
What is an Efficient Implementation of the λ-calculus?

Gudmund S. Frandsen 1 2 3

Department of Computer Science
Aarhus University

Carl Sturtivant
Department of Computer Science

University of Minnesota

version January 31, 1991

1This research was partially carried out, while visiting Dartmouth College, New
Hampshire.

2This research was partially supported by the Danish Natural Science Research Council
(grant No. 11-7991).

3This research was partially supported by the ESPRIT II Basic Research Actions Pro-
gram of the EC under contract No. 3075 (project ALCOM).

1

Abstract

We propose to measure the efficiency of any implementation of the
λ-calculus as a function of a new parameter ν, that is itself a function
of any λ-expression.

Complexity is expressed here as a function of ν just as runtime
is expressed as a function of the input size n in ordinary analysis of
algorithms. This enables implementations to be compared for worst
case efficiency.

We argue that any implementation must have complexity Ω(ν),
i.e. a linear lower bound. Furthermore, we show that implementations
based upon Turner Combinators or Hughes Super-combinators have
complexities 2Ω(ν), i.e. an exponential lower bound.

It is open whether any implementation of polynomial complexity,
νO(1), exists, although some implementations have been implicitly clai-
med to have this complexity.

2

Introduction

Objectives

The aim of this paper is to provide a theoretical basis for efficiency conside-
rations in the implementation of functional languages.

So far, people working in this area have approached the subject as pro-
grammers. That is to say, they have taken an intuitive approach to efficiency
backed up by empirical trials once some new implementation has been cre-
ated (e.g. measuring the runtimes of benchmark programs). Their major
concerns have been to increase the expressive power of functional languages
and to create more efficient implementations so that functional languages are
usable.

From our standpoint, the implementation problem for functional langu-
ages is just another algorithmic problem, albeit one of some difficulty. In
other areas of algorithm design, there is a sound theoretical framework: the
notion of input size, n; measuring the worst case and average case runtimes
of an algorithm on inputs of size n in O-notation; and the idea of an optimal
algorithm as one whose runtime as a function of n is of minimum growth.
Such tools are not presently available to implementers of functional langu-
ages. Whilst it is not necessarily true that theoretically “fast” algorithms
are the best in practice, nevertheless an investigation of various theoretically
fast algorithms provides a good starting point for practical implementation
considerations.

It is our aim to provide an analogous quantitative theoretical framework
in which to assess the complexities of implementations of functional langua-
ges. This would ensure that the same tools are available to implementers of
functional languages as are available to other algorithm designers.

Once such a framework is in place, we will be able to define the notion
of an optimal implementation. This has importance in understanding what
the complexity of a functional program is, as is discussed next.

The Complexity of a Functional Program

Currently, it is not known how to analyse the complexity of a functional pro-
gram in an implementation independent way. Indeed, it is not clear that the
complexity of a functional program is in any sense implementation indepen-

3

dent. This is in marked contrast to programs written in common imperative
languages. Here it is informally understood that all good implementations en-
dow any given program with essentially the same complexity (in O-notation).

Clearly, there are bad implementations of imperative languages in which
the complexities of some programs are degraded below their “true” com-
plexities. Thus the reason that the complexity of programs in imperative
languages is well defined is that we have identified the good implementations
(i.e. optimal implementations in O-terms), and we regard these implementa-
tions as defining the complexity of a program. Consequently, the complexity
of an imperative program is implicitly implementation independent in this
sense.

If we wish to arrive at a similar situation in regard to the complexity of
functional programs, then we need to know what an optimal implementation
of a functional language is.

We introduce a complexity theoretic definition of the efficiency of any
implementation of a functional language. Using this definition, we define
what an optimal implementation is. A basic acquaintance with the lambda
calculus is assumed[Chu32, Ros84, Bar81].

The first half of the paper is concerned with philosophical and motivatio-
nal considerations, and gives an informal discussion of the technical results
given in full detail in the second half of the paper.

Philosophical Considerations

In this paper we propose to consider the problem of implementing the pure
λ-calculus, which may be regarded as a (rather difficult to use) functional
programming language. We give a complexity theoretic framework for consi-
dering the efficiency of such implementations. We argue below why this then
provides a complexity theoretic framework for understanding the efficiency
of implementations of any functional language. Hereafter, we will use the
phrase “lambda-calculus” to mean the pure lambda-calculus.

Why Study the Pure Lambda Calculus?

The reader may ask how it is that pure lambda expressions can reflect the
computational power of their favorite functional languages. In particular,

4

the reader may say that the reader’s favorite functional language has a lot of
added primitives (functions, data structures, etcetera) that are not present
in the pure lambda calculus, and thus why are results about the pure lambda
calculus applicable to these extensions?

Our reply is an argument to establish informally that these features may
be encoded into the pure λ-calculus in such a way that there is an imple-
mentation of the pure λ-calculus endowing these features with a certain com-
plexity if and only if there is an implementation of the functional language
directly endowing the features with the same complexity (up to a constant
factor). The argument proceeds as follows:-

We fix some machine model of sequential computation (there are some
technical difficulties with the RAM model of computation: see the appendix
for a complete discussion of this argument). Then we give an encoding of
any machine in this model as a pure λ-expression, with the property that
a constant number of β-reduction steps simulate an atomic step of the ma-
chine and these involve only a bounded amount of work. (The constant may
depend upon the machine being encoded. In fact, it can be arranged that
the expression encoding a machine follows exactly the steps that the machine
would take if a normal order reduction strategy is used.) Thus particular fun-
ctions and data structures may be embedded naturally in the pure λ-calculus
along with their imperative implementations.

At this point, the reader may agree that many of the features of the re-
ader’s favorite functional language can be encoded in the pure λ-calculus in
such a way as to retain the potential for efficient implementation. Consider
an arbitrary program in the reader’s favorite functional language. Even if
we strip away all its syntactic sugar of the above forms, and replace it with
λ-encodings, what remains may not be a simple λ-expression. The reader
may say that what remains is what may be termed “a mutually recursive
λ-program”: i.e. a series of mutually recursive definitions in the pure λ-
calculus. (In fact there may be some additional control structures, etcetera,
but hopefully the reader will be convinced that these can be encoded as
simple λ-expressions whilst retaining the possibility of equally efficient im-
plementation.)

A careful investigation of the sizes of the expressions in the multiple
fixed point theorem ([Bar81] p.142) shows that such a mutually recursive λ-
program defines a λ-expression whose size is linear in the size of the original
program. Thus an efficient implementation of λ-expressions would provide

5

an efficient implementation of λ-programs. (We have not discussed the input
to the functional program — we assume that it is a part of the program here.
For further discussion of this point see below.)

We have given an informal argument why any functional programming
language may be encoded as pure λ-expressions whilst maintaining the po-
ssibility of equally efficient implementation. Without a formal definition of
a functional language, it is not possible to prove our contention. For this
reason we refer to it as the implementation thesis for functional languages.

The Implementation Thesis:

Any functional programming language may be efficiently compiled into
the pure λ-calculus in such a way as to retain the possibility of equally
efficient implementation.

The converse of this thesis is also a matter of definition: any functional
language has the power to directly define an arbitrary pure λ-expression—
one may take this as a part of the definition of a functional language. (N.B.
Presumably some strongly typed languages do not have this property—these
are possibly weaker than the pure λ-calculus in computational power, and
this may improve their implementability.) In any case we have argued that
the efficient implementation problem for functional languages is at most as
difficult as the implementation problem for pure λ-expressions (in a theoreti-
cal sense), and for those functional languages that contain the pure λ-calculus
as a sub-language, the problems are equally hard.

One detail that has been glossed over is that real programs tend to be
separated from their inputs. By using pure λ-expressions as the canonical
model of a functional language we, loose this. The program and input (if any)
are both λ-expressions, and we consider the cost of reducing the expression
consisting of the first applied to the second (or just the first). However,
this just amounts to taking the cost of “compilation” and the cost of “run”
together, and is no disadvantage from a theoretical standpoint. (Of course
in practice a program may be compiled and used on many different inputs.
We regard this as a different issue, and ignore it.)

In the case of an interactive program, not all of the input is available
as the run proceeds. This restricts the implementation possibilities, and
therefore can only make life harder than the problem we consider.

6

The Pure λ-Calculus

In this paper we propose to consider the following problem, that we call
λ-expression normal form computation (LENF). Input to LENF is a λ-
expression in the standard syntax, and the corresponding output is the nor-
mal form of that expression if such exists, and otherwise is empty (a solution
being allowed not to halt in this case).

Currently there seems to be a belief that there is neither a canonical way
of simulating reduction in the λ-calculus efficiently nor a canonical way to
define formally what efficiently should mean. This is best illustrated by a
citation:

There have been some studies about the relative efficiencies of various
implementation techniques for applicative languages, but there are no
clear winners. This should not be surprising at all, if we consider the
generality of the problem. We are dealing with the efficiency of the
process of evaluating arbitrary partial recursive functions. Standard
complexity theory is clearly not applicable to such a broad class of com-
putable functions. The time-complexity of such a universal procedure
cannot be bounded by any computable function of the size of the input.
... Complexity theory is concerned with the inherent difficulty of the
problems (or classes of problems) rather than the overall performance
of some particular model of a universal computing device. [Rév88, page
131]

Furthermore, the result that no strategies that choose optimal reduction
sequences are recursive [Bar81, ch. 13] may mislead if not examined closely,
because of its dependence upon λ-expressions with no normal form. In fact
the problem

Input: A λ-expression M with a normal form
Output: A minimal length reduction sequence to normal form for M

has an algorithmic solution: simply explore all reduction sequences that use
up to the number of reductions which the leftmost strategy takes to reach
normal form, and choose a minimal one.

We do not claim that this procedure is efficient; however, its runtime is
bounded by some recursive function of the number of β-reductions in the
normal order reduction sequence to normal form. Furthermore, this is also

7

true if we extend the input set to include all λ-expressions, since those with
no normal form have infinite normal order reduction sequences.

This suggests that a change of the definition of “input size” to include
some measure of the length of reduction chains may make it possible to bound
the runtime of an implementation of LENF by some recursive function of the
new input size. This would also hold in the case of λ-expressions with no
normal form, since their input size would be infinity. This is the approach we
take. In the next section we discuss our precise definition of the new input
size.

Definition of the New Input Size Parameter

Lévy proposed an optimal implementation to be one in which “work is not
duplicated”. He has given a formal definition in terms of a parallel reduction
step for a labelled version of the λ-calculus [Lév80, Lév88]. We do not take
up his notion of optimality since our aim is not to minimise the number of
some kind of reduction steps, but rather to minimise the overall runtime.
However, we do adopt his notion of parallel reduction.

Let L be any λ-expression. We define µπ(L) to be the minimum number
of parallel reduction steps required to reduce L to normal form (infinity if L
has no normal form).

We define the new input size parameter ν of the λ-expression L with
normal form N to be the size of L plus the size of N plus µπ(L) (ν = ∞ if
L has no normal form).

The philosophy behind this definition is as follows—We wish to put a
complexity measure on λ-expressions and to do this we must arrange the
definition of the input size parameter ν so that it conforms with the bounded
runtime principle; namely that there exists an implementation whose runtime
is bounded above by some recursive function of ν. (Recursive functions are
considered to be extended to map infinity to infinity.)

The size of L must appear in ν because if the input is already in normal
form, then this must be verified by any implementation. In general, this
must take time proportional to the size of L.

A measurement of the length of some sort of canonical reduction chain
to normal form must be included in ν because otherwise expressions with no
normal form constitute a family of inputs in conflict with the bounded run-

8

time principle. Lambda-expressions defining arbitrarily complex functions
will also give violations of the bounded runtime principle if the input size
parameter does not involve such a measure of reduction. We choose µπ as
this measure. Some other candidates that spring to mind are the minimum
number of β-reductions to reach normal form, µβ, or the length of the nor-
mal order reduction sequence to normal form, lnormal. (We ignore η reduction
here; our justification stems from corollary 15.1.6 and the first part of the
proof of corollary 15.1.5 in [Bar81].)

Finally, the length of the normal form N should be present since there are
many families of λ-expressions with the property that the size of the normal
form is exponential in the number of reduction steps to normal form. (This
is analogous to an algorithm whose output size is exponential—the runtime
is exponential for trivial reasons.) Thus the absence of the size of N would
automatically imply an exponential lower bound on all implementations: we
would like a definition that does not impose such trivial limitations.

These three arguments justify most of the definition of ν, excepting the
choice of µπ as a measurement of reduction chain length.

Of the two other obvious candidates given above (µβ and lnormal), lnormal is
not remotely optimal for some λ-expressions. Later in the paper (proposition
3) we give an example of a family of λ-expressions for which applicative order
gives the minimum length reduction chain to normal form. For this family,
Normal order reduction gives exponentially longer chains to normal form.
Thus, measuring the complexity of an implementation using lnormal can give
unrealistically optimistic assessments. For this reason, we rule out lnormal.

We choose µπ rather than µβ for a number of reasons. First, it is known
that µπ is always less than or equal to µβ. Second, an optimal strategy
is known for parallel reductions—normal order [Lév80], whereas none such
is known for the optimal β-reduction sequence. Thus, by using µπ we get
a harsher measure of complexity; however, this is nevertheless consistent
with the bounded runtime principle: a naive simulation of the normal order
parallel reduction sequence to normal form has a runtime that is bounded
by a recursive function of ν, as the reader may verify.

Furthermore µπ and µβ may be significantly different. Until recently we
knew of no λ-expression for which they differ by more than a factor of three.
However, in the second part of the paper, we give an infinite family of λ-
expressions which seems to have the property that µβ is significantly greater
than µπ. In particular, the third member of the family has µβ greater than

9

five times µπ. We conjecture for this family that µβ is not bounded by
any constant multiple of µπ. Whether µβ can be as much as exponentiallly
different from µπ, we do not know, but we think this may well be so.

The interesting positive factor about using parallel reductions instead of
β-reductions is that parallel reduction was defined as a kind of improved
β-reduction in which work was not duplicated (in the sense of doing several
reductions instead of one because of copying of redices). To hope for an
implementation of the λ-calculus of low (say polynomial νO(1)) complexity,
is therefore to take an optimistic view that perhaps the duplication of work
that sometimes seems unavoidable in ordinary β-reduction is unnecessary in
a general implementation.

Thus we optimistically adopt µπ, whilst not being dogmatic in our choice.
Should it transpire that all implementations must have very high complexity
under this definition of input size ν, then it may be useful to change to a larger
notion of input size ν. However, such a result would in itself be a great step
forward in our understanding of the inherent complexity of implementations
of the λ-calculus, and would seem to justify an initial choice of µπ.

The Complexity of an Implementation

Now that we have defined the input size parameter ν, it remains to define
the complexity of an implementation I, in the obvious way. Informally, the
complexity of I is just the time taken by I to compute the normal form
of a λ-expression, expressed as a function of ν. However, as in everyday
analysis of algorithms, this conceals the important choice of whether we take
worst-case or some sort of average-case complexity to be the fundamental
measure.

Just as in the usual setting, a problem with average-case complexity is
the question of which probability distribution one should use over inputs of
a given size. This problem is particularly pronounced in the case of imple-
mentations of the λ-calculus, because it may be important to focus on large
sub-classes of expressions. For example, the kind of arguments given in the
section on philosophical considerations, as to how various features of some
functional programming language may be efficiently encoded in the pure λ-
calculus, would certainly lead to a bizarrely biased collection of λ-expressions,
depending very much upon the features of that language. Merely choosing

10

λ-expressions of the form “program” applied to “input” would also bias the
distribution. Thus naive assumptions such as taking the uniform distribution
over λ-expressions with a given ν, are likely to be meaningless.

For that reason, we take the worst-case complexity as the canonical mea-
sure of the complexity of an implementation of the λ-calculus.

Having made the choice to use the worst-case complexity, we then secure
the benefit that if the implementation I has been proven to have some com-
plexity as a function of ν then there are no “bad” families of inputs that
violate this bound—we are absolutely assured that whatever we use the λ-
calculus for, in whatever encoding, we will obtain the guaranteed perfor-
mance.

In particular, suppose we have a λ-expression consisting of a “program”
applied to an “input” (perhaps encoded as a binary list), where the input
is of size n. If we now obtain the normal form of this expression using
the implementation I, then the worst case complexity of I provides for a
relationship between the conventional complexity expressed as a function of
n and the complexity of the implementation.

11

Summary of Technical Results and Open

Problems

In the second part of the paper, we define formally the input size parameter
ν and the complexity of an implementation of the λ-calculus, in accordance
with the principles discussed above. We argue that any implementation must
have complexity Ω(ν). Furthermore, we give lower bounds of 2Ω(ν) on imple-
mentations based upon Turner combinators or Hughes super-combinators.

We give a λ-expression for which µβ is greater than five times µπ. This
λ-expression is the third member of an infinite family of λ-expressions for
which µβ seems significantly greater than µπ. However, we do not know the
values of µβ or µπ for all of this family. The problem of finding a bound for
µβ in terms of µπ in general (i.e. that holds for all λ-expressions) remains
unresolved.

Many other implementations of the λ-calculus exist that have not been
analysed. Furthermore, some authors ([Sta82, Lam90]) have claimed their
implementations optimal in the sense of Lévy, (i.e. that they do not simu-
late more than µπ reduction steps), However, optimality in this sense does
not impose significant constraints on the complexity of an implementation.
Hence, the existence of a polynomial time (νO(1)) implementation remains
an open question.

Preliminaries and Definitions

Definition 1

λ-expressions

The set of λ-expressions, Λ, is defined inductively,

• variables: xi ∈ Λ for all i ∈ {0, 1, 2, 3, . . .}

• abstraction: if l ∈ Λ then (λ.l) ∈ Λ

• application: if l1, l2 ∈ Λ then (l1l2) ∈ Λ

We adopt the convention that

l1l2l3 . . . ln = (. . . ((l1l2)l3) . . . ln)

12

and let I denote the identity expression:

I = (λ.x0)

In the original syntax for λ-expressions [Chu32], the variable bound in
the abstraction is written explicitly in the prefix, e.g. λx.l denotes that the
specific variable x is bound. However, we adopt deBruijn’s convention for
naming variables [deB72] according to which an occurrence of xi denotes the
variable that is bound at the (i + 1)’th enclosing abstraction (if such exists).
Hence it is unnecessary to specify a variable name in the abstraction prefix.

As an example consider the least fixed point operator,

λf.(λx.f(xx))(λx.f(xx))

as described with named variables. In deBruijn’s notation it is

λ.(λ.x1(x0x0))(λ.x1(x0x0)).

Both notations are described in [Bar81]. The deBruijn-syntax is often prefe-
rable for formal reasoning since name clashes do not arise (and α-reduction
becomes obsolete), whereas the syntax with names facilitates human percep-
tion. We use either of the two notations at our discretion.

Definition 2

β-reduction

• A redex is a λ-expression of the form (λ.l1)l2.

• A specific occurrence of a variable xi in the expression l is free if this
occurrence has less than i + 1 enclosing abstractions.

• A redex may be transformed in a β-reduction

(λ.l1)l2 →β l′1

where l′1 is formed from l1 by the following sequence of transformations.

1. All occurrences of the abstracted variable (i.e. those xi in l1 that
have precisely i surrounding abstractions in l1), are replaced by
specially modified versions of l2, viz. in the replacement of xi, free
variables of l2 have their indices incremented by i to reflect the
modified number of enclosing abstractions.

13

2. All other free occurrences of variables in l1 have their index decre-
mented by 1.

• Let l = l1[r] denote that the λ-expression l contains the subexpression
r in the context l1. If l = l1[r] and r →β r′ then l1[r]→β l1[r

′].

• The notation →∗β denotes the reflexive and transitive closure of →β.

• A λ-expression that contains no redex is in normal form. A normal
order reduction sequence l0 →β l1 →β . . . →β ln is one in which the
leftmost outermost redex is chosen for transformation at each step.

• A reduction sequence l0 →β l1 →β . . . →β ln, where ln is in normal
form, is complete and ln is the normal form of l0.

• The notation µβ(l) denotes the length of the shortest possible complete
reduction sequence starting from l. If no such sequence exists the value
is ∞.

By the Church Rosser property (simple proof in [Ros84]), the normal
form of a λ-expression is unique. If an expression l has a normal form then a
normal order reduction sequence will eventually lead to it, but not necessarily
in the smallest possible number of steps.

Definition 3

Parallel Reductions

• The set of labels L is defined in terms of an infinite set of atomic labels
A.

1. A ⊆ L

2. If u, v ∈ L then uv ∈ L

3. If u ∈ L then u ∈ L

• A labelled λ-expression has a label attached to every subexpression. In
an initial expression all labels are atomic and mutually different.

• In a β-reduction labels are modified according to the following rule
(M, N denote λ-expressions and u, v denote labels):

14

1. ((λx.M)uN)v →β (Mu[x→ Nu])v

Multiple labels are concatenated into a single label:

2. (Mu)v →Muv

(When using the named λ-calculus, we assume that renaming has oc-
curred so as to avoid name clashes).

• Given two labelled λ-expressions l0, l1 such that l0 is initial and l0 →∗β l1,
we say that two redices r1, r2 in l1 are equivalent with respect to l0
if they have identical labels, i.e. if r1 = ((λx.M1)

u1N1)
v1 and r2 =

((λy.M2)
u2N2)

v2 then u1 = u2

• A parallel reduction sequence l0 →π l1 →π . . . →π ln is a sequence in
which all redices in precisely one equivalence class with respect to l0
are reduced in a single step. (The ordinary reductions in this step are
done from the bottom up until no more reductions with the same label
are possible. This process always terminates.)

• A parallel reduction sequence is normal order if in each step the equi-
valence class being reduced contains the syntactically leftmost redex.

• A complete parallel reduction sequence ends with a λ-expression in
normal form.

• The notation µπ(l) denotes the length of the shortest complete parallel
reduction sequence starting from l. If no such sequence exists the value
is ∞.

Two equivalent redices may overlap syntactically, so the notion of a pa-
rallel reduction step must be defined with great care. See [Lév80] for details.
Our condensed definition is due to [Klo80] and described in [Fie90]. The
original investigation of parallel reduction is due to Lévy [Lév80, Lév88].

Intuitively a parallel reduction sequence avoids duplication of work. All
“identical” redices are reduced in a single step, where two redices are “identi-
cal” if for some regular reduction sequence they arise as copies (i.e. residuals)
of a single redex.

It is known that a complete parallel normal order reduction sequence for
a λ-expression l has length µπ(l) (i.e. normal order is an optimal strategy)
and µπ(l) ≤ µβ(l) for all λ-expressions l [Lév80].

15

Definition 4

The Complexity of an Implementation of the λ-calculus.

• A procedure I is an implementation of the λ-calculus if I on input a
λ-expression M outputs N , the normal form of M (if M has no normal
form then I need not halt).

• The input-size parameter ν : Λ→ N ∪ {∞} is given by

ν(M) = |M |+ µπ(M) + |N |

for all M ∈ Λ where N is the normal form of M , and the norm denotes
expression size. (If M has no normal form then ν(M) =∞).

• An implementation I of the λ-calculus has worst-case complexity T (ν)
if T : N→ N satisfies

T (ν) = Max{run time of I on input M | M ∈ Sν}

when Sν �= ∅ and where Sν = {M ∈ Λ|ν(M) = ν}.

• An implementation J of the λ-calculus of worst case complexity TJ (ν),
is an optimal implementation if for any implementation I of the λ-
calculus of worst case complexity TI(ν), we have TJ (ν) = O(TI(ν)).

The complexity of an implementation is well defined, since the sets Sν

are always finite, and there is a number ν0 such that for ν > ν0, Sν is always
non empty.

A Linear Lower Bound

Proposition 1

Any implementation of the λ-calculus has complexity Ω(ν).

Outline Proof: In the appendix we give an encoding of an arbitrary (impera-
tive) computation as a λ-expression with the property that µπ = µβ = lnormal,
and each step of the computation is simulated by a constant number of re-
ductions which in turn can be implemented in such a way as to take only

16

a bounded amount of work. Thus the existence of an implementation with
complexity o(ν) would immediately give rise to a method of speeding up an
arbitrary computation. QED.

Exponential Lower Bounds for some Combi-

nator-based Implementations

Proposition 2

Implementations of the λ-calculus based on Turner combinators or
Hughes super combinators are exponentially inefficient.

Proof: We shall exhibit a family of λ-expressions for which both a translation
to Turner combinators and a translation to Hughes super combinators results
in exponentially inefficient executions.

The construction will exploit the fact that a combinator may take more
than one argument, and the reduction rules for such a combinator can not be
used unless all arguments are present. In contrast the original λ-expression
can be partially evaluated, since each abstraction (λx.M) refers to only one
variable.

Define a family {An} of λ-expressions by

A0 = (λx.I)

An = (λh.(λw.wh(ww))An−1) for n ≥ 1

By induction we may prove that An →4n
β A0. The case n = 0 is obvious. The

induction step is proved by considering the following sequence of reductions:

An = (λh.(λw.wh(ww))An−1)

→4(n−1)
β (λh.(λw.wh(ww))A0)

→β (λh.A0h(A0A0))
→β (λh.I(A0A0))
→β (λh.A0A0)
→β (λh.I)
= A0

17

The exponentially bad behaviour will be obtained for the family {Bn}, where
Bn = AnI. We see that µβ(Bn) ≤ 4n + 1 using the result above. Hence
ν ≤ |Bn|+ µβ(Bn) + |I| = O(n)

Let us first consider a translation to Turner combinators. The following
8 combinators are used:

Sabc = ac(bc)
Kab = a
Ia = a
Babc = a(bc)
Cabc = acb
S′abcd = a(bd)(cd)
B′abcd = ab(cd)
C′abcd = a(bd)c

The combinators S and K alone suffice, but to avoid any critique saying
that the exponentially bad behaviour was caused by not using a specific
combinator, we include all 8 above.

The translation process is described by rewrite rules:

1. (λx.x)→ I
(λx.y)→ Ky for y being a variable y �= x.
(λx.MN)→ S(λx.M)(λx.N)

2. The following rules should be used whenever they apply to some in-
termediate expression generated by the rules in (1) (A, B are arbitrary
expressions):

S(KA)(KB)→ K(AB)
S(KA)I→ A
S(KA)B → BAB
SA(KB)→ CAB

3. Whenever an intermediate expression is formed to which one of the
following rules apply, use it: (A, B, K are arbitrary expressions)

S(BKA)B → S′KAB
B(KA)B → B′KAB
C(BKA)B → C′KAB

18

The rules (1) suffice, but the additional rules makes the generated code more
efficient for some λ-expressions.

The λ-expression {Bn} translates into combinator expressions {Bn} that
may be described recursively:

A0 = KI
An = C(C′S(CI)(SII))An−1 for n ≥ 1
Bn = AnI

Let S(n) denote the minimal number of combinator reduction steps that
brings Anx to its normal form I (independent of expression x). Clearly
S(0) = 1 and S(n) may be found by an inductive argument:

Anx = C(C′S(CI)(SII))An−1x
→ C′S(CI)(SII)xAn−1

→ S(CIx)(SII)An−1

→ CIxAn−1(SIIAn−1)
→ IAn−1x(SIIAn−1)
→ An−1x(SIIAn−1)
→S(n−1) I(SIIAn−1)
→ SIIAn−1

→ IAn−1(IAn−1)
→ An−1(IAn−1)
→S(n−1) I

The above reduction is optimal because we are forced to copy the complex
expression for An−1 since it is irreducible (though extensionally equivalent
to A0). From the recurrence relation S(n) = 2S(n − 1) + 8 and the initial
condition above, we obtain S(n) = 9 · 2n − 8, which also is the number of
steps necessary to reduce Bn. Hence we conclude that an implementation of
the λ-calculus based on Turner combinators has complexity 2Ω(ν).

Next we consider super combinators. Instead of using a fixed set of combi-
nators we customise “super” combinators to the specific λ-expression at hand.
In the translation process we first eliminate occurrences of free variables wit-
hin the body of a single λ-expression, by possibly binding more than one
variable to a single λ. In Bn the only affected subexpression is (λw.wh(ww))
that is converted into (λw′w.ww′(ww))h. For the translation of Bn the fol-
lowing n + 2 super combinators will be formed (L,M0,M1,M2, ..,Mn):

19

Lw′w = ww′(ww)
Mjh = LhMj−1 for 1 ≤ j ≤ n
M0h = I

Bn is translated into MnI.
Let T (n) denote the number of reduction steps needed to reduce Mnx to I

(independent of expression x). Clearly T (0) = 1. By an inductive argument,
we can find T (n):

Mnx → LxMn−1

→Mn−1x(Mn−1Mn−1)
→T (n−1) I(Mn−1Mn−1)
→Mn−1Mn−1

→T (n−1) I

The order of reduction applied here is optimal, since we are forced to copy the
irreducible combinator Mn−1. From the recurrence relation T (n) = 2T (n −
1)+3 and the initial condition above we obtain T (n) = 4·2n−3 and conclude
that also super combinators lead to an implementation of complexity 2Ω(ν).
QED.

The combinators S,K,I,B,C were first defined by Schönfinkel [Sch24]
under the names S,C,I,Z,T. Turner introduced the combinators S′,B′,C′

[Tur79a]. Functional abstraction (the translation process) is described in
[Sch24, CuFe58, Tur79a]. Application of combinators to functional program-
ming is described in [Tur79b]. Super combinators and their application to
functional programming are described in [Hug82, Hug84].

The exponential inefficiency relies in both cases on the existence of com-
binator expressions that are irreducible but extensionally equivalent to much
simpler expressions. One may extend combinatory logic with axioms for
extensionality [CuFe58, Bar81], but it seems unlikely that it would be com-
putationally feasible to deal with extensionality in any combinator-based
implementation of the λ-calculus such that this exponentially bad worst-case
behaviour is eliminated.

Previous critiques of combinator-based translation have focused on a
potentially quadratic size blow up in the translation from λ-expressions
to Turner combinators and devised techniques to avoid this phenomenon
[Bur82, Nos85, KeSl87]. Hughes proved that his super combinators have at

20

most a quasi-linear size blow up during translation from λ-expressions to
combinators [Hug84].

The Relation Between lnormal and µβ

Proposition 3

There is an infinite family {Ak} of λ-expressions such that
lnormal(Ak) = 2Ω(µβ(Ak))

.
Proof:
We construct the expressions Ak such that reduction in applicative order

is exponentially more efficient than reduction in normal order.
Let

Ak = (λx.xx)Ak−1

A0 = I

Let S(k) and T(k) denote the number of β-reduction steps needed to trans-
form Ak to normal form using normal and applicative order respectively. It
is easy to obtain the recurrence equations

S(k) = 2 · S(k − 1) + 2

S(0) = 0

T (k) = T (k − 1) + 2

T (0) = 0

that have solutions

S(k) = 2n+1 − 2

T (k) = 2 · n

from the which the proposition follows.

21

The Relation Between µβ and µπ

Proposition 4

There is a λ-expression A such that

µβ(A) > 5 · µπ(A)

Proof: It will suffice to take A to be A3 in the following infinite family of
λ-expressions:

A0 = I

A1 = (�(λh1.h1I))

A2 = (�(λh2.�(λh1.h2(h1I))))

and in general

An = (�(λhn.(...(�(λh1.hn(...(h1I)...)))...)))

where � = (λx.xx).
Computer simulations show the following values

n : 0 1 2 3
µπ(An) : 0 4 9 24
µβ(An) : 0 4 12 122

QED.
We have not been able to derive an explicit formula for µβ(An) or µπ(An),

but we conjecture that

lim
n→∞

µβ(An)

µπ(An)
=∞.

and there is possibly an exponential relationship of the kind exposed in pro-
position 3.

The expression A2 is one of the simplest λ-expressions for which µβ is
strictly larger than µπ. Slightly modified versions of A2 are presented in
[Lév88, Fie90, Lam90].

22

Conclusion

• We have defined a notion of complexity with which to measure the
efficiency of an implementation of the λ-calculus. In terms of this, the
complexity of a functional program can be given a precise meaning.

• We show that all implementations must have at least linear complexity.

• We have devised a technique (as exemplified in proposition 2) for
proving combinator based implementations inefficient.

Open Problems

• Does there exist an optimal implementation? If yes, what is its com-
plexity?

• What are the complexities of various well known implementations?
(e.g. graph reduction.)

• Does there exist an implementation of polynomial (νO(1)) or linear
(O(ν)) complexity?

• Is µβ bounded in terms of µπ?

23

Appendix

Naturally Embedding Imperative Computations in the
λ-calculus whilst Conserving Complexity

We want to show that a conventional machine model can be simulated in the
λ-calculus with only a constant amount of overhead.

Choice of Machine Model.

The most realistic choice would be a RAM. However, there are several vari-
ants differing in their basic instruction sets and their complexity measures.
It seems that the idea of a “unit-cost” RAM is flawed from a theoretical
standpoint, unless its arithmetic instruction set is restricted to contain only
the successor function, and no shift operations are permitted (see [Sch80] for
discussion and references). An alternative is the “logarithmic cost” RAM.
However, this model also seems flawed in that it seems unable to read and
store its input in linear time (see [Sch88] for details).

The Turing Machine (TM) is a more basic model, for which the choice of
a basic instruction set does not influence the complexity measure. However,
the TM is unrealistically slow, because its storage tapes only allow sequential
access. Schönhages Storage Modification Machine overcomes this deficiency,
but seems too powerful for our purposes. (See [HBTCS, ch.1] for a presen-
tation and discussion of all these models).

We introduce a strengthed version of the TM. Our version uses trees
rather than tapes as a storage medium. The tree TM has a complexity
measure that is closely related to the RAM measures. Yet, the tree TM has
the same simple instruction set as the conventional TM with tape storage.

Definition A.1

k-tree Turing Machine

A k-tree Turing machine consists of two i/o tapes, k work-trees and a finite
control. The input tape contains initially a string over {0,1} terminated by a
’#’ and one head positioned at the left end of the tape. The head may read
symbols and move to the right (and nothing else). The output tape is initially
empty and has one head positioned at the left end of the tape. The head may

24

write symbols {0,1,#} and move to the right, but nothing else. Both trees
are initially empty, i.e. all cells contain the blank symbol, and each tree has
one head that may both read and write in addition to moving stepwise in one
of the directions {1,2,3}. In each step, a k-tree Turing machine reads the cell
symbol under each of the (k +1) heads that are allowed to read, inspects the
state, and based upon the transition function, the control changes the state,
overwrites the symbol under each of the the (k + 1) heads that are allowed
to write and moves some (or none) of the (k + 2) heads in legal directions.

A k-tree Turing machine M is said to compute a function f : {0, 1}n →
{0, 1}m whenever the following holds:

For all (a1, a2, ..., an) in {0, 1}n, we have f(a1, a2, ..., an) = (b1, b2, ..., bm)
if and only if M started on an input tape ’a1, a2, ..., an, #’ stops with output
tape ’b1, b2, ..., bm, #’.

The complexity TM(n) of the machine M is the maximum number of steps
taken before halting on any input of length n. The size of a k-tree Turing
Machine with q states and s symbols is q · sk · log(q · sk).

It should be clear to the reader that the complexity measure defined by
the k-tree TM is very close to that defined by the various RAM models.
More or less all the models discussed above define complexities that differ
by at most a log factor. Informally, a k-tree TM may be used to simulate a
RAM by using one of its trees to simulate the RAM’s memory with binary
addressing in the intuitive way. A second tree may be used to assist with
bookkeeping and arithmetic instructions. Thus a similar complexity measure
to the logarithmic cost RAM is obtained, but at much greater simplicity. The
reasons for our choice of the k-tree TM will become apparent.

Definition A.2

Control and data structures encoded as λ-expressions

We give specific names to some very useful λ-expressions:

• The truth-values:

t = (λxy.x)

f = (λxy.y)

25

These are conveniently used for a conditional control expression

if c then L else N fi

to be coded as
(cLN)

We may also encode an iterative (recursive) control expression

Pl0

where
PL = if (cL) then (P (pL)) else (qL) fi

using the least fixed point combinator Y from definition 1:

P = Y (λf.λL.(cL)(f(pL))(qL))

• The data structure list

[] = (λx.I)

[M0, M1, . . . , Mn] = (λx.xM0[M1, . . . , Mn])

with the indexing functions

tln = (λx.xff . . . f)

hdn = (λx.(tlnx)t)

where the defining expression for tln contains n copies of f and

tlk[M0, M1, ..., Mn] = [Mk, ..., Mn]

hdk[M0, M1, ..., Mn] = [Mk]

• Unary integers.
un = hdn

26

Definition A.3

λ-programs

Let f : {0, 1}∗ → {0, 1}∗ be a partial function on Boolean strings. A λ-
expression N computes f when

1. if f(b1, ..., bn) = (c1, ..., cm) then L = (N [ub1 , ..., ubn , u2]) has the normal
form [uc1 , ..., ucm , u2].

2. if f(b1, ..., bn) is undefined then L has no normal form.

Proposition A.4

Efficient simulation of tree Turing Machines in the λ-calculus

For every 2-tree TM M there is a λ-expression N and a constant c such
that N and M compute identical functions and if M on input (b1, ..., bn)
halts after t steps then the λ-expression L = (N [ub1 , ..., ubn , u2]) satisfies that
µπ(L) = µβ(L) = lnormal(L) ≤ c · t.

Proof

For a given 2-tree Turing Machine M we construct a λ-program as follows.
Both symbols and states are represented by unary numbers such that for

symbols

1. u0 and u1 denote the bit-symbols 0 and 1.

2. u2 denote the tape end-marker #.

3. u3 denotes the blank symbol.

and for states

1. u0 denotes the initial state.

2. u1 denotes the unique halt state.

27

An instantaneous description of the 2-tree Turing Machine is kept as a list
of five elements

id = [state, tree1, tree2, tapei, tapeo]

One may regard a tree as having a root at the head position and being
directed away from this root, in which case each node in the tree has two
outgoing edges and one incoming edge except for the root that has three
outgoing edges and no incoming edges. Every subtree may be represented as
the symbol at the subtree-root combined with a subtree for each edge that
goes out of the root. For simplicity, we take a subtree for each incident edge:

tree = [t, symbol, tree1, tree2, tree3]

where in the case of an incoming edge, the corresponding tree is empty,
represented by

treee = [f , u3]

The empty tree is also used as a representation of unexplored subtrees that
have blank symbols at all nodes. The truth-value occurring as the first
element in the list representation of a tree is used to distinguish the empty
tree.

A tape is represented by a recursive list

tape = [symbol, tape]

that may be empty
tapee = [u2]

Too see how a single step of a computation on the 2-tree Turing Machine
may be simulated, we look at a representative example. Assume that in the
current id, we must make the following changes

1. The finite state control goes into state′.

2. symbol′1 is written under the head of tree1, which stays.

3. symbol′2 is written under the head of tree2, which moves one step in
direction 1.

4. The head of the input tape is moved one step (necessarily to the right).

28

5. symbol′ is written on the output tape (and the head is moved one step
to the right).

The following λ-expression will applied to an id reduce to a modified id as
prescribed above.

(λx.[state′,
[t, symbol′1, tl2(hd1 x)],
[t,

hd1(hd2(hd2 x)),
[t, symbol′2, treee, tl3(hd2 x)],
hd0(hd2(hd2 x)) tl3(hd2(hd2 x)) [treee, treee]

]
tl1(hd3 x),
[symbol′, hd4 x]

])

The most complicated part of the above expression is the modification of
tree2. It is here necessary to provide two alternative sub-actions according
to whether the subtree in direction 1 has been visited before or not. The
choice is made by the truth-valued expression hd0(hd2(hd2 x)).

The state and symbols under the heads in the present id determines which
action to take. All possible actions are therefore organised in a 4-dimensional
array transitiontable that is indexed by

1. state

2. symbol under head of tree1

3. symbol under head of tree2

4. symbol under input head

The simulation of one single transition step may thus be done by the following
λ-expression that updates its argument (an id) appropriately:

F = (λx.hd0(tl3x)(hd1(tl2x)(hd1(tl1x)(hd0x transitiontable)))x)

We are now in a position to describe the whole simulation. For control
purposes we define a constant expression

halt = [f , t, f , f , . . . , f]

29

with the property that ’ui halt’ reduces to t precisely when ui denotes the
halt state (The size of the expression for halt is proportional to the num-
ber of states in the machine M). Assume the λ-program G on argument
id reduces to the output tape eventually computed if id leads to a halting
configuration, and otherwise G does not reduce to a normal form. This G
may be characterised recursively: G = (λx.hd0x halt(hd4x)(G(F x))), i.e. if
the present configuration contains a halt state then the result consists in the
present output tape (hd4x), otherwise apply G to the result of yet another
iteration, G(F x). Hence G may be defined by

G = Y (λg.λx.hd0 x halt (hd4x) (g(F x))).

G gives the output tape in reverse order, and then we need a list reversal
function. Define first the constant expression

end = [f , f , t, f , f , . . . , f]

with the property that ’ui end’ reduces to t precisely when ui denotes the
tape end marker #. The reversal function is

Rev = (λz.Y (λh.λx.λy.hd0 y end x (h[hd0 y, x](tl1 y))) [u2] z)

i.e. Rev[ui1 , ui2 , . . . , uin , u2] reduces to [uin , uin−1 , . . . , ui1 , u2] where ij �= 2.
Define

id0 = (λx.[u0, [t, u3, treee, treee, treee], [t, u3, treee, treee, treee], x, [u2]])

which applied to an input tape [ub0 , . . . , ubn , u2] reduce to the initial id of the
2-tree Turing Machine. Finally define the λ-program

N = (λx.Rev(G(id0x)))

that computes the same function as the 2-tree Turing Machine M does.
It should be clear from the construction that the number of β-reduction

steps needed for the simulation of a single TM-step is bounded by a constant.
We find also that regular β-reduction in any order is as efficient as normal
order parallel reduction, essentially because a list indexing function forces
an order of reduction by creating only one redex at a given time. Where
more than one indexing function is enabled the corresponding reduction steps
are independent and may be done in any order. Hence µπ(L) = µβ(L) =
lnormal(L).

QED.

30

References

[Bar81] Barendregt, H. P., The Lambda Calculus. Its Syntax and Seman-
tics. North Holland, 1981.

[Bur82] Burton, F. W., A Linear Space Translation of Functional Pro-
grams to Turner Combinators. Information Processing Letters,
14 (1982), pp. 201-204.

[deB72] de Bruijn, N. G., Lambda Calculus Notation with Nameless
Dummies, a Tool for Automatic Formula Manipulation. Indag
Math, 34 (1972), pp. 381-392.

[Chu32] Church, A., A Set of Postulates for the Foundation of Logic.
Annals of Math. 33, 2nd series (1932), pp. 346-366.

[CuFe58] Curry, H. B. and Feys, R. Combinatory Logic, Vol. 1. North
Holland, 1958.

[Fie90] Field, J., On Laziness and Optimality in Lambda Interpreters:
Tools for Specification and Analysis. In [PoPL90], pp. 1-15.

[HBTCS] the Handbook of Theoretical Computer Science, vol A (ed. J. van
Leeuwen). Elsevier, Amsterdam, 1990.

[Hug82] Hughes, R. J. M., Super Combinators: A New Implementation
Method for Applicative Languages. In Proceedings of the 1982
ACM Symposium on Lisp and Functional Programming, pp.1-
10.

[Hug84] Hughes, R. J. M., The Design and Implementation of Programm-
ing Languages. Ph.D. Thesis, Oxford University, 1984. (PRG-40)

[KeSl87] Kennaway, J. R. and Sleep, M. R., Variable Abstraction in
O(n log(n)) Space. Information Processing Letters, 24 (1987),
pp. 343-349.

[Klo80] Klop, J. W., Combinatory Reduction Systems. Mathematical
Centre Tracts 127. Mathematisch Centrum, Amsterdam, 1980.

31

[Lam90] Lamping, J., An Algorithm for Optimal Lambda Calculus Re-
duction. In [PoPL90], pp. 16-30.

[Lév80] Lévy, Jean-Jacques, Optimal Reductions in the Lambda-
Calculus. In Seldon, J. P. and Hindley, J. R. (editors), To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Academic Press, 1980, pp. 159-191.

[Lév88] Lévy, Jean-Jacques, Sharing in the Evaluation of Lambda
Expressions. In Fuchi,K. and Kott,L. (editors), Programming of
Future Generation Computers II, North Holland, 1988, pp. 183-
189.

[Nos85] Noshita, K., Translation of Turner Combinators in O(n log(n))
Space. Information Processing Letters, 20 (1985), pp. 71-74.

[PoPL90] Proceedings of Seventeenth Annual ACM Symposium on Prin-
ciples of Programming Languages. ACM, New York, 1990.

[Rév88] Révész, G. E., Lambda-Calculus, Combinators and Functional
Programming. Cambridge University Press, 1988.

[Ros84] Rosser, J. B., Highlights of the History of the Lambda-Calculus.
Annals of the History of Computing 6 (1984), pp. 337-349.

[Sch24] Schönfinkel, M., Über die Bausteine der mathematischen Logik.
Matematische Annalen, 92 (1924), pp. 305-316.

[Sch80] Schönhage, A., Storage Modification Machines. SIAM Journal
on Computing 9 (1980), pp. 490-508.

[Sch88] Schönhage, A., A Nonlinear Lower Bound for Random-Access
Machines under Logarithmic Cost. Journal of the ACM 35
(1988), pp. 748-754.

[Sta82] Staples, J., Two-Level Expression Representation for Faster Eva-
luation. In Ehrig,H., Nagl,M. and Rozenberg,G. (editors), Proce-
edings from 2nd International workshop “Graph Grammars and
their Application to Computer Science”. Springer Verlag (LNCS
153), 1983, pp. 392-404.

32

[Tur79a] Turner, D. A., Another Algorithm for Bracket Abstraction. The
Journal of Symbolic Logic 44 (1979), pp. 267-270.

[Tur79b] Turner, D. A., New Implementation Techniques for Applicative
Languages. Software: Practice & Experience. 9 (1979), pp. 31-
49.

33

