φ2)

where
φ1 = {X/[], Y/[]}, φ2 = {X/[N1|X1], Y/[s(N1)|Y 1]}.
By the unfold-rule, we have

(a1(X,Y), {Y/U}) 1:2→ (2, α1); (a1(X1, Y 1), α2) (2)

where αi = φi ↑ {Y/U} for i = 1, 2. Applying the
unfold-rule to the configuration a1(U,Z), {Y/U} and
the following renamed version of a1:

(a1(U,Z), ε)
0:0→ (2, ψ1); (a1(U1, Z1), ψ2)

(where
ψ1 = {U/[], Z/[]}, β2 = {U/[M1|U1], Z/[s(M1)|Z1]})
we get

(a1(U,Z), {Y/U}) 1:2→ (2, β1); (a1(U1, Z1), β2) (3)

where βi = ψi ↑ {Y/U} for i = 1, 2. Combining (2) and
(3) via the and-rule, we arrive at

((a1(X,Y), a1(U,Z)), {Y/U}) 1:4→
(2, γ11); (a1(U1, Z1), γ12); (a1(X1, Y 1), γ21);
((a1(X1, Y 1), a1(U1, Z1)), γ22)

where γij = αi ↑ βj for i, j = 1, 2. Since γ12 = γ21 = >,
this can (using our convention about throwing away >)
be written as the following meta-rule, to be stored in
M1:

((a1(X,Y), a1(U,Z)), {Y/U}) 1:4→
(2, γ11); ((a1(X1, Y 1), a1(U1, Z1),)γ22)

(4)

where γ11 = {X/[], Y/[], U/[], Z/[]}, γ22 = {X/[N1|X1],
Y/[s(N1)|Y 1], Z/[s(s(N1))|Z1], U1/Y 1,
U/[s(N1)|Y 1]}.

Now consider the query (a1([s(0)],Y),a1(Y,Z)). We
must write this as the configuration

(a1(X,Y), a1(U,Z), {Y/U,X/[s(0)]}) (5)

Using the M1-rule (4) we by the unfold-rule obtain

((a1(X,Y), a1(U,Z)){Y/U,X/[s(0)]}) 2:1→
(2, δ1); ((a1(X1, Y 1), a1(U1, Z1)), δ2) (6)

δ1 = γ11 ↑ {X/[s(0)]} = >,
δ2 = γ22 ↑ {X/[s(0)]}

= {X/[s(0)], Y/[s(s(0))|Y 1], U/[s(s(0))|Y 1],
U1/Y 1, Z/[s(s(s(0)))|Z1], X1/[]}

After renaming (4) (by exchanging all variable suffices
from 1 to 2 and giving variable without suffices the suffix
1), we by the unfold-rule get the transition

((a1(X1, Y 1), a1(U1, Z1)), δ2)
2:1→

(2, σ1); ((a1(X2, Y 2), a1(U2, Z2)),>)
(7)

where σ1 = δ2 ↑ {X1/[], Y 1/[], U1/[], Z1/[]}. By com-
bining (6) and (7) using the “compose-rule”, we arrive
at

((a1(X,Y), a1(U,Z)){Y/U,X/[s(0)]}) 2:2→
(2, {X/[s(0)], Y/[s(s(0))], U/[s(s(0))], Z/[s(s(s(0)))]})

ie. we can solve (5) at level 2 at cost 2. On the other
hand, it is easily seen that to solve it at level 1 requires
cost 4. So in this case (which can be generalized to lists
of arbitrary length), working at one higher meta-level
makes the execution time (in our model) decrease by a
factor 2.

4 Upper bounds on

time-improvement

We now formulate and prove some basic properties of
meta-level systems. First a lemma stating that “by
making the query more specific the evaluation tree gets
pruned”:

Lemma 4.1
Suppose (~G, φ)

i:c→ (~G1, φ1); . . . ; (~Gn, φn)
Let φ ¹ β. Then there exists a c′ ≤ c such that

(~G, β)
i:c′

→ (~G1, ψ1); . . . ; (~Gn, ψn)

where ψj = φj ↑ β for j ∈ {1 . . . n}.

Proof: A straight-forward induction in the derivation
tree. 2

Definition 4.2 (Maximal Short Cut) Let (M,T) be
a meta-level system. For all i > 0 we define Si by

Si = max(max{c|c is the cost of a rule in Mi}, 1)

(this is well-defined since there are finitely many rules
in Mi only). Si can be thought of as the maximal short
cut possible by applying transitions at level i.

Definition 4.3 (Time to create Mi) Let (M,T) be
a meta-level system. For all i > 0 we define Ci by

Ci = max(
∑

t∈Mi

the cost of t, 1)

Ci can be thought of as the time required to calculate
the meta-rules in Mi.

Definition 4.4 (Total Meta-time) Let (M,T) be a
meta-level system. For all i > 0 we define TCi by

TCi = C1 + . . . + Ci

TCi can be thought of as the time required to calculate
all the meta-rules (of level not greater than i).

We are now in position to prove that we by “going up
one level” are able to reduce evaluation time by at most
a constant:

Theorem 4.5 (At most constant speed-up) Let
(M,T) be a meta-level system. Suppose

(~G, φ)
i+1:c→ (~H1, ψ1); . . . ; (~Hn, ψn)

for some i > 0. Then there exists a c′ such that

(~G, φ)
i:c′

→ (~H1, ψ1); . . . ; (~Hn, ψn)

and c′ ≤ Sic

Proof: A straight-forward induction in the derivation
tree, the interesting case being when the “unfold-rule”
is applied: Suppose we have

(~G,ψ)
i+1:c→ (~G1, ψ1); . . . ; (~Gn, ψn)

because (a renamed version of) the following rule (where
φ ¹ ψ) belongs to Mi′ , i′ < i + 1:

(~G, φ)
i′:c′

→ (~G1, φ1); . . . ; (~Gn, φn)

Here ψj = φj ↑ ψ for i ∈ {1 . . . n}, c = the number of
j such that ψj 6= >, however at least 1. There are two
cases:

i′ < i:
Now (~G,ψ)

i:c→ (~G1, ψ1); . . . ; (~Gn, ψn)

and since by definition Si ≥ 1 we have c ≤ Sic.

i′ = i: Since a rule in Mi represents a transition in Ti,
we have

(~G, φ)
i:c′

→ (~G1, φ1); . . . ; (~Gn, φn)

Lemma 4.1 now tells us that there exists a c′′ ≤ c′

such that

(~G,ψ)
i:c′′

→ (~G1, ψ1); . . . ; (~Gn, ψn)

This is as desired, since c′′ ≤ c′ ≤ Si ≤ Sic (ex-
ploiting c ≥ 1).

2

An immediate corollary of the above is

Corollary 4.6 Let (M,T) be a meta-level system. Sup-
pose

(~G, φ)
i:ci→ (~G1, φ1); . . . ; (~Gn, φn)

for some i > 0. Then there exists a c1 such that

(~G, φ)
1:c1→ (~G1, φ1); . . . ; (~Gn, φn) and

c1 ≤ S1 . . . Si−1ci (8)

Exploiting that the inequality

nn(a1 . . . an) ≤ (a1 + . . . + an)n (9)

holds for arbitrary positive a1 . . . an, we from (8) can
deduce that

c1 ≤ S1 . . . Si−1ci ≤ C1 . . . Ci−1ci

≤ (C1+...+Ci−1+ci)
i

ii = (
TCi−1+ci

i
)i

We have thus proved the following interesting theorem:

Theorem 4.7 (At most polynomial speed-up)
Let (M,T) be a meta-level system. Suppose

(~G, φ)
i:ci→ (~G1, φ1); . . . ; (~Gn, φn)

Then there exists a constant c1 such that

(~G, φ)
1:c1→ (~G1, φ1); . . . ; (~Gn, φn) and

ci + TCi−1 ≥ i i
√

c1 (10)

5 Discussion

The topic of the first part of this section will be how the
results above apply to the examples from section 2. In
the second part, discrepancies between our model and
the “real world” of computations are treated in some
detail.

Loop Combining

As S1 = 4 in this case (as the cost of (4) is 4), the-
orem 4.5 tells us that evaluation at level 2 cannot be
more than 4 times as fast as evaluation at level 1. As
mentioned in section 3.3, we actually gain a factor 2.

Partial Evaluation

Theorem 4.5 says that (in our model) we cannot gain
more than a constant by using a residual program in-
stead of the original one, this constant being indepen-
dent of the dynamic input. However, the constant may
depend on the value of the static input, since different
values of the static input give rise to different residual
functions and hence different meta-level systems. Thus
- in the case of an interpreter being partially evalu-
ated - the familiar notion of an “interpretation over-
head” independent of the source program is not sup-
ported by our theorems. There are good reasons for
this, as it is easy to construct “interpreters” where the
corresponding interpretation overhead can become arbi-
trarily large. However, for most “realistic” interpreters
the interpretation overhead in fact is independent of the
source program, loosely speaking due to the fact that
each construct in the language being interpreted gives
rise to a run-time action.

The Fibonacci function

Evaluation of fib(n) at level 1 requires an exponential
number of inference steps, say (about) an. Theorem 4.7
then tells us that we - when using n levels - cannot hope
for a number of inference steps smaller than n times the
nth root of an, ie. an. As we saw in section 2 it is in
fact possible to compute fib(n) in time proportional to
n using n meta-levels. So in this case we (apart from
possibly a constant factor) get as much speed up as we
could expect.

Notice that even though theorem 4.7 apparently
states that we at most get a polynomial improvement
when using a meta-level system, the fibonacci function
is reduced from having exponential time-behavior into
being linear. This is due to the fact that there is no
bound on the number of levels employed; in fact the
number of levels equals the input.

5.1 Limitations of the model

In the “real world” it is possible to come up with exam-
ples of programs being sped up with an order of magni-
tude when executed at “one higher level”. On the other
hand, theorem 4.5 says that in our model this is impos-
sible. There are two features not accounted for by our
model:

• The use of “strong” transformation techniques.
The model only caters for simple use of fold-
ing/unfolding.

• The model implicitly assumes that when solving a
conjunction of goals, the order in which the sub-
goals are solved is chosen in an optimal way (eg.
theorem 4.5 says that there exists a transition at
level 1 with certain properties). In practice, how-
ever, one has to choose a simple strategy, eg. to
evaluate the goals from left to right. It is well
known from the theory of logic programming that
such a strategy may be suboptimal.

We will now embark upon each of those two features:

Strong transformation techniques

In the model, T1 and T2 in some sense are isomorphic:
the latter has access to more rules than the former, but
as those rules are derivable in T1, the transitions at level
2 can (as expressed in theorem 4.5) be simulated at level
1. On the other hand, suppose M1 contained a rule of
the form

((P,Q), α)
:→ (P, α) (11)

where α is such that Pα = Qα. (11) states that iden-
tical conjuncts need to be evaluated only once (in the
world of functional programming, the natural counter-
part to (11) is the “where-abstraction”: eg. an expres-
sion f(g(x),g(x)) is transformed into f(v,v) where v =
g(x)). (11) cannot be simulated at level 1, and our in-
tuition about meta-rules representing a finite shortcut
thus does not hold: the shortcut gained by applying
(11) can be arbitrary big, in fact equal the cost needed
to solve Q the second time. Using rules like (11) eg.
the fibonacci program can be transformed into a linear
version.

Another way to improve efficiency by (potentially)
more than a constant is to prove two expressions to be
equivalent (typically by some kind of induction) and
then replace the second by the first. To see an example
of this (in a functional setting), consider the list append
operator ◦. We want to show that it is associative, ie.
that x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z. This is done
by induction in x, where the basic step comes from the
unfoldings

[] ◦ (y ◦ z) → y ◦ z,

([] ◦ y) ◦ z → y ◦ z

and where the induction step comes from the unfoldings

(x :: w) ◦ (y ◦ z) → (x :: (w ◦ (y ◦ z))), (12)

((x :: w) ◦ y) ◦ z → (x :: (w ◦ y)) ◦ z

→ (x :: ((w ◦ y) ◦ z)) (13)

Since two unfoldings are made in (13) and only one in
(12), we see that the expression x ◦ (y ◦ z) is more effi-
cient than its semantic equivalent (x◦y)◦z: by replacing
the latter by the former one may save arbitrarily many
(namely the length of x) unfoldings. Using the equiva-
lence above (and also exploiting that x◦ [] = x for all x),
one can (using an “accumulating parameter”) transform
a program doing list reversal from being quadratic into
being linear (in the length of the list). Another applica-
tion of the “rewriting” technique is given in [PetBur82]:
by a sequence of steps, where function definitions are
replaced by equivalent but more efficient counterparts,
the fibonacci program is transformed into a logarithmic
version.

[BurDar77, p. 48,64] gives a brief informal account of
the efficiency (measured in terms of aritmetic operations
performed) of the new program versus the efficiency of
the old. Here where-abstractions and rewritings are
claimed to be the only sources of efficiency improve-
ment; unfolding only preserves efficiency. As our model
measures efficiency in terms of the number of inference
steps made, the latter claim does not hold in our frame-
work.

Evaluating a Conjunct

We now give an example of a program P which can
be transformed into a program R such that R, when
solved using a left-to-right strategy, is faster than P ,
when solved using a left-to-right strategy, by an order
of magnitude. This is due to the fact that the transfor-
mation process itself carries out some “not-left-to-right”
steps. The program is

switch([],[]).

switch([a|X],[b|Y]) ← switch(X,Y).

switch([b|X],[a|Y]) ← switch(X,Y).

onlya([]).

onlya([a|X]) ← onlya(X).

Consider queries of the form

switch([a,s1,. . . ,sn],Y),onlya(Y)

where each si is either an “a” or a “b”. It is easily seen
that to evaluate these at level 1 using the left-to-right
strategy at least n inference steps are needed. On the
other hand, since (with p(X,Y),α being an abbreviation
for (switch(X,Y),onlya(Z)),α ↑ {Y/Z})

(p(X,Y), ε)
1:6→

(2, {X/[], Y/[]}); (p(X1, Y 1), {X/[b|X1], Y/[a|Y 1]})

we can include this as a rule in M1. Then we can eval-
uate (to fail) such queries in 1 step at level 2 (using a
left-to-right strategy!), regardless of n. In a functional

setting the above phenomenon has the counterpart: for
a strict language, the call-by-name nature of program
transformation may improve evaluation time by more
than a constant factor.

6 Termination properties

It may happen that the program resulting from a pro-
gram transformation terminates less often than the orig-
inal one. To illustrate this within the framework of
meta-level-systems, consider the program

p(a).

q(X).

q(b) ← q(b).

represented as the M0 rules

(p(X), ε)
0:0→ (2, {X/a})

(q(Y), ε)
0:0→ (2, ε); (q(Y), {Y/b})

When the query (p(X),q(X)) (represented as the config-
uration ((p(X), q(Y)), {X/Y})) is evaluated at level 1
using the left-to-right strategy, termination is guaran-
teed (and fast). On the other hand, suppose the meta-
rule

((p(X), q(Y)), {X/Y }) 1:2→
(p(X), {X/Y }); ((p(X), q(Y)), {X/b, Y/b})

(which is a valid transition in T1) is member of M1. This
corresponds to that the original program is transformed
into

r(X) ← p(X).

r(b) ← r(b).

p(a).

and the query above can be formulated as r(X). Here
at level 2, left-to-right evaluation of this query can go
on forever, since the the second rule for r will cause the
search tree to be infinite.

What goes wrong in the example above is essentially
that the metarule constructed does not represent any
leftmost transition, but only represents a (useless) right-
most transition. Below we will see that if meta rules
do carry out some “leftmost” actions, then left-to-right
evaluation at level 2 will terminate when left-to-right
evaluation at level 1 does.

What we are interested in is at first glance a theorem
stating something like “if a configuration can give rise
to an infinite computation at level 2, then it also can
give rise to an infinite computation at level 1”. On
the other hand, interpreted within the model used so
far such a theorem (though pretty easy to prove under
some very weak conditions) will not be very interesting,

since almost any logic programs can give rise to infinite
computation if the evaluation order is chosen sufficiently
“stupid”. Therefore we need to modify the model a bit,
in a way such that the complexity is divided into two
parts: one measuring the “number of left-most inference
steps made” and the second measuring the “number of
other inference steps”. For ease of presentation, we also
change the model so each transition represents a single
branch of the search tree only. A transition thus now
takes the form

(~G, φ)
i:(l,r)−→ (~G1, φ1)

denoting that the configuration (~G,φ) at level i reduces

to the configuration (~G1, φ1), where φ1 6= >, using l
(called the left-cost) left-to-right steps and r (called the
right-cost) other steps. Left-to-right evaluation is thus
modelled by the right-cost being 0. What we are after
is something like the following two theorems:

Hoped-for-Theorem 6.1 Let a meta-level system be
given, where all rules have a left cost greater than 0 (cf.
the discussion earlier). Suppose

(~G, φ)
i+1:(l,r)−→ (~G1, φ1)

Then there exists l′ ≥ l and r′ such that

(~G, φ)
i:(l′,r′)−→ (~G1, φ1)

Hoped-for-Theorem 6.2

Suppose (~G, φ)
1:(l,−)−→ (~H,ψ)

(where the symbol “-” denotes that we do not care
about the actual value of the cost). Then there exists

l′ ≥ l, ~J ,θ such that

(~G, φ)
1:(l′,0)−→ (~J, θ), (~J, θ)

1:(−,−)−→ (~H,ψ)

These theorems will enable us to reason as follows: sup-
pose a query (~G,φ) at level i can be evaluated using
a left-to-right strategy infinitely far, ie. for all n there
exists a configuration (~Hn, ψn) such that

(~G, φ)
i:(n′,0)−→ (~Hn, ψn)

where n′ ≥ n. Then repeated application of theorem
6.1 tells us that there exists a n′′ ≥ n′ such that

(~G, φ)
1:(n′′,−)−→ (~Hn, ψn)

and theorem 6.2 then tells us that there exists a config-
uration (~Jn, θn) and a n′′′ ≥ n′′ such that

(~G, φ)
1:(n′′′,0)−→ (~Jn, θn)

ie. that left-to-right evaluation of the configuration
(~G, φ) can also at level 1 go on infinitely far.

Now we give the new definition of Ti. In order to give
transitions a bit more structure, we actually use two
kinds of transitions, denoted −→ and =⇒ respectively.
The latter can be thought of as the transitive closure of
the former.

The (new) compose-rule

(~G, φ)
i:(l1,r1)−→ (~G1, φ1), (~G1, φ1)

i:(l2,r2)
=⇒ (~G2, φ2)

(~G, φ)
i:(l,r)
=⇒ (~G2, φ2)

(14)

where l = l1 + l2, r = r1 + r2.

The (new) and-rule

(~G1, φ)
i:(l1,r1)−→ (~H1, ψ1),

(~G2, φ)
i:(l2,r2)−→ (~H2, ψ2), ψ1 ↑ ψ2 6= >

(~G1
~G2, φ)

i:(l,r)−→ (~H1
~H2, ψ)

(15)

where l = l1, r = l2 + r1 + r2, ψ = ψ1 ↑ ψ2.

The (new) unfold-rule

(~G, φ)
j:(l,r)
=⇒ (~G1, φ1) is a rule in Mj ,

j < i, φ ¹ β, β ↑ φ1 6= >
(~G, β)

i:(1,0)−→ (~G1, β1) where β1 = β ↑ φ1

(16)

As before, renaming is done in order to avoid name-
clashes. Finally two “simple rules”:

(~G, φ)
i:(0,0)−→ (~G, φ)

and

(~G, φ)
i:(l,r)−→ (~G1, φ1)

(~G, φ)
i:(l,r)
=⇒ (~G1, φ1)

Lemma 6.3 Let a meta-level system be given. Suppose

(~G, φ)
i:(l,r)−→ (~G1, φ1)

and suppose that φ ¹ β, β ↑ φ1 6= >. Then

(~G, β)
i:(l,r)−→ (~G1, β1)

where β1 = β ↑ φ1.
The above also holds when −→ is replaced by =⇒ in

the premise as well as in the conclusion.

The proof is similar to the proof of lemma 4.1. No-
tice that = instead of ≤ holds between the costs in-
volved, due to the fact that the time spent on unsuc-
cessful branches is not included.

Lemma 6.4 (14) and (15) are still valid, even if one
replaces all occurrences of −→ by =⇒ (in the premises
as well as in the conclusion).

Proof: Concerning (14), one proceeds by induction in
the derivation tree for the first transition in the premise.
Concerning (15), one first shows that it is still valid
when −→ is replaced by =⇒ in the first premise and in
the conclusion; then one shows that (15) is valid even if
the replacement is done also for the second premise. 2

Definition 6.5 A meta-level system is left-progressing
if it for all rules ∈ Mi (i > 0):

(~G, φ)
i:(l,r)
=⇒ (~G1, φ1)

holds that l > 0

Now we are in position to formulate and prove our
first “hoped-for-theorem” (6.1).

Theorem 6.6 Let a left-progressing meta-level system
be given. Suppose

(~G, φ)
i+1:(l,r)−→ (~G1, φ1)

(i > 0). Then there exists l′ ≥ l and r′ such that

(~G, φ)
i:(l′,r′)
=⇒ (~G1, φ1)

The above also holds when −→ is replaced by =⇒ in the
premise.

Proof: An easy induction in the derivation tree. To
cope with the compose-rule and the and-rule we need
lemma 6.4. The only interesting case is the unfold-rule
(16): suppose that

(~G, β)
i+1:(1,0)−→ (~G1, β1)

because there is a rule in Mi

(~G, φ)
i:(l1,r1)
=⇒ (~G1, φ1)

where φ ¹ β and β1 = φ1 ↑ β. Then lemma 6.3 tells us
that

(~G, β)
i:(l1,r1)
=⇒ (~G1, β1)

which is as desired since l1 ≥ 1 according to our assump-
tion about the meta-level system being left-progressing.
2

Next we turn to the second “hoped-for-theorem”
(6.2). It is in order to facilitate the proof of this we
have distinguished between −→ and =⇒. It turns out
that in order for the theorem to hold, we must require
the meta-level system to be “standard”:

Definition 6.7 A meta-level system is standard iff all
the basic rules in M0 are of the form

(G, ε)
0:(−,−)−→ (~H1, ψ1)

ie. the left side consists of a single atomic goal only, and
there are no “already existing substitutions”.

To require this is no serious restriction, as this will be
the case whenever M0 consists of “translations” of Horn
Clauses.

Lemma 6.8 Let a meta-level system be given. Suppose

(~G, φ)
i:(l,−)−→ (~H,ψ)

If ~H = 2 then there exists l′ ≥ l such that

(~G, φ)
i:(l′,0)
=⇒ (2, ψ)

If ~His non-empty, ie. of the form Hh
~Hr, then there ex-

ists ~J ,θ and l′ ≥ l such that

(~G, φ)
i:(l′,0)
=⇒ (Hh

~J, θ), (~J, θ)
i:(−,−)−→ (~Hr, ψ)

Proof: Omitted. 2

Lemma 6.9 Let a standard meta-level system be given.
Suppose

(~G, φ)
1:(−,−)−→ (~H,ψ), (~H,ψ)

1:(l,0)−→ (~H1, ψ1)

Then there exists l′ ≥ l, ~J ,θ such that

(~G, φ)
1:(l′,0)
=⇒ (~J, θ), (~J, θ)

1:(−,−)−→ (~H1, ψ1)

Proof: Omitted. It is in order for this lemma to be
valid that the meta-level system must be standard. 2

By a straight forward induction we hence obtain

Corollary 6.10

Let (~G, φ)
1:(−,−)−→ (~H,ψ), (~H,ψ)

1:(l,0)
=⇒ (~H1, ψ1)

Then there exists l′ ≥ l, ~J ,θ such that

(~G, φ)
1:(l′,0)
=⇒ (~J, θ), (~J, θ)

1:(−,−)−→ (~H1, ψ1)

Now we can show our second “hoped-for” theorem:

Theorem 6.11 Let a standard meta-level system be
given. Suppose

(~G, φ)
1:(l,−)−→ (~H,ψ)

Then there exists l′ ≥ l, ~J ,θ such that

(~G, φ)
1:(l′,0)
=⇒ (~J, θ)(~J, θ)

1:(−,−)−→ (~H,ψ)

The above also holds when −→ is replaced by =⇒ in the
premise, in which case it also is necessary to replace −→
by =⇒ in the conclusion.

Proof: Induction in the derivation tree. The case
where the and-rule (15) is applied is covered by lemma
6.8. 2

7 Work in progress

The work described so far is currently being extended
along two lines:

1. As mentioned in section 2, only a restricted use
of folding can be modeled by the (current) meta-
level framework; and though most examples of ap-
plications of the fold/unfold framework fit into this
scheme, it is certainly desirable to incorporate fold-
ing in its full generality. To do so, roughly the fol-
lowing steps are needed:

• A “fold-rule” (applicable at all levels) must be
defined. As we aim to ensure that “everything
going on at level i+1 can happen at level i as
well”, the notion of folding has to be general-
ized a bit.

• As “real evaluation” at level 1 only does unfol-
ding, it must be shown that an evaluation tree
at level 1 containing foldings can be replaced
by an evaluation tree without folding steps
and with “suitably related” costs. This is es-
sentially some variant of the Church-Rosser
property.

We certainly can expect theorem 4.5 to hold
still. Concerning termination properties, it may of
course now very well happen that these are vio-
lated, due to “too much folding”. Intuitively, to
avoid this any meta-rule must contain at least one
unfolding against a “progress rule”, a progress rule
being a rule not folded against.

2. A similar framework should certainly be set up for
a functional language. It is of course always pos-
sible to translate a functional program into a logic
equivalent, but laziness will not be modeled: to see
this, suppose that f and g are two (unary) func-
tions, and that the value of g does not depend on
its argument. Then the composite function appli-
cation g(f(x)) will be expressed as the goal conjunc-
tion f(X,Y),g(Y,Z). According to a lazy semantics
for the functional language, f will not be evaluated.
On the other hand, a logic evaluator a priori has
to evaluate the goal f(X,Y) - even if it has been
specified that the only interesting variable is Z -
since this goal might fail, thus making the whole
conjunction fail. In order to refrain from evaluat-
ing f, the logic evaluator must ensure that f has
one (and only one) solution, requiring some quite
sophisticated analysis.

3 different kinds of semantics seem natural for
“functional meta-level systems”:

• (Standard) evaluation is strict, transforma-
tion is strict: Then the system fits into our

logic framework, and the same results (eg. at
most constant speed up) hold. An example
of such a system is SIMILIX[BonDan90] where
let-expressions are inserted during transfor-
mation to guarantee that argument expres-
sions are neither thrown away nor duplicated
by unfolding.

• Evaluation is strict, transformation is (par-
tially) lazy: Then transformation is able to
reduce execution time by an order of magni-
tude, as sketched in section 5.1 (but also to
augment it, if transformation is not fully lazy
but only call-by-name, since expressions may
be duplicated).

• Evaluation is lazy, transformation is lazy:
then we can expect to show that transforma-
tion only speeds up by at most a constant, but
as mentioned this requires a substantially new
framework.

8 Conclusion

• A framework has been set up, general enough to in-
corporate concepts like partial evaluation, eureka-
definition based program transformation, memoiza-
tion etc. - in short, all sort of things built on unfol-
ding, (limited use of) folding and memoization only.
The basic deficiency is that it does not account for
“strong” transformation techniques, due to the fact
that all levels in some sense are isomorphic.

• As already mentioned, an analogue to the result
proven in section 6 is presented in [Sch80] - he
is also able to prove preservation of termination
properties under some very weak conditions. We
think it simplifies matters considerably (though the
reader may disagree!) to work in a logical setting.

• A complexity measure for a given transition was
given. A realistic measure should also attempt to
estimate the complexity of a given unification; this,
however, seems very hard to do.

• The framework could be extended to cope with par-
allelism, as mentioned in section 3. On the other
hand, as long as the same kind of parallelism is al-
lowed at all levels, essentially the same theorems
can be obtained.

• In practice it is often a rather slow business to
produce meta-rules. This is due to the interpre-
tation overhead typically present; the amount of
bookkeeping necessary; the choices between vari-
ous things to do (eg. to unfold or not to unfold),
etc. However, as our results concerning meta-rule

generation time (eg. theorem 4.7) are of negative
character they will still hold even if this is taken
into account.

References

[Amt91]
Torben Amtoft Hansen: Properties of Unfolding-
based Meta-level Systems. DAIMI-PB 348, March
1991, Computer Science Department, Aarhus Uni-
versity.

[BKPR89] F.S. de Boer, J.N. Kok, C. Palamidessi and
J.J.M.M. Rutten: From Failure to Success: Com-
paring a Denotational and a Declarative Seman-
tics for Horn Clause Logic. Technical Report CS-
R89, Centre for Mathematics and Computer Sci-
ence, Amsterdam, 1989

[BonDan90] Anders Bondorf, Olivier Danvy: Auto-
matic Autoprojection of Recursive Equations with
Global Variables and Abstract Data types. Technical
Report no. 90-4, DIKU, University of Copenhagen,
Denmark

[BurDar77] R.M.Burstall, J. Darlington: A Transfor-
mation System for Developing Recursive Programs.
Jour. of the ACM, January 1977, vol. 24, no. 1, pp.
44-67.

[Fra85] Gudmund Frandsen: A Denotational Semantics
for Logic Programming. DAIMI-PB 201, November
1985, Computer Science Department, Aarhus Uni-
versity

[Pal89] Catuscia Palamidessi: Algebraic Properties of
Idempotent Substitutions. Technical Report TR-
33/89, University of Pisa, 1989.

[PetBur82] Alberto Pettorossi, R.M. Burstall: Deriv-
ing very Efficient Algorithms for Evaluating Linear
Recurrence Relations Using the Program Transfor-
mation Technique. Acta Informatica, vol. 18, 1982,
pp. 181-206.

[Sch80] W.L. Scherlis: Expression Procedures and Pro-
gram Derivation. PhD thesis, Stanford University,
August 1980. Computer Science Report STAN-CS-
80-818

