ISSN 0105-8517

The Complexity of Malign Ensembles

Peter Bro Miltersen

DAIMI PB - 335
September 1990

COMPUTER SCIENCE DEPARTMENT |
AARHUS UNIVERSITY]

Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

1||E

The complexity of malign ensembles*

Peter Bro Miltersen
Aarhus University, Computer Science Department
Ny Munkegade, DK 8000 Aarhus C.

September 20, 1990

Abstract

We analyze the concept of malignness, which is the property of proba-
bility ensembles of making the average case running time equal to the
worst case running time for a class of algorithms. We derive lower and
upper bounds on the complexity of malign ensembles, which are tight for
exponential time algorithms, and which show that no polynomial time
computable malign ensemble exists for the class of polynomial time algo-
rithms. Furthermore, we show that for no class of superlinear algorithms
a polynomial time computable malign ensemble exists, unless every lan-
guage in P has an expected polynomial time constructor.

1 Introduction

The average case time complexity of specific algorithms has for a num-
ber of years been an active area of research, often showing significant
improvement over the worst case complexity when specific distributions
of the inputs were assumed. Recently, Li and Vitanyi [1] studied the
Solomonoff-Levin measure m and found that when the inputs to any
algorithm are distributed according to this measure, it holds that the
algorithm’s average case complexity is of the same order of magnitude as
its worst case complexity. More precisely,

*Work partially supported by the ESPRIT II Basic Research Actions Program of the EC
under contract No. 3075 (project ALCOM).

m(z)
de>0:), —————Tu(z) > cmaxTu(z).
zexn Lyenn m(y) zEL”
In this paper, we use the term malign for such a measure. This result
seems interesting for at least two reasons.

o The Solomonoff-Levin measure assigns large amounts of probabil-
ity to strings with lots of pattern, and small amounts to random
strings. Therefore, the result seems to imply that worst case strings
or strings close to worst case will be easily describable. In [1], the
example of quicksort is used, where the worst case strings are the
sorted or almost sorted ones. These have short descriptions, and
hence high Solomonoff-Levin measure. That worst case strings in
general are easily describable seems counterintuitive.

o Li and Vitanyi argue in [3] that the Solomonoff-Levin measure
should be used as the a priori probability in Bayesian reasoning,
because, in a certain sense, it lies close to any r.e. measure (it
dominates them multiplicatively). Similarly, one could argue that
if inputs are given from a natural source, the results imply that the
average case time will be close to the worst case time, so that no
improvement is possible.

However, since the Solomonoff-Levin measure is not even recursive, their
result fits poorly with the traditional complexity theory view on average
case complexity, founded by Levin in [6] and extended in [7] and [8]. In
Levins approach to average case complexity, the distribution function of
the input measure is required to be polynomial time computable. There-
fore, unless we can derive some kind of time bounded version of Li and
Vitanyi’s result, the two subjects seem quite unrelated, although some
of the consequences appear similar [1]. In this paper, we analyze from
a complexity-theoretic perspective the property of malignness. For this,
we restate Li and Vitanyi’s result and give a simple proof. It seems that
the counterintuitive property of malignness is dependent upon an expo-
nential time pattern, which makes the above interpretations less obvious.
We present a number of results which support our intuition. Qur results
pose a limit on the results achievable in the average case direction by the
time bounded versions of the Solomonoff-Levin measure, which are also
discussed in [1]. In general, they suggest that if inputs are given by any
polynomial time adversary, phenomena like the above will not arise.

2

2 Notation

e We consider the fixed binary alphabet ¥ = {0, 1}. X* is the set
of binary strings with the usual ordering, first by length and then
lexicographically, and ™ is the set of strings of length n. By = — 1
we denote the string preceding z, and by & + 1 the string following
z. The empty string is denoted A. The length of the string z is
denoted by |z|. < .,. > denotes a polynomial time bijective pairing
function ¥* x ¥* — X* with polynomial time pro jections.

o A measure p on a finite or countable set M is a function from M to
the real numbers, with p(z) > 0 for all . Given a subset 4 C M,
we define

n(4) = 3 p().
TEA
A probability measure is a measure with Y,cyy u(z) = 1. Given a
measure g on %*, we denote by u* its distribution function pr(z) =
p({yly < z}). If w(E") # 0 for all n, we define the n’th derived
measure of u to be the probability measure on & defined by

_ k(=)
:U*n(m) = M(En>'

e A function f : ¥* — R is called polynomial time computable if there
exists a polynomial time Turing machine transducer which on input
< z,1" > produces the binary notation of an integer ¢ with

|f(z) —t27°| < 27%,

In general, if the machine runs in time at most g(|z|, 1), we say that
f is computable in time g(|z|, 7).

e By algorithms we mean the algorithms in a fixed machine model,
which takes an input z, and always halts. These can not be ef-
fectively enumerated, of course, but we will assume that all the
machines, including those which do not halt on every input, are
enumerated Aj, Ay, ... such that simulation, including stepcounting
etc., of n steps of A; on input = can be performed in time p(i, |z|,n)
on a Turing machine, where p is a polynomial. We assume that
algorithms can simulate Turing machines in real time.

3

e Given an algorithm A, we define Ty(z), z € X* to be its running

time on the binary string z. Given a function f : N — N , We
define

ALG(f) = {A[T4(z) < f(|z|) for all z, except a finite number}.

Ty (n) = max Ty(z)
TiI=n
is the algorithm’s worst case running time. We denote by w 4(n)
the lexicographically least string in X" with T'(wa(n)) = T%(n).

Ti(pyn) = 37 pn(2)Ta(2)

|z|=n

is the algorithm’s average case running time with respect to the
measure u.

3 Malign measures

In this section malignness is defined and Li and Vitanyi’s result on the
Solomonoff-Levin measure is presented. We give a direct proof and skip
the conceptual developments of [1]. We consider the class of Turing ma-
chines, where each machine has three tapes,

e A binary input tape, infinite in one direction, with the restriction
that the head can only move in this direction. Thus, the input tape
is one-way, one-way infinite.

o A two-way, infinite, work tape.
¢ A one-way, one-way infinite binary output tape.

The input tape and the output tape are started with their heads on the
first square, and a machine must be able to determine by itself when it
has read its input. Now consider an effective enumeration My, M,,... of
the above class of Turing machines, and let U be a machine universal for
the class, i.e. U will on input 1°0¢, where ¢ is an infinite tape, halt if
and only if the machine M; on input tape ¢ halts, and U will in that case
output whatever M; outputs.

We next consider the input tape of U filled with the results of an
infinite sequence of coin tosses. The Solomonoff-Levin measure of a string

4

x € X", m(z), is then defined as the probability that U halts, outputting
z. Since U of course has a non-zero probability of not halting, we have
that

> m(z) < 1.

zel*

The Solomonoff-Levin measure was first defined rigorously in [5]. Intu-
itively, it gives a large amount of measure to strings with lots of pattern,
since these have short programs which have a high probability of appeaz-
ing. Actually, it is closely tied to self-delimiting Kolmogorov complexity,
since m(z) = 279%@) where K(z) is the self-delimiting Kolmogorov
complexity of z, but we do not need this result here (see [1] for a proof,
and [3] and [4] for general discussions of the properties of m).

Definition 3.1 A measure p is malign for an algorithm A if and only
if there exists a ¢ > 0 such that for all sufficiently large n

Ti(u,n) > T (n).
It is malign for a class of algorithms A if it is malign for each A € A.
The following is the main result from [1] on average case complexity.

Theorem 3.1 (Li and Vitanyi) The Solomonoff-Levin measure m is
malign for all algorithms.

Proof Consider the following Turing machine M, of the above kind.

Read the prefix 1°0, i > 0 from the tape.
Simulate U on the rest of the tape.
if U halts then
n = |U’s output|
simulate A4; on all inputs of length n, finding the lexicographically
least worst case output, w4, (n) (This may not halt).
output wy,(n)
i

Assume M = M} in the above enumeration, and assume that 7 is the
index of an algorithm, i.e. that A; halts on all inputs. If U is started
with the tape 1701°0¢, where U, started on ¢, outputs a string of length
n, U will output wy,(n). The events of reading 1*01'0 and reading ¢ are
independent. But this means that for all n

5

m(wg4,(n)) > Z“k“i‘zm(E”).
But then

m(wy,(n))

T3 (m,n) > m()

Ty(n) > 275772T% (n).
a

As mentioned in the introduction, theorem 3.1 seems interesting, because
it suggests that generally inputs which require a lot of time contains lots
of pattern - otherwise the average case complexity with respect to the
Solomonoff-Levin measure could not be of the same order as the worst
case complexity. In [1], Li and Vitanyi use quicksort as an example, where
the worst case inputs are the ones already sorted - i.e. inputs with lots of
pattern. Theorem 3.1 then suggests that this is a general phenomenon.
By examining the proof we see that it indeed holds that the worst case
input has a lot of pattern. The proof uses that the worst case input to
A; of length n can be described in the following way: “The worst case
input to A; of length n”. Thus wy,(n) has a short description, i.e. lots of
pattern. Of course, this seems to make our interpretation of the theorem
a bit less interesting: Worst case inputs have a pattern, but it is the very
pattern of being a worst case input. Further reflection of the notion of
pattern seems to be called for. The problem with the pattern “The worst
case input to A; of length n” is, of course, that it takes exponential time
to get from the description to the result. Thus, the pattern is difficult (we
should mention that it is implicitly stated in [1] that this is exactly the
kind of pattern that makes the theorem work). The main object of this
paper is to establish that this is the way it has to be - In general it does
not hold that inputs which are slow to process have an easy pattern. To
make this more precise, we want to answer questions of the following kind:

Suppose p is malign for a class of algorithms 4. What complexity does
p have?

As in the theory of Average-NP [6][7][8], it seems natural to take the
computational complexity of the distribution function p* as the complex-
ity of p. However, this does not seem to be a good idea in this context
without further restrictions on p, as the following theorem shows.

Theorem 3.2 For each general recursive function f there exists a mea-
sure p which is malign for ALG(f) and whose distribution function p*
15 polynomial time computable.

Proof Define
T(z,1,t) = min(Ty, (), t).
w(n,i,t) = min{y € Z*|Ve € " : T(y,4,t) > T(x,i,t)},

i.e. w(n,i,t) is the lexicographically least worst case input of A; of size
n, when A; is restricted to run for at most ¢ time steps. Let g be a time
constructible function with g(n) > f(n) for all n. Define

v(n,1) = w(n,i,g(n)).

Observe that v(n,i) can be computed in time t(n,i) = q(2"p(n,,g(n)))
where p and g are polynomials, by exhaustively simulating A4; on all inputs
of length n. Put

uw(n) = t(n,n).

By choosing p and g appropriately (sufficiently large), u can be made time
constructible. We can without loss of generality assume that u(n+1) >
u(n) + n. Now define

0 if ¢ < u(]z|)

0 if u(je]) < i < ullal) + |a| and v(je],i - ula])) £ o
1 i u(je]) < i < u(fel) + o] and v(jz], i — u(a])) - o
0 if u(lz|) + |z| < 4

u(z) = 3 b(,i)2.

Since v(n,j) € I, we have

u(n)+n _
”(En) — Z 92—t < 2——u(n)'
i:u(n)—l—l

Fix an algorithm A; € A. We have that v(n,j) = wy,(n) for all n. But
then

b(wa,(n),u(n) +j) =1 for n > j

and therefore

)
Th (o) 2 pin(wa; (n)) T, (way (n)) > 27T (n).

Thus p is malign for 4. It remains to show that u* is polynomial time
computable.

p(z) = 3 () + pn({ylly| = Jz| Ay < 2}).

i<z

The 4’th binary digit of Yj<lz| #(27) is 1 if and only if there exists an
m € {0,...,|z| — 1} so that u(m) < i < u(m) + m. This can be decided
in time polynomial in |z| and 4, since u is time constructible. For the
second term, observe that the i’th binary digit of p({y||y| = |z|Ay < z})
is 1 if and only if u(|z|) < ¢ < u(|z|) + |«| and v(|z|,i — u(]z|)) < . To
decide if this is the case, we execute the following algorithm.

input z,1¢

decide if u(|z|) < ¢ < u(|z|) + |z

if “yes” then
calculate the exact value of u(|z|)
calculate v(|z|,7 — u(|z]|))

fi

Except for the calculation of v(|z|,i—u(|z|)), it immediately follows from
the time constructibility of u that the algorithm is polynomial time. But
observe that this calculation can be done in time

(el — u(le])) < t(lal, [2]) = u(je]) <.
O

Of course, the theorem (and in particular its proof) suggests that the
complexity of the measure p itself is not particularly relevant when we
are interested in properties such as being malign for a class. This is no
big surprise, since we only use the derived probability measures p,. If we
examine the proof, we see that it is based on the trick of letting p(X™)
vanish very rapidly, so that the non-zero digits of p(z) appear so late

8

that we have a sufficient amount of time to compute them. The fact
that p must be normalized in the definition of malignness thus seems
to be giving us an unreasonable advantage in the computation of p*. If
we instead look at the time required to compute the normalized K (@),
no such trick will work. It is therefore still reasonable to conjecture
that it requires time exponential in = to compute this number, since the
computation of a digit seems to require running an algorithm on all inputs
of size |x|. Consequently, from now on we require that the measures we
consider are normalized.

4 Malign ensembles

Definition 4.1 A probability ensemble (or merely ensemble) is a mea-
sure pb : X* — [0, 1], with u(X") = 1 for all n.

Thus, if p is an ensemble, pu(z) = p,((z) for all .

Definition 4.2 An ensemble p is called polynomial time computable if
and only if its family of distribution functions z — “Twl(w) s polynomial
time computable. We denote by PE the class of polynomial time com-
putable ensembles. In general, we say that an ensemble is computable in
time f(|z|,7) if p}, is computable in time f(|x|,1).

This definition relativizes in the obvious way.

We can, through the use of essentially the same technique as in our
proofs of theorem 3.1 and theorem 3.2, construct malign ensembles and
hence provide upper bounds for the time required to compute malign
ensembles for certain classes of algorithms. The upper bounds reflect our
intuition on how the proof of theorem 3.1 works.

Theorem 4.1 There ezists a polynomial p so that for any time con-

structible function f there exists an ensemble p, computable in time
(2P f(|2]),4) so that p is malign for ALG(f).

Proof Define
T(z,1) = min(Ty,(2), f(|2])).

By our assumptions on the enumeration A4;, T'(z,4) can be computed
in time p;(f(||),%), where p; is a polynomial, which, by the time con-
structibility of f, do not depend upon f. Define

9

w(n,i) = min{z € Z"|Vy € " : T(y,q) < T(z,1)}.

The function w can be computed in time py(2”, p1(f(n),i)) i.e. in time
p3(2"f(n),1).
(e, 1) = { 1 if w(|z|,?7) ==

0 otherwise

prja () = i b(z,)2,

pt is a probability ensemble. It can be computed in the required time,
because the i’th binary digit of uf,(z) is 1 if and only if w(|z|,) < =.
It only remains to show that it is malign for ALG(f). But for this we
observe that if A; is such an algorithm, T'(z,j) = Ty,(z) for sufficiently
large |z|, and for these z, b(w,j) = 1 if x is the lexicographically least
worst case input of size |z| for A;. But then

5, (1,m) 2 29T (n)
for sufficiently large n.
O

Of course, if f € 2%, the factor 212/ can be deleted from the stated
time, i.e. for classes of exponential time algorithms, we can compute the
ensemble almost as fast as the algorithms run.

Corollary 4.1 There exists an ensemble pu, computable in time p(2l‘”|,z’),
where p is a polynomial, so that p is malign for the class of polynomial
time algorithms.

Theorem 4.1 and the corollary reflect our intuition from the proof of the-
orem 3.1: Malignness can be obtained if we are willing to use exponential
time. By using the same technique, we can provide a recursive measure
that is malign for the classes of algorithms with some recursive upper
bound on their running time. It won’t provide us with a recursive mea-
sure for the class of all algorithms, and, as is mentioned below, no such

thing exists. We now turn to a negative result, complementing theorem
4.1.

Theorem 4.2 There is an € > 0 and a polynomial p, such that for all
nondecreasing time constructible function f with f € Q(p), there is no en-
semble p, malign for ALG(f) and computable in time f(|z|)*h(i), where
h is any function.

10

Proof The proof uses our ability to do a binary search for a string of
low p-measure. Given a nondecreasing, time constructible function g,
g € Q(n) and any function h, consider an ensemble @, computable in
time g(|z[)h(i). We may assume that h is recursive, since h(i) otherwise
can be replaced with max, Ty (n,%) which is recursive. We may further-
more assume that h is time constructible, strictly increasing and tends
to infinity, since any general recursive function is dominated by such a
function. Define

h(n) = min(max(1, max{j|h(j) < log(n)}),n).

By h’s time constructibility, & can be computed in polynomial time. Fur-
thermore, the polynomial time bound does not depend upon h. Consider
the following algorithm, B:

input x
y:=A
for ¢ := 1 to h(|z|) do
v1 := a 2 %-approximation to pe{z]z < yolel=i+1y
vy := a 2 "-approximation to ,ui"ml(y()llwl*i)
vy := a 2 "-approximation to urwl(yllml"”l)
if v9 — v1 < v3 — vy then

y = y0
else
Y=yl
fi
od
Y = yOle—‘lyl
if x = y then

idle for g(log(|z()g(|z[))? time steps (g being specified below)

fi

The function ¢ should be a polynomial such that g(log(|z|)g(|z|)) is an
upper bound for the running time of the algorithm when z £ y. Observe
that ¢ can be picked independently of u, g and k. We may assume that q
is of the form ¢(t) = t*. Put e = ;-. Putting g(n) = f(n)°, we have that
B halts on almost all inputs in time g(log(|z|) f(|z|)¢)? = log(|z|)?*f(|x|)3
which is less than f(|z[) for almost all |z|. Thus, B € ALG(f). By an
easy induction, the invariant

11

z|—1 3 i—
pi{yzlz € DT < ()
holds at the end of the i’th cycle of the for loop, so the y found by the
for loop has

3\ i(la)—
P (y) < (Z)h(l D=3,
We then have
a 3 h n}— w w
Th(n) < (3HOTE () + T).

But this is smaller than c¢I'§(n), for any ¢ > 0, for sufficiently large n,
i.e. p is not malign for B, which was to be proved.

a

For exponential time algorithms the lower bound matches the upper
bound of theorem 4.1 within a polynomial. By a technique similar to
the above proof, we can also prove that no recursive measure is malign
for the class of all algorithms. This implies that the Solomonoff-Levin
measure is not recursive (of course, we could have proven this in a more
elementary way, see [4]). For polynomial time algorithms, we have

Corollary 4.2 No ensemble pu € PE is malign for the class of polynomial
time algorithms.

5 Malign ensembles for classes of fast algo-
rithms

Corollary 4.2 still leaves something to be desired. After all, most al-
gorithms we are likely to run will be in e.g. ALG(n*). Tt still seems
that exponential time is required to compute malign ensembles for such
classes. However, we are not likely to be able to prove these intuitions
correct, because the following theorem tells us that in order to show that
superpolynomial time is necessary, we would have to prove P # NP. We
are reusing the technique from the previous constructions.

Theorem 5.1 For all k, an ensemble p € PE™ exists, which is malign
for ALG(nF).

12

Proof Put f(n) = n* in the proof of theorem 4.1. This makes T(x,1)
polynomial time computable. Observe that the i’th binary digit of ,ui“wl(:v)
is 1 if and only if

Jy e EVz € 2" 1y < 2,T(2,1) <T(y,4),2 <y =T(z,i) < T(y,1)
and this is a Y%-problem.
(|

It thus seems that we will have to concentrate on merely making the
existence of such a PE-ensemble unlikely, instead of trying to prove that
it does not exist. We will indeed do this, by deriving from it a complexity-
theoretic equality which seems unreasonable, although it is a lot weaker
than P = NP. For this, we need a result on sampling.

Definition 5.1 An ensemble p is polynomial time samplable if a polyno-
mial time probabilistic Turing machine exists, which on input < 1,18 >
produces a string of length n, M (n,:) such that for all x € T"

[Pr(M (n,i) = @) = pa(a)| < 27

A similar definition and a analogy to the following theorem appears in 8]
(theorem 7). Note that we cannot demand that the strings are produced
with the exact probability, since it is easy to see that no probabilistic
machine with a worst case time bound can produce a string with an
irrational probability. Thus, demanding exact sampling would make the
following theorem false.

Theorem 5.2 Every ensemble p in PE is polynomial time samplable.

Proof The proof is similar to the one in [8]. First, we construct a
probabilistic algorithm A with no time bound, whose outputs follow the
distribution p, exactly. Given a finite string b = byb, .. .b; we denote by
val(b) the number E{Zl b;27*. Given a one-way infinite tape b = byb, .. .
we denote by val(b) the number 12, b;27%. That is, val(b) is b read as the
binary expansion of a real in the interval [0,1]. Clearly, if b is a random
tape, the random variable val(b) is uniformly distributed in [0,1]. Given
a random tape b and an input n, the following algorithm A determine
the string «, such that

val(b) € (p5,(x — 1), iy ()]

13

We will furthermore show that it will succeed with probability 1, i.e. for
all tapes except for a set of measure 0. Then, clearly, the algorithm will
sample p.

input 1"

ri=A;z:=A

for j:=1 ton do
repeat

r:= 7 -2 random bits (- means concatenation)
a := a 27 ".approximation to p (201™7)
fmax = a + 271 p = o — 21l
Vmin = val(r)
Vmax = val(r) + 2~
{ Invariant: vy, < val(random tape) < Umay }
until fimax < Vpin OF VUmax < Mmin
if prax < Vmin then
z =zl
else
z = a0
fi
{ Invariant: val(random tape) € (u,{yly < 20"}, pk(z19)])
od
output =

Since the invariants clearly hold, the algorithm produces the z with the
stated property if it halts. It remains to show that it halts with prob-
ability 1. Observe that any time we enter the repeat loop, there are
four equally likely possibilities for extending r. There are therefore also
4 equally likely possibilities for [vmin, Vmax], namely [val(ro1d), val(roa) +
§27Imel], for j € {1,2,3,4}. But since the values of pp,, and Mmin aTe
calculated independent of this extension, at most two of the intervals can
have vppn < fimax and vpay > fmin. Therefore, before each cycle of the
repeat loop there is a probability of at least % of leaving the repeat loop
after that cycle. We then have that at any time the probability of eventu-
ally leaving the current repeat loop is 1, and consequently the probability
of halting is 1. We now find a p so that

Pr(T4(1™) > p(i,n)) < 277,

14

Let C;,j € {1,...,n} be the random variable denoting the actual number
of cycles during the j’th execution of the repeat loop. Let N be the
random variable denoting the total number of cycles of the repeat loop
during the execution of the algorithm, i.e. N =X C;. If N > s, we can
conclude that 35 : C; > £, But we have argued that at any time the
probability of leaving the repeat loop after its next cycle is at least 2, le.
for a fixed j:

Pr(C; 2 =) < 274 ¥,
This means that
Pr(N > s) < n27at!
and
Pr(N > (i +1)n?) < -
9—(i+1)(n—1282)+1 < 9~ (iH+1)+1 _ 95
But since both the number and the precision of the calculated u*-approximations
are linear in N, there is a polynomial r so that T%4(1") < 7(n,N). We

may assume without loss of generality that » is strictly increasing in each
variable. Therefore

Pr(T4(1") > r(n, (i + 1)n?)) < Pr(V > (i + 1)n?) < 274

Now consider a probabilistic Turing machine M which on input < 17,17 >
simulates A on input 1" for 7(n, (¢ + 1)n?) time steps, outputs whatever
A does if A halts during this period, and outputs 0" otherwise. Clearly,
for any z € X",

[Pr(M(< 17,1 >) = a) — p(z)| < 274
|

To get conditionally negative results on the samplability of malign en-
sembles, we need the following concept.

Definition 5.2 Given a language L. An expected polynomial time con-
structor for L is a probabilistic algorithm which on input 1™ produces an
x € LN X" in expected polynomial time if one exists and otherwise fails
to halt.

15

This is a natural generalization of the deterministic constructors defined
and studied by Sanchis and Fulk in [9]. A useful equivalence is

Lemma 5.1 Every L € P has an expected polynomial time constructor
if and only if every L € DTIME(n) has one.

Proof Suppose every L € DTIME(n) has a constructor. Let J be a
language in P. There is a constant c, such that J € DTIME(n¢). Define
J = {2101*F|z € J}. It is easy to see that J € DTIME(n), so, by assump-
tion, J has a constructor. Thus, the following algorithm is an expected
polynomial time constructor for J.

input 1"
run J’s constructor on input 17+1+7°
if an output is produced, output its first n digits.

O

Theorem 5.3 Suppose a polynomial time samplable ensemble n is ma-
lign for ALG(f), where f is a time constructible function with n € o(f).
Then every L € P has an ezxpected polynomial time constructor.

Proof By lemma 5.1, we need only show that every L € DTIME(n) has
a constructor. Consider the following algorithm A:

mput z

Decide if z € L.

If it is not, halt immediately.

If it is, wait ﬂzﬁl time-steps before halting.

Ais an ALG(f)-algorithm, so there exists a c so that T%(u,n) > T (n).
We will show that for sufficiently large n,

LmE"#@:Mn(LﬂE")Zg.

Assume not, i.e. p,(LNE") < £. Then

S pm(@)Ta(e) < STH(n).
zeLNEn™

16

We also have that for sufficiently large n:
Y pn(@)Ta(2) < n.
zeX™\L
But then
c
2

If LNX™ # (), the algorithm will run for ﬂz’—') time steps for some value of
x. Therefore

T¥(n) +n > Ti(n,n) > T3 (n).

n > ng(n) > ﬁi—n—)

which is a contradiction for sufficiently large n. Let M be a polynomial
time sampler for u. Consider the algorithm A, which on input 1” simu-
lates M on input < 17,1[-lggl+n ~ angd outputs whatever 4 does. By
the definition of sampling,

C

c c
2 4 4
Now, the following algorithm is an expected polynomial time constructor
for L.

LNY"#0=Pr(A(n) e LNT") >

input 1”
repeat

sample x of size n from fi,
until ¢ € L

It runs in expected polynomial time because each cycle of the loop is
polynomial time, and, by the above, the probability that each sampled =
isin L is at least .

a

The following theorem (an analog to proposition 4.1 in [9]) make expected
polynomial time constructors for all languages in P unlikely.

Definition 5.3 Let RE be the class of languages L for which there exist
a probabilistic Turing machine, running in time 2<% on input x, rejects
if ¢ & L, and accepts with probability at least % ifx € L.

17

Thus, RE is for B = U0 DTIME(2°") what RP is for P. Hence, RE
should be considered a rather small extension of F, and RE = NE, where
NE = U0 NTIME(2°") must be considered only slightly more plausible
than F'= NE. Actually, by a proof identical to the one used by Hartmanis
in [10], RE' = NE if and only if there are no sparse languages in NP— RP.

Theorem 5.4 If every L € P has an exzpected polynomial time construc-
tor, then RE = NEF.

Proof Let L be a language in NF, and let M be a nondeterministic
machine, running in time 2°® which recognizes L. We can represent the
nondeterministic computations of M on input z as binary strings of length
< 2¢#l where the bits represent the nondeterministic choices of M. De-
note by @, the lexicographically i’th string of size n. Define f:¥*> N
by f(z%) = 2°* + i. The function f is clearly injective, provided ¢ > 1,
which we may assume. Now consider

L ={y| 3z : |y| = f(z) and y codes accepting computation of M on z}.

Clearly L € P and has therefore, by assumption, an expected polynomial
time constructor, C. Let p(n) be an upper bound on C’s expected run-
ning time on inputs of size n. Consider the following algorithm:

Input z

Generate 1/(®)

Simulate C on 1/(® for 2p(f(z)) time steps.

If an element has been produced by then, then accept, otherwise reject.

This obviously is a RFE-acceptor for L.

a

Corollary 5.1 If an ensemble p € PE is malign for ALG(f), where f
is time constructible and n € o(f), then RE = NE.
Acknowledgment

Thanks to Joan Boyar for her helpful supervision on the thesis on which
this paper is based and to Sven Skyum for useful comments and sugges-
tions.

18

References

[1] M. Li, P.M.B. Vitanyi. A theory of learning simple concepts un-
der simple distributions and average case complexity for the univer-
sal distribution (preliminary version), ITLI Prepublication Series for
Computation and Complexity Theory CT-89-07, University of Am-
sterdam (1989)!.

2| M. Li, P.M.B. Vitanyi. Average case complezity under the universal
) y g P
distribution equals worst case complezity, manuscript.

[3] M. Li, P.M.B. Vitanyi. Inductive reasoning and Kolmogorov complez-
ity (preliminary version), Proceedings from the 4th IEEE Structure
in Complexity Theory Conference (1989), 165-185.

[4] M. Li, P.M.B. Vitanyi. Kolmogorov complezity and its applications,
Report CS-R8901, CWI, University of Amsterdam (1989).

[5] AK. Zvonkin, L.A. Levin. The complezity of finite objects and
the development of the concepts of information and randomness by
means of the theory of algorithms, Russ. Math. Surv. 25 (1970) pp.
83-124.

[6] L.A. Levin. Average case complete problems, Siam Journal of Com-
puting, vol. 15 (1986) pp. 285-286.

[7] Y. Gurevich. Complete and incomplete randomized NP problems,
Proceedings of the 28th IEEE FOCS (1987) pp. 111-117.

[8] S. Ben-David, B. Chor, O. Goldreich, M. Luby. On the theory of
average case complexity, Proceedings of the 21st ACM STOC (1989)
pp. 204-216.

[9] L.A. Sanchis, M.A. Fulk. On the efficient generation of language
instances, Siam Journal of Computing, vol. 19 (1990) pp. 281-296.

[10] J. Hartmanis. On sparse sets in NP - P, Inform. Process. Lett., 16
(1983) pp. 55-60.

1An earlier version appeared at the 1989 FOCS.

19

