ISSN 0105-8517

Coloured Petri Nets:
A High Level Language for
System Design and Analysis

Kurt Jensen

DAIMI PB - 338
November 1990

COMPUTER SCIENCE DEPARTMENT == Hinnl T
AARHUS UNIVERSITY] ::I:fl
Ny Munkegade, Building 540 Jl_ﬁ— T T
DK-8000 Aarhus C, Denmark -y E | T

This paper is also published in: G. Rozenberg (Ed.): Advances in Petri Nets 1990,
Lecture Notes in Computer Science, Springer-Verlag.

Coloured Petri Nets: A High Level Language
for System Design and Analysis

Kurt Jensen
Computer Science Department, Aarhus University
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Phone: +45 86 12 71 88
Telefax: +45 86 13 57 25
Telex: 64767 aausci dk
E-mail: kjensen@daimi.aau.dk

Abstract

This paper describes how Coloured Petri Nets (CP-nets) have been developed — from
being a promising theoretical model to being a full-fledged language for the design,
specification, simulation, validation and implementation of large software systems (and
other systems in which human beings and/or computers communicate by means of some
more or less formal rules).

First CP-nets are introduced by means of a small example and a formal definition of
their structure and behaviour is presented. Then we describe how to extend CP-nets by
a set of hierarchy constructs (allowing a hierarchical CP-net to consist of many differ-
ent subnets, which are related to each other in a formal way). Next we describe how to
analyse CP-nets, how to support them by various computer tools, and we also describe
some typical applications. Finally, a number of future extensions are discussed (of the
net model and the supporting software).

The non-hierarchical CP-nets in the present paper are analogous to the CP-nets de-
fined in [35] and the High-level Petri Nets defined in [33]. In all three papers CP-nets
(and HL-nets) have two different representations: The expression representation uses
arc expressions and guards, while the function representation uses linear functions be-
tween multi-sets. Moreover, there are formal translations between the two representa-
tions (in both directions). In [33] and [35] we used the expression representation to de-
scribe systems, while we used the function representation for all the different kinds of
analysis. It has, however, turned out that it only is necessary to turn to functions when
we deal with invariant analysis, and this means that we now use the expression repre-
sentation for all purposes — except for the calculation of invariants. This change is im-
portant for the practical use of CP-nets — because it means that the function representa-
tion and the translations (which are a bit mathematically complex) no longer are parts
of the basic definition of CP-nets. Instead they are parts of the invariant method (which
anyway demands considerable mathematical skills).

The development of CP-nets has been supported by several grants from the Danish
National Science Research Council.

Contents
1. Informal Introduction to Non-Hierarchical CP-nets.........ccoceevviiviiiiiniinnnnnnn..
1.1 A simple example of a non-hierarchical CP-net............c.........o.... 3
1.2 Dynamic behaviour of non-hierarchical CP-nets.........c....ccoeeeenee. 7
2. Formal Definition of Non-Hierarchical CP-nets........ccocoeevviiiiiniiiiiiiinniininnnnnn..
2.1 Multi-sets and exXpressions........ceeeeeeeeneee. RN et enne a9
2.2 Definition of non-hierarchical CP-nets..........ccevviniiiiiiiiiiiinnnnnnn... 11
2.3 Dynamic behaviour of non-hierarchical CP-nets...........cccoceuunenn... 13
2.4 Some historical remarks about the development of CP-nets 16
3. Hierarchical CP-netS...cc.iiiiiiiiiiriiriieei e e et et ee e e e e s aans
3.1 Substitution of tranSitionsceuuveviiiiiiiiireiireireii et eeie e eennn 18
3.2 Fusion of Places..ccviuiiiiiiiiiiiiiiiiin et 22
3.3 PartIfIONS . cuuuiiiiieiiii ettt ettt et et e et e era e et e e e eaaaes 23
3.4 Formal definition of hierarchical CP-nets......ccccceevviiiniiniinnnnnnne. 24
3.5 Page, place, transition and arc INStANCEScuvevrrrvrenrinrenrennrenennnnns 26
3.6 Equivalent non-hierarchical CP-net...........ccooeeviiiiniiiiiiiiiiiinnnnnn. 27
3.7 Dynamic behaviour of hierarchical CP-netscccccceeeevnniannnnn. 29
4. ANalySiS OF CPoNETS ..eiiiiiiiiiii et et s aa e e s s eeaes
4.1 SIMULALION c.eiiitii e e e 30
4.2 OCCUITENCE ZraPhS..uuiiiiiri ittt ee e ei e aaeena e 31
4.3 Place and transition INVariants.....cc.eeeeeueeieeineineennenneeerneneeneennenns 33
4.4 Other analysis methodS.......oevuiiiiiiiiiiiiiiii e 35
S. Computer TOOIS fOr CP-MeIS. .ttt e ea e areeeaes
5.1 Why do we need computer tools for CP-nets?................. veeeeennns 36
5.2 CPN editor......... et e eareenans reereenaa e 37
5.3 Inscription language for CP-nets.........ccoovvvveevnnennnnen errrree et 44
5.4 Syntax CheCK cuuiiniiii i 48
5.5 CPN SIMUIALOT covniiniiiiiii e e e e e e 50
6. ApPlications Of CP NS .uuiiueiiiiiiieiiiie et ee e rreeee e e aeereeeieeeaaneeens
6.1 Communication ProtoCOl......c.cviiureiiiriiiieiieciineiieeie e et rreeeeenn 54
6.2 Hardware ChIP....oouiviiiiiiii et e e e 57
6.3 Radar surveillanceovevevriiiiiiiiniiiiiieiec e 61
6.4 Electronic funds transfer.........cooevviiiiiiiiiiiiie i, 65
6.5 Other application areas.....c.coveveeniiiiniiiiiniiiiinciir e 66
7. Future Plans for CP-netS ..oiiiuiiiiiiiii et
7.1 Extensions of the CPN editor and CPN simulator...................... 67
7.2 Additional CPN t0OIS cceuuiiiieiiiii e 68
T.3 CPN DOOK .ttt et e e e ae e e e e 70
8. COMCIUSIONIS 1ttt ettt et e et et e et e e e e e b e aaaanaanaenns
ACKNOWIEAZIMENLS ...ouiiiiiiiiiiiiiiiiiiie et

| 3 153 1518 (611 OO

3

1. Informal Introduction to Non-Hierarchical CP-nets

High-level nets, such as Coloured Petri Nets (CP-nets) and Predicate/Transition Nets
are now in widespread use for many different practical purposes.! The main reason for
the large success of these kinds of net models is that they — without loosing the possi-
bility of formal analysis — allow the modeller to make much more succinct and man-
ageable descriptions than can be produced by means of low-level nets (such as
Place/Transition Nets and Elementary Nets). In high-level nets the complexity of a
model can be divided between the net structure, the net inscriptions and the declara-
tions. This means that it is possible to handle the description of much larger and more
complex systems. It also means that we can describe simple data manipulation (such as
the addition of two integers) by means of arc expressions (such as x+y) — instead of
having to describe this by a complex set of places, transitions and arcs. The step from
low-level nets to high-level nets can be compared to the step from assembly languages
to modern programming languages with an elaborated type concept: In low-level nets
there is only one kind of token and this means that the state of a place is described by
an integer (and in many cases even by a boolean). In high-level nets each token can
carry a complex information (which e.g. may describe the entire state of a process or a
data base).2

However, looking at the history of high-level programming languages, it is obvious
that their success also to a very large degree depends upon issues that do not concern
typing. In particular, the development of subroutines and modules has played a key
role, because they have made it possible to divide a large description into smaller units
which can be investigated more or less independently of each other. In fact, the absence
of compositionality has been one of the main critiques raised against Petri net models.
To meet this critique hierarchical CP-nets have been developed. In this net model it is
possible to create a number of individual CP-nets, which then can be related to each
other in a formal way — i.e. in a way which has a well-defined behaviour and thus al-
lows formal analysis.

The remaining parts of this chapter contains an informal introduction to non-hierar-
chical CP-nets and their behaviour.

1.1 A simple example of a non-hierarchical CP-net

The non-hierarchical CP-net in Fig. 1 describes a system in which a number of pro-
cesses compete for some shared resources. As in all other kinds of Petri nets there is a
set of places (drawn as circles/ellipses) and a set of transitions (drawn as rectangles).
The places and their tokens represent states, while the transitions represent state
changes. However, each place may contain several tokens and each of these carries a
data value — which may be of arbitrarily complex type (e.g. a record where the first

A selection of references can be found in section 6.5.

2 We shall in this paper not use any more space to compare high-level and low-level Petri nets. The
reason is that we primarily are interested in the practical applications of Petri nets — and in this field
the superiority of high-level nets is now generally accepted. A more detailed comparison of high-level
and low-level nets can be found in [20] and [22].

field is a real, the second a text string, while the third is a list of integer pairs). The
data value which is attached to a given token is referred to as the token colour.

In Fig. 1 there are two kinds of processes: three g-processes start in state A and cy-
cle through five different states (A, B, C, D and E), while two p-processes start in state
B and cycle through four different states (B, C, D and E). Each of these five processes
is represented by a token — where the token colour is a pair such that the first element
tells whether the token represents a p-process or a g-process while the second element
is an integer telling how many full cycles that process has completed. In the initial
marking, there are three (q,0)-tokens at place A and two (p,0)-tokens at place B.

color U=withp | q; 3'(q.0) itx=q N
color | = int; p e then 1°(q,i+1)
color P = product U * [; . else empty
color E = with e; (x,i)
varx :U;
vari:l; T1 [x=q]
P
(x i if x=p Y
. ’ then 1°(p,i+1)
) casexol | else empty
re (R) e L2 1
E lg=>1% (x.)

if x=q then 1'e
else empty

E if|x=p then 1'e ()
else empty p
. © (X i)
2e (T) T4
E e (x.i)
case x of
p=>2e

lg=>1e

J

Figure 1. Non-hierarchical CP-net describing a simple resource allocation

There are three different kinds of resources: one r resource, three s resources and two
t resources (each resource is represented by an e-token, on R, S or T). The arc expres-
sions tell how many resources the different kinds of processes reserve/release. As an
example, “case x of p=>2'e | g=>1"¢” (at the arc from S to T2) tells that a p-process
needs two s resources in order to go from state B to C, while a g-process only needs
one.3 Analogously, “if x=q then 1"e else empty” (at the arc from T3 to R) tells that each

3 The operator * takes an integer n and a colour ¢ and it returns the multi-set that contains n appearances
of ¢ (and nothing else).

g-process releases an r resource when it goes from state C to D, while a p-process re-
leases none.# It should be noticed that the processes in this system neither consume nor
create tokens (during a full cycle the number of releases matches the number of reser-
vations). Now let us take a closer view of the CP-net in Fig. 1. It consists of three dif-
ferent parts: the net structure, the declarations and the net inscriptions.

The net structure is a directed graph with two kinds of nodes, places and transi-
tions, interconnected by arcs — in such a way that each arc connects two different
kinds of nodes (i.e. a place and a transition).5 In Fig. 1 the right hand part of the net
(describing how processes change between different states) is drawn with thick lines.
This distinguishes it from the rest of the net (describing how resources are reserved
and released). It should, however, be stressed that such graphical conventions have no
formal meaning. The only purpose is to make the CP-net more readable for human
beings.

The declarations in the upper left corner tell us that we in this simple example have
four colour sets, (U, I, P, and E) and two variables (x and i). The use of colour sets
in CP-nets is analogous to the use of types in programming languages: Each place has a
colour set attached to it and this means that each token residing on that place must have
a colour (i.e. attached information) which is a member of the colour set. Analogously
to types, the colour sets not only define the actual colours (which are members of the
colours sets), they also define the operations and functions which can be applied to the
colours. In this paper we shall define the colour sets using a syntax that is similar to the
way in which types are defined in most programming languages. It should be noticed
that a colour set definition often implicitly introduces new operators and functions (as
an example the declaration of a colour set of type integer introduces the ordinary addi-
tion, subtraction, and multiplication operators). In our present example, the colour set
U contains two elements (p and q) while the colour set I contains all integers.6 The
colour set P is the set of all pairs, where the first component is of type U while the sec-
ond is of type I. Finally, the colour set E only contains a single element — and this
means that the corresponding tokens carry no information (often we think of them as
being “ordinary” or “uncoloured” tokens).

Each net inscription is attached to a place, transition or arc. In Fig. 1 places have
three different kinds of inscriptions: names, colour sets and initialization ex-
pressions, transitions have two kinds of inscriptions: names and guards, while arcs
only have one kind of inscription: arc expressions. All net inscriptions are positioned
next to the corresponding net element — and to make it easy to distinguish between them
we write names in plain text, colour sets in italics, while initialization expressions are
underlined and guards are contained in square brackets.

Names have no formal meaning. They only serve as a mean of identification that
makes it possible for human beings and a computer systems to refer to the individual
places and transitions. Names can be omitted and one can use the same name for several
nodes (although this may create confusion). As explained above each place must have a

empty denotes the empty multi-set.

Such a graph is called a bipartite directed graph.

To be more precise, I only contains the integers in the interval MinInt..MaxInt — where MinInt and
MaxInt are determined by the implementation of the Integer data type. In general, each colour set is
demanded to be finite, although it (as I) may have very many elements.

colour set and this determines the kind of tokens which may reside on that place. The
initialization expression of a place must evaluate to a multi-set over the corresponding
colour set. Multi-sets are analogous to sets except that they may contain multiple ap-
pearances of the same element. In the case of CP-nets, this implies that two tokens on
the same place may have identical colours. By convention we omit initialization ex-
pressions which evaluate to the empty multi-set.

The guard of a transition is a boolean expression which must be fulfilled before the
transition can occur. By convention we omit guards which always evaluate to true. The
arc expression of an arc is an expression, and it may (as the guard) contain variables,
constants, functions and operations that are defined in the declarations (explicitly or
implicitly). When the variables of an arc expression are bound (i.e. replaced by colours
from the corresponding colour sets) the arc expression must evaluate to a colour (or a
multi-set of colours) that belong to the colour set attached to the place of the arc. When
the same variable appears more than once, in the guard/arc expressions of a single
transition, all these appearances must be bound to the same colour. In contrast to this
appearances, in the guard/arc expressions of different transitions, are totally indepen-
dent, and this means that they may be bound to different colours. As explained in the
sequel, a CP-net may have several other kinds of inscriptions (e.g. used to describe
hierarchical relationships and time delays).

color U =withp | g; fx=q N
color | = int; then 17(q,i+1)
color P = product U * 1; . else empty
color R=withr|s|t; (x,1)
varx :U;
vari:|; | [x=dl
(x,i)
et iy X |
" then 1°(p,i+1)
case x of else empty
p=>25 (i)
|q=>1's
P
if x=p then 1°t .
else empty (x.)
1r+3's+2t i x=q then 1°r
else empty
case x of
p=>2s+2't
|q=>2's+1t

Figure 2. A slightly different CP-net describing the same resource allocation

As mentioned above a CP-net consists of three different parts: the net structure, the
declarations and the net inscriptions. The complexity of a description is distributed
among these three parts and this can be done in many different ways. As an example,
each arc to or from a resource place could have had a very simple arc expression of the
form f(x), where the function f was defined in the declaration part. As another, and
perhaps more sensible example, we could have represented all resources by means of a
single place RES, as shown in Fig. 2. The + operator in the arc expressions denotes
addition of multi-sets. As an example, 2°s+1°t is the multi-set that contains two appear-
ances of s and one appearance of t:

1.2 Dynamic behaviour of non-hierarchical CP-nets

One of the most important properties of CP-nets (and other kinds of Petri nets) is that
they — in contrast to many other graphical description languages — have a well-defined
semantics which in an unambiguous way defines the behaviour of the system. The ideas
behind the semantics are very simple, as we shall demonstrate by means of Fig. 3
- which contains one of the transitions from Fig. 1.7

The transition has two variables (x and 1) and before we can consider an occurrence
of the transition these variables have to be bound to colours of the corresponding types
(i.e. elements of the colour sets U and I). This can be done in many different ways: One
possibility is to bind x to p and 1 to zero. Then we get: by = <x=p,i=0>. Another pos-
sibility is to bind x to q and i to 37. Then we get: by = <x=q,1=37>.

For each binding we can check whether the transition, with this binding, is en-
abled (in the current marking). This is done by evaluating the guard and all the input
arc expressions: In the present case the guard is trivial (a missing guard always evalu-
ates to true). For the binding by the two arc expressions evaluate to (p,0) and 2’e, re-
spectively. Thus we conclude that b; is enabled — because each of the input places con-
tains at least the tokens to which the corresponding arc expression evaluates (one
(p,0)-token on B and two e-tokens on S). For the binding b, the two arc expressions
evaluate to (q,37) and 1'e. Thus we conclude that by is not enabled (there is no
(q,37)-token on B). A transition can be executed in as many ways as the variables (in its
arc expressions and guard) can be bound. However, for a given state, it is usually only
a few of these bindings that are enabled.

P(B) @200
)

case x of
p=>2¢e T2

|q=>1‘e (X,i)
T on B

Figure 3. A transition from the resource allocation system

When a transition is enabled (for a certain binding) it may occur and it then removes
tokens from its input places and adds tokens to its output places. The number of re-

7 The inscriptions at the right hand side of the places indicate the current marking. The number of to-
kens are indicated in the small circle while the colours are described by the multi-set next to the circle.

moved/added tokens and the colours of these tokens are determined by the value of the
corresponding arc expressions (evaluated with respect to the binding in question). An
occurrence of the binding by removes a (p,0)-token from B, removes two e-tokens
from S and adds a (p,0)-token to C.8 The binding b, is not enabled and thus it cannot
occur.

A distribution of tokens (on the places) is called a marking. The initial marking
is the marking determined by evaluating the initialization expressions. A pair, where
the first element is a transition and the second element a binding of that transition, is
called an occurrence element. Now we can ask whether an occurrence element O is
enabled in a given marking M; — and when this is the case we can speak about the
marking Mj which is reached by the occurrence of O in M;j. It should be noticed that
several occurrence elements may be enabled in the same marking. In that case there are
two different possibilities: Either there are enough tokens (so that each occurrence
element can get its own share) or there too few tokens (so that several occurrence ele-
ments have to compete for the same input tokens). In the first case the occurrence ele-
ments are said to be concurrently enabled. They can occur in the same step and
they each remove their own input tokens and produce their own output tokens. In the
second case the occurrence elements are said to be in conflict with each other and they
cannot occur in the same step.

In the initial marking of Fig. 1 we observe that the occurrence element
O, = (T1,<x=q,i=0>) is concurrently enabled with O, = (T2,<x=p,i=0>). This means
that we can have a step where both O; and Oy occur. Such a step is denoted by the
multi-set 1°O; + 1°0O, and when it occurs a (q,0)-token is moved from A to B and a
(p,0)-token from B to C. Moreover, an e-token is removed from R and three e-tokens
from S. It should be noticed that the effect of the step 1°O1 + 1703 is the same as when
the two occurrence elements occur after each other in arbitrary order. This is an ex-
ample of a general property: Whenever an enabled step contains more than one occur-
rence element, it can (in any thinkable way) be divided into two or more steps, which
then are known to be able to occur after each other (in any thinkable order) and to-
gether have the same total effect as the original step.”

The above informal explanation of the occurrence rule, tells us how to understand
the behaviour of a CP-net — and it explains the intuition on which CP-nets build. It is,
however, very difficult (probably impossible) to make an informal explanation which
is complete and unambiguous, and thus it is extremely important that the intuition is
complemented by a more formal definition (which we shall present in chapter 2). It is
the formal definition that has formed the basis for the implementation of a CP-net
simulator, and it is also the formal definition that has made it possible to develop the
analysis methods by which it can be proved whether a given CP-net has certain proper-
ties (e.g. absence of dead-locks).

8 We often think of the (p,0)-token as being moved from B to C. However, in the formal definition of
CP-nets, the (p,0)-token added to C has no closer relationship to the (p,0)-token removed from B
than it has to the two e-tokens removed from S.

9 Without this property it is very difficult to construct occurrence graphs because it no longer is suffi-
cient to consider steps that correspond to single occurrence elements. It is, however, easy to violate
this property and this is in fact done by many of the ad hoc extensions which are presented in the
Petri net literature (e.g. the use of inhibitor arcs and some definitions of capacity).

Consider again the resource allocation system. It can easily be proved that this sys-
tem has no dead-lock.10 Now let us, in the initial marking, add an extra s resource (i.e.
an extra e-token on S). Obviously, this cannot lead to a dead-lock (dead-locks appear
when we have too few resource tokens and thus an extra resource token cannot cause a
dead-lock). Is this argumentation convincing? At a first glance: yes! However, the ar-
gument is wrong, and the extra s resource actually means that we can reach a dead-lock
(by letting the two p-processes advance to state D while the g-processes remain in state
A). Hopefully, this small exercise demonstrates that informal arguments about be-
havioural properties are dangerous — and this is our motivation for the development of
more formal analysis methods. We shall return to such methods in chapter 4.

2. Formal Definition of Non-Hierarchical CP-nets

The non-hierarchical CP-nets in the present paper are analogous to the CP-nets defined
in [35] — but not identical to them (for more details see the abstract).

2.1 Multi-sets and expressions

In this section we define multi-sets and introduce the notation which we use to talk
about expressions:

Definition 2.1: A multi-set m, over a non-empty and finite set S, is a function
me [S—N].11 The non-negative integer m(s)e N is the number of appearances of
the element s in the multi-set m.

We usually represent the multi-set m by a formal sum:

> m(s)s.

seS
By Sms we denote the set of all multi-sets over S. The non-negative integers
{m(s) | se S} are called the coefficients of the multi-set m, and m(s) is called the
coefficient of s. An element se S is said to belong to the multi-set m iff m(s) #0
and we then write se m. The empty multi-set is the multi-set in which all coeffi-
cients are zero, and it is denoted by @ (or by empty).12

As an example, consider the set S = {a,b,c,d,e} and the two multi-sets m; = a+2c+e,
and mj = a+2b+3c+e which both are members of Sys. As it can be seen, we usually
omit S-values which have a zero coefficient and we also omit coefficients which are
equal to one.!? For multi-sets we define the following operations:

10 This can e.g. be done by means of occurrence graphs or by means of place invariants.
11 N denotes the set of all non-negative integers while [A—B] denotes the set of all functions from A to

B.

12 To be precise there is an empty multi-set for each element set S. We shall, however, ignore this and
allow ourselves to speak about the empty multi-set — in a similar way as we speak about the empty set
and the empty list.

13 When the CPN tools described in chapter 5 was designed, it turned out to be convenient to insert an
explicit operator between the coefficients and the S-values and include coefficients which are equal to

10

Definition 2.2: Summation, scalar-multiplication, comparison, and mul-
tiplicity of multi-sets are defined in the following way, for all m, m;, mpe Sys and
nelN:

(1) mpy+mp = Z (mi(s) + ma(s)) s (summation).
seS
(i) n*m = Y (n'm(s))s (scalar-multiplication).
seS
(i) my#my = dseS: [mi(s) # my(s)] (comparison).
m; <mp = VseS: [m(s) £mp(s)] (the relations <, =, >, and = are
defined analogously to <).
(iv) |m] = Y m(s) (multiplicity).
seS
When m; £ my we also define subtraction:
(v) mp—m; = D (mp(s)-mi(s)) s (subtraction).
seS

It can be shown that the multi-set operations above have a number of nice properties.
As an example (Sums, +) 1s a commutative monoid.

For CP-nets, we use the terms variables and expressions in the same way as in typed
lambda-calculus and functional programming languages. This means that expressions
do not have side-effects and variables are bound to values (instead of being assigned
to). It also means that complex expression are built, from variables and simpler subex-
pressions, by means of functions and operations. To give the abstract definition of
CP-nets it is not necessary to fix the concrete syntax in which the modeller writes ex-
pressions, and thus we shall only assume that such a syntax exists (together with a well-
defined semantics) — making it possible in an unambiguous way to talk about:

« The type of a variable v — denoted by Type(v).
« The type of an expression expr — denoted by Type(expr).

« The set of variables in an expression expr — denoted by Var(expr). The set of vari-
ables only includes the free variables — i.e. those which are not bound internally in
the expression (e.g. by a local definition).

« A binding of a set of variables V = {v1,va,...,vn} — denoted by <vi=ci,va=Ca,...,
vp=cp>. It is demanded that cje Type(vi) for each variable vie V.14

» The value obtained by evaluating an expression expr in a binding b — denoted by
expr. It is demanded that Var(expr) is a subset of the variables of b, and the eval-
uation is performed by substituting each variable vie Var(expr) with the value
cie Type(vi) determined by the binding.

one. In this case we write mj=1"a+2 c+1 e and mp=1"a+2"b+3 c+1"e. This makes it easier to per-
form type checking (and it makes it easier to deal with multi-sets over integers, e.g. 3" 1+2°35+1°59).

14 For a type A we also use A to denote the set of elements in A, and we use ce A to denote that the
value ¢ is an element of A.

11

As an example, illustrating this notation, we may have:

Type(x) = Type(y) = S.

Var(2 * (x + 3y)) = {x,y}.

Type(2 * (x + 3y)) = Sms.

(2 * (x + 3y))<x=b,y=d> = 2°b+6"d.

2.2 Definition of non-hierarchical CP-nets

In this section we define non-hierarchical CP-nets as a many-tuple. It should, however
be understood, that the only purpose of this is to give a mathematically sound and
unambiguous definition of CP-nets and their semantics. Any concrete net — created by
a modeller - will always be specified in terms of a CP-graph (i.e. a diagram similar to
Fig. 1). In the following Bool is the boolean type (containing the elements
Bool = {False,True} and having the standard logic operations). Some motivation and
explanation of the individual parts of the definition is given immediately below the
definition:

Definition 2.3: A non-hierarchical CP-net is a tuple CPN = (£, P, T, A, N, C,
G, E, IN) satisfying the requirements below:
(i) X is a finite set of types, called colour sets. Each colour set must be finite and
non-empty.
(i1) P is a finite set of places.
(ii1) T is a finite set of transitions.
(iv) A is a finite set of arcs such that:
e PAT = PnA = TnA = 0.
(v) N is anode function. It is defined from A into PxT u T xP.
(vi) Cis a colour function. It is defined from P into X.
(vii) G is a guard function. It is defined from T into expressions such that:
e VteT: [Type(G(t)) = Bool A Type(Var(G(t))) c X].
(viii) E is an arc expression function. It is defined from A into expressions such
that:
» Vae A: [Type(E(a)) = C(p(a))ms ~ Type(Var(E(a))) c X]
where p(a) is the place of N(a).

(ix) 1IN is an initialization function. It is defined from P into expressions such that:
» VpeP: [Type(IN(p)) = C(p)mus ~ Var(IN(p)) = @].

(i) The set of colour sets determines the types, operations and functions that can be
used in the net inscriptions (i.e. arc expressions, guards, initialization expressions,
colour sets, etc.). If desired, the colour sets (and the corresponding operations and
functions) can be defined by means of a many-sorted sigma algebra (in the same way as
known from the theory of abstract data types). We demand all colour sets to be finite
- although they may have a very large cardinality (e.g. be equivalent to all the real
numbers which can be represented on a given computer). This restriction means that
the linear extension of a function Fe [A—Bus] to a function Fe [Ams—Bums] always is

12

known to be convergent. Such functions are used in the theory of place invariants and
transition invariants.

(ii) + (iii) + (iv) The places, transitions and arcs are described by three sets P, T
and A which are demanded to be finite and pairwise disjoint. In contrast to classical
Petri nets, we allow the net structure to be empty (i.e. P u T =). The reason is
pragmatic: It allows the user to define and syntax check a set of colour sets without
having to invent a dummy net structure.

(v) The node function maps each arc into a pair where the first element is the
source node and the second the destination node. The two nodes have to be of different
kind (i.e. one must be a place while the other is a transition). In contrast to classical
Petri nets, we allow a CP-net to have several arcs between the same ordered pair of
nodes (and thus we define A as a separate set and not as a subset of P xT U T x P). The
reason is pragmatic: We often have nets where each occurrence element moves exactly
one token along each of the surrounding arcs, and it is then awkward to be forced to
violate this convention in the cases where an occurrence element removes/adds two or
more tokens to/from the same place. It is of course easy to combine such multiple arcs
to a single arc by adding the corresponding arc expressions (which must be of the same
multi-set type). We also allow nodes to be isolated. Again the reason is pragmatic:
When we build computer tools for CP-nets we want to be able to check whether a dia-
gram is a CP-net (i.e. fulfils the definition above). There is, however, no conceptual
difference between an isolated node and a node where all the arc expressions of the
surrounding arcs always evaluate to the empty multi-set (and the latter is difficult to
detect in general, since arc expressions may be arbitrarily complex). It is of course
easy to exclude such degenerate nets when this is convenient for theoretical purposes.

(vi) The colour function C maps each place p into a set of possible token colours
C(p). Each token on p must have a colour that belongs to the type C(p).

(vii) The guard function G maps each transition t into an expression of type
boolean, i.e. a predicate. Moreover, all variables in G(t) must have types that belong to
3 15

(viii) The arc expression function E maps each arc @ into an expression which
must be of type C(p(a))ms. This means that each evaluation of the arc expression must
yield a multi-set over the colour set that is attached to the corresponding place. We
shall, as a shorthand, also allow an arc expression to be of type C(p(a)). In this case the
arc expression evaluates to a colour in C(p(a)) which we then consider to be a multi-set
with only one element.

(ix) The initialization function IN maps each place p into an expression which
must be of type C(p)ms — i.e. a multi-set over C(p). The expression is not allowed to
contain any variables. Analogously to (viii), we shall, as a shorthand, also allow an ini-
tial expression to be of type C(p).

As mentioned in the abstract, the “modern version” of CP-nets (presented in this pa-
per) uses the expression representation (defined above) — not only when a system is
being described, but also when it is being analysed. It is only during invariant analysis
that it may be adequate/necessary to translate the expression representation into a func-
tion representation.

15 For a set of variables Vars we use Type(Vars) to denote the set {Type(v) | ve Vars}.

13

In addition to the concepts introduced in Def. 2.3, we use X =P u T to denote the
set of all nodes, and we define the following functions:16

* se[A — X] maps each arc a into the source of a, i.e. the first component of N(a).

» de[A — X] maps each arc «a into the destination of a, i.e. the second component of
N(a).

* pe[A — P] maps each arc « into the place of N(a), i.e. that component of N(a)
which is a place.

* te[A — T] maps each arc «a into the transition of N(a), i.e. that component of N(a)
which is a transition.

e Ae[(PxT u TxP) - Ag]17 maps each ordered pair of nodes (x1,Xp) into the set of
connecting arcs, i.e. the arcs that have the first node as source and the second as

destination:
A(x1,x2) = {ae A | N(a) = (x1,x2)}.

« Ae[X — Ag]!8 maps each node x into the set of surrounding arcs, i.e. the arcs that

have x as source or destination:
A(x) ={aeAldx'eX: [N(a) = (x,x") v N(a) = (x",x)]}.

¢« Xe[X — Xg] maps each node x into the set of surrounding nodes, i.e. the nodes

that are connected with x by an arc:
X(x) = {x'eX I dae A: [N(a) = (x,x") v N(a)=(x",x)]}.

All the functions above can, in the usual way, be extended to take sets as input (then
they all return sets and thus all the function names are written with a capital letter).

2.3 Dynamic behaviour of non-hierarchical CP-nets

Having defined the static structure of CP-nets we are now ready to consider their be-
haviour — but first we introduce the following notation where Var(t) is called the set of
variables of t while E(x1,x;) is called the expression of (x1,Xx»):

o« VteT: [Var(t) = {vIveVar(G(t)) v JacA(t): ve Var(E(a))}].

¢ V(x1,%)e(PxT U TxP): [E(x1,x2) = D, E(a)].1?
ae A(Xx1,X2)

Next we define what we mean by a binding. Intuitively, a binding, of a transition t, is a
substitution that replaces each variable of t with a colour. It is demanded that each
colour is of the correct type and that the guard evaluates to true:

16 Each function name indicates the range of the function — as an example p maps into places, while A
maps into sets of arcs.

17 Ag denotes the set of all subsets of A.

18 From the argument(s) it will always be clear whether we deal with the function Ae[X — Ag], the
function Ae [(PxT U TxP) - Ag] or the set A.

19 The summation indicates addition of expressions (and it is well-defined because all the participating
expressions have a common multi-set type). From the arguments(s) it will always be clear whether

we deal with the function E€[A — Exp] or the function E€ [(PxT U TxP) - Exp].

14

Definition 2.4: For a transition te T with variables Var(t) = {v1,v2,...,vn} we
define the binding type BT(t) as follows:

BT(t) = Type(vy) x Type(vy) x ...x Type(vn).20
Moreover, we define the set of all bindings B(t) as follows:

B(t) = {(c1,¢2,...,cn)e BT(t) | G(t)<vi=c1,va=C2,...,Vvp=Cp>}.2!

For convenience we denote bindings in two different ways: Either in the form
<V1=C1,V2=C2,...,Vn=Cpn> or in the form (cy,cs,...,cn). In both cases this denotes an ele-

ment of BT(t). Next we define token distributions, binding distributions, markings and
steps:22

Definition 2.5: A token distribution is a function M, defined on P such
that M(p)e C(p)ms for all peP. The set of all token distributions (for a given CP-net
CPN) is denoted by TDcpn, and for all M;,M,e TDcpn we define the relations # and
< in the following way:

(i) M;i#M; o dpeP: [Mi(p)# Map)l

(i) M;<M; o VpeP: [M(p)<Mp)l.

The relations <, 2, >, and = are defined analogously to <. When ce M(p) for some
ce C(p), we say that the pair (p,c) is an element of M, and we write (p,c)e M.
Moreover, we say that M is non-empty iff it has at least one element.

A binding distribution is a function Y, defined on T such that Y(t)e B(t)ms for all
teT.23 The set of all binding distributions (for a given CP-net CPN) is denoted by
BDcpn, and the relations #, <, <, 2, >, and = are defined analogously to the way they
were defined for token distributions. When be Y(t) for some be B(t), we say that the
pair (t,b) is an element of Y, and we write (t,b)e Y. Moreover, we say that Y is
non-empty iff it has at least one element.

A marking of a CP-net is a token distribution and a step is a non-empty binding
distribution. The set of all markings (for a given CP-net CPN) is denoted by Mcpn,
and the set of all steps is denoted by Ycpn. The initial marking My is the marking
which is obtained by evaluating the initialization expressions, i.e. the marking where
Mo(p) = IN(p)<> for all peP.24

20 We assume that the set of variables Var(t) is ordered — in some arbitrary way.

21 As defined in section 2.1, G(t)<vi=ci,vp=cC2,...,vap=Cn> denotes the evaluation of the guard expres-
sion G(t) in the binding <vi=c1,v2=C2,...,vn=Cp>.

22 There is no difference between the set of token distributions and the set of markings, and there is
very little difference between the set of binding distributions and the set of steps. In this paper we
only use token/binding distributions to define markings/steps and thus it may seem unnecessary to
introduce all four sets. Token/binding distributions are however, general concepts, which are useful
in a number of other contexts (in which it would be misleading to talk about markings/steps).

23 It should be noticed that all bindings of a binding distribution, according to Definition 2.4, automati-
cally satisfy the corresponding guard.

24 IN(p)<> denotes the evaluation of IN in the empty binding <> (which is used because IN(p) has an
empty set of variables).

15

Definition 2.6: A step Y is enabled in a marking M iff the following property is
satisfied:
VpeP: [Y E(p,t) < M(p)].
(t,byeY

Let Y be an enabled step, with respect to a given marking M. When (t,b)e Y, we say
that t is enabled in M for the binding b. We also say that the pair (t,b) is enabled in
M, or simply that t is enabled in M. When two different transitions ty, teT sat-
isfy Y(t1) # @ # Y(t2), we say that t; and ty are concurrently enabled. When a
transition te T satisfies IY(t)l = 2, we say that t is concurrently enabled with it-
self and when it for a binding be B(t) satisfy Y(t) = 2°b, we say that (t,b) is concur-
rently enabled with itself.

When a step is enabled it may occur and this means that tokens are removed from the
input places and added to the output places of the occurring transitions. The number
and colours of the tokens are determined by the arc expressions, evaluated for the oc-
curring bindings:

Definition 2.7: When a step Y is enabled in a marking M; it may occur, chang-
ing the marking M; to another marking Mj, defined by:
VpeP: [Ma(p) = (Mi(p) = > E(p,t)) + > E(t,p)].
theY tbeY
The first sum is called the removed tokens while the second is called the added to-
kens. Moreover we say that Mj is directly reachable from M; by the occurrence of
the step Y, which we also denote:

M; [Y> Ma.

Definition 2.8: A finite occurrence sequence is a sequence of markings and
steps:

M;[Y1> My [Y2> Ms...... Mn[Yn> Mp+1
such that neN, and M; [Yi > Mj, for all ie 1..n.25 The marking M; is called the
start marking of the occurrence sequence, while the marking Mp+ is called the end

marking. The non-negative integer n is called the number of steps in the occur-
rence sequence, or the length of it.

Analogously, an infinite occurrence sequence is a sequence of markings and
steps:

Mi[YOM (Yo >Ms... ...

such that M;[Yi> Mis1 for all ie N4.26 The marking M is called the start mark-
ing of the occurrence sequence, which is said to have infinite length.

25 By 1..n we denote the set of all integers i that satisfy 1 <i<n.
26 N denotes the set of all positive integers.

16

The start marking of an occurrence sequence will often, but not always, be identical to
the initial marking of the CP-net. We allow the user to omit some parts of an occur-
rence sequence and e.g. write:

Mi[Y1Y2...Yn> Mp+1.

Definition 2.9: A marking M" is reachable from a marking M' iff there exists a
finite occurrence sequence having M' as start marking and M" as end marking — i.e.
iff there, for some ne N, exists a finite sequence of steps such that:

M'[Y;Y2...Yp>M".
We then also say that M" is reachable from M’ in n steps. The set of markings which

are reachable from M' is denoted by [M'>. As a shorthand, we say that a marking is
reachable iff it is reachable from the initial marking Mg — i.e. contained in [Mg>.

It should be obvious that behavioural properties, such as dead-lock, liveness, home
markings, boundedness and fairness, can be defined for CP-nets in a similar way as for
Place/Transition Nets (PT-nets). It is well-known that each CP-net has an equivalent
PT-net, and each behavioural property is defined in such a way that a given CP-net has
the property iff the equivalent PT-net has. The definitions of the behavioural properties
are outside the scope of this paper.

2.4 Some historical remarks about the development of CP-nets

The foundation of Petri nets was presented by Carl Adam Petri in his doctoral-thesis
[48]. The first nets were called Condition/Event Nets (CE-nets). This net model allows
each place to contain at most one token — because the place is considered to represent a
boolean condition, which can be either true or false. In the following years a large
number of persons contributed to the development of new net models, basic concepts,
and analysis methods. One of the most notable results was the development of
Place/Transition Nets (PT-nets). This net model allows a place to contain several to-
kens. The first coherent presentation of the theory and application of Petri nets was
given in the course material developed for the First Advanced Course on Petri Nets [5]
and later this was supplemented by the course material for the Second Advanced
Course on Petri Nets [6] and [7].

For theoretical considerations CE-nets turned out to be more tractable than PT-nets
and much of the theoretical work concerning the definition of basic concepts and anal-
ysis methods has been performed on CE-nets. Later, a new net model called
Elementary Nets (EN-nets) has been proposed in [51] and [57]. The basic ideas of this
net model are very close to CE-nets — but EN-nets avoid some of the technical prob-
lems which have turned out to be present in the original definition of CE-nets.

For practical applications, PT-nets were used. However, it often turned out that this
net model was too low-level to cope with the real-world applications in a manageable
way, and different researchers started to develop their own extensions of PT-nets
- adding concepts such as: priority between transitions, time delays, global variables to
be tested and updated by transitions, zero testing of places, etc. In this way a large
number of different net models were defined. However, most of these net models were
designed with a single — and often very narrow — application area in mind. This created

17

a serious problem: Although some of the net models could be used to give adequate de-
scriptions of certain systems, most of the net models possessed nearly no analytic pow-
er. The main reason for this was the large variety of different net models. It often
turned out to be a difficult task to translate an analysis method developed for one net
model to another — and in this way the efforts to develop suitable analysis methods
were widely scattered.

The breakthrough with respect to this problem came when Predicate/Transition Nets
(PrT-nets) were presented in [20]. PrT-nets were the first kind of high-level nets which
was constructed without any particular application area in mind. PrT-nets form a nice
generalization of PT-nets and CE-nets (exploiting the same kind of reasoning that leads
from propositional logic to predicate logic). PrT-nets can be related to PT-nets and
CE-nets in a formal way — and this makes it possible to generalize most of the basic
concepts and analysis methods that have been developed for these net models — so that
they also become applicable to PrT-nets. Later, an improved definition of PrT-nets has
been presented in [22]. This definition draws heavily on sigma algebras (as known from
the theory of abstract data types).

However, it soon turned out that PrT-nets present some technical problems when the
analysis methods of place invariants and transition invariants are generalized. It is pos-
sible to calculate invariants for PrT-nets, but the interpretation of the invariants is dif-
ficult and must be done with great care to avoid erroneous results. The problem arises
because of the variables which appear in the arc expressions of PrT-nets. These vari-
ables also appear in the invariants, and to interpret the invariants it is necessary to bind
the variables, via a complex set of substitution rules. To overcome this problem the
first version of Coloured Petri Nets (CP81-nets) was defined in [32]. The main ideas of
this net model are directly inspired by PrT-nets, but the relation between an occurrence
element and the token colours involved in the occurrence is now defined by functions
and not by expressions as in PrT-nets. This removes the variables, and invariants can
now be interpreted without problems.

However, it often turns out that the functions attached to arcs in CP81-nets are more
difficult to read and understand than the expressions attached to arcs in PrT-nets.
Moreover, as indicated above, there is a strong relation between PrT-nets and
CP81-nets and from the very beginning it was clear that most descriptions in one of the
net models could be informally translated to the other net model and vice versa. This
lead to the idea of an improved net model — combining the qualities of PrT-nets and
CP81-nets. This net model was defined in [33] where it was called High-level Petri Nets
(HL-nets). Unfortunately, this name has given rise to a lot of confusion since the term
"high-level nets" at that time started to become used as a generic name for PrT-nets,
CP8l-nets, HL-nets, and several other kinds of net models. To avoid this confusion it
was necessary to rename HL-nets to Coloured Petri Nets (CP87-nets). CP87-nets have
two different representations (and formal translations between them). The expression
representation is nearly identical to PrT-nets (as presented in [20]), while the function
representation is nearly identical to CP8l-nets. The first coherent presentation of
CP87-nets and their analysis methods was given in [35].

Today most of the practical applications of Petri nets (reported in the literature) use
either PrT-nets or CP-nets — although several other kinds of high-level nets have been
proposed. There is very little difference between PrT-nets and CP-nets (and many

18

modellers do not make a clear distinction between the two kinds of net models). The
main differences between the two net models are today hidden inside the methods to
calculate and interpret place and transition invariants (and this is of course not surpris-
ing when you think about the original motivation behind the development of
CP81-nets). Instead of viewing PrT-nets and CP-nets as two different modelling lan-
guages it is, in our opinion, much more adequate to view them as two slightly different
dialects of the same language.

3. Hierarchical CP-nets

Hierarchical CP-nets were first presented in [31] and it should be understood that this
(as far as we know) was the very first successful attempt to create a set of hierarchy
concepts for a class of high-level Petri nets. This means that the proposed concepts are
likely to undergo many improvements and refinements (in the same way as the first
very simple concept of subroutines has undergone dramatical changes to become the
procedure concept of modern programming languages). In other words: We do not
claim that our current proposal will be the “final solution”. However, we do think that
it constitutes a good starting point for further research and practical experiences in this
area. In chapter 6 we describe a number of industrial applications of hierarchical
CP-nets and more information about some of these can be found in [49], [54] and [55].

In [31] individual CP-nets, called pages, are related in five different ways, known as
the five hierarchy constructs: substitution of transitions, substitution of places, invo-
cation of transitions, fusion of places and fusion of transitions. In the present paper we
shall, however, only deal with the first and fourth of these hierarchy constructs.2” For
an explanation of the other three hierarchy constructs the reader is referred to [31].

The intention has been to make a set of hierarchy constructs, which is general
enough to be used with many different development methods and with many different
analysis techniques. This means that we present the hierarchy constructs without pre-
scribing specific methods for their use. Such methods have to be developed and written
down — but this can only be done as we get more experiences with the practical use of
the hierarchy constructs. Eventually the new development methods and analysis tech-
niques will influence the definition of the hierarchy constructs — in the same way as
modern programming languages have been influenced by the progress in the areas of
programming methodology and verification techniques.28

3.1 Substitution of transitions

The intuitive idea behind substitution transitions is to allow the user to replace a transi-
tion (and its surrounding arcs) by a more complex CP-net — which usually gives a more
precise and detailed description of the activity represented by the substituted transition.

27 These are the two hierarchy constructs that are supported by the current version of the CPN tools de-
scribed in chapter 5 — and they are the easiest to define, understand and use.

28 During the design of the hierarchy constructs we have, of course, been influenced by the constructs
and methods used with other graphical description languages and with modern programming lan-
guages.

19

The idea is analogous to the hierarchy constructs found in many graphical descrip-
tion languages (e.g. IDEF/SADT diagrams [43] and Yourdon diagrams [64]) — and it is
also, in some respects, analogous to the module concepts found in many modern pro-
gramming languages: At one level we want to give a simple description of the activity
(without having to consider internal details about how it is carried out). At another
level we want to specify the more detailed behaviour. Moreover, we want to be able to
integrate the detailed specification with the more crude description and this integration
must be done in such a way that it becomes meaningful to speak about the behaviour of
the combined system.

PACK
1t02

| HS JiSite#11
12t03->Outgoing
11to2->Incoming

11t02->0utgoing
14t01->Incoming

PACK PACK

Site#11 | [HS |isite#11
4to1->Outgoing | 13to4->Outgoing
i3to4->Incoming | 12to3->Incoming

PACK

Figure 4. NetWork#10 describes a ring network with four different sites

As mentioned above, we want to relate individual CP-nets to nodes, which are members
of other CP-nets, and this means that our description will contain a set of (non-hierar-
chical) CP-nets — which we shall call pages. Now let us consider a small example.29
Imagine that we have a ring network with four different sites. This can be described by
the page NetWork#10 in Fig. 4.30 The four sites are represented by the four substitu-
tion transitions — NO1, NO2, NO3 and NO4 — each of which has an HS-tag adjacent (HS
~ Hierarchy + Substitution). The inscription next to the HS-tag is called a hierarchy
inscription and it defines the details of the actual substitution. We shall return to the
hierarchy inscriptions in a moment, but let us first consider Site#11 in Fig. 5. This
page describes an individual site.

29 The purpose of the example is to explain the semantics of substitution transitions. The described ring
network is far too simple to be realistic.

30 To be able to refer to the individual pages we give each of them a page name (e.g. NetWork) and a
page number (e.g. 10).

20

{se=S(inst()), re=r, no=n}

WA Package
/ PACK "»,%
%

if #re p <> S(inst()) %P
kthen 1'p

PACK else empty 'é%
%,
if #re p = S(inst()) Sl
NewPack PACK then 1'p 9&
else empty %
if #re p <> S(inst())

val NoOfSites = 4; Sgg ;niJ t
color INT = int; i
color SITES = index S with 1..NoOfSites;
color PACK = record se:SITES *re:SITES

*no:INT;
varr: SITES;
var p : PACK;
varn: INT;

if #re p <> S(inst())
then 1'p
else empty

Receive

if #re p = S(inst())

PACK then 1'p
else empty

ol

Figure 5. Site#11 describes an individual site of the ring network

Some of the declarations in the middle of Fig. 5 need a little explanation: The first line
declares a constant NoOfSites. It is used in one of the other declarations — and it could
also have been used e.g. in the arc expressions of NetWork#10 and Site#11, if desired.
The colour set SITES contains four different elements which are denoted by S(1), S(2),
S(3) and S(4).31 The colour set PACK contains all records which have an se-field
(identifying the sender), an re-field (identifying the receiver) and a no-field (containing
a package number).

Site#11 has three different transitions: Each occurrence of NEWPACK creates a new
package. The se-field of the new package becomes identical to S(inst()) where the pre-
declared function inst() returns the identity number of the page instance on which the
transition occurs32 while the no-field is read from PACKNO. The re-field is determined

31 The idea behind index colour sets is to make it easy for the user to define colour sets which are of the
form {Si1, Sp,...Sp}.

32 Allowing net inscriptions (such as arc expressions, guards and initialization expressions) to be de-
pendent on the page instance is a generalization — with respect to the class of hierarchical CP-nets
formally defined in section 3.4. The extension, which has turned out to be extremely useful, will be

21

by the variable r — which does not appear anywhere else, and this means that r can take
an arbitrary value (from SITES). The created packages are handled by SEND, which in-
spects the re-field of the package.33 When the re-field indicates that the receiver is dif-
ferent from the present site, the package is transferred to the network via OUTGOING
(and a copy is put on SENTEXT). Otherwise the package is sent directly to RECINT.
Finally, RECEIVE inspects all packages which are transferred from the network via
INCOMING. Again the re-field is inspected, and based on this inspection the package is
routed, either to OUTGOING or to RECEXT.

Packaget

Package2

“NewPack 1 % @
Receive2
< PackNo 1. \ !
RecExt 1 Receivel @

PackNo 3

‘

[

Received

NewPack 4 j { @

Package4 Pac A
Figure 6. Non-hierarchical CP-net with the same behaviour as the hierarchical CP-net that con-
tains the pages NetWork#10 and Site#11

Now let us return to the hierarchy inscriptions of the four substitution transitions on
NetWork#10: The first line of each hierarchy inscription identifies the subpage, i.c.
the page that is going to replace the substitution transition. In our present example, the
four substitution transitions are being replaced by the same subpage Site#11. Each
substitution transition gets, however, its own “private copy” of Site#11.

supported by one of the next versions of the CPN tool described in chapter 5. The page instance
numbers are consecutive positive numbers, starting from 1 (i.e. in this case: 1, 2, 3, and 4).
33 We use #re p to denote the re-field of a package p.

22

The remaining lines of the hierarchy inscription contain the port assignment
which tells how the subpage (Site#11) is going to be inserted into the superpage which
contains the substitution transition (NetWork#10). Each line of the port assignment re-
lates a socket node on the superpage (i.e. one of the nodes surrounding the substitu-
tion transition) to a port node on the subpage (i.e. one of the nodes which have a
B-tag next to it (B = Border)). In our example, let us now consider the hierarchy in-
scription next to NO2. The first line of the port assignment tells us that the socket node
2TO3 is assigned to (i.e. “glued” together with) the port node OUTGOING. Analogously,
the second line tells us that 1TO2 is assigned to INCOMING. The remaining three hierar-
chy inscriptions (of NO1, NO3 and NO4) are interpreted in a similar way — and this
tells us that the hierarchical CP-net with the two pages NetWork#10 and Site#11 is
equivalent — i.e. has the same behaviour — as the non-hierarchical CP-net in Fig. 6
(where we for clarity have omitted the net inscriptions).

When we consider the behaviour of a hierarchical CP-net each page has its own
marking. We allow a single page to replace several substitution transitions, and then the
page has several page instances, each having its own marking. In the example above,
their are four instances of Site#11 — and thus four different markings.34

3.2 Fusion of places

The intuitive idea behind fusion of places is to allow the user to specify that a set of
places are considered to be identical — i.e. they all represent a single place even though
they are drawn as individual places. This means that when a token is added/removed at
one of the places, an identical token has to be added/removed at all the others. The
places of a fusion set may belong to a single page or to several different pages.

When all members of a fusion set belong to a single page and that page only has one
instance, place fusion is nothing other than a drawing convenience that allows the user
to avoid too many crossing arcs. However, things become much more interesting when
the members of a fusion set belong to several different pages or to a page that has many
different page instances. In that case fusion sets allow the user to specify a behaviour
which it might be cumbersome to describe without fusion. To allow modular analysis
of hierarchical CP-nets, global fusion sets should be used with care.

There are three different kinds of fusion sets: Global fusion sets are allowed to have
members from many different pages, while page and instance fusion sets only have
members from a single page. The difference between the last two is the following: A
page fusion unifies all the instances of its places (independently of the page instance at
which they appear), and this means that the fusion set only has one “resulting place”
which is “shared” by all instances of the corresponding page. In contrast to this, an in-
stance fusion set only identifies place instances that belong to the same page instance,
and this means that the fusion set has a “resulting place” for each page instance. A
global fusion set is analogous to a page fusion set, in the sense that it only has one
“resulting place” (which is common for all instances of all the participating pages).

34 When a CP-net is simulated by means of the CPN tools described in chapter 5, we have a window
for each page. The window shows the marking of one instance at a time, and it is possible for the
user to switch from one instance to another.

23

- mm.@qjic_k_g__g T TPackage? " b

RecExvInt 2 NewPack 2
Receive2 E i
PackNo 2 »
RecExt/Int 1 RecExvInt 3

ZPackNo 4 J ‘ ’ PackNo 3

4 Received

=

NewPack 3

{nljewPack 4‘}

RecExVInt 4
. e R
‘i
%

Package3

e s s I

Packaged

Figure 7. Non-hierarchical equivalent of a CP-net with two fusion sets

The difference between page and instance fusion sets can be illustrated by the ring net-
work. In Fig. 7 we show how the non-hierarchical CP-net in Fig. 6 is modified when
we on Site#11 define two fusion sets: An instance fusion set containing {RECEXT,
RECINT} and a page fusion set containing { SENTEXT}.

Above we have illustrated the difference between page and instance fusion sets by
drawing a non-hierarchical CP-net which is behaviourally equivalent to our hierarchi-
cal CP-net. It should, however, be understood that hierarchical CP-nets is a modelling
language in its own right. This means that it is possible (and desirable) to model and
analyse a complex system by a hierarchical CP-net — without ever constructing the
equivalent non-hierarchical CP-net.

3.3 Partitions

To give a formal definition of hierarchical CP-nets we need the concept of a partition.
Intuitively, a partition is a division of a set into a number of subsets, which are non-
empty and pairwise disjoint:

24

Definition 3.1: Let a finite set Z be given. A partition of Z is a family of sets
X = {Xj}jer1 such that:
(i) The index set I is a finite set.
(i1) Each component Xj is a non-empty subset of Z:

e Viel: [0 c X5 Z].
(iii) The components are pairwise disjoint:

e VU, k)el: [izk = Xin Xk = 0].
The range of the partition is the set:

Xz = U X ¢ 2.

iel

The partition is said to be total iff Xg = Z. Otherwise it is partial.

It should be obvious that there is a very close relationship between partitions and
equivalence relations: On the one hand, each partition determines an equivalence rela-
tion for its range (two elements are equivalent iff they belong to the same component
- and each component is an equivalence class). On the other hand, each equivalence
relation determines a total partition (two elements belong to the same component if
they are equivalent — and each equivalence class is a component).

3.4 Formal definition of hierarchical CP-nets

This section contains the formal definition of hierarchical CP-nets. Some motivation
and explanation of the individual parts of the definition is given immediately below the
definition:

Definition 3.2: A hierarchical CP-net is a tuple HCPN = (S, SN, SA, PN, PA,
ES, FT, PP) satisfying the requirements below:
(i) S ={Sjliel} is a finite set of pages such that:
» Each page is a non-hierarchical CP-net:
Si = (&, Py, Ti, Aj, Ni, G, Gi, Ej, INy).
« The sets of net elements are pairwise disjoint:
Vi, k)el: [izk = (PiuTiu Aj) n (Pku Tk U Ax) = O].
When XX is a set, relation or a function, defined for all ie I, we use XX to de-
note the union.35 When YY is a set, relation or function, defined for HCPN, we
use YYj (and YY;) to define the restriction to S;.

(11) SN < T is a set of substitution nodes.
(iii) SA is a page assignment function. It is defined from SN into S such that:

« No page is a subpage of itself:36
{ioi1 ... ineI* I neNy A ig=in A Vke L.n: Sj, e SA(SNy,)} =0. (cont.)

35 The union of a set of functions is the union of the corresponding set of relations and this is known to
become a function (because the set of domains are pair-wise disjoint).

36 T* denotes all finite sequences with elements from I, and we extend SA so that it can be used on a set
of substitution nodes..

25

(iv) PN c P is a set of port nodes.
(v) PAis a port assignment function. It is defined from SN into binary relations
such that:
» Socket nodes are related to port nodes:
PA(X) c X(X) X PNSA(X).
« Related nodes have identical colour sets and equivalent initialization
expressions:
Vxe SN V(x1,Xx2)e PAX): [C(x1) = C(x2) A IN(x1)<> = IN(x9)<>].
(vi) FS = {FS;}reR is a finite set of fusion sets such that:
« FS is a partition of P.
« Members of a fusion set have identical colour sets and equivalent initialization
expressions:
VreR Vx1,x2e FSp: [C(x1) = C(x2) A IN(x1)<> = IN(x2)<>].
(vii) FT is a fusion type function. It is defined from fusion sets such that:
 Each fusion set is of type: global, page or instance.
» Page and instance fusion sets belong to a single page:
VreR: [FT(FSy) # global = dFiel: FS; ¢ Pji].
(vi) PPe Syg is a multi-set of prime pages.

(1) Each page is a non-hierarchical CP-net. We use Z to denote the union of all the
colour sets %; of the individual pages (these colour sets do not need to be disjoint). The
pages have pairwise disjoint sets of nodes and arcs, and this means that for functions
and relations, defined on places, transitions and arcs, we can omit the page index with-
out any ambiguity. As an example we can write C(p), G(t) and E(a) instead of Ci(p),
Gi(t) and Ej(a). Analogously, we use P, T and A to denote the set of all places, the set
of all transitions and the set of all arcs in HCPN. The notational conventions described
above allows us to move our point of focus from a given page to the entire CP-net by
omitting the page index. It is, however, also possible to do the opposite and this means
that we restrict a set, relation or function, defined for elements of the entire CP-net, to
elements of a particular page. As an example, we use SNj (and SNs;) to denote the sub-
set of substitution nodes that belong to page S;.

(i1) Each substitution node is a transition.3? :

(111) The page assignment relates substitution transitions to pages. When a transi-
tion te SNj is related to a page Sk, we say that Sk is a direct subpage of the page Si
which is a direct superpage of Sk. Analogously, we say that Sk is a direct subpage of the
node x which is a direct supernode of Sk. These four relations are in the usual way ex-
tended by taking the transitive closure and we then omit the word "direct" and talk
about subpages, superpages and supernodes. It is demanded that no page is a subpage of
itself. Otherwise, the process of substituting supernodes with their direct subpages will
be infinite and it would be impossible to construct an equivalent non-hierarchical
CP-net (without allowing P, T and A to be infinite).

(iv) Each port node is a place. It should be noticed that we allow a page to have
port nodes even when it is not a subpage. Such port nodes have no semantic meaning

37 As described in [31] it is also possible to allow places to be substitution nodes. The semantics of
such a model is, however, slightly more complex.

26

(and thus they can be turned into non-ports without changing the behaviour of the
CP-net).

(v) The port assignment relates socket nodes (i.e. the places surrounding a substi-
tution transition) with port nodes (on the corresponding direct subpage). Each related
pair of socket/port nodes must have identical colour sets and equivalent initialization
expressions. It should be noticed that it is possible to relate several sockets to the same
port and vice versa. It is also possible to have sockets and ports which are totally unre-
lated. Usually, most port assignments are bijective functions and in that case there is a
one to one correspondence between sockets and ports.

(vi) The fusion sets are the components in a partition of P and this means that a
place can belong to at most one fusion set. All members of a fusion set must have iden-
tical colour sets and equivalent initialization expressions. Usually, it is only a few places
that belong to fusion sets and thus the partition is partial.

(vii) The fusion type divides the set of fusion sets into global, page and instance
fusion sets. For the last two kinds of fusion sets all members must belong to the same
page.

(viii) The prime pages is a multi-set over the set of all pages and they determine,
together with the page assignment, how many instances the individual pages have. Often
the multi-set contains only a single page (with coefficient one).

It should be obvious that each non-hierarchical CP-net is a hierarchical CP-net with
a single page. There are no substitution, port and fusion nodes — and thus the page as-
signment, port assignment and fusion type functions become trivial. The single page
belongs to the multi-set of prime pages, with coefficient one.

3.5 Page, place, transition and arc instances

A page may have several instances: There is a page instance for each time the page ap-
pears in the multi-set PP and, moreover there is a page instance for each way in which
the page is a subpage of an element of PP.

In the following definition s and n identify the element of PP from which the page
instance is constructed, while x; x,... X identifies the sequence of substitution nodes
that leads to the page instance (in this sequence each node xk+; belongs to the direct
subpage of xk). It should be noticed that the sequence may be empty:

Definition 3.3: The page instances of a page Sie S is the set SI; of all triples
(s, n, X1 X2 ... Xm) that satisfy the following requirements:
(1) sePP A nel..PP(s).
(i) Xx1X2.. Xm 1S a sequence of substitution nodes, with me N, such that:
m> 0 = (x;eSNg A [kel.(m-1) = xk+1e SNsA(x)] A SAXR)=Si).

When a page has several page instances each of these have their own instances of the
corresponding places, transitions and arcs. It should, however, be noticed that substitu-
tion nodes and their surrounding arcs do not have instances (because they are replaced
by instances of the corresponding direct subpages):

27

Definition 3.4: The place instances of a page SieS is the set PIj of all pairs
(p,id) that satisfy the following requirements:

(i) pePi

(i) ideSI.

The transition instances of a page SieS is the set TIj of all pairs (t,id) that satisfy
the following requirements:

(iii) teTj — SNj.

(iv) ideSIL.

The arc instances of a page Sje S is the set Al; of all pairs (a,id) that satisfy the fol-
lowing requirements:

(v) aeAj- A(SNj).

(vi) ideSI.

Place instances may be related to each other, either by means of fusion sets or by means
of port assignments and this leads to the following concepts:

Definition 3.5: The place instance relation is the smallest equivalence relation
on PI3% containing all those pairs ((p1,(s1,n1,xx1)),(p2,(s2,n2,xx2))) € PI that satisfy one
of the following conditions:

(1) dreR: [p1.p2e FSt A (FT(FS;) = instance = (s1,n1,xx1) = (S2,Nn2,xx2))].

(1) dte SN: [(p1,p2)e PA(t) A (s1,n1) = (s2,m2) A XXMt = xX2].39

An equivalence class of the place instance relation is called a place instance group
and the set of all such equivalence classes is denoted by PIG.

3.6 Equivalent non-hierarchical CP-net

In sections 3.1 and 3.2 we have sketched how to define the behaviour of a hierarchical
CP-net — by constructing a non-hierarchical CP-net that is behaviourally equivalent. In
this section we define the non-hierarchical equivalent in a much more formal way, but
before doing this we again want to stress that the construction of the non-hierarchical
equivalent plays a similar role as the unfolding of a CP-net to a behaviourally equiva-
lent PT-net: The construction is only performed in order to define and understand the
semantics. When we describe a system we directly use hierarchical CP-nets — and we
never construct the non-hierarchical equivalent. Analogously, we directly analyse a
hierarchical CP-net — without having to construct the non-hierarchical equivalent. The
existence of the non-hierarchical equivalent is, however, very important — because it
tells us how to generalize the basic concepts and the analysis methods of non-hierarchi-
cal CP-nets to hierarchical CP-nets.

38 Following our notational conventions we use PI to denote the set of all place instances in the entire
CP-net (i.e. the union of PIj overiel).
39 The ” operator denotes concatenation of two sequences.

28

Definition 3.6: Let a hierarchical CP-net HCPN = (S, SN, SA, PN, PA, FS, FT,
PP) be given. Then we define the equivalent non-hierarchical CP-net to be
CPN = (Z*, P*, T*, A*, N*, C*, G*, E*, IN*) where:

() I*=13.
(ii) P* = PIG.
(i) T* = TIL
(iv) A* = AL

(v) Va*=(a,id)e Al V(p,t)eP x T:
[N(a) = (p,t) = N*(a*) = ([(p,id)],(t,id)) A
N(a) = (t,p) = N*(a*) = ((t,id),[(p,id)]D].40
(vi) Vp*=[(p,id)]ePIG: [C*(p*) = C(p)].
(vii) Vt*=(t,id)e TIL: [G*(t*) = G(1)].
(vi) Va*=(a,id)e Al: [E*(a*) = E(a)].
(ix) Vp*=[(p,id)]ePIG: [IN*(p*) = IN(p)].

(1) The non-hierarchical CP-net has the same set of colour sets as the hierarchical
CP-net.

(ii) The non-hierarchical CP-net has a place for each place instance group of the
hierarchical CP-net. This means that there is place for each place instance — unless that
place instance either belongs to a fusion set (in which case the place instance is merged
with the other members of the fusion set) or it is an assigned socket/port node (in
which case it is merged with the place instance to which it is assigned).

(iii) + (iv) The non-hierarchical CP-net has a transition for each transition instance
of the hierarchical CP-net. Analogously, it has an arc for each arc instance of the hier-
archical CP-net.

(v) The basic idea behind the definition of the node function is that each page in-
stance has the same arcs as the original page. This means that a place instance and a
transition instance only can have connecting arcs if they belong to the same page in-
stance — and in that case they have connecting arcs iff the original place and transition
have. It should, however, be noticed that the node function (due to place fusion and
socket/port assignment) maps into place instance groups (and not into individual place
instances). This is done in such a way that each place instance group gets a set of sur-
rounding arcs that is the union of those arcs that the corresponding place instances
would have got (if they had not participated in any fusion or socket/port assignment).

(vi) The colour set of a place instance group is determined by the colour set of the
participating places. From Def. 3.2 (v) + (vi) it follows that all these places must have
identical colour sets.

(vii) The guard of a transition instance is determined by the guard of the corre-
sponding transition.

(viii) The arc expression of an arc instance is determined by the arc expression of the
corresponding arc.

(ix) The initialization expression of a place instance group is determined by the ini-
tialization expression of one of the participating places. From Def. 3.2 (v) + (vi) it

40 We use [(p,id)] to denote the equivalence class to which (p,id) belongs.

29

follows that all these places must have initialization expressions which evaluate to the
same value, and thus it does not matter which one we choose.

3.7 Dynamic behaviour of hierarchical CP-nets

Having defined the static structure of CP-nets we are now ready to consider their be-
haviour — but first we introduce the following notation, where E'(p',t") and E'(t',p")
are called the expressions of (p',t') and (t',p"):4!

- Vp'=(p,idp)ePI Vt'=(t,ide)e TI:
[idp = id; = (B'(p’,t) = E(p,t) » E'(t',p) = E(t.p))
idp #id; = (E'(p',t') = E'(t,p") = 0) 1.

Next we define token distributions, binding distributions, markings and steps:

Definition 3.7: A token distribution is a function M, defined on PIG such
that M(p*)e C(p)ms for all p*=[(p,id)]e PIG and a binding distribution is a func-
tion Y, defined on TI such that Y(t*)e B(t)pms for all t*=(t,id)e TI. We define
TDucen, BDuePN, #, S, <, 2, >, =, element and non-empty in exactly the same way
as for non-hierarchical CP-nets.

A marking is a token distribution and a step is a non-empty binding distribution.
The set of all markings is denoted by Mpcpn, and the set of all steps is denoted by
Yucpen. The initial marking My is the marking where My(p*) = Mo(p)42 for all
p*=[(p,id)] e PIG.

Finally we define enabling and occurrence:

Definition 3.8: A step Y is enabled in a marking M iff the following property is
satisfied:
Vp*ePIG: [Y E'(p.,t) < M(p*)].

(t'b)eY

p'ep*
We define enabled transition instances and concurrently enabled transition in-
stances/bindings analogously to the corresponding concepts in a non-hierarchical
CP-net.

(continues)

41 We use p' and t' to denote a place instance and a transition instance, respectively.

42 We use M for two different purposes: On the left-hand side of the equation it denotes a marking of
HCPN (i.e. a function defined on PIG). On the right-hand side it denotes the union constructed from
the initial markings My; of the individual pages (i.e. a function defined on P). From the argument it
will always be clear which of the two functions we deal with.

30

When a step is enabled in a marking M; it may occur, changing the marking M; to
another marking M,, defined by:
Vp*ePIG: [Ma(p) = (Mi(p) — Y, E(p,'t)') + 3 E(t',p')].
(t\b)eY (tbeY
p'ep* p'ep*
The first sum is called the removed tokens while the second is called the added to-
kens. Moreover we say that Mj is directly reachable from M; by the occurrence of
the step Y, which we also denote:

M; [Y> M,.

We define occurrence sequences and reachability analogously to the correspond-
ing concepts for a non-hierarchical CP-net.

The following theorem shows that there is a one to one correspondence between the
behaviour of a hierarchical CP-net and the corresponding non-hierarchical equivalent:

Theorem 3.9: Let HCPN be a hierarchical CP-net and CPN the non-hierarchical
equivalent. Then we have the following properties:

(1) Mgucen = Mcpn.

(i1) Ywucen = Ycepn.

(ili) VM1,Mae Mucpn VY e Yuepn: [M1 [YD>uepn M2 © M [Y>epn M3 1.

Proof: Property (i) is an immediate consequence of Def. 2.5, Def. 3.6 (ii) and Def.
3.7, while property (ii) is an immediate consequence of Def. 2.5, Def. 3.6 (iii) and Def.
3.7. Property (iii) follows from Def. 2.6, Def. 2.7, Def. 3.6 and Def. 3.8. The proof is
omitted. It is straightforward but tedious — due to the large number of details which
have to be considered.

4. Analysis of CP-nets

This chapter describes how CP-nets can be analysed. The most straightforward kind of
analysis 1s simulation — which is very useful for the understanding and debugging of a
system, in particular in the design phase and the early validation phases. There are,
however, also more formal kinds of analysis — by which it is possible to prove that a
given system has a set of desired properties (e.g. absence of dead-lock, the possibility to
return to the initial state, and an upper bound on the number of tokens). This chapter
contains a brief introduction to the main ideas behind the most important analysis
methods and it contains references to papers in which the technical details of these
methods can be found.

4.1 Simulation

Simulation can be supported by a computer tool or it can be totally manually (e.g. per-
formed on a blackboard or in the head of the modeller). Simulation is similar to the
debugging of a program, in the sense that it can reveal errors, but in practice never be

31

sufficient to prove the correctness of a system. Some people argue that this makes
simulation uninteresting and that the user instead should concentrate on the more for-
mal analysis methods. We do not agree with this conclusion but consider simulation to
be just as important and necessary as the more formal analysis methods.

In our opinion, all users of CP-nets (and other kinds of Petri nets) are forced to
make simulations — because it is impossible to construct a CP-net without thinking
about the effects of the individual transitions. Thus the proper question is not whether
the modeller should make simulations or not, but whether he wants computer support
for this activity. With this rephrasing the answer becomes trivial: Of course, we want
computer support. This means that the simulation can be done much faster and with no
errors. Moreover, it means that the modeller can use all his mental capabilities to in-
terpret the simulation results (instead of using most of his efforts to calculate the pos-
sible occurrence sequences). Simulation is often used in the design phases and the early
investigation of a system design (while the more formal analysis methods are used for
the final validation of the design). In section 5.5 we give a detailed description of an
existing CPN simulator.

4.2 Occurrence graphs

The basic idea behind occurrence graphs is to construct a graph which contains a node
for each reachable state and an arc for each possible change of state. Obviously such a
graph may, even for small CP-nets, become very large (and perhaps infinite). Thus we
want to construct and inspect the graph by means of a computer — and we want to de-
velop techniques by which we can construct a reduced occurrence graph without loos-
ing too much information. The reduction can be done in many different ways:43

One possibility is to reduce by means of covering markings. This method looks for
occurrence sequences leading from a system state to a larger system state (one with
additional tokens) and the method guarantees that the reduced occurrence graph always
becomes finite. The method has, however, some drawbacks. First of all it only gives a
reduction for unbounded systems (and most practical systems are bounded). Secondly,
so much information is lost by the reduction that several important properties (e.g.
liveness and reachability) no longer are decidable. For more information see [18] and
[40].

A second possibility is to reduce by ignoring some of the occurrence sequences
which are identical, except for the order in which the elements occur. This method
often gives a very significant reduction, in particular when the modelled system con-
tains a large number of relatively independent processes. Unfortunately, it is with this
method necessary to construct several different occurrence graphs (because the con-
struction method depends upon the property which we want to investigate). For more
information see [59].

A third possibility is to reduce by means of the symmetries which often are present
in the systems which we model by CP-nets. To do this the modeller defines, for each
colour set, an algebraic group of allowed bijections (each bijection defines a possible
way in which the elements of the colour set can be interchanged with each other) — and

43 For all the methods described below, it is possible to construct the reduced occurrence graph without
first constructing the full occurrence graph.

32

this induces an equivalence relation on the set of all system states. The reduced occur-
rence graph only contains a node for each equivalence class and this means that it often
is much smaller than the full occurrence graph. The reduced graph contains, however,
exactly the same information as the full graph — and this means that the reduced graph
can be used to investigate all the system properties which can be investigated by means
of the full graph.#4 For more information see [30] and [35].

A fourth possibility is to construct an occurrence graph where each state is denoted
by a symbolic expression (which describes a number of system states, in a similar way
as the equivalence classes in method three). For more information see [9] and [42].

Finally, it is possible to construct occurrence graphs in a modular way. The model
is divided into a number of submodels, an occurrence graph is constructed for each
submodel, and these subgraphs are combined to form an occurrence graph for the en-
tire model. For more information see [60].

When an occurrence graph has been constructed it can be used to prove properties
about the modelled system. For bounded systems a large number of questions can be
answered: Dead-locks, reachability and marking bounds#5 can be decided by a simple
search through the nodes of the occurrence graph, while liveness and home markings
can be decided by constructing and inspecting the strongly connected components. One
problem with occurrence graph analysis is the fact that it, usually, is necessary to fix all
system parameters (e.g. the number of sites in a ring protocol) before an occurrence
graph can be constructed — and this means that the found properties always are specific
to the chosen values of the system parameters. In practice the problem isn’t that big: If
we e.g. understand how a ring protocol behaves for a few sites we also know a lot
about how it behaves when it has more sites.46

As described above, the occurrence graph method can be totally automated — and
this means that the modeller can use the method, and interpret the results, without
having much knowledge about the underlying mathematics. For the moment it is, how-
ever, only possible to construct occurrence graphs for relatively small systems and for
selected parts of large systems. This doesn’t mean that the method is uninteresting. On
the contrary, the method seems to be a very effective way to debug new subsystems
(because trivial errors such as the omission of an arc or a wrong arc expression often
means that some of the system properties are dramatically changed). In the future, it
may also be possible to use occurrence graph analysis for larger systems. This can be
done by combining some of the reduction techniques described above — and by using
the increased computing power of the next generations of hardware. In section 7.2 we

44 The reduced occurrence graph (called an OE-graph) has more complex node and arc inscriptions than
the full occurrence graph (called an O-graph). The OE-graph is a folded version of the O-graph, in
the same way as a CP-net is a folding of the equivalent PT-net. The O-graph can be constructed from
the OE-graph, but this is never necessary since the analysis can be done directly on the OE-graph.

45 There are two kinds of marking bounds. Integer bounds only deal with the number of tokens while
multi-set bounds also deal with the token colours. It can be proved that a place is integer bounded if
and only if it is multi-set bounded. There are, however, situations in which the integer bound gives
more information than the multi-set bound (and vice versa) — and thus it is useful to calculate both
kinds of bounds.

46 This is of course only true when we talk about the correctness of the protocol, and not when we
speak about the performance.

33

describe the plans to implement a CPN tool to support the calculation and analysis of
occurrence graphs.

4.3 Place and transition invariants

The basic idea behind place invariants is to find a set of equations which characterize
all reachable markings, and then use these equations to prove properties of the mod-
elled system (in a way which is analogous to the use of invariants in program verifica-
tion). To illustrate the idea, let us consider the resource allocation system from Fig. 1.
This system has the five place invariants shown below.47 A place invariant is a linear
sum of the markings of the individual places: Each place marking is by a weight func-
tion (attached to the place) mapped into a new multi-set. All the new multi-sets are over
the same colour set and thus they can be added together — to give a weighted sum
(determined from the given marking by the given set of weight functions).

The invariants use the three functions P, Q and PQ as weight functions. Each of
them maps P-colours into multi-sets of E-colours. Intuitively, P “counts” the number of
p-tokens (it maps (p,i) into 1'e and (q,i) into the empty multi-set). Analogously Q
counts the number of g-tokens and PQ counts the number of p/q-tokens (i.e. the total
number of tokens).48 The invariants also use identity functions and zero functions as
weights. The five invariants are satisfied for all reachable markings M (later we shall
discuss how this can be proved). The right hand side of the invariants are found by
evaluating the left hand side in the initial marking.

Intuitively PIp and PIg tell what happens to the two different kinds of processes,
while PIRr, PIs and PIT tell what happens to the three different kinds of resources. Each
invariant can be seen as a way of extracting specific information — from the general in-
formation provided by the entire marking.

PIp P(M(B) + M(C) + M(D) + M(E)) = 2"e

Plo O(M(A) + M(B) + M(C) + M(D) + M(E)) = 3"¢

PIr M(R) + O(M(B) + M(C)) =1"e

PIs M(S) + O(M(B)) + 2 * PO(M(C) + M(D) + M(E)) = 3¢
PIr M(T) + P(M(D)) + (PQ + P)M(E) = 2’¢

The five invariants above can be used to prove that the resource allocation system
doesn’t have a dead-lock. The proof is by contradiction: Let us assume that we have a
reachable state with no enabled transitions. From PIp we know that there are two p-to-
kens distributed on the places B-E and from Plg that three are three g-tokens dis-
tributed on A-E. Now let us investigate in more detail where these tokens can be posi-
tioned. First, assume that there are tokens on E: Then T5 is enabled (and we have a
contradiction with the assumption of no enabled transitions). Secondly, assume that

47 There are many other place invariants for the system — but these are the most simple and useful.

48 A weight function is usually specified as a function fe [C(p)—Apms] (i.e. a function from the colour
set C(p) of the place into multi-sets over a colour set A). We always extend f to a function
fexte [C(p)Ms—Ams] (for each multi-set me C(p)ms we calculate fexi(m) by adding the results of
applying f to all the individual elements of m). Usually we do not distinguish between f and fax; (and
we use f to denote both functions).

34

there are tokens on C and/or D (and no tokens on E): From Plg it follows that there
can be at most one such token and then Ply tells that there is at least one e-token on T
(because P(M(D)) < 1'e and (PQ + P)M(E) = empty). Thus T3 or T4 can occur.
Thirdly, assume that there are tokens on B (and no tokens on C, D and E): From Plg it
follows that there can be at most one g-token on B and then Plg tells us that there is at
least two e-tokens on S (because Q(M(B)) < 1'e and 2 * POQ(M(C) + M(D) + M(E))
= empty). Thus T2 can occur. Now we have shown that it is impossible to position the
two p-tokens (without violating the dead-lock assumption) — and thus we conclude that
all reachable states have at least one enabled transition. From the fact there are no
dead-locks and the cyclic structure of the net, it is easy to prove other system proper-
ties e.g. that the initial marking is a home marking, that the system is live and that all
reachable markings are reachable from each other.

Next let us discuss how we can find place invariants: As mentioned earlier, each
CP-net has a function representation — which is a matrix where each element is a func-
tion (mapping multi-sets of bindings into multi-sets of token colours).4® The matrix
determines a homogeneous matrix equation and the place invariants are the solutions to
this matrix equation (each solution is a vector of weight functions).5¢ The matrix equa-
tion can be solved in different ways: One possibility is to translate the matrix of func-
tions into a matrix of integers3! for which the homogeneous matrix equation can be
solved by standard Gauss elimination. Another, and more attractive, possibility is to
work directly on the matrix of functions (this is, however, more complicated e.g. be-
cause some functions do not have an inverse). With both methods we do not explicitly
find all solutions (there are usually infinitely many). Instead we find a basis from
which all invariants can be constructed (as linear combinations). This leaves us with a
second problem: How do we from the basis find the interesting place invariants — i.e.
those from which it is easy to prove system properties? In our opinion, the best solu-
tion is to allow the user to tell the analysis program where to look for invariants — and
thus calculate invariants in an interactive way. For more details about the calculation of
invariants, see [12], [35], [44] and section 7.2.

Above, we have discussed how to calculate invariants by solving a homogeneous
matrix equation. The problem is, however, often of a different nature — because we
(instead of starting from scratch) already have a set of weight functions and just want
to verify that these are invariants. This task is much easier and it can, without any
problems, be done totally automatically. The potential invariants, to be checked, can be
derived from the system specification and the modellers knowledge of the expected
system properties. The potential invariants may be specified after the system design has
been finished. It is, however, much more useful (and easier) to use CP-nets during the
design and construct the invariants as an integrated part of the design (in the same way
as a good programmer specifies a loop invariant at the moment he creates the loop).
For this use of invariants it is important to notice that the check of invariants are con-
structive — in the sense that it, in the case of failure, is told where in the CP-net the

49 The translation into the function representation can easily be defined by means of the lambda calcu-
lus. For more details see [35].

50 Each solution to the matrix equation is a place invariant. The other direction is, however, only true
when it is known that each occurrence element is enabled in at least one reachable marking.

51 This is exactly the same as unfolding the CP-net to the behavioural equivalent PT-net.

35

problems are. Thus it is often relatively easy to see how the CP-net (or the invariant)
should be modified.

Transition invariants are the duals of place invariants and the basic idea behind them
is to find occurrence sequences with no effects (i.e. with the same start and end mark-
ing). Transition invariants can be calculated in a similar way as place invariants32
- but, analogously to place invariants, it is more useful to construct them during the
system design. Transition invariants are used for similar purposes as place invariants
(i.e. to investigate the behavioural properties of CP-nets).

Place/transition invariants have several very attractive properties: First of all in-
variant analysis can be used for large systems — because it can be performed in a modu-
lar way53 and does not involve the same kind of complexity problems as occurrence
graph analysis. Secondly, invariant analysis can be done without fixing system parame-
ters (e.g. the number of sites in a ring protocol). Thirdly, the the use of invariants
during the design of a system will (as described above) usually lead to a better design.
The main drawback of invariant analysis is that the skills, required to perform it, are
considerably higher than for the other analysis methods. In section 7.2 we describe the
plans to implement a CPN tool to support the interactive calculation and use of
place/transition invariants.

4.4 Other analysis methods

CP-nets can also be analysed by means of reduction. The basic idea behind this method
is to select one or more behavioural properties (e.g. liveness and dead-locks), define a
set of transformation rules, prove that the rules do not change the selected set of prop-
erties, and finally apply the rules to obtain a reduced CP-net — which usually is so small
that it is trivially to see whether the desired properties are fulfilled or not. Reduction
methods are well-known for PT-nets and they have in [25] been generalised to CP-nets.
A serious problem with reduction methods is that they often are non-constructive
(because the absence of a property in the reduced net, usually, do not tell much about
why the original net doesn’t have the property).54

Most applications of CP-nets are used to design and validate the correctness of a
system (e.g. whether the system executes the desired functions and whether it is dead-
lock free). CP-nets can, however, also be used to investigate the performance of a sys-
tem (i.e. how fast it executes). To perform this kind of analysis it is necessary to spec-
ify the time consumption in the modelled system, and this can be done in many differ-
ent ways: As a delay between the enabling and occurrence of a transition, a delay be-
tween the removal of input tokens and the creation of output tokens, or as a delay be-
tween the creation of a token and the time at which that token can be used. In all three
cases, the delay may be a fixed value, a value inside a given interval, or a value deter-

52 Transition invariants are found by solving a homogeneous matrix equation (obtained by transposing
the matrix used to find place invariants). Each transition invariant is a solution to the matrix equation.
The opposite is, however, not always true (even for “nice” CP-nets).

53 As shown in [45] invariants can be obtained by the composition of existing invariants and this means
that we can construct invariants of a hierarchical CP-net — from invariants of the individual pages.

>4 An exception is the reduction method to calculate place/transition invariants, mentioned in section
7.2. In this case it is, from the reduced net, possible to determine a set of the invariants for the origi-
nal net — and this means that the analysis results can be interpreted in terms of the original net.

36

mined by a probability distribution. Performance analysis is often made by simulation,
and we shall in section 7.1 briefly describe how this can be done. For some kinds of
delays, it is also possible to translate the net model into a Markovian chain — from
which analytic solutions of the performance values can be calculated. For more infor-
mation about performance analysis see [47].

For ordinary Petri nets at least two other kinds of analysis methods are known. One
method translates the net structure into a set of logical equations, transforms the equa-
tions by a general theorem prover, and obtains results above the behaviour of the sys-
tem. For more information see [10]. The other method uses structural properties>s of a
Petri net to deduce behavioural properties. For more information see [3].
Unfortunately, neither of these methods have yet been generalized to CP-nets (or other
kinds of high-level Petri nets).

5. Computer Tools for CP-nets

The practical use of Petri nets is, just as all other description techniques, highly depen-
dent upon the existence of adequate computer tools — helping the user to handle all the
details of a large description. For CP-nets we need an editor (supporting construction,
syntax check and modification of CP-nets) and we also need a number of analysis pro-
grams (supporting a wide range of different analysis methods). The recent development
of fast and cheap raster graphics gives us the opportunity to work directly with the
graphical representations of CP-nets (and occurrence graphs). This chapter describes
some existing CPN tools (the CPN editor and CPN simulator from [1]). In chapter 7 we
discuss other kinds of CPN tools that are needed, but have not yet been fully developed.

5.1 Why do we need computer tools for CP-nets?

The most important advantage of using computerized CPN tools is the possibility to
create better results. As an example, the CPN editor provides the user with a precision
and drawing quality, which by far exceeds the normal manual capabilities of humans
beings. Analogously, computer support for complex analysis methods (e.g. occurrence
graphs) makes it possible to obtain results, which could not have been achieved manu-
ally (since the calculations would have been too error-prone).

A second advantage is the possibility to create faster results. As an example, the
CPN editor multiplies the speed by which minor modifications can be made: It is easy
to change the size, form, position and text of the individual net elements without having
to redraw the entire net. It is also possible to construct new parts of a net by copying
and modifying existing subnets. Analogously, analysis methods may be fully or par-
tially automated. As an example, the manual construction of an occurrence graph is an
extremely slow process — while it can be done on a computer in a few minutes/hours
(even when there are several hundred thousand nodes).

55 Structural properties are properties which can be formulated without considering the behaviour (i.e.
occurrence sequences). In a CP-net structural properties may involve properties of the net structure,
but also properties of the net inscriptions and the declarations.

37

A third advantage is the possibility to make interactive presentations of the analysis
results. The CPN simulator makes it easy to trace the different occurrence sequences in
a CP-net. Between each occurrence step, the user can (on the graphical representation
of the CP-net) see the transitions which are enabled, and choose between them in order
to investigate different occurrence sequences. Analogously, it is possible to make an
interactive investigation of a complex occurrence graph — using an elaborated search
system.

A fourth advantage is the possibility of hiding technical aspects of the CP-net theory
inside the tools. This allows the users to apply complicated analysis methods without
having a detailed knowledge of the underlying mathematics. Often the analysis is per-
formed in an interactive way: The user proposes the operations to be done. Then the
computer checks the validity of the proposals, performs the necessary calculations
(which often are very complex) and displays the results.

For industrial applications the possibility of producing fast results of good quality
- without requiring too deep knowledge of Petri net theory — is a necessary prerequi-
site for the entire use of CP-nets. Furthermore it is important to be able to use CP-nets
together with other specification/implementation languages (we shall return to this
question in chapters 6 and 7).

The remaining sections of this chapter describe the basic design criteria behind the
CPN editor and the CPN simulator. For a more complete and detailed description the
user is referred to [36]. The sections can also be seen as a list of design criteria which is
relevant for all high-quality Petri net editors and simulators. There are a large number
of different groups which work with the development of Petri net tools. Many of the
tools are, however, still research prototypes — and for the moment it is only few of
them which are able to deal with large high-level nets and are sufficiently robust to be
used in an industrial environment. A list of available Petri net tools can be found in
[17].

5.2 CPN editor

The CPN editor allows the user to construct, modify and syntax check hierarchical
CP-nets. It is also easy to construct and modify many other kinds of graphs (but they
can of course not be syntax checked).’¢ All figures in this paper has been produced by
means of the CPN editor.

A CP-net constructed by means of the CPN editor is called a CPN diagram and it
contains a large number of different types of graphical objects. Each object is either a
node, a connector (between two nodes) or a region (i.e. a subordinate of another
object). Places and transitions are nodes, arcs are connectors, while all the net inscrip-
tions are regions. As examples, colour sets and initialization expressions are regions of
the corresponding places, guards of the corresponding transitions and arc expressions
of the corresponding arcs.

The division of objects into nodes, connectors and regions reflects the fact that the
CPN editor works with the graph (and not just an unstructured set of objects, as it is
the case for most general purpose drawing tools, such as MacDraw™ or MacDraft™).

36 In this paper, the word graph denotes the mathematical concept of a graph (i.e. a structure which con-
sists of a set of nodes interconnected by a set of edges).

38

This is important because it means that the construction and modification of the CPN
diagrams become much faster (and with more accurate results): When the user con-
structs a connector he identifies the source and destination nodes (and perhaps some
intermediate points). Then the editor automatically draws the connector in such a way
that the two endpoints are positioned at the border of the two nodes. When the user
changes the position or size of a node the regions and surrounding arcs are automati-
cally redrawn by the editor. A repositioning implies that the regions keep their relative
position (with respect to the node). A resizing implies that the relative positions of the
regions are scaled while their sizes are either unchanged or scaled (depending upon an
attribute of each region). When a node is deleted the regions and arcs are deleted too.
This is illustrated by Fig. 8 where the node X is first repositioned, then resized and fi-
nally deleted. Similar rules apply for the repositioning, resizing and deletion of arcs
and regions.

Figure 8. When a node is repositioned, resized or deleted, the regions and surrounding arcs are
automatically updated.

In addition to the CPN objects (e.g. places, transitions, arcs and net inscriptions),
which are formal parts of the model there may also be auxiliary objects which have
no formal meaning but play a similar role as the comment facilities in programming
languages. Finally, there are system objects which are special objects created and
manipulated by the CPN editor itself. Each object has an object type and it should be
noticed that it is the object type which determines the formal meaning of the object
- independently of the object position and object form. The CPN editor distinguishes
between nearly 50 different object types.

It is possible for the user to determine, in great detail, how he wants the CPN dia-
gram to look. One of the most attracting features of CP-nets (and Petri nets in general)
is the very appealing graphical representation, and it would be a pity to put narrow re-
strictions on how this representation can look (e.g. by making an editor in which the
user cannot give two transitions different forms and/or sizes). In our opinion a good
editor must allow the user to draw nearly all kinds of CP-nets which can be constructed
by a pen and a typewriter. In the CPN editor each object has its own set of attributes
which determine e.g. the position, shape, size, line thickness, line and fill patterns, line
and fill colours and text type (including font, size, style, alignment and colour). There
are 10-30 attributes for each object (depending upon the object type). When a new ob-
ject is constructed the attributes are determined by a set of defaults (each object type
has its own set of defaults). At any time the user can change one or more attributes for

39

each individual objects.5” Moreover, it is easy to change the defaults and it can be spec-
ified whether such changes apply to the current diagram or to future diagrams (or
both).

In addition to the attributes the CPN editor (and in particular the CPN simulator)
has a large set of options — which determines how the detailed functions in the editor
are performed (e.g. the scroll speed, the treatment of duplicate arcs when two nodes
are merged, and details about how the syntax check is performed). The difference be-
tween attributes and options is that the former relate to an individual object while the
latter do not. Also options have defaults and these can be changed by the user.58

The CPN editor supports hierarchical CP-nets> and this means that each CPN dia-
gram contains a number of pages. Each page is displayed in its own window (which in
the usual way can be opened, closed, resized and repositioned). The relation between
the individual pages is shown by the page hierarchy (which is positioned on a sepa-
rate page called the hierarchy page and automatically maintained by the CPN editor).
The page hierarchy is a graph in which each node represents a page and each connector
a (direct) superpage/subpage relationship. The nodes are page nodes and each of them
contains the corresponding page name and page number. The connectors are page
connectors and each of them has a set of page regions containing the names of the
involved supernodes.®® The page objects can be moved and modified in exactly the
same way as all other types of objects, and this means that the user can determine how
the page hierarchy looks. The editor uses the line pattern of a page node to indicate
whether the corresponding page window is active, open or closed. As an example, the
ring network from Fig. 4-5 has a hierarchy page with three page nodes and one page
arc, and it may look as shown in Fig. 9, where NetWork#10 is open but not active,
Site#11 is closed, while the hierarchy page Hierarchy#10010 is open and active. In gen-
eral, the hierarchy pages are much more complex.

AR EE SN RS S

(' Hierarchy#10010) { NetWorki10 jrmmmp Site#11
. N01 LA O

@Prime No2

No3

No4

Figure 9. Hierarchy page for the ring network

The hierarchies in a CPN diagram can be constructed in many different ways — ranging
from a pure top-down approach to a pure bottom-up: Part of a page can by a single
editor operation be moved to a new subpage. The user selects the nodes to be moved
and invokes the operation, then the editor checks the legality of the selection,b! creates

7 This is done by specifying an explicit value, selecting another object (from which the attribute is
copied) or by resetting the attribute to the current default.

38 For options a change in the default value only effects future diagrams (while a change in the option
value itself, of course, effects the current diagram).

59 For the moment the CPN editor supports substitution transitions and place fusion. The other hierar-
chy constructs from [31] will be added later (some of them perhaps in an improved form).

60 Page nodes, page connectors and page regions are system objects.

61 All perimeter nodes (i.e. nodes with external arcs) must be transitions — in order to guarantee that the
selection forms a closed subnet.

40

the new page, moves the subnet, creates the port nodes (by copying those nodes which
were next to the selection), creates the border regions for the port nodes, constructs the
necessary arcs between the the port nodes and the subnet, asks the user to create a new
transition (which becomes the supernode for the new subpage), draws the arcs sur-
rounding the new transition, creates a hierarchy inscription for it, and updates the hier-
archy page. As it can be seen, a lot of rather complex checks, calculations and manipu-
lations are involved. However, nearly all of these are automatically performed by the
CPN editor. The user only selects the subnet and creates the new supernode.

There is also an editor operation to turn an existing transition into a supernode (by
relating it to an existing page). Again most of the work is done by the editor: The user
selects the transition and invokes the operation, then the editor makes the hierarchy
page active and enters a mode in which the user by means of the mouse can select the
desired subpage,2 the editor creates the hierarchy inscription,s? and updates the hierar-
chy page. To destroy the hierarchical relationship between a supernode and a subpage
the user simply deletes the corresponding hierarchy inscription (or the corresponding
page connector/region). It is also possible to replace the supernode by the contents of
the subpage: This involves a lot of complex calculations and manipulations, but again
all of them are carried out by the CPN editor. The user simply selects the supernode,
invokes the operation and uses a simple dialogue box to specify how the operation shall
be performed — e.g. he tells whether the page shall be deleted (in the case where no
other supernodes exist).

The user works with a high-resolution raster graphical screen and a mouse.®* The
CPN diagram under construction can be seen in a number of windows (where it looks
as close as possible to the final output obtained by a matrix or laser printer). The editor
is menu driven and have self-explanatory dialogue boxes (as known e.g. from many
Macintosh programs). The user moves and resizes the objects by direct manipulation
- 1.e. by means of the mouse (instead of typing coordinates and object identification
numbers on the keyboard). This also applies to the pages which can be opened, closed,
scrolled and scaled by means of the corresponding page node. When the user deletes a
page node the corresponding page is deleted (after a confirmation). Analogously, the
deletion of a page connector or a page region means that the corresponding hierarchi-
cal relationship is destroyed (and thus the corresponding supernodes become ordinary
transitions).

One important difference between the CPN editor and many other drawing pro-
grams 1s the possibility to work with groups of objects. This means that the user is
able to select a set of objects and simultaneously change the attributes, delete the ob-
jects, copy them, move them or reposition them (e.g. vertical to each other). The user
can select groups in many different ways (e.g. by dragging the mouse over a rectangu-
lar area or by pressing a key while he points to a sequence of objects). The CPN editor

62 When the mouse is moved over a page node it blinks — unless it is illegal (because selection of it
would make the page hierarchy cyclic). Only blinking page nodes can be selected.

63 The user can ask the editor to try to deduce the port assignment by means of a set of rules (which
looks at the node names, the port types and the arcs between the transition and the sockets).

64 For the moment the CPN tools are implemented on Macintosh, SUN and HP machines — and they
can easily be moved to other machines running UNIX and X-Windows. It is recommended, but not
necessary, to have a large colour screen.

41

allows the user to perform operations on groups in exactly the same way as they can be
performed on individual objects®S — and this has the same effect as when the corre-
sponding operation is performed on each group member one at a time. All members of
a group has to belong to the same page and be of the same kind — i.e. all be nodes, all
be connectors or all be regions.6¢ Otherwise there are no restrictions on the way in
which groups can be formed. The group facility has a very positive impact upon the
speed and ease by which editing operations are performed. By selecting a group of
page nodes it is possible to work on several pages at the same time.

In the design of the CPN editor it has been important for us to make it as flexible as
possible. As described above, this means that it is possible to construct CPN diagrams
which look very different. However, it also means that each diagram can be created in
many different ways. One example of this principle is the many different ways in
which the page hierarchy can be constructed. Another example is the fact that the CPN
editor allows the user to construct the various objects in many different orders: Some
users prefer first to construct the net structure (i.e. the places, transitions and arcs).
Later they add the net inscriptions (i.e. the CPN regions) — and doing this they either
finish one node at a time or one kind of CPN regions at a time, and they either type
from scratch or copy from existing regions. Other users prefer to create templates
- e.g. a place with a colour set region and an initialization region. Then they create the
diagram by copying the appropriate templates to the desired positions and modifying
the texts (if necessary).6” Finally, most users work in a way which is a mixture of the
possibilities described above. We think that this kind of flexibility — where the user
controls the detailed planning of the editing process — is extremely important for a
good tool. Thus the CPN editor has been designed to allow most operations to be per-
formed in several different ways.

A CPN diagram contains many different kinds of information and this means that
the individual pages very easy become cluttered. To avoid this the user is allowed to
make objects invisible (without changing the semantics of the objects). As an example
the user may hide all colour set regions and instead indicate the colour sets by giving
the corresponding places different attributes (e.g. different line patterns/colours). In
this case it is still the invisible regions that determine the formal behaviour, and it is the
responsibility of the user to keep the pattern/colour coding of the places correctly up-
dated (there are several facilities in the CPN editor which helps him in this task).
Another facility, which also helps avoiding cluttered diagrams, is the concept of key
and popup regions, which are used for a number of different object types (both in the
editor and the simulator). The idea is very simple: Instead of having a single region
(containing a lot of information) we have both a key region (which is a region of the
object to which we want to attach the information) and a popup region (which is a
region of the key). The key region is small (it usually only contains one or two charac-
ters) and its main purpose is to give access to the popup region which contains the ac-

65 There are only very few operations which do not make sense for groups.

66 In a later version of the CPN editor, we may allow a group to have members from different pages.
This is easy to implement and it creates no conceptual problems. It is, however, unlikely that we will
allow mixed groups. The reason is that the semantics of many operations then become a bit obscure.

67 'When the user copies a node, the editor automatically copies the regions. Analogously, when a group
of nodes is copied, the internal connectors (between two members of the group) are copied too.

42

tual information. A double click on the key region makes the popup region visi-
ble/invisible and in this way it is extremely easy to hide and show large amounts of in-
formation. For examples of key/popup regions see the hierarchy regions in Fig. 4 (with
the HS-keys), the border regions in Fig. 5 (with the B-keys) and the marking regions in
Fig. 3 (containing the current marking). It should be noticed that the use of key/popup
regions is more general than the use of popup windows (in which information can be
displayed on demand). The difference is that the popup regions are objects in the dia-
gram itself and thus the user can leave all of them or some of them permanently visi-
ble. Actually, it is an attribute of each key region that determines whether the corre-
sponding popup region is visible or not.8

It should be noticed that the generality of the CPN editor means that the user can
create very confusing CPN diagrams. As examples, it may be impossible to distinguish
between auxiliary objects and CPN objects (because they have been given identical at-
tributes), transitions may be drawn as ellipses while places are boxes, and some or all
of the objects may be invisible — just to mention a few possibilities. We do not believe it
is sensible to try to construct a tool which makes it impossible to produce bad nets.
Such a tool will, in our opinion, inevitably be far too rigid and inflexible. However, we
do of course believe that the tool should make it easy for the user to make good nets.

There are many other facilities in the CPN editor: Operations to open, close, save
and print diagrams.®® An operation which allows the editor to import diagrams created
by other tools (e.g. SADT diagrams created by the IDEF/CPN tool described in section
6.3). The standard Undo,’ Cut, Copy, Paste and Clear operations known e.g. from the
Macintosh concept. Operations to define fusion sets, specify port nodes and perform
port assignments. Operations to create many different types of auxiliary objects (e.g.
connectors, boxes, rounded boxes, ellipses, polygons, wedges and pictures’!).
Operations to turn auxiliary objects into CPN objects (and vice versa). An operation to
syntax check the CPN diagram (and other operations to start/stop the ML compiler, see
section 5.3). A large set of operations to change attributes and options — and their de-
faults. Operations which assist the user to select the correct object (when many are
close to each other or on top of each other), move objects to another position (on the
same page or on another page), change object size (e.g. to fit the size of the text in the
object), change object shape (e.g. from ellipse to box),”? merge a group of nodes into a

68 For efficiency reasons the popup region can also be missing. In this case a double click on the key
implies that the popup is generated (with the correct information) and becomes visible.

69 It is also the intention to allow the user to save part of a diagram and later load it into another dia-
gram. In this way it will be possible to create libraries of reusable submodels. This facility is, how-
ever, not yet implemented.

70 For the moment, Undo only works for a limited set of operations.

71 A picture is a bit map which is obtained from a CPN diagram (by copying part of a page) or from an-
other program (via the clipboard). Pictures makes it easy to work with icons.

72 All objects can take many different shapes. Nodes and regions can e.g. be boxes, rounded boxes, el-
lipses, polygons, wedges and pictures. Connectors can be single headed, double headed and without
heads. As an example, of a creative use of this generality, it is possible to let a substitution transition
be a picture which is a diminished version of the corresponding subpage.

43

single node, duplicate a node”, hide and show regions and change the graphical layer-
ing of the objects. Operations to redraw the page hierarchy — when this has become too
cluttered (e.g. because the user has made a number of manual changes to the automatic
layout proposed by the CPN editor). Operations to select groups (e.g. by means of fu-
sion sets, text searches and object types).’4 Operations to search for specified text
strings and replace them by others (either in the entire diagram, on a single page, or in
one or more selected objects). Operations to search for matching brackets, create hyper
text structures,’”> and copy the contents of external text files into nodes (and vice versa).
A large number of alignment operations. Some of these make it easy to position nodes
and regions relative to each other (e.g. vertically below each other, with equal dis-
tances, on a circle, with the same center, etc.). Others make it easy to create arcs with
right angles and vertical/horizontal segments.

The CPN editor can be used at many different skill levels. Casual and novice users
only have to learn and apply a rather small subset of the total facilities. The more fre-
quent and experienced users gradually learn how to use the editor more efficiently: All
the more commonly used commands can be invoked by means of key shortcuts, and
these can be changed by the users. Many commands have one or more modifier keys,
allowing the user, in one operation, to do things which otherwise would require several
operations. The user can create a set of templates (e.g. a set of nodes with different at-
tributes and object types). These nodes can then be positioned on special palette pages,
from where they, in one operation, can be copied to the different pages of a diagram.
In this way it is easy to make company standards for the graphics of CPN diagrams.

To make it easier to use the CPN editor we have tried to make the user interface as
consistent and self-explanatory as possible. To do this, we have defined a set of con-
cepts allowing us to give a precise description of the different parts of the interface: As
an example, a list box with a scroll bar can behave in many slightly different ways: It
may be possible to select only a single line at a time, a contiguous set of lines, an arbi-
trary set of lines, or no lines at all — and when the dialogue box is opened, the list box
may have the same selection as last time, have the first line selected, have no lines se-
lected, or have a selection which depends upon the current selection in the diagram.
Hopefully, this simple example demonstrates that it is important to identify the possi-
bilities — and use them in a consistent way.

When the user creates a CPN diagram, the editor stores all the semantic information
in an abstract data base — from which it easily can be retrieved by the CPN simulator
(and other analysis programs). The abstract data base was designed as a relational data
base but for efficiency implemented by means of a set of list structures (making the
most commonly used data base operations as efficient as possible). The existence of the
abstract data base makes it much easier to integrate new/existing editors and analysis
programs with the CPN tools — and for this purpose there are three sets of predeclared
functions: The first set makes it possible to read the information which is present in the
abstract data base (e.g. get information about the colour set of place). The second set

73 The new node get a set of regions and connectors which are similar to the original node. By using the
command on a group of nodes, it is possible to get a subnet which is identical to an existing subnet
(and has the same connectors to/from the environment).

74 Some of the group selection facilities are not yet implemented.

75 This facility is not yet fully implemented.

44

makes it possible to create auxiliary objects (which have a graphical representation but
no representation in the abstract data base). Finally, the third set makes it possible to
convert auxiliary objects to CPN objects (which means that the abstract data base is up-
dated accordingly). Using these three sets of predeclared functions it is a relatively
straightforward task to write programs which translates textual/graphical representa-
tions of a class of Petri nets (or another formalism with a well-defined semantics) into
CPN diagrams — and vice versa.

Finally, it should be mentioned that the CPN editor is designed to work with large
CPN diagrams — i.e. diagrams which typically have 50-100 pages, each with 5-25 nodes
(and 10-50 connectors plus 10-200 regions).

5.3 Inscription language for CP-nets

When the user creates a CPN diagram he simultaneously creates a drawing and a for-
mal model. The behaviour of the formal model is determined by the objects, their ob-
ject types, the relationships between the objects’¢, and the text strings inside the objects.
Obviously these text strings need to have a well-defined syntax and semantics, and this
is achieved by using a programming language called Standard ML (SML). It is by
means of this language we declare colour sets, functions, operations and specify arc ex-
pressions and guards. SML has been developed by a group at Edinburgh University and
it is one of the most well-known functional languages. For details about SML and func-
tional languages, see [26], [27], [50] and [63]. ‘

By choosing an existing programming language we obtained a number of advan-
tages. First of all we got a much better, more general and better tested language than
we could have hoped to develop ourselves.”7 Secondly, we only had to port the com-
piler to the relevant machines and integrate it with our editor (instead of developing it
from scratch).”8 Thirdly, we can use the considerable amount of documentation and
tutorial material which already exists for SML (and for functional languages in gen-
eral).

Why did we choose SML? First of all, we need a functional language: Arc expres-
sions and guards are not allowed to have side effects and when a CP-net is translated
into matrix form (e.g. for invariant analysis) the arc expressions and guards are, via
lambda expressions, translated into functions. Secondly, we need a strongly typed lan-
guage: Because CP-nets use colour sets in a way which is analogous to types in pro-
gramming languages. Thirdly, we need a language with a flexible and extendible syn-
tax: This makes it possible to allow the user to write arc expressions and guards in a
form which is very close to standard mathematics (as an example, multi-set plus is de-

76 There are many different kinds of relationships — e.g. the relationship between connectors and their
source/destination nodes, between nodes and their regions, and between substitution transitions and
their subpages.

77 The development of a new programming language is a very slow and expensive process that requires
resources comparable with the entire CPN tool project.

78 The CPN tools use two different SML compilers. On the Macintosh we use the original compiler de-
veloped at Edinburgh University. On the Unix machines we use a more modern compiler developed
by AT&T. It is also possible to run the graphics on one machine and the SML compiler on another
(connected to the first by a local area network).

45

noted by “+”).7 SML is only one out of a number of languages which fulfil the three
requirements above. SML was chosen because it was one of the best known, it had
commercially available compilers, and some of us already had good experiences with
the language.

We have many times been amazed by the high quality of SML, the generality of the
language, and the ease by which complex programs can be written.8 Thus we consider
the choice of SML as one of the most successful design decisions in the CPN tool pro-
ject. This choice has given us a very powerful and general inscription language and it
has saved a lot of implementation time. As we shall see in section 5.5, the use of SML
also makes it easy to make a smooth integration between the net inscriptions of a
CP-net and code segments (which are sequential pieces of code attached to the individ-
ual transitions and executed each time a binding of the transition occurs).

To make it easier for the user we have made three small extensions of SML — and
this yields a language called CPN ML: As the first extension, syntactical sugar has been
added for the declaration of colour sets. This makes it easy to declare the most common
kinds of colour sets, and it also means that a large number of predeclared functions and
operations can be made accessible, just by including their names in the colour set decla-
ration.8t As examples, each enumeration type has a function mapping colours into or-
dinal numbers, each product type has a function mapping a set of multi-sets into their
product multi-set, and each union type has a set of functions performing membership
tests. SML allows the user to declare integers, reals, strings, enumerations, products,
records, discrete unions and lists — and nest the type constructors arbitrarily inside each
other. As an example we may declare the following colour sets (which should be rather
self-explanatory):

color Name = string;
color NameList = list Name;

color Year = int;

color Month = with Jan | Feb | Mar | Apr [May | Jun |
Jul | Aug | Sep | Okt | Nov | Dec;

color Day = int with 1..31;

color Date = product Year * Month * Day;

color Person = record name : Name * BirthDay : Date * Children : NameList;

79 The “+” operator is infixed (i.e. written between the two arguments). It is polymorphic (i.e. it works
for multi-sets over all different types) and it is overloaded (i.e. it uses the same operator symbol as
integer plus and real plus).

80 Much of the more intrinsic code of the CPN simulator is written in SML. In particular, all the code
that calculates the set of enabled bindings. This code is rather complex: It defines a function which
maps an arbitrary set of arc expressions (plus a guard) into a function mapping a set a multi-sets into
a set of enabled bindings.

81 This convention saves a lot of space in the ML heap, because it turns out that most CPN diagrams
only use few of the predeclared functions. A later version of the CPN editor will automatically detect
the predeclared functions applied by the user (and then it will no longer be necessary to list their
names).

46

Via the syntactic sugar, it is in CPN ML easy to declare colour sets from all the SML
types mentioned above (and from subranges, substypes, and indexed types, which do
not exist as standard SML types). In SML it is also possible to declare function types
and abstract data types. However, such types do not have an equality operation and thus
it does not immediately make sense to use them as colour sets (because you cannot talk
about multi-sets without being able to talk about equality).82

As the second extension, we have added syntax which allows the user to declare the
CPN variables — i.e. the typed variables used in arc expressions and guards. This ex-
tension is necessary because SML do not have variable declarations (in SML a value is
bound to a name and this determines the current type of the name; later the name may
get a new value and a new type).

As the third extension, we have added syntax which allows the user to declare three
different kinds of reference variables. This is a non-functional part of SML and we
only allow reference variables to be used in code segments. We distinguish between
global, page and instance reference variables — in the same way as we distinguish be-
tween global, page and instance fusion sets: A global reference variable can be used by
all code segments in the entire CPN diagram, while a page and instance reference vari-
able only can be used by the code segments on a single page. A page reference variable
is shared by all instances of the page, while an instance reference variable has a sepa-
rate value for each page instance.

SML (and thus CPN ML) can be viewed as being a syntactical sugared version of
typed lambda calculus, and this means that it is possible to declare arbitrary mathemati-
cal functions (as long as they are computable). It should be noticed that the use of SML
gives an immense generality: The user can declare arbitrarily complex functions?®3 and,
if he wants, he can turn them into operations (i.e. use infix notation). This generality
has been heavily used in the implementation of the CPN tools. Multi-sets are imple-
mented as a polymorphic type constructor “ms” which maps an arbitrary type A into a
new type, denoted by A ms and containing all multi-sets over A. Then we have de-
clared a large number of polymorphic and sometimes overloaded operations/functions
— by which multi-sets can be manipulated (e.g. operations to add and subtract multi-sets
and functions to calculate the coefficients and the size of multi-sets).

The generality of the CPN ML language means that some legal CPN diagrams can-
not be handled by the CPN simulator. As an illustration consider the transition in Fig.
10, where x is a CPN variable of type X, while fe [X—A] and ge [X—B] are two func-
tions. To calculate the set of all enabled bindings for such a transition it is either neces-
sary to try all possible values of X or use the inverse relations of f and g (and neither is
possible, in general — because X may have two may values and the inverse relations
may be unknown).

82 The user can, with some extra work, use an arbitrary ML type as a colour set — as long as the stan-
dard equality operator “=" exists (and the type is non-polymorphic). In this way it is possible to de-
clare abstract data types and turn them into colour sets. Details are outside the scope of this paper.

83 Many CPN diagrams use recursive functions defined on list structures.

Figure 10. A syntactically legal CPN transition which cannot be handled by the CPN simulator

To avoid such problems the CPN simulator demands that each CPN variable, used
around a transition, must appear either in an input arc expression without functions or
operations$4 (then the possible values can be determined from the marking of the cor-
responding input place), be determinable from the guard, have a small colour set (in
which case all possibilities can be tried),85 or only appear on output arcs (in which case
all possible values can be used). It is very seldom that these restrictions present any
practical problems. Most net inscriptions, written by a typical user, fulfil the restric-
tions — and those which do not, can usually be rewritten by the user, without changing
the semantics. As an example, consider the three transitions in Fig. 11. None of these
can be directly handled by the CPN simulator. The first transition is identical to the
transition in Fig. 10. The second transition has a guard which is a list of boolean ex-
pressions, and this means that each of the expressions must be fulfilled. The third
transition uses the function exp(x,y) which takes two non-negative integers as argu-
ments and returns xy.

Figure 11. Three transitions which cannot be handled by the CPN simulator

Now let us assume that f has an inverse function f1e[A—X]. Then we can, as shown in
Fig. 12, rewrite the three transitions — so that their semantics is unchanged and they can
be handled by the CPN simulator. In the first transition z is a variable of type A. In the
second transition z can now be determined from the guard — because there is an equal-
ity in which z appears on one side (alone or in a matchable pattern) while the value of

84 The arc expression is allowed to contain matchable operations such as the tuple constructor (,,) in
(x,y,z), the list constructor :: in head::tail, and the record constructor {,,} in {se=S(inst()), re=r,
no=n}. It is also allowed to contain multi-set “+” and “*”.

85 Intuitively a small colour set is a type with few values. A precise definition can be found in [36].

48
the other side is known (x and y are bound by one of the input arc expressions). In the

third transition the function sq(x) takes a non-negative integer as argument and it re-
turns the integer which is closest to Vx.

exp(n,3)

[n=sq(n2),
n2=exp(n,2)]

Figure 12. Three transitions that are behaviourally equivalent to those in Fig. 11 and which can be
handled by the CPN simulator

It is important to understand that the general definition of CP-nets talks about expres-
sions and colour sets — without specifying a syntax for these. It is only when we want to
implement a CPN editor and a CPN simulator (and other kinds of CPN tools) that we
need a concrete syntax. Thus it is for the CPN tools, and not for CP-nets in general,
that CPN ML has been developed. Other implementations of CP-nets may use different
inscription languages — and still they deal with CP-nets.

5.4 Syntax check

The CPN editor is syntax directed — in the sense that it recognizes the structure of
CP-nets and prevents the user to make many kinds of syntax errors. This is done by
means of a large number of built-in syntax restrictions. All the built-in restrictions
deal with the net structure and the hierarchical relationships. As examples, it is impos-
sible to make an arc between two transitions (or between two places), to give a place
two colour set regions (or give a transition a colour set region), to create cycles in the
substitution hierarchy, and to make an illegal port assignment (involving nodes which
aren’t sockets/ports or are positioned on a wrong page).

The CPN editor also operates with compulsory syntax restrictions. These restric-
tions are necessary in order to guarantee that the CPN diagram has a well-defined se-
mantics — and thus they must be fulfilled before a simulation (and other kinds of be-
havioural analysis) is performed. Many of the compulsory restrictions deal with the net
inscriptions and thus with CPN ML. As examples, it is checked that each colour set re-
gion contains the name of a declared colour set A (and that all surrounding arc expres-
sions have a type which is identical to either A or A ms), that all members of a fusion
set have the same colour set and equivalent initialization expressions, and that all iden-
tifiers in arc expressions and guards are declared (e.g. as CPN variables or functions).
Many of the compulsory syntax restrictions could have been implemented as built-in
restrictions. This would, however, have put severe limits on the way in which a user
can construct an edit a CPN diagram. As examples, we could have demanded that each
place always has a colour set (and this would mean that the colour set has to be speci-
fied at the moment the place is created) and we could have demanded that each arc ex-

49

pression always is of the correct type (and this would mean that a colour set cannot be
changed without simultaneously changing all the surrounding arc expressions).

Finally, the CPN editor operates with optional syntax restrictions.8¢ These are re-
strictions which the user imposes upon himself — e.g. because he knows that he usually
does not use certain facilities of the editor and wants to be warned when he does (in
order to check whether this was on purpose or due to an error). As examples, it can be
checked whether port assignments are injective, surjective and total, whether all arcs
have an explicit arc expression (otherwise they by default evaluate to the empty multi-
set) and whether the place/transition names are unique (on each page).

All the type checking is done by the SML compiler and it is the error messages of
this compiler which is presented to the user (together with a short heading produced by
the CPN editor). The fact that these messages are easy to understand and uses CP-net
terminology tells a lot about the generality and quality of SML. To illustrate this, let us
imagine that we, in Fig. 1, change the arc expression between A and T1 from (x,1) to x.
This will result in an error message which looks as follows:87

C.11 Arc Expression must be legal
Type clash in: x:((P)ms)

Looking for a: P ms

I have found a: U

««135»»

To speed up the syntax check we avoid duplicate tests: As an example, the same arc ex-
pression may appear at several arcs and it is then only checked once (provided that the
places have identical colour sets). We also apply incremental tests: When the user
changes part of a CPN diagram as little as possible is rechecked. Changing an arc ex-
pression or a guard means that the use of variables in the code segment must be
rechecked. Changing a colour set means that the initialization expression and all sur-
rounding arc expressions have to be rechecked.8® Changing the global declaration node
(which contains the declarations of colour sets, functions, operations, and CPN vari-
ables), unfortunately means that the entire CPN diagram has to be rechecked. To avoid
using too much time for such total rechecks, the CPN editor allows the user to add a
temporal declaration node which extends the declarations of the global declaration
node.#

The CPN editor allows the user to give each page, transition and place a name (i.e. a
text string) and a number (which must be non-negative).? It should, however, be un-

86 QOptional syntax checks are not implemented in the current version of the CPN editor.

87 This is how the error message looks when the SML compiler runs on a Macintosh (on a Unix system
another SML compiler is used, and thus the error messages looks a little bit different). C11 means
that it is the 11th kind of compulsory restriction, while ««135»» is a hyper text pointer which allows
the user to jump to the error position (i.e. to the arc with the erroneous arc expression).

88 If the place belongs to a fusion set or is an assigned port/socket it also has to be checked whether the
restrictions in Def. 3.2 (v) and (vi) still are satisfied.

89 It is also possible, but not recommended, to use the temporal declaration node to overwrite existing
declarations.

90 In the current version it is not possible to give transitions and places a number.

50

derstood that these names have no semantic meaning.%! Names are used in the feedback
information from the editor to the user (e.g. in the page hierarchy and in the hierarchy
inscriptions). To make this information unambiguous it is recommended to keep names
unique,?? but this is not enforced (unless the user activates an optional syntax restric-
tion). Many users have a large number of transitions and places with an empty name
(and this is no problem, as long as these nodes are not used in a way which generates
system feedback).

The possibility of performing an automatic syntax check means that the user has a
much better chance of getting a consistent and error-free CPN diagram. This is very
useful — also in situations where the user isn’t interested in making a simulation (or
other kinds of machine assisted behavioural analysis).

5.5 CPN simulator

The CPN editor and CPN simulator are two different parts of the same program and
they are closely integrated with each other: In the editor it is possible to prepare a
simulation (e.g. change the many options which determine how the simulation is per-
formed). In the simulator it is possible to perform simple editing operations (those
which change the attributes of objects without changing the semantics of the model).
The CPN simulator is able to work with large CP-nets, i.e. CP-nets with 50-500
page instances, each with 5-25 nodes. Fortunately, it turns out that a CP-net with 100
page instances, typically, simulates nearly as fast as a CP-net with only a single page
instance (measured in terms of the number of occurring transitions). This surprising
result is due to the fact that the CPN simulator, during the execution of a step, goes
through three different phases: First it makes a random selection between enabled tran-
sitions, then it removes and adds tokens at the input/output places of the occurring
transitions, and finally it calculates the new enabling. The first of these phases is fast
(compared to the others), the second is independent of the model size and the third only
depends upon the model size to a very limited degree. This is due to the fact that the
enabling and occurrence rule of CP-nets are strictly local — and this means that it only
is the transitions in the immediate neighbourhood of the occurring transitions that need
to have their enabling recalculated.®* Without a local rule the calculation of the new en-
abling would grow linearly with the model size and that would make it very cumber-
some to deal with large systems. We have not yet tried to work with very large systems
(e.g. containing 10.000 page instances) but our present experiences tell us that the up-
per limit is more likely to be set by the available memory than by the processor speed.
The user must be able to follow the on-going simulation — and it is obvious that no
screen (or set of screens) will be able simultaneously to display all page instances of a
large model. Like the editor, the CPN simulator uses a window for each page and in

91 1In the current version of the CPN editor the names of fusion sets play a semantic role, and thus they
have to be unambiguous. This will be changed in a later version.

92 For places and transitions it is sufficient to demand the names to be unique on each individual page.

93 In one of the next versions of the CPN simulator we will also allow the user to make changes that
modify the behaviour of the model — as long as these changes cannot make the current marking ille-
gal.

94 When the neighbourhood of an occurring transition is defined, fusion sets and port/socket assign-
ments must be taken into consideration.

51

this window the simulator displays the marking of one of the corresponding page in-
stances. The user can see the names of the other page instances and switch to any of
these. When a transition occurs the simulator automatically opens the corresponding
page window (if necessary), brings it on top of all other windows, switches to the cor-
rect page instance, and scrolls the window so that the transition becomes visible. The
user can, however, tell that he doesn’t want to observe all page instances. In that case
the simulator still executes the transitions of the non-observed page instances but this
cannot be seen by the user (unless the relevant part of corresponding page instance
happens to be visible on the screen without any rearrangements). The user can set
breakpoints and in this way ask the simulator to pause before, during, and/or after each
simulation step. Breakpoints can be preset or added on the fly, i.e. at any point during a
simulation. At each breakpoint the user can investigate the system state (and decide
whether he wants to continue or cancel the remaining part of the step).

It is possible to simulate a selected part of a large CPN diagram (without having to
copy this part to a separate file, which would give all the usual inconsistency prob-
lems). This is achieved by allowing the user to change the multi-set of prime pages and
tell that certain page instances should be temporarily ignored. When a page instance is
ignored it is no longer generated, and this means that the corresponding direct super-
node becomes an ordinary transition with enabling and occurrence calculated in the
usual way (i.e. by means of the surrounding arc expressions and guard). As a short
hand, it is also possible to ignore a page and this means that all instances of the page are
ignored.

When we simulate a CP-net it is sometimes convenient to be able to equip some of
the transitions with a code segment — i.e. a sequential piece of code which is executed
each time a binding of the transition occurs. Each code segment has a code guard, an
input pattern, an output pattern and a code action. The code guard replaces the corre-
sponding guard (in a simulation with code segments). A missing code guard means that
the ordinary guard is used. The input pattern contains some of the CPN variables of the
transition, and this indicates that the code action is allowed to use (but not update) these
variables. Analogously, the output pattern contains some of the CPN variables (but only
those which do not appear in the input arc expressions and the code guard) and this
indicates that the binding of these variables is determined by the code segment. Finally,
the action part is an SML expression (with the same type as the output pattern).®5 The
action part may declare local variables, share reference variables with other code seg-
ments, use the CPN variables from the input pattern and manipulate input/output files.
When the transition occurs the action part is evaluated and the resulting value deter-
mines the binding of the CPN variables in the output pattern. It should be noticed that
the code segment is executed once for each occurring binding, and this means that it
may be executed several times in the same step.9¢

95 In alater version of the CPN simulator it will also be possible to use other programming languages in
the code action, e.g. C++, Pascal and Prolog.

96 The order of these executions is non-deterministic (but it is guaranteed that each execution is indivisi-
ble, in the sense that it is finished before the next is started).

52

input (y,z);
output (r,p);
action

...........................

Figure 13. A simple example of a code segment

Code segments can be used for many different purposes: They can be used to gather
statistical information about the simulation: It is easy to dump the value of all occurring
bindings on a file (which then later can be analysed e.g. by means of a spread sheet
program). It is also possible to use the graphic routines of the CPN tools (which can be
invoked via predeclared SML functions) and in this way make a visual representation
of the simulation results (as an example, it is easy to make a window which has an node
for each site in a communication network and a connector for each pair of sites which
are engaged in a communication).9” Code segments also allow interactive user input,
and they can be used to communicate with other programs (as an example, it is possible
to run different parts of a very large CPN model on separate computers and let the dif-
ferent submodels communicate via input/output statements).

Although code segments are extremely useful for many purposes, they also have se-
vere limitations. This is due to the fact that they allow the occurrence of transitions to
have side effects and allow bindings to be determined by input files (and other kinds of
user input). This means that it doesn’t make sense to talk about occurrence graphs for
CP-nets with code segments, and it also becomes more difficult to use the invariant
method for such nets (because the relation between the CPN variables surrounding a
transition may be determined by the code action, instead of the arc expressions). For
this reason it is important to have a well-understood relationship between a CPN dia-
gram executed with code segments and the same CPN diagram executed without code
segments. This is one of the main reasons for the introduction of the input and output
patterns.

It is possible to perform both manual and autematic simulations. In a manual
simulation the simulator calculates and displays the enabling, the user chooses the oc-
currence elements (i.e. the transitions and bindings) to be executed and finally the
simulator calculates the effect of the chosen step. During the construction of a step, the
simulator assists the user in many different ways: First of all, the simulator always
shows the current enabling (and updates it each time a new occurrence element is
added/removed at the step). Secondly, the user can ask the simulator to find all bindings
for a given enabled transition — or he can specify a partial binding and ask the simula-
tor to finish it, if possible. In an automatic simulation the simulator chooses among the
enabled occurrence elements by means of a random number generator. It is possible to
specify how large each step should be: It may contain a single occurrence element or as

97 We do not allow code segments to create or delete CPN objects (but the attributes can be changed).

53

many as possible (and between these two extremes there is a continuum of other pos-
sibilities).

It is possible to vary the amount of graphical feedback provided by the CPN simula-
tor. In the most detailed mode the user sees the enabled transitions, the occurring
transitions, the tokens which are being moved and the current markings. Each of these
feedback mechanisms is, however, controlled by one or more options, and thus they
can be fully or partially omitted. In this way it is possible to speed up the simulation.
As an extreme a special super-automatic mode has been provided. In this mode there
is no user interaction (for the selection of bindings) and there is no feedback during the
simulation (on the CPN diagram) — and this means that the simulation runs much faster
than usual, because the simulation is performed by a SML program alone (while an
ordinary simulation is performed by a SML program and a C program, with a heavy
intercommunication).?® At the end of a super-automatic simulation it is possible to in-
spect the effect of the simulation. This can be done either by means of the usual page
windows (in which the marking is updated when the super-automatic simulation fin-
ishes) or by means of files manipulated by code segments. Finally, the code segments
may, as described above, use the graphic routines of the CPN tools to create a visual
representation of the simulation results — and this can be inspected while a super-auto-
matic simulation is going on.

The user can, at any time during a simulation, change between manual, automatic
and super-automatic simulation (and there are many other possibilities in between these
three extremes).?? It is usual to apply the more manual simulation modes early in a
project (e.g. when a design is being created and investigated) while the more automatic
modes are used in the later phases (e.g. when the design is being validated). There are
no restrictions on the way in which the different simulation options can be mixed and
this means that each of them can be chosen totally independently of the others (as an
example manual/automatic/semi-automatic simulation can be with/without code (and
with/without time, see section 7.1)).

There are many other facilities in the CPN simulator: An operation that proposes a
step (which can be inspected and modified by the user before it is executed). Operations
to return to the initial marking of the CPN diagram and to change the current marking
of an arbitrary place instance (this means that it often is possible to continue a simula-
tion in the case where a minor modelling error is encountered). Operations to save and
load system states. Operations to activate/deactivate a large number of warning and stop
options (i.e. different criteria under which a manual simulation issues a warning while
an automatic simulation stops).1%0 An operation to determine the order in which the
different occurrence elements in a step is executed. Moreover, the earlier comments
about different skill levels and a consistent and self-explanatory user interface also ap-
ply to the CPN simulator.

98 Super-automatic simulation is not available in the released version of the CPN simulator, but a proto-
type version has been used in several projects (e.g. the one described in section 6.1). One of the next
versions of the CPN simulator will contain a super-automatic mode which is fully integrated with the
rest of the simulator.

99 In the current version of the CPN simulator it is, during a simulation, not possible to change to/from
super-automatic mode. This will, however, be possible in one of the next versions.

100 The load/save operations and the warning/stop options are not yet implemented.

54

Finally, it should be mentioned that many modellers use simulation during the con-
struction of CPN diagrams — in a similar way as a programmer tests selected parts of
the program which he is writing. It is thus very important that it is reasonably fast to
shift between the editor and the simulator (and that it is possible to simulate selected
parts of a large model).

6. Applications of CP-nets

This chapter describes a number of projects which have used hierarchical CP-nets and
the CPN tools. All the described projects have worked with reasonably large models
and this have been done in an industrial environment — where parameters such as turn-
around time and use of man-hours have been important.

6.1 Communication protocol

This project was carried out in cooperation with a large telecommunications company
and it involved the modelling and simulation of selected parts of an existing ISDN
protocol for digital telephone exchanges.?? The modelling started from an SDL dia-
gram, and it was straightforward to make a manual translation of the SDL diagram to a
hierarchical CP-net.102 The translation and simulation of the basic part of the protocol
was finished in 16 days by a single modeller (which had large experience with the CPN
tools, but no prior knowledge of communication protocols). The model was presented
to engineers at the participating company. This was done by making a manual simula-
tion of selected occurrence sequences — and by a super-automatic simulation, where
code segments were used to update a page containing a visual representation of the
travelling messages and the status of the user sites.193 According to the engineers, who
all had large experience with telephone systems, the CPN diagram provided the most
detailed behavioural model which they had seen for this kind of system.

Later the modelling of a hold-feature was included in the CPN diagram. This was
done in a single day, and it tuned out that it could be done by adding two extra pages,
and making a simple modification of the existing pages (a colour set was changed from
a triple to quadruple). In SDL the inclusion of the hold-feature made it necessary to
duplicate the entire model, i.e. include many new pages — and so did three other fea-
tures (which were not modelled in the project, but could have been handled in a similar
way). Obviously, this makes it easier to maintain the CPN diagram (because it is suffi-
cient to make modifications to one page instead of five).

101 ISDN stands for Integrated Services Digital Network. The protocol is a BRI protocol (Basic Rate
Interface) and it is the network layer which has been modelled.

102 SDL is one of the standard graphical specification languages used by telecommunications companies.
For information about SDL and how it can be translated into high-level Petri nets, see [13], [41] and
[53].

103 The simulation traces a call from the originating user to the terminating user, and to do this it was
necessary to include a page which models the underlying protocol layers.

55

Fig. 14 shows the page hierarchy for the CPN diagram.194 The subpages of
UserTop#2 describe the actions of the user part while the subpages of NetTop#19 de-
scribe the actions of the network part. Most of these pages have a supernode which is
called Ui (or Ni) and this indicates that the page describes the activity which can happen
when the user part is in state Ui (the network part is in state Ni). The bracket in front
of the pages U_PROG#41...U_REL_CO#40 indicates that they are subpages of all the
pages in Null#3...Release_#17. The five pages describe activities which are carried out
in the same way in all user states. If one of these activities is to be changed it is suffi-
cient to modify one page of the CPN diagram (while it in the SDL diagram would be
necessary to modify a large number of pages). The hold-feature is modelled by
U_HOLD#45 and N_HOLD#44, while ROUTING#24 models the underlying protocol
layers.

[ISDN#1)[Prime | (Declarat#4j

Networks

Users

UserTop#2 HUREQ_GEN#QQI [NetTop#19 I_p! ROUTING#24] [N_SETUP#22]
uo NO
Lpl NULL#3 L—pd NULL_SET#5 S NULL#20 D U_SETUP#21
U1 N2
p{ CALL_INI#6 p| OVERLAP_#29 N HOLD#a
u2 N3
| OVERLAP_#9 OUTGOING#26
us Na y
M OUTGOING#15 D U_HOLD#45 CALL_DEL#28
u4 v
;4 CALL_DEL#16 } A [N_D__PART#31 | [N_E_PART#27
uz U_PROG#41 N6 A A
| CALL_REC#11 e o CAL 38
G ronis L_PRE#
| CONNECT_#12 U_REL#25 o CALL_REC#32 :
Us U_DISC#23 NS
M INCOMING#13 U REL GOm0 p| CONNECT_#30
Uto Ng
;4 ACTIVE#7 } J o] INCOMING#37
U1t N10
p DISCONNE#8 ACTIVE#36)
U1z N11
M DISC_IND#18 p DISCONNE#33
u1sg N12
N RELEASE_#17 b DISCONNE#34
g

N1
RELEASE_#35

Figure 14. Page hierarchy for the ISDN protocol

A typical representative of the Ui/Ni pages is shown in Fig. 15.105 It shows that, in the
state U8, there are six different possibilities. When there is an internal user request the

104 Names are truncated to the first eight characters, unless one of these is a format character (such as
space, TAB, RETURN, etc). This convention keeps the feedback readable (also in diagrams with very
long text strings). One of the next versions of the CPN tools will have a set of name options allowing
the user to specify how names are truncated.

105 The vertical lines and triangular figures inside the transitions are carried over from the SDL diagram,
where they have a formal meaning. In the CPN diagram they have no formal meaning but they are re-
tained, because they make the diagram more accessible for people who have experience with SDL.

56

first transition can occur. It creates a message to the network and the new user state be-
comes Ull. When there is a message from the network one of the last five transitions
can occur (the guards determine which one).10¢ Two of the transitions create a message
to the network, and the new user state becomes either U10, U12, UQ, or U8. Three of
the transitions are drawn with thick borders, this indicates that they are substitution
transitions (having the pages U_DISC#23, U_REL#25 and U_REL_CO#40 as sub-
pages). It should also be noticed that a global fusion set is used to glue all the UO-places
together (and analogously for all the other 23 kinds of Ui/Ni-places).107

(u,cref,b,ss) (u,cref,b,ss)
In UlntReq (©m) N Message
IntUserReq NetworkToUser
\
(u{mt=CLEAR_REQ,
ai=Callref cref})
4
EAR_REQ [#mtm = f#mtm = DISG; F#mt m = REL, #mt m = [#mtm =
CONN_AC cref= #erm cref=#crm REL_COM, STATUS_EXQ,
cref= #cr m] cref= #cr m] cref= #cr m]
(u,cref,b,ss) (u,cref,b,ss)
(u,{mt=DISC, (u, {Mt=STATUS,
S T e
ai=nu =
Out

f UserState i UserState f UserState UserState

Figure 15. A typical page in the ISDN protocol (CONNECT_#12)

A typical representative of a transition is shown in Fig. 16 — together with the declara-
tions of the appropriate colour sets. The transition is enabled when the user is in state
U8 and there is a message with STATUS_ENQ as message type (on NetworkToUser).
When the transition occurs the user remains in U8 and a message is created (on
UserToNetwork). The new message has the same user and the same CallRef as the re-
ceived message, it has STATUS as message type and Status 8 as data.

106 To improve the readability the modeller has made some of the arc expressions invisible. All output
arcs of NetworkToUser have identical arc expressions — and only one of these is visible.
107 To improve the readability the modeller has made all the fusion regions invisible.

57

NetworkToUser
Message

(u,m) \

color MessageRec =
record cr : CallRef
*'mt : MessageType
#mtm = * A
(u,cref,b,ss) [ai : MData;
STATUS_ENQ, color Message =

UserState cref = #cr m| product User * MessageRec;

AN

; color UserState = !
i product User * CallRef !
! * BChanName; I

(u, {Mt=STATUS, cr=cref, ai=Status 8}

UserToNetwork

Message

Figure 16. A typical transition in the ISDN protocol (rightmost on CONNECT_#12)

6.2 Hardware chip

This project was carried out in cooperation with a company which, among many other
things, is a manufacturer of super-computers. The purpose of the project was to inves-
tigate whether the use of CP-nets is able to speed up the design and validation of VLSI
chips (at the register transfer level). Below we sketch the main ideas behind the project
and the most important conclusions. A much more detailed description of the project,
the model, and the conclusions can be found in [54].

Let us first describe the existing design/validation strategy (without CP-nets): The
chip designers specify a new chip by means of a set of block diagrams. Each diagram
contains an interconnected set of blocks (activities), where each block has a specified
input/output behaviour. A complex block may be specified in a separate block diagram,
which is related to the block in a similar way as a substitution subpage in a CP-net is
related to its supernode. When the designers have finished a new chip, the block dia-
grams are (by a manual process) translated into a simulation program written in a di-
alect of C. The simulation program is then executed on a large number of test data and
the output is analysed to detect any malfunctions. The design/validation strategy de-
scribed above has a number deficiencies — and we shall come back to these later (when
we compare it to an alternative strategy which involves CP-nets).

Now let us describe the alternative design/validation strategy (involving CP-nets):
The basic idea is to replace the manual translation (from the block diagrams into the C
program) with an automatic translation into a CP-net. It is important to understand that
it is not the intention to stop using block diagrams. The designers will still specify the
designs by means of block diagrams, and they will during a simulation of the CP-net
see the simulation results on the block diagrams. To support the new strategy three
things are needed: The existing drawing tool for the block diagrams must be modified
(to have a formal syntax and semantics). The set of block diagrams must be translated
into CP-nets. Finally, it must be investigated whether the CPN simulator is powerful
enough to handle complex VLSI designs.

58

The project only dealt with the last two issues (which were considered to be the
most difficult). It was shown that the block diagrams could be translated into hierarchi-
cal CP-nets. This was done manually, but the translation process is rather straightfor-
ward and we see no problems in implementing an automatic translation. The obtained
CP-net only contained 15 pages, but during a simulation there is nearly 150 page in-
stances (due to the repeated use of substitution subpages representing adders and mul-
tipliers). The CP-net was simulated on the CPN simulator.108

Fig. 17 shows a subpage from which it can be seen that the VLSI chip has a pipe-
lined design with six different stages. Each stage is modelled on a separate subpage and
two of the more complex stages are shown in Fig. 18.199 The eight transitions in the
leftmost part of stage 1 are all substitution transitions (and they have the same sub-
page). In stage 2 the four transitions SUMIL, SUMIR, SUM2L and SUM?2R represent
registers. These registers establish the border to stage 3, and the transitions can only
occur when they receive a clock pulse from stage 3 (via the two c-transitions in the
rightmost part of stage 2). All the remaining transitions in stage 2 are substitution
transitions (OR3 and OR4 denote or-gates while “+” denotes 16 bit adders).

Now let us compare the new design/validation strategy with the old: First of all, it is
easier to translate the block diagrams into a CP-net than it is to translate them into a C
program (the latter takes often several man-months while the construction of the
CP-net only took a few man-weeks). The translation is also more transparent — in the
sense that it is much easier to recognize those parts of the CP-net which models a given
block than it is to find the corresponding parts in the C program (each page in the
CP-net has nearly the same graphical layout as the corresponding block diagram). This
means that it is relatively easy to change the CP-net to reflect any changes in the design,
while this (according to the chip manufacturer) often is rather difficult for the C pro-
gram. As stated above we think that it will be easy to automate the translation.

Secondly, the new strategy (when it is fully implemented) allows the designer to
make simulations during the design process. This means that the knowledge and under-
standing which is acquired during the simulation of the model can be used to improve
the design itself (in a much more direct way than in the old strategy where the valida-
tion is performed after the design has been finished).

Thirdly, the validation techniques of the old strategy concentrates on the logic cor-
rectness (tested by an inspection of the output data from the C program) and very little
concern is given to those design decisions which deal with timing issues (e.g. the divi-
sion into stages and the clock rate).110 Using CP-nets it is possible to validate both the
logic correctness and the timing issues — inside the same basic model.111

108 ‘When maximal graphical feedback was used the simulation was slow (due to the many graphical ob-
jects which had to be updated in each step). However, when a more selective feedback was used, the
speed became reasonable.

109 Tt is our intention to give the reader an idea about the complexity of the model (without explaining it
in any detail).

110 This is surprising, because the timing issues are crucial for the correct behaviour and the effective-
ness of the chip (too fast clocking means malfunctioning while too slow means loss of speed).

111 The timing issues were not modelled in the project — but with the time extensions of the CPN simula-
tor (described in section 7.1) this can easily be done.

59

Q @ @ o

{ad = (if ed then 1 else 0)+(if ul then 2 else 0)+
bits(s8,11,1)*4+(if fload then 8 else 0])

‘7;?_’* Bool

2mO> 0

amO>»-HWw
O MmO P> -HW

?
“—mMO>—AW0
NTO> O
Wm0

w2

¢
&
xS
;

v B

C C
NENGHE o
€ (e S Bool

Figure 17. A page from the VLSI chip (showing the division into six pipe-lined stages)

60

Stage 1
c% iad @
T fiter -0
-»O-+ multiplier
L el cell 0
ad @6*7“
u i 2 filter 0O
c -0 multiplier
N cell —»)
ad @&%
4§ 3_filter 0O
O3 multiplier
Sl cell +—0
ad g c Y
1l 4_fiter 0O
—O-» multiplier
Lol cell E0| ¢
C t: :
ad @ ¢
i 5_fiter O
. -O-> multiplier
. G
4§ 6_filter O
multiplier
Q_Q« cell 0
&*U—"‘ﬂ
- ©
1 7_fiter 0O
¢ [7O* multiplier
Nl Oed cell —O
ad
44 8_filter O
c —O-» multiplier
O] cell —»)
C

b

—

lepcal s~z cwl
To

Figure 18. Two subpages of the page in Fig. 17 (modelling stage 1 and 2)

61

Finally, it was noticed that the execution of the C program was much faster than the
CPN simulator — and that it with the latter would be impossible to make the usual
amount of test runs (which typically include 10-20.000 sets of test data). It should,
however, be noticed that the project was carried out immediately after the first version
of the CPN simulator had been released — and that we (based on the experience with
this and other large models) now have improved the speed of the CPN simulator with
more than a factor 10. Moreover, super-automatic mode has been provided — and this
means that we now are in a situation where it makes sense also to deal with large sets of
test data.

6.3 Radar surveillance

This project was carried out in cooperation with Armstrong Aerospace Medical
Research Laboratory (AAMRL) and it involved the modelling of a command post in
the NORAD system.!12 The responsibility of the command post is to recommend dif-
ferent actions — based upon an assessment of the (rapidly changing) status of surveil-
lance networks, defensive weapons and air traffic information. To do this the individ-
ual crew member communicates with many different types of equipment, other control
posts and other members of the crew, and there is a complex set of detailed rules
telling what he must do in the different types of situations. The entire system can be
compared to a very complex communication protocol (although a large part of the
communication is between human beings and not between computers). The proper de-
sign of command posts, including procedures, equipment and staffing, is an on-going
problem — typical of the Command and Control area.

The purpose of the project was to get an executable model of the command post and
use this model to get a better understanding of the command post — in order to improve
its effectiveness and robustness. It was never the intention to use the CPN tools directly
in the surveillance operations. A team of modellers working at AAMRL created a de-
scription of the command post, by means of SADT [43] (which in the United States is
known as IDEF). This description was then augmented with more precise behavioural
information, and the augmented model was automatically translated into a CP-net and
simulated on the CPN simulator (for more details see below). The simulation gave
(according to the people at AAMRL) an improved understanding of the command post,
and they are now continuing the project modelling other parts of the NORAD sys-
tem.113 A much more detailed description of the project, the translation to CP-nets, and
the model can be found in [55].

SADT diagrams are in many respects similar to CP-nets: Each SADT model consists
of a set of pages,'4 and each of these contains a number of activities (playing a similar
role as transitions in CP-nets). The activities are interconnected by arcs (these are
called channels and there are three different kinds of them: representing physical flow,

112 NORAD is the North American Radar Defense system.

113 Tt is the plan to model a number of command posts — and run the submodel for each of these on a
separate machine (using a separate copy of the CPN simulator). The submodels will then communi-
cate via input/output statements in code segments (and this will be similar to the way in which the real
control posts communicate with each other via electronic networks).

114 Tn the SADT terminology each page is called a diagram. In this paper we shall, however, use the term
diagram for the ser of pages which constitutes a model.

62

control flow and availability of resources). SADT has no counterpart to places, but
each channel has an attached date type (playing a similar role as the colour sets in
CP-nets). Each SADT page (except for the top page) is a refinement of an activity of its
parent page (and this works in a way which is totally analogous to transition substitu-
tion in CP-nets).

SADT diagrams are often ambiguous. As an example, a branching output channel
may mean that the corresponding information/material sometimes is sent in one direc-
tion and sometimes in another. It may, however, also mean that the informa-
tion/material is split in two parts, or that it is copied (and sent in both directions).
Although some ambiguity may be tolerable as long as SADT is used to describe the
structure of a system,!15 it is obvious that all ambiguity must be removed before the
behaviour of a SADT model can be defined (i.e. before simulations can be made) — and
this means that SADT must be augmented with better facilities to describe behaviour
(e.g. to tell what a branching output channel means).

There are many different ways in which this can be done. One possibility (proposed
in several SADT papers) is to attach a table to each activity. Each line in the table de-
scribes a possible set of acceptable input values and it specifies the corresponding set of
output values. Another, and in our opinion much more attractive possibility, is to de-
scribe the input/output relation by a set of channel expressions and a guard — in exactly
the same way as the behaviour of a CP-net transition is described by means of a set of
arc expressions and a guard. Thus we introduce a new SADT dialect — called
IDEF/CPN. In addition to the added channel expressions and guards there is a global
declaration node (containing the declarations of types, functions, operations and IDEF
variables). Finally, it is possible to use place fusion sets in a similar way as in CPN dia-
grams.

It is easy to translate an IDEF/CPN diagram into a behavioural equivalent CPN dia-
gram, and this means that the CPN simulator can be used to investigate the behaviour
of IDEF/CPN models. For the moment there is a separate IDEF/CPN tool which allows
the user to construct, syntax check and modify IDEF/CPN diagrams. This tool works in
a similar way as the CPN editor (and many parts of the two user interfaces are identical
or very similar). The IDEF/CPN tool can create a file containing a textual representa-
tion of the IDEF/CPN diagram, and this file can then be read into the CPN simulator
(where it is interpreted as a CPN diagram). The translation from IDEF/CPN to CPN
diagrams is thus totally automatic. Later it is the plan to integrate a copy of the CPN
simulator into the IDEF/CPN tool itself, and this will mean that the turn-around time
will be faster (because it then is possible to edit and simulate in the same tool). Such an
integration will also mean that the user will see the simulation results directly on the
IDEF/CPN diagram. For the moment he sees the results on the CPN diagram — but this
is not a big problem because the two diagrams look nearly identical (except that the
former does not have places). Fig. 19 shows an IDEF/CPN page (from the radar
surveillance system) and Fig. 20 shows the corresponding CPN page (as it is obtained
by the automatic translation).

115 The designers of SADT argue that it is fine to allow such ambiguities — because SADT should be
used to “design” the information/material flow, without having to worry about the detailed behaviour
(which in their opinion is an “implementation detail”).

63

JAGNNN SNLV.LS JYOMLAN JOLINOW ‘A TLIL 111V ‘HAON
N N
p g0 uen gy g Melo
P09 et 1! 039 ooayvy
! uopoe |
i (') indino ﬁ Jouuosied g LN wawdinbg
L______‘hinduy ; e
M3 suold
((erepmau viep#1) @DM%MII. \ OOQW — Anusg
(3HOW asle HDNONI uay1 q J1)) apiIs = oyuLID
204 - ejepmau gsodindg N». N
s1gpdn sme fdwe : .
pan smes ﬁ epIIS "<(o1 el
eplis 098,01 + 11
palepdn uoljoe
eleqe] (erepmau 1)) {(g‘) indino
aes 1 “_.DQC_ / SIsipiosyO
: sbo7
suuo- yuelg
1o . ((18UadON ‘erepMaU yiep#Y) % [q . N
ﬂ + (JOLCON ‘EJePMBU IEP#]). fdwe H
uojieluswinoog onves__
$5800.4 pog bo7 o3
pajepdn wero
001001 (e1epmau‘ 1) BIR(MAN 20av 82In0ss 0
sniels
MaN eleqg
Y _ BOUBJ[IOAINS
. - 2l
({+p=viep‘epis=asodind}1). 1+({1p=viep‘Bo1=gsodind}4) | (evep'2l).0
[{erep Ojui=0ut
(Weeers‘ 1) ‘wieeas JdAiseg=JdA1se
‘Ang=3dA1e
“elep Qi=Qll=1p
‘09g,57+el Lilxew=]
19 ‘WiefeAs Q= elep Qi
uuey ‘00IN0Se = W.ejeAs JoIn0seg
WsAg ‘NG = wirefeas JdA1e#]
- NOLLVOI'TdNd | x 01 6 8 L 9 S v € ¢ I :SALON
O - JIANININODT Y
" g = LAVIQ e8/zz/l AT 00aY QVHON LOAL0¥d
(LXFINOD | |Hlva J4Avad ONIIOM 88/€1/01 ‘HLVA UUWS "H “UOW "Q ‘UsliedoN ‘N YOHLNY 1LV @dsn

Figure 19. An IDEF/CPN page from the radar surveillance model

64

‘g<(o1 Tuex|
098xE + 11 |

(q4) E&zom

1
1
1
1
1
1
m UuoTIOoR |
b
I
1
1
1
1

((erepMoU YIeP#]

‘(TION 9512 HONONH uoys q Jr)

@)

iqIIg

20@qo04d

IS parepdp

(erepmoury)

(o)

El
9pHS =

erepmou gsodindg

(GeuqqON eIepaaU yIep#) % [q))

o pajepd

e SOLVLS MYOMLAN JOLINOW

+| (JoUqON ‘eTEPMOU YIRPHT) |

({ 1p=viep‘spys=gsodmd}‘1) 1+({ ip=v1ep‘SoT=gsodind}*})

Or

(wrereas‘11)

Wiy 1uaag

NNS«Q.A.&N&
e
4 4
Kidwa N\
<01 Ul
‘098%01 + T
uonoe quoudinbg
‘) Sm.So / @ °S aetd
‘13 ndur
So=
eepmou gsodindy ikl P \ @ SIS0y 80T swioq yuvig
1dure
(erepmau’) 20INOS?
snyels MIN
QuUQ}»NZ QuGQINUEQ:.—NE!W

@

[{erep Qyu#=COFur

‘urrereae gdLisep=gdLfise
‘amg=gdA1e

“e1ep qH=ql}=1p

008 ST+[T1 T1]XRW=)
‘wwreTess QH= B1ep (i
‘90IN0SY = WIIR[RAD HOINOSOH
‘aIng = urrereas gdiieg]

(e1ep'TN 0

Figure 20. The CPN page obtained from the IDEF/CPN page in Fig. 19

65

6.4 Electronic funds transfer

This project was carried out in cooperation with two banks (Societé Générale and
Marine Midland Bank of New York) and it involved the design and implementation of
software to control the electronic transfer of money between banks. The speed of mod-
ern bank operations means that banks often make commitments which are based on
money which they do not have (but expect to receive inside the next few minutes).
What happens if these money are delayed — or never arrive? Two managers (at the in-
volved banks) had an idea for a new control strategy — allowing the responsible staff to
use computer support to control the electronic funds transfer.116 The two managers
concretized their idea in terms of a relatively small SADT diagram which was created
by means of the IDEF/CPN tool (see section 6.3) and contained a rather informal de-
scription of the proposed algorithm. The IDEF/CPN diagram was translated to a
CP-net and more accurate behavioural information was added, by a CPN modeller.117
The translation was done in close cooperation with the two bank managers and they
participated in the debugging (which also resulted in improvements of the original pro-
posal).

During the project there were several different versions of the CPN model. The
first of these was obtained more or less directly from the IDEF/CPN diagram, and it
was rather crude (with simple arc expressions and very simple types). This model was
primarily used to describe the data flow (while the actual data manipulations were ig-
nored). Later the arc expressions were made more precise, a large number of complex
data types were declared (and used as colour sets), complex CPN ML functions were
declared (e.g. to search, sort and merge files), and finally most of the behavioural in-
formation were moved to code segments. In the final CPN model most transitions have
arc expressions which consist of a single variable, and complex code segments deter-
mining the values of the output variables from the values of the input variables. It took
5 man-weeks to create the IDEF/CPN diagram, 1 man-week to get the first CPN dia-
gram, and 16 man-weeks to develop this into the final CPN model.

In the first part of the project the graphical interface (in the editor/simulator) was
of very large importance— and it was the graphical aspects of IDEF and CP-nets which
made it possible for the bank managers to concretize their ideas. Later, however, it
turned out that the graphical interface became less important while the output files pro-
duced by the simulation became more important — and thus the project started to use a
stand-alone SML program (which was generated by the simulator in a similar way as
the internal SML code needed for super-automatic simulation).

Now a simulation works with a number of input files (describing transfers which
have already been made that day, and transfers which are registered but not yet exe-
cuted). From these input files (which typically contains 15-50.000 records) a number
of output files are produced (in 5-10 minutes) — and it is from these output files the

116 Today the control of the transfer (i.e. the decisions about acceptance/rejection of the individual trans-
actions) is made totally manual — although the transactions themselves are performed via special com-
puter networks.

117 The additional behavioural information could just as well have been added before the translation (i.e.
by means of the IDEF/CPN tool instead of the CPN editor).

66

staff determine the transfer strategy to be used for the next 15-20 minutes (at which
time a new set of simulation results is ready).

In this project the CPN tools (together with the IDEF/CPN tool) was used as a case
tool. When the new strategy had been specified (by means of IDEF/CPN and the CPN
editor) and validated (by means of the CPN simulator) the resulting SML code was au-
tomatically produced (by the CPN simulator).118 The new control strategy, proposed
by the two bank managers, seems to be working as expected — and it is for the moment
being tested on historical bank data (using the SML code produced by the CPN simula-
tor). When these tests are finished it will be determined whether the project will con-
tinue. If the project is continued the CPN model (and the IDEF/CPN model) will be
extended to reflect additional aspects of funds transfer — and a graphical user interface
will be added allowing the staff to interact with the model in a more natural way. The
user interface will be created by letting the code segments use the graphical routines of
the CPN tools. These routines are also available in the stand-alone ML environment,
and thus it will still be possible to obtain the final SML code automatically from the
CPN simulator (including the added graphical interface). A much more detailed de-
scription of the project, the models, and the conclusions can be found in [49].

6.5 Other application areas

CP-nets and other kinds of high-level Petri nets are used in many other application ar-
eas. For more information see e.g. [56] (flexible manufacturing systems); [28] and [52]
(distributed algorithms); [58] (computer organization); [61] (data bases); [62] (office
automation); [2] (computer architecture); [46] (human-machine interaction); [34]
(semantics of programming languages); [15] and [29] (software development methods);
(4], [8], [11], [14], [16], [19] and [24] (protocols).

From the applications reported in sections 6.1-6.4 (and some of the applications
mentioned above) two interesting observations can be made: First of all, it is often ade-
quate to use CP-net models in connection with different front-end languages (e.g. SDL,
SADT and block diagrams). The reason may be that there already exist descriptions in
these languages, or that the projects involve people who are familiar with some of the
languages and thus prefer to use them (instead of learning a totally new formalism). It
will also sometimes be sensible to make a tailored language (with a semantics based on
CP-nets, but a syntax adopted to the problem area). This is for instance done by the
designers of the Vista language [38], who have defined the semantics of their graphical
specification language in terms of CP-nets.

Secondly, it is often the case that the graphical representation (which is very impor-
tant in the early phases) later becomes less interesting. In this case the modellers may
turn to super-automatic simulation and this yields a prototype implementation — or (for
certain applications areas) even a final implementation. In this way the CPN tools are
used as a case tool — and this will be even more attractive when it becomes possible to
write code segments in different languages (such as C++, Pascal and Prolog).

118 Tt was necessary to make a few manual operations to create the stand-alone SML code. These opera-
tions were trivial, and with the full support of super-automatic simulation they will disappear.

67

7. Future Plans for CP-nets

This chapter describes our plans for the further development of CP-nets. First we de-
scribe a number of extensions which is being made to the existing CPN tools (i.e. the
CPN editor and the CPN simulator). Then we describe a number of new CPN tools
which are being developed (e.g. to support occurrence graph analysis and invariant
analysis). Finally we describe a book project which will provide the necessary intro-
duction and documentation for CP-nets, their analysis methods, and selected examples
of industrial applications.

7.1 Extensions of the CPN editor and CPN simulator

The CPN editor/simulator are being extended to handle timed CP-nets, which is an ex-
tension of ordinary CP-nets making it easy to describe systems which are time-driven.
It will then be possible to use the same net model to analyse both the logic correctness
and the time performance of a system. A timed CP-net has a global clock and the value
of this is called the current model time.11® The user can specify that certain colour sets
are with time and this means that the corresponding tokens carry a time stamp (in ad-
dition to the ordinary colour information). Intuitively, the time stamp tells when the
token is ready to be used (i.e. consumed by a transition). An occurrence element is said
to be colour enabled if it satisfies the usual enabling criteria (defined by the arc ex-
pressions and the guard) and it is then said to have an enabling time which is the maxi-
mum of all the time stamps in the input tokens and the current model time. A colour
enabled occurrence element is time enabled iff no other colour enabled occurrence ele-
ments have a smaller enabling time.120 Only time enabled occurrence elements are al-
lowed to occur (and this means that the transitions are executed in the order in which
their tokens become ready). The occurrence rule is the same as for CP-nets without
time — except that the time stamps of timed output tokens are determined by adding a
delay to the current model time. The delays are specified by SML expressions and they
may depend upon the colours of the input and output tokens (and via code segments
also depend on reference variables and input files).!2! Each time a step has been exe-
cuted the model time is advanced to match the minimal enabling time in the new system
state!22 and this works very much like an event queue in a traditional simulation lan-
guage. For more information about timed CP-net and the corresponding edi-
tor/simulation extensions see [37].

The CPN simulator is also being extended with a set of reporting facilities which
will allow much easier visualization of the simulation results (e.g. during a super-au-
tomatic simulation). By means of code segments the user will be able to manipulate a

119 The values of model time may be discrete (integers) or continuous (reals). In both cases each system
state exists at a given model time — and the model time is monotonically increased throughout the
simulation.

120 A set of occurrence elements can be concurrently time enabled, but this requires that they all have the
same enabling time.

121 Tt is also possible to specify that different output tokens get different delays.

122 The new model time may be identical to the old. This can e.g. happen when some (non conflicting)
time enabled occurrence elements do not participate in the step or when some output tokens are cre-
ated with a time stamp identical to the old model time (or without a time stamp).

68

large number of different charts (e.g. bar charts, function charts, pie charts and matrix
charts). For each chart the code segments update an SML structure (with a predeclared
type) while it is the CPN simulator which automatically updates the graphical represen-
tation of the chart (based on the value of the SML structure). The frequency by which
the chart is updated is specified by the user (either in terms of the number of steps or
in terms of model time). The charts are constructed by a special command in the CPN
editor and they each consist of a number of auxiliary objects (which can be modified,
e.g. resized, recoloured and repatterned, by the same editor operations as the other
objects in the CPN diagram). For more information about the reporting facilities and
their implementation see [37] and [39].

The implementation of timed CP-nets and the reporting facilities will be finished
during the first half of 1991. Later we will also extend the CPN editor to allow the
user to construct and modify CP-nets by means of a set of behaviour preserving trans-
formation rules (for more information see [23]). We will also extend the CPN simula-
tor to handle code segments written in other languages!23 and we will extend the CPN
editor/simulator to handle the remaining hierarchy constructs and different extensions
of CP-nets (e.g. capacities, inhibitor arcs and FIFO places). These projects have, how-
ever, lower priority than the creation of the occurrence graph and invariant tools de-
scribed in section 7.2.

7.2 Additional CPN tools

A CPN tool will be created to support occurrence graph analysis. The tool will con-
struct occurrence graphs for CP-nets (with/without equivalence classes) and it will also
assist the user in the analysis of the constructed graphs. As described in section 4.2, a
large number of system properties can be automatically determined from the occur-
rence graph (by an inspection of the individual markings and from the strongly con-
nected components). There is, however, also a need to develop more complex search
systems by which the user can perform an interactive inspection of a large occurrence
graph. The CPN occurrence graph tool will be able to handle hierarchical CP-nets!24
and it will be tightly integrated into the existing CPN tools. It will e.g. be possible to
ask the CPN simulator to execute an occurrence sequence which is found in the occur-
rence graph — or ask the occurrence graph analyser to search for markings which are
identical to or larger than the current marking of the CPN simulator.

To keep the size of occurrence graphs manageable it will be necessary to create oc-
currence graphs for selected parts of a large model (and this will be done in exactly the
same way as in the simulator — i.e. by defining prime pages and being able to ignore
specified page instances). It will, moreover, be possible to simplify a model by means
of colour set restrictions. The basic idea behind this concept is to be able to ignore
parts of complex token colours — e.g. one or more components of a record type.125 As
an example, it may during the analysis of a communication protocol be adequate to ig-

123 With the SML compiler running under Unix it is already today possible to use object code produced
by other compilers.

124 Tt is straightforward to extend the theory of occurrence graphs with equivalence classes to hierarchical
CP-nets with transition substitution and place fusion (and this has already been done).

125 This is analogous to (and inspired by) the concept of projections defined in [21].

69

nore the data contents of the messages. The restrictions are specified together with the
colour set declarations, and this means that it is unnecessary to change the arc expres-
sions or other net inscriptions. Colour set restrictions are also useful for simulation and
it will in the future be possible to simulate a model with/without restrictions. For more
information about colour set restrictions see [37].

Occurrence graphs can, for a given model, be constructed with/without time and
with/without colour set restrictions. It makes, however, no sense to create occurrence
graphs with code segments (at least not when these have side effects). The first version
of the occurrence graph tool will be available during 1991. Later we will try to inte-
grate our occurrence graph technique (building upon equivalence classes) with the
techniques of other groups (see section 4.2).126

Analogously, a CPN tool will be created to support invariant analysis. The tool will
calculate and check invariants for CP-nets and it will also assist the user when he ap-
plies the invariants to prove properties of the modelled system. The calculation of in-
variants are done in two steps: The first step is automatic and performs a reduction of
the CP-net by a set of transformation rules which are proved to preserve the set of in-
variants.12’ The second step is interactive and it is performed directly on the CPN dia-
gram (i.e. upon the graphical representation of the CP-net): The user proposes weight
functions for a number of places. Typically he will define a small number of non-zero
weight functions for places he is interested in (but also tell that certain places have zero
weight). Then the invariant tool calculates those weight functions which can be
uniquely determined from the weights proposed by the user. In this process the tool
may also determine that some weights are inconsistent and high-light those transitions
that create problems.!28 To calculate new weights and detect inconsistencies the invari-
ant tool uses the reduced matrix obtained in the first step — but it shows the weights and
the inconsistencies on the CPN diagram (i.e. in terms of the original CP-net). The user
inspects the calculated weights and the high-lighted transitions — and based on this he
may add new weights, modify existing weights, or change the behaviour of transitions
(e.g. by modifying arc expressions and guards). The process continues, with a number
of iterations, and at the end an invariant will be constructed (with some weights speci-
fied by the user and the remaining calculated by the invariant tool). The method de-
scribed above may seem primitive and cumbersome — but this is not the case. On the
contrary, it is often possible for the user to obtain useful invariants by defining a few
weights.129 It should, moreover, be remembered that the user often have a good idea
about what the invariants will be (and thus e.g. knows that certain weights should be
Zero).

126 Tn particular the technique described in [59] is interesting, because it seems to be orthogonal to our
equivalence class technique (in the sense that the former exploits concurrency while the latter exploits
symmetries).

127 There are two different sets of reduction rules. One of them preserves place invariants while the other
preserves transition invariants.

128 To have an invariant each transition must be neutral, in the sense that the input tokens balance the
output tokens (when the weights are taken into account).

129 Each of the five place invariants PIx from section 4.3 can be determined by specifying the weight of
the single place X (and telling that some other places have weight zero).

70

To check a proposed invariant is even simpler: The user specifies all the weights and
the invariant tool checks their consistency. When a set of invariants have been found
they can be used to prove system properties, and this is also supported by the tool: As
an example, the user may specify the marking of some places. Then the invariant tool
calculates upper and lower bounds for other places (by means of the invariants) and in
this process the tool may also determine that the specified set of place markings is in-
consistent (i.e. impossible in all reachable markings).13® The invariant tool will be able
to handle hierarchical CP-nets!3! and it will, as described above, be tightly integrated
into the existing CPN tools. The first version of the invariant tool is planned to be
available during 1992. It is, however, obvious that this, among other things, will de-
pend upon the priority given to the improvement of the new occurrence graph tool
(and other extensions of existing CPN tools).

Finally we want to develop CPN tools to support reduction methods and the analysis
of special subclasses of CP-net — e.g. as described in [9], [12] and [25]. Such tools have,
however, lower priority than those described above.

7.3 CPN book

It is our plan to develop a coherent course material for those who want to study the
theoretical and practical aspects of CP-nets. This material will be published as a three
volume book in EATCS Monographs on Theoretical Computer Science. The book will
contain the formal definition of CP-nets and the mathematical theory behind their anal-
ysis methods. It is, however, the intention to write the material in such a way that it
also becomes attractive to people who are more interested in applications than the un-
derlying mathematics. This means that a large part of the book will be written in a way
which is closer to an engineering text book (or a users manual) than it is to a typical
textbook in theoretical computer science.

The first volume of the book will introduce and define the net model (i.e. hierarchi-
cal CP-nets) and the basic concepts (e.g. the different behavioural properties such as
dead-locks, fairness and home markings). It will in detail present a number of small ex-
amples and have brief overviews of some industrial applications. It will also contain a
description of the CPN editor and the CPN simulator. Most of the material in this vol-
ume will be application oriented. The purpose of the volume is to teach the readers
how to construct CPN models and how to analyse these by means of simulation.

The second volume will describe the theory behind the formal analysis methods — in
particular occurrence graphs with equivalence classes, place/transition invariants and
reductions. It will also describe how these analysis methods can be supported by CPN
tools, and illustrate this by means of a number of examples. Part of this volume will be
rather theoretical while other parts will be application oriented. The purpose of the
volume is to teach the readers how to use the formal analysis methods (and this will not
necessarily require a deep understanding of the underlying mathematical theory
- although such knowledge of course will be a help).

130 Performed in this way, the non dead-lock proof in section 4.3 becomes much easier, faster and more
reliable.

131 Tt is straightforward to extend the theory of invariants to hierarchical CP-nets with transition substitu-
tion and place fusion (and this has already been done).

71

The third volume will contain a detailed description of approximately ten different
industrial applications. The purpose is to document the most important ideas and expe-
riences from the projects — in a way which is useful for people who do not yet have
personal experiences with the construction and analysis of large CPN diagrams.
Another purpose is, of course, to document the feasibility of using CP-nets and the
CPN tools for such projects.

For the moment approximately 400 pages have been written. Volume 1 will be
available at the end of 1991 and we hope that volume 2 will be available during
1992/93. This depends, among other things, upon the speed by which the additional
CPN tools are implemented.

8. Conclusions

This paper has presented the theory behind CP-nets, the supporting CPN tools and
some of the practical experiences with them. In our opinion it is extremely important
to develop these three research ares simultaneously. The three areas influence each
other and none of them can be adequately developed without the other two. As an ex-
ample we think it would have been totally impossible to develop the hierarchy concepts
of CP-nets without simultaneously having a solid background in the theory of CP-nets,
a good idea about a tool to support the hierarchy concepts and a thorough knowledge of
the typical application areas.

TOOLS

.+ editing
- simulation
« analysis

THEORY
+ models
» analysis methods

PRACTICAL USE
» specification

« analysis

- implementation

72

Acknowledgments

Many different persons have contributed to the development of CP-nets and the CPN tools. Below some
of the most important contributions are listed:

L]

CP-nets were derived from Predicate/Transition Nets which were developed by Hartmann Genrich &
Kurt Lautenbach.

The first version of occurrence graphs with equivalence classes was developed together with Peter

Huber, Arne Mgller Jensen & Leif Obel Jepsen.

1(\:/Ilzjmy students and colleagues — in particular at Aarhus University —have influenced the development of
-nets.

Grzegorz Rozenberg has been a great support and inspiration for my book project (and for many other

of my Petri net activities).

The hierarchy constructs and the basic structure of the CPN tools were developed together with Peter

Huber & Robert M. Shapiro.

The idea to use an extension of Standard ML for the inscriptions of CP-nets is due to Jawahar Malhotra.

The idea of a super-automatic simulation mode and a stand-alone SML program is due to Valerio Pinci

& Robert M. Shapiro..

The user interface of the CPN tools was designed together with Sgren Christensen and it was imple-
mented by Ole Bach Andersen. Valuable critique and suggestions were provided by Michel Beaudouin-
Lafon.

The abstract date base of the CPN tools was designed by Perer Huber and it was implemented by Vino
Gupta.

The ML functions to calculate enabling and bindings were designed and implemented together with
Sgren Christensen & Peter Huber.

IDEF/CPN was designed and implemented by Robert M. Shapiro.

The Unix + X-Windows version of the CPN tools was implemented by Jane Eisenstein, Ivan Hajadi &
Greg Alonso.

The reporting facilities was implemented by Alain Karsenty.

Some of the first hierarchical CPN models were made by Vino Gupta, Peter Huber, Robert Mameli,
Valerio Pinci & Robert M. Shapiro.

Hartmann Genrich has participated in many parts of the development of the CPN tools.

Bob Seltzer has been a continuous supporter of the CPN tool project (and the daily chats with him have
been of great importance for the mood of the project group).

Meta Software has provided the financial support for the CPN tool project. So far more than 25 man
years have been used. The project is also supported by the Danish National Science Research Council,
the Human Engineering Division of the Armstrong Aerospace Medical Research Laboratory at Wright-
Patterson Air Force Base, and the Basic Research Group of the Technical Panel C3 of the US
Department of Defense Joint Directors of Laboratories at the Navel Ocean Systems Center.

Finally I thank the anonymous referees for their contributions to this paper.

References

[1] K. Albert, K. Jensen and R.M. Shapiro: Design/CPN. A tool package supporting the use

of Coloured Petri Nets. Petri Net Newsletter 32 (April 1989), 22-36.

[2] J.L. Baer: Modelling architectural features with Petri nets. In: W. Brauer, W. Reisig and

G. Rozenberg (eds.): Petri Nets: Applications and Relationships to Other Models of Concurrency,
Advances in Petri Nets 1986 Part II, Lecture Notes in Computer Science vol. 255, Springer-Verlag
1987, 258-2717.

[3] E. Best: Structure theory of Petri nets: the free choice hiatus. In: W. Brauer, W. Reisig

and G. Rozenberg (eds.): Petri Nets: Central Models and Their Properties, Advances in Petri Nets
1986 Part I, Lecture Notes in Computer Science vol. 254, Springer-Verlag 1987, 168-205.

[4] . Billington, G. Wheeler and M. Wilbur-Ham: Protean: a high-level Petri net tool for the

specification and verification of communication protocols. IEEE Transactions on.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

[23]

73

Software Engineering, Special Issue on Tools for Computer Communication Systems, SE-14(3),
1988, 301-316.

W. Brauer (ed.): Net theory and applications. Proceedings of the Advanced Course on
General Net Theory of Processes and Systems, Hamburg 1979, Lecture Notes in Computer Science
vol. 84, Springer-Verlag 1980, 213-223.

W. Brauer, W. Reisig and G. Rozenberg (eds.): Petri nets: Central models and their prop-
erties. Advances in Petri Nets 1986 Part I, Lecture Notes in Computer Science vol. 254, Springer-
Verlag 1987

W. Brauer, W. Reisig and G. Rozenberg (eds.): Petri nets: Applications and relationships
to other models of concurrency. Advances in Petri Nets 1986 Part II, Lecture Notes in
Computer Science vol. 255, Springer-Verlag 1987

G. Chehaibar: Validation of phase-executed protocols modelled with coloured Petri
nets. Proceedings of the 11th International Conference on Application and Theory of Petri Nets,
Paris 1990, 84-103.

G. Chiola, C. Dutheillet, G. Franceschinis and S. Haddad: On well-formed coloured nets
and their symbolic reachability graph. Proceedings of the 11th International Conference on
Application and Theory of Petri Nets, Paris 1990, 387-411.

C. Choppy and C. Johnen: Petrireve: proving Petri net properties with rewriting sys-
tems. J.P. Jouannaud (ed.): Rewriting Techniques and Applications, Lecture Notes in Computer
Science vol. 202, Springer-Verlag 1985, 271-286.

B. Cousin et. al.: Validation of a protocol managing a multi-token ring architecture.
Proceedings of the 9th European Workshop on Applications and Theory of Petri Nets, Vol. I,
Venice 1988.

J.M. Couvreur: The general computation of flows for coloured Petri nets. Proceedings
of the 11th International Conference on Application and Theory of Petri Nets, Paris 1990, 204-223.

F. De Cindio, G. Lanzarone and A. Torgano: A Petri net model of SDL. Proceedings of the
5th European Workshop on Applications and Theory of Petri Nets, Aarhus 1984, 272-289.

M. Diaz: Petri net based models in the specification and verification of protocols. In:
W. Brauer, W. Reisig and G. Rozenberg (eds.): Petri Nets: Applications and Relationships to
Other Models of Concurrency, Advances in Petri Nets 1986 Part II, Lecture Notes in Computer
Science vol. 255, Springer-Verlag 1987, 135-170.

R. Di Giovanni: Putting Petri nets into use: the Columbus programme. Proceedings of
the 11th International Conference on Application and Theory of Petri Nets, Paris 1990, 123-138.

P. Estraillier and C. Girault: Petri nets specification of virtual ring protocols. In:
A. Pagnoni and G. Rozenberg (eds.): Applications and Theory of Petri Nets, Informatik-
Fachberichte vol. 66, Springer-Verlag 1983, 74-85.

F. Feldbrugge: Petri net tool overview 1989. In: G. Rozenberg (ed.): Advances in Petri Nets
1989. Lecture Notes in Computer Science vol. 424, Springer-Verlag 1990, 151-178.

A. Finkel: A minimal coverability graph for Petri nets. Proceedings of the 11th
International Conference on Application and Theory of Petri Nets, Paris 1990, 1-21.

G. Florin, C. Kaiser, S. Natkin: Petri net models of a distributed election protocol on
undirectional ring. Proceedings of the 10th International Conference on Application and Theory
of Petri Nets, Bonn 1989, 154-173.

H.J. Genrich and K. Lautenbach: System modelling with high-level Petri nets. Theoretical
Computer Science 13 (1981), 109-136.

H.J. Genrich: Projections of C/E-systems. In: G. Rozenberg (ed.): Advances in Petri Nets
1985. Lecture Notes in Computer Science vol. 222, Springer-Verlag 1986, 224-232,

H.J. Genrich: Predicate/Transition nets. In: W. Brauer, W. Reisig and G. Rozenberg (eds.):
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986 Part I, Lecture Notes
in Computer Science vol. 254, Springer-Verlag 1987, 207-247.

H.J. Genrich: Equivalence transformations of PrT-nets. In: G. Rozenberg (ed.): Advances
in Petri Nets 1989, Lecture Notes in Computer Science, vol. 424, Springer-Verlag 1990, 179-208.

[24]

[25]
[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

74

C. Girault, C. Chatelain and S. Haddad: Specification and properties of a cache coherence
protocol model. In: G. Rozenberg (ed.): Advances in Petri Nets 1987, Lecture Notes in
Computer Science, vol. 266, Springer-Verlag 1987, 1-20.

S. Haddad: A reduction theory for coloured nets. In: G. Rozenberg (ed.): Advances in Petri
Nets 1989, Lecture Notes in Computer Science, vol. 424, Springer-Verlag 1990, 209-235.

R. Harper: Introduction to Standard ML. University of Edinburgh, Department of Computer
Science, The King’s Buildings, Edinburgh EH9 3JZ, Technical Report ECS-LFCS-86-14, 1986.

R. Harper, D. MacQueen and R. Milner: Standard ML. University of Edinburgh, Department of
Computer Science, The King’s Buildings, Edinburgh EH9 3JZ, Technical Report ECS-LFCS-86-2,
1986.

G. Hartung: Programming a closely coupled multiprocessor system with high level
Petri nets. In: G. Rozenberg (ed.): Advances in Petri Nets 1988, Lecture Notes in Computer
Science vol. 340, Springer-Verlag 1988, 154-174.

T. Hildebrand, H. Nieters, and N Tréves: The suitability of net-based Graspin tools for
monetics applications. Proceedings of the 11th International Conference on Application and
Theory of Petri Nets, Paris 1990,139-160.

P. Huber, A.M. Jensen, L.O. Jepsen and K. Jensen: Reachability trees for high-level Petri
nets. Theoretical Computer Science 45 (1986), 261-292.

P. Huber, K. Jensen and R.M. Shapiro: Hierarchies in coloured Petri nets. In: G. Rozen-
berg (ed.): Advances in Petri Nets 1990, Lecture Notes in Computer Science, Springer-Verlag.

K. Jensen: Coloured Petri nets and the invariant method. Theoretical Computer Science 14
(1981), 317-336.

K. Jensen: High-level Petri nets. In: A. Pagnoni and G. Rozenberg (eds.): Applications and
Theory of Petri Nets, Informatik-Fachberichte vol. 66, Springer-Verlag 1983, 166-180.

K. Jensen and E.M. Schmidt: Pascal semantics by a combination of denotational se-
mantics and high-level Petri nets. In: G. Rozenberg (ed.): Advances in Petri Nets 1985.
Lecture Notes in Computer Science vol. 222, Springer-Verlag 1986, 297-329.

K. Jensen: Coloured Petri nets. In: W. Brauer, W. Reisig and G. Rozenberg (eds.): Petri Nets:
Central Models and Their Properties, Advances in Petri Nets 1986 Part I, Lecture Notes in
Computer Science vol. 254, Springer-Verlag 1987, 248-299.

K. Jensen et. al.: Design/CPN: A tool supporting coloured Petri nets. User’s manual, vol
1-2. Meta Software Corporation, 150 Cambridge Park Drive, Cambridge MA 02140, USA, 1988.

K. Jensen et. al.: Design/CPN extensions. Meta Software Corporation, 150 Cambridge Park
Drive, Cambridge MA 02140, USA, 1990.

E. de Jong and M.R. van Steen: Vista: a specification language for parallel software
design. Proceedings of the 3rd International Workshop on Software Engineering and its
Applications, Toulouse, 1990.

A. Karsenty: Interactive graphical reporting facilities for Design/CPN. Master Thesis,
University of Paris Sud, Computer Science Department, 1990.

R.M. Karp and R.E. Miller: Parallel program schemata. Journal of Computer and System
Sciences, vol. 3, 1969, 147-195.

M. Lindqvist: Translation of the specification language SDL into predicate/transition
nets. Licentiate’s Thesis, Helsinki University of Technology, Digital Systems Laboratory, 1987.

M. Lindqvist: Parameterized reachability trees for predicate/transition nets. Pro-
ceedings of the 11th International Conference on Application and Theory of Petri Nets, Paris 1990,
22-42.

D.A. Marca and C.L. McGowan: SADT. McGraw-Hill, New York, 1988.

G. Memmi and J. Vautherin: Analysing nets by the invariant method. In: W. Brauer,
W. Reisig and G. Rozenberg (eds.): Petri Nets: Central Models and Their Properties, Advances in
Petri Nets 1986 Part I, Lecture Notes in Computer Science vol. 254, Springer-Verlag 1987, 300-
336.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

75

Y. Narahari: On the invariants of coloured Petri nets. In: G. Rozenberg (ed.): Advances in
Petri Nets 1985. Lecture Notes in Computer Science vol. 222, Springer-Verlag 1986, 330-345.

H. Oberquelle: Human-machine interaction and role/function/action-nets. In:
W. Brauer, W. Reisig and G. Rozenberg (eds.): Petri Nets: Applications and Relationships to
Other Models of Concurrency, Advances in Petri Nets 1986 Part II, Lecture Notes in Computer
Science vol. 255, Springer-Verlag 1987, 171-190.

Petri nets and performance models. Proceedings of the third international workshop, Kyoto
Japan 1989, IEEE computer society press, order number 2001, ISBN 0-8186-20001-3.

C.A. Petri: Kommunikation mit automaten. Schriften des IIM Nr. 2, Institut fiir Instrumentelle
Mathematik, Bonn, 1962. English translation: Technical Report RADC-TR-65-377, Griffiss Air
Force Bas, New York, Vol. 1, Suppl. 1, 1966.

V.O. Pinci and R.M. Shapiro: Development and implementation of a strategy for elec-
tronic funds transfer by means of hierarchical coloured Petri nets. Proceedings of the
11th International Conference on Application and Theory of Petri Nets, Paris 1990, 161-180.

C. Reade: Elements of functional programming. Addison Wesly, International Computer
Science Series, ISBN 0-201-12915-9, 1989.

G. Rozenberg: Behaviour of elementary net systems. In: W. Brauer, W. Reisig and G.
Rozenberg (eds.): Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986
Part I, Lecture Notes in Computer Science vol. 254, Springer-Verlag 1987, 60-94.

M. Rukoz and R. Sandoval.: Specification and correctness of distributed algorithms by
coloured Petri nets. Proceedings of the 9th European Workshop on Applications and Theory of
Petri Nets, Vol. 11, Venice 1988.

Functional specification and description language SDL. In: CCITT Yellow Book, Vol.
VI, recommendations Z.101 - Z.104, CCITT, Geneva, 1981.

R.M. Shapiro: Validation of a VLSI chip using hierarchical coloured Petri nets.
Proceedings of the 11th International Conference on Application and Theory of Petri Nets, Paris
1990, 224-243.

R.M. Shapiro, V.O. Pinci and R. Mameli: Modelling a NORAD command post using
SADT and coloured Petri nets. Proceedings of the IDEF Users Group, Washington DC, May
1990.

M. Silva and R. Valette: Petri nets and flexible manufacturing. In: G. Rozenberg (ed.):
Advances in Petri Nets 1989, Lecture Notes in Computer Science, vol. 424, Springer-Verlag 1990,
374-417.

P.S. Thiagarajan: Elementary net systems. In: W. Brauer, W. Reisig and G. Rozenberg (eds.):
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986 Part I, Lecture Notes
in Computer Science vol. 254, Springer-Verlag 1987, 26-59.

R. Valk: Nets in computer organization. In: W. Brauer, W. Reisig and G. Rozenberg (eds.):
Petri Nets: Applications and Relationships to Other Models of Concurrency, Advances in Petri Nets
1986 Part II, Lecture Notes in Computer Science vol. 255, Springer-Verlag 1987, 218-233.

A. Valmari: Stubborn sets for reduced state space generation. Proceedings of the 10th
International Conference on Application and Theory of Petri Nets, Bonn 1989, Vol IL.

A. Valmari: Compositional state space generation. Proceedings of the 11th International
Conference on Application and Theory of Petri Nets, Paris 1990, 43-62.

K. Voss: Nets in data bases. In: W. Brauer, W. Reisig and G. Rozenberg (eds.): Petri Nets:
Applications and Relationships to Other Models of Concurrency, Advances in Petri Nets 1986 Part
II, Lecture Notes in Computer Science vol. 255, Springer-Verlag 1987, 97-134.

K. Voss: Nets in office automation. In: W. Brauer, W. Reisig and G. Rozenberg (eds.): Petri
Nets: Applications and Relationships to Other Models of Concurrency, Advances in Petri Nets 1986
Part II, Lecture Notes in Computer Science vol. 255, Springer-Verlag 1987, 234-257.

A. Wikstrém: Functional programming using Standard ML. Prentice Hall International
Series in Computer Science, ISBN 0-13-331968-7, ISBN 0-13-331661-0 Pbk, 1987

E. Yourdon: Managing the system life cycle. Yourdon Press, 1982.

