
What is Type-Safe Code Reuse?

Jens Palsberg
palsberg@daimi.au.dk

Michael I Schwartzback
mis@daimi.au.dk

Department of Computer Science, Aarhus University
Ny Munkegade, DK-8000 Århus C, Denmark

December 1990

Abstract

Subclassing is reuse of class definitions. It is usually tied to the
use of class names, thus relying on the order in which the particular
classes in a program are created. This is a burden, however, both
when programming and in theoretical studies.

This paper presents a structural notion of subclassing for typed
languages. It is a direct abstraction of the Smalltalk interpreter
and the separate compilation technique of Modula. We argue that
it is the most general mechanism which can be supported by the im-
plementation while relying on the type-correctness of superclasses. In
short, it captures type-safe code reuse.

Keywords: structural subclassing, type-safety, separate compilation.

1 Introduction

Object-oriented programming strives to obtain reusable classes without in-
troducing significant compiling or linking overhead. A statically typed lan-
guage should thus offer general mechanisms for reusing classes without ever

1



requiring a compiler to re-type-check an already compiled class. Such mecha-
nisms allow type-safe code reuse. Instead of suggesting new mechanisms and
then later worry about implementation, we will analyze a particular imple-
mentation technique and from it derive the most general mechanism it can
support. The result is a structural subclassing mechanism which generalizes
inheritance.

In the following section we further motivate the notion of type-safe code
reuse and discuss our approach to obtain mechanisms for it. In section 3
we discuss a well-known way of implementing classes and inheritance, and
suggest a straightforward, inexpensive extension. In section 4 we show that
the way code is reused in the implementation can be abstracted into a general
subclass relation which captures type-safe code reuse. Finally, in section 5
we give an example.

2 Motivation

To be useful in practice, an object-oriented language should be statically
typed and allow separate compilation of classes. The languages C++ [12]
and Eiffel [7] come close to achieving this, though the type systems of
both have well-known loopholes. Similar to Modula [13] implementations,
a compiler for these languages needs only some symbol table information
about previously compiled classes. In particular, this is true of the superclass
of the class being compiled. Hence, the implementation of a subclass both
reuses the code of its superclass and relies on the type correctness of the
corresponding source code. We call this type-safe code reuse.

In the following we discuss our approach to type-safe code reuse, the concept
of structural subclassing, and a novel idea of class lookup.

2.1 Our approach

From a purist’s point of view, the loopholes in the C++ and Eiffel type
systems are unacceptable. In search for improvements, one can attempt to
alter one or more of the subclassing mechanism, the type system, and the
compilation technique. Previous research tends to suggest new type systems

2



for languages with inheritance, but to ignore compilation.

This paper takes a radically different approach: We analyze the Smalltalk
[4] interpreter together with a well-known technique for separate compilation
of Modula modules, extend them, and derive a general subclassing mecha-
nism for type-safe code reuse. This subclassing mechanism turns out to be
exactly the one which we earlier have shown to be spanned by inheritance
and type substitution (a new genericity mechanism) [9, 8]. Our analysis of
the compilation technique is based on the strong assumptions that types are
classes and that variables can only contain instances of the declared class.
In [10] we demonstrate that one can replace the type system by a more
general one where types are (possibly infinite) sets of classes and subtyping
is set inclusion, while retaining the general subclassing mechanism and the
compilation technique.

Figure 1: Hierarchies of terminals.

3



2.2 Structural subclassing

Subclassing is usually tied to the use of class names. This means that a class
is a subclass of only its ancestors in the explicitly created class hierarchy.
In other words, a superclass must be created before the subclass. For an
example, see figure 1A where Device must be created before Terminal-1 and
Terminal-2.

Suppose that a new type of terminal, Terminal-3, is going to be implemented.
An obvious possibility is to implement it as a subclass of Device, see figure 1B.
Pedersen [11] discusses the case where the programmer realizes that all three
terminals actually are ANSI terminals, i.e., they support the ANSI-defined
control sequences. He argues the need for a new mechanism, generalization,
which would allow the creation of a common superclass, TerminaI-ANSI, which
should contain all commonalities of the two existing classes. The programmer
can then write Terminal-3 as a subclass of Terminal-ANSI, see figure 1C. This is
of course not possible when only inheritance (tied to class names) is available,
because it forces the class hierarchy to be constructed in a strictly top-down
fashion.

Although the mechanism of generalization provides extra flexibility, it does
not allow us to create Terminal-ANSI as both a common superclass of the
three terminals and a subclass of Device, see figure 1D. We could of course
restructure the class hierarchy by hand, but this may be undesirable or even
practically impossible. Our conclusion is that tying subclassing (and gen-
eralization) to class names is too restrictive in practice. If subclassing was
structural, then Terminal-ANSI could be created using inheritance or gener-
alization, or it could even be written from scratch; the compiler will in any
case infer the relationship in figure 1D.

Also in theoretical studies a structural notion of subclassing would be prefer-
able. The point is that if all classes and subclass relations are given a pri-
ori—independently of the programmer’s definitions—then they are easier to
deal with mathematically. This idea lies behind almost all theories which
study types independently of particular programs, see for example [1, 2].

The result of describing a structural subclassing mechanism from existing
implementation techniques is a sound basis for theoretical investigations of
subclassing and subtyping in ob ject-oriented programming.

4



Figure 2: A development of ideas.

We have already reported some of these investigations in other papers [9,
8, 10], see the overview in figure 2. Originally, we simply defined the sub-
classing mechanism that we have now derived. It turned out to have many
nice mathematical properties and it lead us to discover a new genericity
mechanism (type substitution) which is a significant improvement compared
to parameterized classes. It also provided an appropriate setting for ana-
lyzing polymorphism and subtyping, leading to a unified type system for
object-oriented programming. All these results are now based on the well-
understood concepts of class, type correctness, and implementation—rather
than some random looking definition of subclassing.

We consider a core language for object-oriented programming with objects,
classes, instance variables, and methods. Possible source code in methods
include assignments, message passing, and the new expression for creating
instances of a class.

Our basic idea is that if the implementation of a class can be reused in the
implementation of another class, then the two classes should be subclass
related. This yields a structural notion of subclassing; it is not tied to the
use of class names.

2.3 Class lookup

Our extension of the standard implementation technique is based on the ob-
servation that just as reimplementation of methods can be implemented by
dynamic method lookup, then redefinition of the arguments of new expres-
sions can be implemented by an analogous class lookup. This requires, in a
naive implementation, an entry on run-time for each class occurring in a new

5



expression. Our reason for introducing this extra flexibility is the following.
When an instance of for example a list class is created by a method of the list
class itself, see figure 3, then the occurrence of list in new list is a recursive
one [3].

class list
. . .new list . . .

end list

Figure 3: A recursive list class.

In Eiffel, this recurrence can be made explicit by writing like Current in-
stead of list. Analogously, in Smalltalk, one can write self class. Now in
a subclass of list, say recordlist, what kind of instance should be created?
Meyer [7] argues that the programmer in some cases wants an instance of
list and in others an instance of recordlist. In Eiffel, a statement corre-
sponding to new list would cause the creation of the former, and new (like
Current) the latter. With our technique, an instance of recordlist will always
be created—the choice that will most often be appropriate. The generality of
Eiffel can be recovered, however, using opaque definitions [9], but this will
not concern us here. This means that in recordlist the recursive occurrence of
list is implicitly substituted by recordlist. But why, we ask, should only the
class in some but not all new expressions be substitutable? By introducing
class lookup, we remove this unpleasing asymmetry. The notion of virtual
class in Beta [5, 6] is actually implemented by a variation of class lookup.

Let us now move on to a description of how to implement classes, inheritance,
and instance creation.

3 Code Reuse

We will describe interpreters for three languages of increasing complexity.
The first involves only classes and objects, and its implementation is essen-
tially that of separately compiled modules in Modula. The second lan-
guage introduces inheritance which is implemented as in the Smalltalk
interpreter, except that we retain separate compilation. The third language

6



extends this with the possibility of redefining the arguments of new expres-
sions. This is implemented using class lookup which is analogous to method
lookup. Throughout, we focus solely on those concepts that have impact on
the structural subclassing mechanism which we derive in a later section.

3.1 Classes

Classes group together declarations of variables and methods. An instance
of a class is created by allocating space for the variables; the code for the
methods is only generated once. The compiler uses a standard symbol table
containing names and types of variables and procedure headers. On run-
time three structures are present: The code space which implements all the
methods, the object memory which contains the objects, and the stack which
contains activation records for active methods. An object is a record of
instance variables, each of which contains either nil or a pointer to an object
in the object memory. The situation is illustrated in figure 4.

Figure 4: Implementation of classes and objects.

To present the workings of the interpreter, we shall sketch the code to be
executed for two language constructs: message sends and object creations.
A message send of the form x.m(a1, . . . , ak) generates the following code:

7



push a1
...
push ak

call address(m)

Notice that the compiler can statically determine the address of the method,
since the class of the receiver x is known. The code for the object creation
new C is:

allocate(nil, . . . , nil)

with one argument for each instance variable in C. This operation returns
an object pointer to a record with fields initialized by the arguments. Again,
the number of instance variables is statically known by the compiler.

3.2 Inheritance

The concept of inheritance allows the construction of subclasses by adding
variables and methods, and by replacing method bodies. On run-time is
introduced an important new structure: the class table, which for each class
C describes its superclass, its number of instance variables, and its method
dictionary associating code addresses to method names. At the same time
an object record is extended to contain the name of its class (in the form
of a class pointer). The situation is illustrated in figure 5. Also the symbol
table is slightly changed. Analogously to how the class table is organized, all
entries for classes contain the name of its superclass.

The activation record for a message send will now contain the receiver; it can
be thought of as an implicit actual parameter and will be accessible through
the metavariable self. The code for a message send is now:

push (x)
push a1
...
push ak

call M-lookup(class(x), m)

8



Figure 5: Implementation with inheritance.

where the method lookup is definde as follows

M-lookup(q,m) =

 message-not-understood if q = nil
add if method(q, m) = add 6= ?
M-lookup(super(q),m) otherwise

The code for object creation comes in two varieties. For non-recursive occur-
rences, such as new C, we generate the code:

allocate(C, nil, . . . , nil)

which just includes the class in the object record. For rexursive occurrences,
we must generate the code:

allocate(class(self), nil, . . . , nil)

with (class(self)) nil-arguments.

9



3.3 Object creation

We now depart from the standard interpreters by allowing a subclass to
modify the classes that are used for object creation. For each occurrence a
of a new expression we introduce an instantiator. The class description now
contains an instantiator dictionary association classes to the instantiators.
Finally, we introduce instantiator lookup analogously to method lookup. The
situation is illustrated in figure 6.

Figure 6: Implementation with inheritance and instantiators.

The code for a nonrecursive object creation, such as new z where z is now an
instantiator, is

C← I-lookup(class(self))),z)
allocate(C, nil, . . . , nil)

with size C nil-arguments. The instantiator lookup is defined as follows:

10



I-lookup(q,z) =

 instantiator-not-found if q = nil
C if instantiator(q, z) = C 6= ?
I-lookup(super(q), z) otherwise

The code for recursive occurrences is the same as before.

4 Type-Safe Code Reuse

The separate compilation of a class C yields an extension of the symbol table,
the class table, and the code space. A triple such as

(symbol table, class table, code space)

we will call a context and usually denote by the symbol Θ. Thus, we can
view the compilation process as a mapping from contexts to contexts. Notice
that since we want the usual notion of separate compilation, only the symbol
table and the class table can be inspected during the compilation of a new
class.

We assume that the compilation ensures that the class is type-correct, which
includes the usual syntactic checks as well as early checks and equality checks.
For every message send of the form x.m(. . . ) an early check requires that a
method m with the appropriate number of parameters is implemented in the
declared type of x. For every assignment of the form x:=y, and similarly for
parameter passings, an equality check requires that the declared types of x
and y are equal.

A context completely describes an implementation of a collection of classes.
Obviously, there are many ways of achieving the same result, depending
on how the class hierarchy is organized. Thus, we can introduce a notion
of equivalence of contexts, Θ1 ≈ Θ2 , whenever the two respond alike to
every request of the form size, M-lookup, and I-lookup described in the
previous section. The difference between two equivalent contexts is the degree
to which the possibilities for code reuse have been exploited.

These possibilities can be expressed in terms of extensions of contexts. If C is
a class defined in a context Θ, then a C-extension of Θ is just the information
required to construct a new subclass in the class hierarchy. Hence, it is again

11



a triple consisting of a symbol table, a class table, and a code space. The
only difference between an extension and a context is that not all super-
pointers need to be defined in the former, whereas the latter is completely
self-contained. This is illustrated further in figure 8 in section 5.

4.1 General Subclassing

A class C2 is said to be a Θ-subclass of the class C1 when they are both defined
in Θ and C1 occurs in the super-chain of C2. This is a concrete notion
of subclassing. We can give another notion which captures the potential
subclass relations.

Consider the source code of two classes C1 and C2. Whether they are in a
subclass relation or not depends on Θ, as follows.

C1 �Θ C2

m
∃ a C1-extension E such that the result of
• compiling C1 in Θ and then extending with E; and
• compiling C2 in θ
are equivalent

This definition clearly expresses that C2 could be implemented as a subclass
of C1. It is not the full story, however.

Because of our adherence to separate compilation, the extension above should
be insensitive to changes in the implementation of methods in C1.

Let us call C and E compatible in Θ if compiling C in Θ and extending with
E is equivalent to the compilation of some other class in Θ. In the definition
of a �Θ above we will only allow extensions that are compatible with all
classes that have the same symbol table as C1.

This definition is not quite what we want, since it relies very heavily on
details of the implementation and programmer-defined names. We want a
more abstract, structural notion of subclassing. To be able to define a such,
let us introduce a slight abstraction of the source code of a class.

12



4.2 Classes as Trees

We shall represent a class as an ordered, node-labeled tree. Given a class
name C and a context Θ, we can reconstruct the untyped code of its imple-
mentation, by short-circuiting the super-chains and collecting all relevant
information. This code will be the label associated with the root of the tree.
In place of each occurrence of a class name we supply the tree correspond-
ing to that class. This will in general yield an infinite tree, due to recursion;
however, since Θ is always finite, the tree will be regular, i.e., it will only have
finitely many different subtrees. We shall denote this tree by treeΘ(C).

We can now lift the subclass relation to trees, as follows.

T1 � T2

m
∃ Θ, C1, C2: C1 �Θ C2 ∧

treeΘ(C1) = T1∧ treeΘ(C2) = T2

It follows directly from this definition that

C1 �Θ C2

m
treeΘ(C1)� treeΘ(C2)

Note also that we now have a structural equivalence on classes defined as
equality of the corresponding trees with respect to some Θ.

4.3 Structural Subclassing

Although the notion of a class has been made more abstract, by the rep-
resentation as a tree, the subclass relation is still explicit about contexts.
However, we can phrase the � relation in a pure tree terminology. Let us
call the above definition of � for �IMPL, since it relates directly to the im-
plementation. The alternative definition will be called �TREE and is given
below.

13



We first need to define the notion of the generator of a tree. It is obtained by
replacing all maximal recursive occurrences of the tree in itself by the special
label 3. If T is a tree, then gen(T) is its generator—another tree.

We also need a bit of notation. A tree address is simply an indication of a
path from the root to a subtree. We shall write α ∈ T when α is a valid tree
address in T. In that case T ↓ α denotes the corresponding subtree, and T[α]
denotes the label in the root of that subtree.

We can now define

T1 �TREE T2

m
∀α ∈ T1 : gen(T1 ↓ α) �G gen(T1 ↓ α)

where �G is defined by

G1 �G G2

m
Monotonicity: ∀α ∈ G1 : G1[α] ≤ G2[α]
Stability: ∀α, β ∈ G1 : G1 ↓ α = G1 ↓ β ⇒ G2 ↓ α = G2 ↓ β

The essence of �G is that code can only be extended, and equal classes must
remain equal.

This definition contains no mention of implementations; nevertheless, we can
show that �IMPL = �TREE. Thus, it does satisfy our requirements of being
an independent, structural subclass relation that is at the same time deeply
rooted in implementation practices. The above definition of � is the basis of
the papers [9, 8, 10].

4.4 Formalities

We can sketch a demonstration of the above equality in the form of two
inclusions. The inclusion �TREE ⊆ �IMPL:
Assume that T1 �TREE T2. We must construct Θ, C1, C2 with the appropriate
properties. We shall in fact provide an inductive method for doing this. The
induction will proceed in the number of different subtrees in the Ti’s; this is

14



a finite number since the trees are regular. If they have no subtrees, then
their implementation is trivial. Otherwise, we first compute the generators
of the two trees, i.e., we discount their recursive occurrences. The remaining
subtrees form a strictly smaller set, since two trees have been removed. To
every remaining immediate subtree of T1 there is a corresponding �TREE-
related immediate subtree of T2. By induction hypothesis, we can implement
all of these subtrees in some context. The extraneous subtrees of T2 can be
trivially implemented leading to the final, larger context Θ. We must now
show how to extend this to T1 and T2. The code Ci for Ti is essentially a
named version of the root label, with class names from Θ in place of subtrees,
and the name of the code itself in place of the recursive 3-occurrences. It
should be clear that �TREE(Ci) = Ti. The extension of C1 that will be
equivalent to C2 is clearly a class table with C1 as super, with size equal to
the number of instance variables in C2, with a method dictionary reflecting
the extra code, and with an instantiator dictionary reflecting the substitution
of classes from C1 to C2. From the previous construction we see that the
instantiator dictionary only substitutes Θ-subclasses. From monotonicity
and stability it follows that this extension is compatible with all modifications
of C1 that do not change the symbol table. The result follows.

The inclusion �IMPL ⊆ �TREE:
We now look at the situation where C1 �Θ C2, for some Θ, C1, C2. We
must show that the associated trees are �TREE-related. Again, we proceed
by induction, this time in the size of the implementation of the Ci’s. We
will automatically have monotonicity of the root labels. Hence, if neither Ci

refers to other classes, then their associated trees are trivially �TREE-related.
Otherwise, we consider any class name N1 mentioned in C1, which is not a
recursive occurrence, and the corresponding class name N2 mentioned in C2.
By construction, N2 is a Θ-subclass of N1; hence, by induction hypothesis
we conclude that their associated trees are �TREE related. Now, consider
the generators of the trees associated with C1 and C2. Monotonicity will
always hold, since we can only extend, but we must establish that stability
will necessarily hold. This comes from the requirement that the extension
must be compatible with all modifications of C1 that leave the symbol table
unchanged: Assume that that two tree addresses indicate the same class in
the tree of C1. If this is a recursive occurrence, then the two classes in C2

will automatically also be equal, since they will all refer to class(self).
Otherwise, we claim that the instantiator dictionary in the class table of

15



the extension must let the two classes remain equal. If not, then we could
construct a modification of C1 in which the two classes were types of vari-
ables that were the arguments of a legal assignment. In C2 this assignment
would become illegal, so the extension would not be compatible with the
modification. The result follows.

5 Example

To illustrate the construction of the structural subclassing mechanism, we
examine an example program, see figure 7.

class C
var x: integer
method p(arg: boolean)

. . . new object

. . . new C . . .
end C
class D

var x: integer
method p(arg: boolean)

. . . new boolean

. . . new D . . .
var y: integer
method q

. . .
end D

Figure 7: An example program.

Class D differs from C in having other arguments to the two occurrences of
new and in declaring an extra variable and an extra method. This can be
made explicit in the implementation by using C as the super part in the
entries for D and then only specifying the differences from C, see figure 8.

This includes specifying that one of the instantiators is new boolean. It does
not, however, include any specification of the replacement of new C by new
D. This is because the occurrence of C is a recursive one; hence, the code for

16



Symbol Table: Class Table: Code Space:

C
 inherits object

var x : integer
methodp(arg : boolean)

 C


object
1
p : 780
z : object


780: // code for p

. . .
new z
. . .
new class(self)
. . .

D
 inherits C

var y : integer
methodq

 D


C
2
q : 850
z : object


850: // code for q

. . .

Figure 8: An implementation of the example program.

it is new class(self). Likewise, the occurrence of D is recursive; thus, we use
the same code as before.

The incremental implementation shows that C and D should be subclass
related. Indeed, we can specify D as explicitly being a subclass of C by
using the standard syntax for inheritance together with the syntax for type
substitution that we introduced in [9], see figure 9.

class D inherits C[object ← boolean]
var y: integer
method q

. . .
end D

Figure 9: Class D as an explicit subclass of C.

The generators for C and D are given in figure 10. They can be obtained
from the implementation as follows. Consider first class C. In the symbol
table we find that its super entry contains object so this yields the empty
code sequence. Next, we extend (!) that by introducing the declarations
listed in the symbol table entry for C. Note that occurrences of class names
become subtrees. Finally, we extend with the code for p using class table

17



Figure 10: The generators for the example classes.

information about instantiators. Occurrences of new class(self) become new
together with a 3-subtree.

Next, consider class D. Its super entry contains C, so this yields the tree
from before. Using the symbol table entry for D we can then extend it by
introducing two more declarations. The only pitfall is the instantiator z in
the class table. It makes us find the occurrence of z in the code, find the
corresponding place in the tree, and substitute the subtree object by boolean.

To see that the two constructed generators are �G-related, notice that sub-
trees only get larger, and that stability trivially holds because no two subtrees
in the generator for C are equal. Hence, the trees corresponding to the classes
C and D are �-related.

6 Conclusion

We have analyzed a particular implementation technique for typed object-
oriented languages, which allows separate compilation and generalizes the
usual Smalltalk interpreter. From this we obtained the relation �Θ which
captured the maximal potential for type-safe code reuse. Finally, we ab-

18



stracted classes into trees, and defined �, which is an equivalent, structural
version of �Θ. Structural subclassing provides more flexibility than sub-
classing tied to class names; it is also an appropriate basis for theoretical
studies.

The implementation we have described cannot immediately cope with mu-
tually recursive classes, but it can fairly easily be extended to deal with
this complication—at a small cost on run-time. The theory of trees and �

can, however, handle such an extension without any changes at all. This is
because 3 can occur in any leaf and not just immediately below the root.

References

[1] L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. Mac-
Queen, and Gordon Plotkin, editors, Semantics of Data Types, pages
51–68. Springer-Verlag (LNCS 173), 1984.

[2] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys, 17(4), December 1985.

[3] William Cook, Walter Hill, and Peter Canning. Inheritance is not sub-
typing. In Seventeenth Symposium on Principles of Programming Lan-
guages. ACM Press, January 1990.

[4] A. Goldberg and D. Robson. Smalltalk-80—The Language and its Im-
plementation. Addison- Wesley, 1983.

[5] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, and K. Nygaard.
The BETA programming language. In B. Shriver and P. Wegner, editors,
Research Directions in Object-Oriented Programming, pages 7–48. MIT
Press, 1987.

[6] Ole L. Madsen and Birger Møller-Pedersen. Virtual classes: A power-
ful mechanism in object-oriented programming. In Proc. OOPSLA ’89,
Fourth Annual Conference on Object-Oriented Programming Systems,
Languages and Applications. ACM, 1989.

[7] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

19



[8] Jens Palsberg and Michael I. Schwartzbach, Genericity And Inheritance.
Computer Science Department, Aarhus University. PB-318, 1990.

[9] Jens Palsberg and Michael I. Schwartzbach. Type substitution for
object-oriented programming. In Proc. OOPSLA/ECOOP’90, ACM
SIGPLAN Fifth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications; European Conference on Object-
Oriented Programming, 1990.

[10] Jens Palsberg and Michael I. Schwartzbach. A unified type system for
object-oriented programming. Computer Science Department, Aarhus
University. Submitted for publication, 1990.

[11] Claus H. Pedersen. Extending ordinary inheritance schemes to include
generalization. In Proc. OOPSLA’89, ACM SIGPLAN Fourth Annual
Conference on Object-Oriented Programming Systems, Languages and
Applications, 1989.

[12] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
1986.

[13] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, New York,
1985.

20


