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Preface

In this thesis sets of labelled partial orders are employed as fundamental mathematical en-
tities for modelling nondeterministic and concurrent processes thereby obtaining so-called
noninterleaving semantics. Based on different closures of sets of labelled partial orders,
simple algebraic languages are given denotational models fully abstract w.r.t. correspond-
ing behaviourally motivated equivalences. Some of the equivalences are accompanied by
adequate logics and sound axiomatisations of which one is complete.

The majority of the work was done with a scholarship at the computer science department,
University of Aarhus, Denmark. The rest was carried out with grant-in-aid from the
Danish Research Academy during a visit at the technical University of Munich, Germany,
where I enjoyed the hospitality of Wilfrid Brauer and his concurrency group.

The thesis has grown out of inspiring and encouraging talks with my supervisor Mogens
Nielsen to whom I give my special thanks. I am also grateful to Kim S. Larsen for the
discussions we had when preparing a joint paper with him and Mogens Nielsen. I should
like to thank Anders Gammelg̊ard for our discussions and Karen Møller for her part of
the typing. Last, not least, thanks go to my parents and my wife Ricarda.

Uffe Henrik Engberg
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Resumé

Den foreliggende licentiatafhandling placerer sig inden for omr̊adet: semantiske modeller
for parallelle systemer. En gren heraf er semantisk beskrivelse af konkrete programmer-
ingssprog, hvori parallelisme og nondetermisme kan udtrykkes. Gennem den semantiske
beskrivelse fastlægges hvilke processudtryk, der er ækvivalente, s̊aledes, at det f.eks. giver
mening at tale om, hvorvidt et processudtryk er en korrekt implementation af et andet,
eller at en proces kan erstatte en anden i en given kontekst. Mange af studierne inden for
omr̊adet har taget udgangspunkt i mere abstrakte processprog som CCS, og de er blevet
udstyret med forskellige former for semantik, eksempelvis: operationel, denotationel, ak-
siomatisk og logisk semantik.
Det er den operationelle semantik, som åbner mulighed for en intuitiv forst̊aelse af, hvad
en proces kan gøre, og hvilke egenskaber der er afgøerende for, at to processer opfører sig
ens – er ækvivalente. Ofte er intuitionen den, at procesækvivalensen fremkommer i en
eksperimental opsætning, hvor en observatør udfører tests p̊a nogle maskiner i henhold til
en bestemt ”protokol”, og hvor, det en maskine kan gøre, er bestemt ud fra det tilhørende
procesudtryk.
For at sikre, at en semantik er i overensstemmelse med den operationelle intuition, er det
derfor vigtigt med en præcis forbindelse til den operationelle semantik. Ved denotationelle
semantikker er det formaliseret ved, at de denotationelle modeller er fuldt abstrakte m.h.t.
de tilhørende operationelle ækvivalenser. D.v.s. de operationelle ækvivalenser er kongru-
enser (bevares i vilk̊arlige kontekster) og to processer giver anledning til de samme deno-
tationer i modellerne, netop n̊ar processerne er operationelt ækvivalente (modellerne er
”fully abstract”). For aktiomatiske semantikkers vedkommende er de tilsvarende begreber
sundhed og fuldstændighed, hvor et bevissystem er sundt og fuldstændigt, n̊ar processer
kan bevises ækvivalente, hvis og kun hvis de er operationelt ækvivalente. Ved logisk se-
mantik forlanges typisk, at to processer tilfredstiller de samme logiske formler, præcist
n̊ar de er ækvivalente.

Den overvejende del, af de sædvanlige operationelle ækvivalenser, adskiller sig primært
ved hvilken grad af nondeterminisme de er i stand til at skelne, og har som fællestræk at
(endelige) parallelle processer er ækvivalenete med tilsvarende rent nondeterministiske,
men sekventielle processer – d.v.s. parallelisme reduceres til nondeterminisme. Flere af
disse operationelle ækvivalenser er blevet karakteriseret logisk eller udstyret med sunde og
fuldstændige bevissystemer, og nogle af ækvivalenserne er givet denotationelle modeller,
som baserer sig p̊a abstraktioner over beregningstræer, og som er fuldt abstrakte m.h.t.
ækvivalenserne. Derimod er s̊adanne resultater mere sjældne, n̊ar det drejer sig om de
ækvivalenser, hvor parallelisme ikke reduceres til nondeterminisme.

Ved i stedet at fokusere p̊a parallelisme og negligere de nondeterministiske aspekter, n̊ar
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tests og protokoller for eksperimenterne fastlægges, gives der i afhandlingen flere forskellige
operationelt definerede ækvivalenser for simple processprog, og ækvivalenserne udstyres
med fuldt abstrakte modeller, hvor mængder af mærkede partielle ordninger, forkortet
m.p.o.’er, fungerer som den naturlige modpart til beregningstræer.

Afhandlingen best̊ar af en indledende præsentation samt to hoveddele, der hovedsageligst
adskiller sig ved om det er testene eller protokollerne, der gøres til genstand for variation,
n̊ar de operationelle ækvivalenser defineres. De to dele er skrevet uafhængigt af hinanden
og kan derfor ogs̊a læses adskilt. Overordnet følger begge dele den samme linie. Først
foretages en isoleret undersøgelse af de objekter, der senere skal danne baggrund for
de denotationelle modeller. Derefter gives operationel og denotationel semantik til det
p̊agældende sprog for endelige processer, og det bevises, at de stemmer overens. Hver del
afsluttes med tilføjelse af rekursion, og de tidligere denotationelle resultater løftes til den
ny opsætning.

I den første del af afhandlingen betragtes et meget simpelt processprog med kombina-
torer for (sekventiel) præfiksning af atomare aktioner, nondeterministisk valg, og paral-
lelsammensætning uden auto-parallelitet, d.v.s. at en atomar aktion kun kan optræde i
én af to parallelle processer. Gennem et lidt usædvanligt transitionssystem og en fastlagt
type tests, designet til at afdække parallelitet, opn̊as tre forskellige operationelle ækvi-
valenser ved at betragte, hvordan processer fra sproget kan reagere p̊a eksperimenter med
testene. Til ækvivalenserne knyttes denotationelle modeller, der baserer sig p̊a en klasse
af m.p.o.’er, kaldet semiord, der reflekterer fravær af auto-parallelitet, og det bevises,
at modellerne er fuldt abstrakte m.h.t. ækvivalenserne. Generelle m.p.o.’er, og dermed
ogs̊a semiord, kan bl.a. sammenlignes via to forskellige (partielle) ordninger, som ud-
taler sig om, hvorvidt én m.p.o. er et præfiks, henholdsvis glattere/ mindre sekventiel
end en anden m.p.o.. Det viser sig, at de denotationelle afbildninger kan udtrykkes som
bestemte lukninger af en kanonisk associering af semiord til procesudtryk. Disse lukninger
er præfikslukninger, som igen, alt afhængig af den aktuelle ækvivalens, er opad-/ nedad-/
konvekslukkede m.h.t. ”glatheds” relationen. Desuden gives et sundt bevissystem som
ved en mindre udvidelse vises at være fuldstændigt for en af ækvivalenserne.

I den anden del betragtes et mere generelt processprog, der rummer mulighed for auto-
parallelitet og sekventiel sammensætning af vilk̊arlige processer. Eksperimenter fastlægges
her til at være maksimale sekvenser af direkte tests, og i stedet gøres de direkte tests til
genstand for variation. Med en enkelt direkte test undersøges, om visse typer af aktioner
kan udføres parallelt p̊a én gang. Hver ”naturlig” mængde af direkte tests og tilhørende
transitionssystem, giver anledning til en operationel ækvivalens, hvortil der knyttes en
fuldt abstrakt model, der p.g.a. af det udvidede processprog, bygger p̊a generelle m.p.o.’er.
De denotationelle afbildninger følger samme mønster som i den første del, men de bestemte
lukninger er her nedadlukninger, restringeret til lagdelte m.p.o.’er, hvor hvert lag svarer
til en af de direkte tests, som er mulige ved den aktuelle ækvivalens. Af disse resul-
tater afledes, at ækvivalenserne danner et gitter med den almindelige (automatteoretiske)
strengækvivalens i bunden, som den mindst nuancerede m.h.t. hvilke processer, der kan
skelnes. Hver af disse ækvivalenser karakteriseres ved en Hennessy-Milner-lignende lineær
modallogik.
Til processproget føjes en forfinelseskombinator, der til hver atomar aktion angiver et
procesudtryk (uden forfinelseskombinatorer) som aktionen skal implementeres ved. P̊a
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en simpel m̊ade indkopereres den ny kombinator i transitionssystemerne, og det bevises,
at den operationelle virkning er, som hvis de enkelte forfinelser p̊a forh̊and var tekstuelt
substitueret ind for de p̊agældende atomare aktioner. Derved bliver der mulighed for, at
forfinelser af parallelle aktioner kan ”overlappe”, hvorfor ækvivalenserne ikke bevares un-
der den ny kombinator. Derfor studeres i stedet deres (største konsistente) kongruenser.
Herved opn̊as én enkelt mere nuanceret kongruens. Kongruensen gives en fuldt abstrakt
denotationel model, hvor den afgørende forskel er, at nedadlukningerne i stedet bliver
restringeret til m.p.o.’er, som ikke kan skelnes ved ”overlapning”. For et delprocessprog
uden auto-parallelitet karakteriseres kongruensen yderligere ved en modallogik, der, til
forskel for de ovennævnte, har en ekstra modaloperator, hvormed en slags delvis bagl̊as
kan specificeres.

Sammenfattende kan det siges, at afhandlingen fremviser forskellige m̊ader, hvorp̊a grader
af parallelisme ved processer kan skelnes, enten gennem forskellige operationelt motiverede
ækvivalenser, eller gennem de præordninger som ækvivalenserne er fremkommet af, og
at mærkede partielle ordninger p̊a naturlig m̊ade tjener som hjørnesten i de tilhørende
modeller.
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Introduction

Overall Background

During the last two decades attention to the area of concurrency has increased as program-
ming concepts for handling nondeterministic and concurrent systems have been introduced
while advances in hardware technology have made it realistic to use new programming
languages incorporating these concepts. A great deal of the research has been made in
order to achieve a good understanding of the meaning of concurrent systems and how to
reason about them, an understanding comparable to that of sequential systems where e.g.
the well-known axiomatic method of Hoare [Hoa69] is applicable for sequential programs.
The ongoing research has resulted in a multitude of models for concurrency, for exam-
ple Kahn-MacQueen networks [KM77], Mazurkiewicz traces [Maz77], Petri nets [Rei85],
event structures [NPW81, Win87] and different semantics for process algebras. The main
intention of this thesis is to contribute to this line of research.

Principal Confinement

Whereas it is standard to take the meaning of a sequential program as a function from
input to output there is no prevailing agreement on what the meaning of concurrent
programs should be. As De Nicola and Hennessy reason in [DNH84] it is necessary to
search for counterpart to functions when building semantic theories for concurrency. In
order not to obscure this task it is common practise to pay less attention to data aspects
of concurrent programs and in stead investigate the fundamentals of control since this
were the essential nature of concurrency lies. That is, in place of concrete programming
languages for concurrency, like Concurrent Pascal, Modula-2 and Ada, abstract languages
or process algebras containing combinators for the most fundamental notions of control
– sequential, nondeterministic and parallel composition – are taken as starting point for
the development of semantic theories for concurrency. This is also the case for the present
thesis and deliberately only process languages with these fundamental, more algebraic
combinators are studied. Prominent examples of larger process algebras which have been
equipped with a broad spectrum of theories are CCS [Mil80, Mil84] and TCSP [Hoa78,
BHR84].
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General Requirement

Various forms of semantics for process algebras exist including: operational, denotational,
axiomatic and logical – each of which contributes to knowledge and insight. Typically
through labelled transition systems [Plo81] the operational semantics provide the means
for an intuitive understanding of how concurrent processes behave and which processes
are behaviourally equivalent. This is one of the main arguments when Milner (in e.g.
[Mil83]) and many others argue that a semantic approach should be firmly based on an
operational semantics. Consequently it will be a general requirement here too. Due to
the importance of the requirement it has got an explicit formulation within the different
types of semantics.
In case of denotational semantics it is formalized by the concept of a denotational map
being fully abstract w.r.t. an associated behavioural equivalence. I.e. the interpretations of
two processes in the denotational domain should be identified exactly when the processes
are behaviourally equivalent.
As far as axiomatic semantics are concerned the analogous concepts are soundness and
completeness – a proof system being sound when processes are provably equal only if they
are behavioural equivalent, and complete if all such processes can be be proved equal.
Regarding semantics by logics one formulation of the requirement is adequacy. That
means a logic is adequate when two processes satisfy the same set of formulas exactly
when the processes are behaviourally undistinguishable.

Main Objective

The diversity of approaches to concurrency is also reflected in their attitude to the ques-
tions as to whether a linear or branching view of nondeterministic and concurrent systems
should be taken, and whether concurrent processes should be reducible to purely nonde-
terministic, but sequential processes. When using a CCS/ TCSP like notation the first
question can be illustrated by whether or not

(∗) a.(b+ c) and a.b+ a.c

should be identified, and similarly for the second whether or not

(∗∗) a ‖ b and a.b+ b.a

should be distinguished. Changing from a look of controversy, the discussions around
these questions seem now to have resulted in the understanding that there are no straight
answers and that the attitude taken should depend on the situation at hand.

When concurrency is reduced to nondeterminism, concurrent processes are considered
equivalent to ones with nondeterministic choice between different sequential shuffles of
the individual processes as in (∗∗) above, and the semantics are often described as being
interleaving. For CCS, TCSP and other process algebras the question of a linear or
branching view has here led to a whole spectrum of behavioural equivalences ranging
from trace equivalence (in the classical language theoretic sense – not to be mistaken
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for Mazurkiewicz traces) [Hoa85, OH86], which identify say (∗), over failure and testing
[BHR84, DNH84, OH86] to bisimulation equivalence [Mil80, Par81, Mil84], equivalences
which do not identify (∗). Operationally these equivalences differ mainly in their view
of the branching structure of the labelled transition system associated with processes.
Through the study of degrees of branching some of the equivalences have been given
fully abstract denotational models where the counterparts to input-output functions (for
sequential programs) can be viewed as abstractions of computation trees (also called
synchronization trees) which in turn are slightly modified unfoldings of the corresponding
labelled transitions systems.

In other approaches concurrency is independent of nondeterminism and the processes of
(∗∗) are distinguished. Among these approaches are the so-called partial order semantics
where causality, respectively concurrency, is represented by means of partial orderings of
actions. I.e. alternatively to computation trees, constructions containing labelled partial
orders (lpos for short) are proposed as counterparts to functions. These constructions
are often sets of some kind of lpos and so nondeterminism cannot be discriminated in
the semantics using them. However, it is possible in the denotational semantics based
on a generalization of lpos, labelled event structures, where nondeterminism is dealt with
by means of a conflict relation. See [BC87] for a good survey on the rôle of partial
orders in semantics for concurrency. Apart from step semantics, different proposals for
generalizations of existing behavioural equivalences (for nondeterminism) have been made
with time-based equivalence [Hen88b] and distributed bisimulation [CH88] among the
most discriminating. See also the final remarks of these papers. In the style of [Jon88,
Rei88] the situation can roughly be sketched as:

(∗∗)

(∗)
= 6=

= Trace Bisimulation

6= Step
Distributed
Bisimulation

Behavioural process equivalence

(∗∗)

(∗)
= 6=

=
Set of
words

Computation
tree

6= Set of
lpos

Event
structure

Entity modelling processes

Whereas the work on interleaving semantics has led to a number of e.g axiomatisation and
full abstractness results, such results are more unusual when it comes to noninterleaving
semantics. Motivated by this and the suggestion of Pnueli [Pnu85] to study degrees of
concurrency in place of branching the main objective of the thesis is to explore the possi-
bilities of defining “natural” operational semantics for algebraic process languages which
open up opportunities for alternative semantics, especially for fully abstract denotational
models with lpos as main ingredient of the entities modelling processes. That is to say
we are seeking different behavioural equivalences where lpos come “naturally” in to the
corresponding models, thereby capturing various degrees of nonsequentiality.

Possible Courses

Looking for ideas of how to modify behavioural equivalences such that the semantics is
not interleaving, it immediately appears to try to catch a property which intuitively seems
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to be a distinctive characteristics of concurrency. To take an example one might argue
that if a defect occurs in a subprocess then other concurrent subprocesses are able to run
undisturbed (except of course if there is some dependence due to communication). If e.g.
0 denotes the faulty process which cannot do any action and if besides the usual a.p

a→ p
also the rule a.p

a→ 0 is used in the definition of the action relation, then many of the
known behavioural equivalences would distinguish say (∗∗). In the introduction and final
remarks of [Hen88b], Hennessy discusses other ideas and in the same paper and in [CH88,
Cas88] the ideas are successfully examined obtaining axiomatisations for generalizations
of bisimulation equivalence. However, bearing in mind the difficulties in finding fully
abstract models for bisimulation equivalence, we deliberately choose to study degrees of
concurrency as “orthogonal” to the existing study of degrees of branching. Taking the lead
of [HM80, Mil80, DNH84, Abr87] the intuition will be that of a behavioural equivalence
arising in an experimental setting with observers performing tests according to some
“protocol” on machines, with operational abilities defined in terms of labelled transition
systems. Though omitting branching aspects, the various manners in which to capture
degrees of branching can serve as a clue for capturing degrees of nonsequentiality. For
example, instead of having tests with different strengths in discovering nondeterminism,
tests may in different ways be geared towards parallelism (possibly by departuring from
the traditional labelled transition systems). Once tests capable of detecting some kind of
concurrency are fixed, variations may be obtained by changing the “protocol” in the style
of [DNH84]. Another direction to take is suggested in [Pnu85, BIM88] where increasing
discriminating equivalences are obtained from a simple equivalence (trace) by considering
the congruence when different combinators are added. So, finding combinators uncovering
an aspect of concurrency, the congruence will be forced to take the aspect into account.
These directions can be combined in several ways of which we have chosen two and
elaborated each in a separate part of the thesis.
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Overview and Basic Organization

The thesis is divided in two parts, which mainly differ in whether the tests or “protocols”
of the experiments are subject to variations when the behavioural equivalences are defined.

In part I a particular kind of tests suitable to probe concurrency of processes is introduced
for a simple process language, PL, and different equivalences are obtained by considering
possible outcomes of the experiments. PL contains combinators for prefixing of atomic
actions, nondeterministic choice and parallel composition (without communication). The
experiments and the labelled transition system is somewhat unconventional. Here an
atomic action can be thought of intuitively as connected to a certain resource thereby
excluding auto-parallelism [vGV87] (an atomic action can only occur in óne of two parallel
processes). When a signal, a, is submitted to initiate the action (ambiguously designated)
a, this is noted such that other actions, possible the same, can be signaled to initiate. Each
time the action a is completed this is signaled by ā as response. At first an attempt is made
to signal a (multi) set of actions and if this turns out well a test is made on the signaled
actions, where the language for specifying tests contains constructs for what Abramsky
[Abr87] calls traces and copying. The process may accept the experiment if the actions
can be signaled and the following test is successful, and may reject the experiment if the
actions can be signaled and the test is not successful. The three equivalences, <∼=∼, <∼=∼a and
<∼=∼r, are generated from the preorders <∼, <∼a and <∼r respectively, where <∼ is the intersection
of <∼a and <∼r, and one process is related via <∼a (<∼r) to another if the experiments the first
may accept (reject) also may be accepted (rejected) by the other.

Unlike in part one, the tests of the experiments in part II are varied when the different be-
havioural equivalence are introduced and the basic process language, BL, is slightly more
general as auto-parallelism and full sequential composition is possible. Experiments are
maximal sequences of direct tests and the variations arrise from the power admitted for
the direct tests – with a single action tested as the weakest and a multiset the most pow-
erful. For any “natural” fixed set of direct tests, G, processes are considered behaviourally
equivalent, <∼>∼G (actually generated from a preorder <∼G), if they react identically to the
same experiments. The equivalences are generalizations of the ordinary (maximal) trace
equivalence which appears from the weakest direct tests.
Holding on to the behavioural equivalences BL is extended to RBL by adding a refinement
combinator which makes it possible to prescribe through a map, called a BL-refinement,
how atomic actions within the scope of the combinator should be refined or implemented
in terms of basic processes of BL (change of atomicity). Because the refinement combi-
nator enables “overlapping” of refined actions, the equivalences are not preserved under
the new combinator and their finer associated congruences, <∼>∼

c
G, are considered. This part

of the thesis is largely a continuation/ extension of [Lar88] and [NEL89] to cope with
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auto-parallelism and recursion.

Both parts follow the same general line. At first lpos, or rather equivalence classes of lpos,
are studied in their own right. Operations and the relations, prefixing and “smoother
than” (where one lpo is smoother than another if the ordering relation of the first is a
superset of that of the other lpo), are introduced and properties are derived – of course se-
lecting certain topics in preparation for the models to come. In part I the study is actually
confined to particular equivalence classes of lpos, called semiwords, where equally labelled
elements are demanded to be ordered, thereby reflecting absence of auto-parallelism. One
important property of semiwords is that they have canonic representatives wherefore defi-
nitions and reasoning can be made directly in terms of these. Aiming at similar conditions
for the general equivalence classes of lpos, pomsets, elements of representatives are in part
II taken from a certain ground set and in fact pomsets can to some extent be handled as
smoothly as semiwords. Together pomsets and semiwords will in the rest of the presen-
tation be referred to simply as lpos.

After the initial study of lpos, operational and denotational semantics are given of the
process language in question and a connection between them is established. More specifi-
cally, the denotational models, which build on different closures of sets of lpos, are proved
to be fully abstract w.r.t. the corresponding operational equivalences. Besides this, alter-
native methods to reason about the processes are given, and links to the equivalences are
shown.

Finally each part is ended by adding recursion to the process language, and both the
operational semantics and the denotational characterizations are extended accordingly. In
part II new behavioural equivalences, <∼=∼G, come in by relaxing the maximality requirement
of sequences (of direct tests). The new equivalences are not preserved in BL or RBL
contexts, and their congruences, <∼=∼

c
G, are studied. For this purpose a new criterion – a

language being expressive w.r.t. a preorder – which ensures algebraicity of precongruences
is introduced. More technical prerequisites are necessary in part II and for the same reason
they are treated more thoroughly there. For instance two ways of extending (denotational)
relations to open expressions are compared and proofs (of results mentioned in [Hen83])
are made in full detail. Acquaintance with standard denotational techniques for dealing
with recursion as presented in [Hen88a] is assumed.

The two parts of the thesis are written and may be read independently and hence there is a
few differences in notation and some redundancy around the treatment of lpos. As a help
for the reader each part is equipped with an index of the most used notions, definitions
and symbols. To avoid repeating references a common bibliography is included at the end
of this presentation of the thesis.
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Summary of results

We shall here briefly state the results of the thesis and start out by looking at the syntactic
finite process languages (without recursion constructs) PL, BL and RBL, where PL as
previously mentioned has combinators for prefixing, nondeterministic choice and parallel
composition (without auto-parallelism and communication), BL in addition has auto-
parallelism and full sequential composition and RBL a refinement combinator.

Operationally a new idea is introduced for PL. In the labelled transition system control
is divided in two: at first nondeterministic choices are made during the act of signaling
actions to initiate. These are in turn later be completed and vanish from the configura-
tions.

For BL the operational capabilities are given via a more standard extended labelled
transition system in the style of [Nic87, Hen88a] where an internal step is used to resolve
(internal) nondeterministic choice. When it comes to RBL it turns out that a simple
operational “lazy substitution” of refinements can be given by means of the internal
step relation and this operational “substitution” is shown to coincide with the textual
substitutions of refinements.

Looking at the models, we draw the attention to the fact that they consist of finite sets
of lpos and that the denotational maps of the different models all can be regarded as
some kind of closure of the same canonical association of lpos to process expressions. In
addition the denotational maps admit simple compositional definitions, basicly built in
terms of the operators used in the canonical maps and the relevant closure at the places
where the closure is not preserved.

For PL and <∼=∼ (<∼=∼a or <∼=∼r respectively) the closure used in the corresponding model, Mχ (Mδ

or Mυ), is the prefix- and convex (downwards or upwards) closure w.r.t. the “smoother
than” partial ordering of semiwords. The models are shown to provide suitable interpre-
tations of the behavioural equivalences through the full abstractness results. From the
models and examples it is seen that both <∼=∼a and <∼=∼r are strictly more abstract than <∼=∼.
Furthermore, a sound proof system, DEDπ, is given which makes it possible to show
statements concerning “prefix-closure” as well as more ordinary algebraic properties of
the combinators such as commutativity and associativity of + and ‖. Extending DEDπ

to DEDδ by adding the axiom a.(x ‖ y) ≤ a.x ‖ y a sound and complete proof system is
obtained for <∼=∼a (or rather <∼a). In the style of [Hen88a] the results can be schematized:
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SYNTAX:
PL

��������) ?

PPPPPPPPq
OPERATIONAL
BEHAVIOUR:

DENOTATIONAL
SEMANTIC:

PROOF
SYSTEM:

<∼=∼ ⇐⇒ Mχ ⇐= DEDπ

<∼=∼r ⇐⇒ Mυ ⇐= DEDπ

<∼=∼a ⇐⇒ Mδ ⇐⇒ DEDδ

Turning to BL and fixing a set of direct tests, G, the closure of the the corresponding fully
abstract model is the ordinary “smoother than” downwards closure of pomsets restricted
to those pomsets which are “layered” and where each layer resembles a possible direct
test from G. Varying G it is seen that the equivalences form a lattice (in the sense of
their ability to distinguish processes) with the usual trace/ word equivalence, <∼>∼w, at the
bottom and the unrestricted multiset equivalence, <∼>∼M, at the top. Each <∼>∼G-equivalence is
given an alternative characterization in terms of an adequate Hennessy-Milner like linear
modal logic, LG, containing a straight forward generalization of the “labelled” necessity
modality (box) and atomic propositions expressing termination and non-termination. The
results are sketched below:

SYNTAX:
BL

��������) ?

PPPPPPPPq
OPERATIONAL
BEHAVIOUR:

DENOTATIONAL
SEMANTIC:

LOGIC
SYSTEM:

<∼>∼M ⇐⇒ MM ⇐⇒ LM
. .

. . . . . .
. . . . . .

. . . .
<∼>∼G ⇐⇒ MG ⇐⇒ LG. . . . .

. . . . . .
. . . . . .

.
<∼>∼w ⇐⇒ Mw ⇐⇒ Lw

The main observation for RBL is that when considering the largest congruences, <∼>∼
c
G,

contained in the equivalences, <∼>∼G, the addition of the refinement combinator collapse the
lattice of equivalences into a strictly finer equivalence. Thereby also the result, <∼>∼

c
w = <∼>∼

c
M,

which looks like a similar result Hennessy notices in the final remarks of [Hen88b] for
time-based bisimulation. The closure used in the fully abstract model for <∼>∼

c
G is again

the downwards closure of pomsets, but instead restricted to those pomsets where of any
two concurrent elements the successors of one also are successors of the other or vice
versa. By removing auto-parallelism from RBL a sublanguage, RBL′, is obtained which,
beside resembling semiword based models, is equipped with an adequate logic, Lr

G. An
extra modality for specifying a kind of semi-deadlock is here at disposal. The schematized
results are:
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SYNTAX:
RBL ⊇ RBL′

��������) ?

@
@
@R

OPERATIONAL
BEHAVIOUR:

DENOTATIONAL
SEMANTIC:

LOGIC
SYSTEM:

<∼>∼
c
G ⇐⇒ Mor ⇐⇒ Lr

G

Now for the full process languages of PL, BL and RBL with recursion.

The transition systems for the different process languages are extended in the usual way
to cope with recursion and in particular it is noticed for RBL that no extra (internal
step) inference rule is needed for the interplay between the refinement combinator and
the recursion constructor.

The models remain in principle the same but sets of lpos may now be infinite and the
models, Mp

G andMp
or, for <∼=∼

c
G w.r.t. BL and RBL respectively, separately carry information

concerning approximating sequences. The domains of the finitary models are in a uniform
way shown to be algebraic complete partial orders and the achieved models are proved to
be fully abstract w.r.t. the corresponding behavioural equivalences. In this course a new
criterion for algebraicity of precongruences turn out to be very useful.

PL can, modulo NIL and minor syntactic differences, be considered as a sublanguage of
BL which in turn is a sublanguage of RBL. Then from the pleasant fact that both the
Mp

or and Mδ model are expressed as abstractions over the downwards and prefix closure
of a canonical association of lpos with expressions it follows that the relationship between
the equivalences roughly can be illustrated as:

PL
BL

RBL

<∼=∼
c
w

. .
.

. . .
<∼=∼
c
G

. . .

. .
. <∼=∼

c
M

- <∼=∼
c
G

- <∼=∼a

<∼=∼r

PPq
��>

<∼=∼

where - indicates that the equivalence on the left-hand side is strictly more abstract
than the one on the right-hand side (the congruence of an equivalence is w.r.t. the language
labelling the highest box the equivalence is contained in). Since the equivalence of the two
parts only are compared here, we give two expressions, which illustrates that <∼=∼

c
G w.r.t.

RBL is strictly more abstract (on PL) than <∼=∼a (identified by <∼=∼
c
G but not by <∼=∼a):

(a.b ‖ c.d) + (b ‖ a.d ‖ c) + (a ‖ c.b ‖ d) and (b ‖ a.d ‖ c) + (a ‖ c.b ‖ d)

To sum up the achievements of the thesis one could say that means are brought about for
discriminating degrees of concurrency in processes, either through different behavioural
equivalences or through the preorders they are generated from, and that labelled partial
orders in a natural way serve as cornerstones in the associated models.
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Conclusion

The full abstractness results are obtained at the expense of simplified process languages
and an undetailed view on branching. We shall here discuss a few ideas to redress some
of the shortcomings and their impact on the results.

For PL the requirement of absence of auto-parallelism is crucial. This is best seen in the
proofs of full abstractness which rely heavely on the fact that semiwords are characterized
by their linearizations and no characterization of the pomsets that are identified by their
linearizations is known. But by omitting auto-parallelism, it looks manageable to extend
PL to BL and keep the results. Now consider what happens if a refinement combinator
which does not introduce auto-parallelism is added, either to PL or the extension. Then
it is unlikely that it will have any influence, at least not on the <∼=∼a-equivalence, since
two refined processes (without +), which can be distinguished by sequences, already are
distinguished by the may-experiments on the unrefined processes.

Whereas the combinators of BL are quite simple this is by no means the case for the
refinement combinator of RBL, but it suffers from an effective way to be specified. As
it is now, a refinement is given by a function from the (infinite) set of atomic actions
to the process expressions of BL. One way to go would be to introduce the notation
[a1 ; p1, . . . , an ; pn] for the refinement where all actions remain unrefined except that
a1 is refined to p1, a2 to p2, etc. and only allow such refinements. Then it would not be
possible to specify fission refinements as they are formulated now, but a closer look at
the proofs, where these refinements are used, shows that refinements which “fission” on
a finite set will do and so all the results go through. With the refinement combinator it
is possible to imitate relabelling by considering the relabelling functions as a special class
of BL-refinements (maps to individual atomic processes). Looking at the way relabelling
usually is introduced in transition systems, the relabelling combinator is stactic in nature
in contrast to the more dynamic nature of the refinement combinator, but this difference
cannot be uncovered by the equivalences. Inaction (NIL, SKIP ) seems also easy to
include in RBL. The few proofs, where the refinements are assumed not to make actions
disappear (ε-freeness), get more complicated. A (maybe unexpected) consequence of
adding NIL would be that expressions like a and a+NIL would be distinguished by <∼>∼G
and also by the congruence of <∼=∼G (think of a context where the expressions are sequential
composed by another action b). Once inaction is added to RBL it is no problem to
simulate hiding of an action a; simply use the refinement combinator [a ; NIL]. However
the use of such an abstraction feature is limited as long as parallel processes cannot
communicate – a matter we shall address next.

The extensions discussed until now stay so to say within the simplified view on branching.
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But if we extend the parallel combinator of RBL such that e.g. synchronization shall hap-
pen on all common actions as in TCSP [BHR84] and we still look at maximal sequences,
we would at once get a finer view, because the possibility of deadlock forces the model
to reflect branching structure – see [Pnu85]. We have on purpose carried out this work
on nonsequentiality “orthogonally” to existing work on branching, but it is an intriguing
question, whether such an extension could be modeled by a smooth combination of e.g.
the Mor model and the broom model of Pnueli – capturing aspects of nonsequentiality as
well as branching.

We conclude by a simple example which indicates that such a combination in no way is
straightforward to obtain. Suppose

p = a ‖ b and q = a.b+ b.a+ a ‖ b

Then p and q are identified in both the Mor model and the broom model, but p′ = p[a ;

c.d] and q′ = q[a ; c.d] would be distinguishable in a parallel context with c.b.d – c is a
possible maximal sequence of q′ ‖ c.b.d whereas this is not the case for p′ ‖ c.b.d. Hence a
“conjunction” of the two models would be to abstract for the congruence of <∼>∼G w.r.t the
two combinators.

12



Bibliography

[Abr87] Samson Abramsky. Observation Equivalence as a Testing Equivalence. The-
oretical Computer Science, 53:225–241, 1987.
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Testing Partial Orders
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Chapter 1

Semiwords: SW

1.0 Preliminaries

Partial orders are often used to reflect causal relationships between events. In this chapter
we shall present a special subclass of labelled partial orders called semiwords and find a
number properties semiwords enjoys. Roughly speaking a semiword is a labelled partial
order where the equal labelled elements are ordered. Before giving the exact definitions
of labelled partial orders and semiwords we start out by a few mathematical and other
conventions.

Propositions and definitions are numbered within chapters, e.g., definition 1.0.1 (the def-
inition below) where the first number indicates the chapter it appears in and the second
is the number of the definition.

If ≤ is a partial order over A the downwards closure of an element a ∈ A w.r.t. ≤ will be
denoted DC≤(a), i.e., DC≤(a) = {b ∈ A | b ≤ a}. Similar UC≤(a) denote the upwards
closure of a w.r.t. ≤. We shall often use functions defined on sets, so in order not to write
to many parenthesis we shall write fS for the function application f(S) where S is a set
and at the same time an element in the domain of f . The standard set, {1, . . . , n}, will
be denoted n and a tuple of the form (t1, . . . , tk) is abbreviated t.

Definition 1.0.1 Given a nonempty set ∆, a labelled partial ordering (lpo for short) over
∆ is a triple (A,≤, β), where β : A → ∆ is a mapping from A into ∆ and ≤ partially
orders the set A or equally (A,≤) is a poset, i.e., ≤ is a binary relation on A which is
reflexive, transitive and antisymmetric. 2

A can be regarded as events, i.e., particular occurrences of actions and ∆, the alphabet,
as actions, or types of events.

Definition 1.0.2 Two lpos ρ = (A,≤, β) and ρ′ = (A′,≤′, β ′) are said to be isomorphic
(written ρ ∼= ρ′) iff there exists a bijection φ : A → A′ such that for all a, b ∈ A : β(a) =
β(φ(a)), and a ≤ b iff φ(a) ≤′ φ(b).

The equivalence class under ∼= of any lpo ρ is denoted [ρ] i.e., [ρ] := {ρ′ | ρ′ ∼= ρ} and ρ is
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called a representative. If ρ = (A,≤, β) we also write the corresponding equivalence class
as [A,≤, β].

The subset of the quotient set of the lpos over ∆ by ∼= where the posets of the repre-
sentatives are finite are called the set of partial words over ∆ (written PW (∆)), i.e.,
PW (∆) := {[A,≤, β] | (A,≤) is a finite poset, β : A→ ∆}.
The subset of the partial words over ∆ where the equal labelled elements of the represen-
tatives are linearly ordered are called the set of semiwords over ∆ (written SW (∆) or SW
for short), i.e., SW (∆) := {[A,≤, β] ∈ PW (∆) | ∀a, b ∈ A : β(a) = β(b)⇒ a ≤ b∨b ≤ a}.
(So the partial order restricted to equal labelled elements satisfies the trichotomy law.) 2

The semiwords were first introduced by Starke [Sta81] and reflects the idea that two
occurrences (events) of the same action cannot be concurrent.

Though many of the following notions and results could be formulated and hold for
PW (∆) we prefer to introduce them for semiwords only. First of all because we are
only concerned with semiwords in this work and second, because they have a particularly
simple representation which we shall refer to as the canonic representatives.

Canonic representatives

According to Starke [Sta81] the canonic representatives can be characterized as follows:

Let A be a finite subset of ∆× IN+ and ≤ be a partial order on A. Then (A,≤) is the
canonic representative of a semiword over ∆ iff for all a ∈ ∆, i, j ∈ IN+ it holds:

SW1: (a, i) ∈ A ∧ 1 ≤ j ≤ i⇒ (a, j) ∈ A
SW2: (a, i), (a, j) ∈ A⇒ ((a, i) ≤ (a, j)⇔ i ≤IN j)

Intuitively (a, i) denotes the ith occurrence of the action a, i.e., (a, i) is a label a with rank
i (SW1). Since all equal labelled elements are linearly ordered (SW2) this gives sense
and from Starke it follows that the mapping which for a canonic representative (A,≤)
gives the semiword [A,≤, β], where β((a, i)) = a, is an isomorphism.

In the sequel we will identify a semiword s = [ρ], ρ = (A,≤, β) with its canonic represen-
tative which we denote (As,≤s) or just (A,≤) when it is clear from the context. We shall
therefore refer to SW as the subclass of the lpos which satisfies SW1 and SW2.

1.1 Basic Definitions

Notationally, it will be convenient to let ai denote (a, i). If the rank of the element is
unimportant for an argument or statement, we will simply omit the rank i of ai and just
write a.

If not only equal labelled elements of a semiword but all elements are linearly ordered,
we call it a word. Formally:
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Definition 1.1.1 Let s ∈ SW . s is a word over ∆ iff ≤s satisfies the trichotomy law:

∀a, b ∈ As. a ≤s b ∨ b ≤s a

The set of all words over ∆ is denoted W (∆) or W for short. Notice s ∈W implies ≤s is
total. 2

The one to one correspondence between ∆∗ and W should be clear (if not, see [Sta81])
and in the sequel we will often identify their members.

In order to introduce operators on SW it will be useful to define a function ψ, which given
a semiword s and an action a yields the maximal rank of an element of s labelled by a.
Because of SW1 this number equals the number of elements labelled with the action, so
we can use this for the formal definition:

Definition 1.1.2 ψ: SW ×∆ −→ IN is defined by:

(s, a) 7→ |{bi ∈ As | b = a}|

2

This allows us to introduce some further notions.

Definition 1.1.3 For a poset (A,≤) and a set B the restriction of (A,≤) to B (written
(A,≤)|B) is defined to be the poset (A|B,≤|B2).

s is a direct subsemiword of t iff s is a semiword and s = t|As.
If s is a direct subsemiword of u the complement semiword t of s (w.r.t. u/in u) is defined
to be t|Au\As shifted left according to s. I.e.,

At := {ai−ψ(s,a) | ai ∈ Au \ As}
∀ai, bj ∈ At. ai ≤t bj iff ai+ψ(s,a) ≤u|(Au\As)2 bj+ψ(s,b)

For convenience direct subsemiwords will be referred to simply as subsemiwords. 2

One could have defined a more general notion of subsemiword, but with this definition
the subsemiword is directly represented by itself. Furthermore this definition suffice for
our purpose.

Example: Let u be the semiword
��>
a

a - b - c
ZZ~-
��>
b

ZZ~ d

si below are subsemiwords of u and ti complement semiword of si in u.
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i) si ti

a) a - d b��1 a
PPq c

PPq
��1 b

b) b - c - b a��1 a
PPq d

c) a��1 a
PPq d

b - c - b

d) a - b��1 c
PPq d a - b

e) a - b

a
c
d

ZZ~-
��>
b

f) b a
��>
a

- c
ZZ~ d

ZZ~-
��>
b

The following semiwords are not subsemiwords of u:

b��1 a
PPq c

PPq
��1 b, b��1 a

PPq d
,
c
d

PPq
��1 b, b - a

From ta in the example we see that although a semiword is not a subsemiword of a
semiword u, it can be a complement semiword. b) and c) shows that a complement
semiword and a subsemiword may change rôle, whereas d) and e) shows it is not always
the case. Also notice that although e.g., b - a is a direct part of the picture of u (i.e.,
b - a is a subsemiword in a more general sense) it is neither a subsemiword of u nor a
complement semiword in u.

Proposition 1.1.4

a) If A ⊆ As fulfills SW1 then s|A is a subsemiword.

b) The complement semiword in definition 1.1.3 is in fact a semiword.

Proof
a) We shall show that ≤s|A2 is a po and fulfills SW2.
Since ≤s is a po on As, it must be so on A∩As too. Similar the SW2-property must hold
on A ∩As also.

b) First we prove that Au fulfills SW1.
Let ai ∈ At and a j such that 1 ≤ j ≤ i. We shall prove aj ∈ At.
By definition of t it follows that ai ∈ At implies ai+ψ(s,a) ∈ Au \ As ⊆ Au. Now 1 ≤ j ≤ i
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implies 1 ≤ j + ψ(s, a) ≤ i + ψ(s, a), so because u is a semiword and therefore fulfills
SW1 we have aj+ψ(s,a) ∈ Au. aj+ψ(s,a) 6∈ As because otherwise j+ψ(s, a) ≤ ψ(s, a) which
obviously is impossible since 1 ≤ j. Hence aj+ψ(s,a) ∈ Au \ As. Then by definition of t:
a(j+ψ(s,a))−ψ(s,a) = aj ∈ At.
≤u is a po fulfilling SW2 so this holds for ≤u|(Au\As)2 too. By definition of ≤t this must
then also be the case for ≤t. 2

Definition 1.1.5 Two semiwords s and t are said to be disjoint iff As ∩ At = ∅. 2

Because s, t disjoint implies ∀ai ∈ At. ψ(s, a) = 0 we get:

Corollary 1.1.6

a) If s is a subsemiword of u then: ≤s ⊆ ≤u.
b) and if t is the complement semiword of s in u and disjoint to s then As ∪ At = Au

and ≤t ⊆ ≤u.

Definition 1.1.7 Given a poset (A,≤).
a, b ∈ A are connected iff a and b are connected when considering the undirected graph
of ≤, i.e., when (a, b) ∈ (≤ ∪≤−1)+.

A poset (C,≤′) is a maximal connected component of a poset (A,≤) iff (C,≤′) = (A,≤)|C
and all elements of C are connected and there is no a ∈ C and b ∈ A \ C which are
connected. For the sake of convenience we will in the sequel just say connected component
instead of maximal connected component.

The set of all connected components of a poset (A,≤) is denoted γ((A,≤)).

Since SW is a subclass of the posets, we can talk of the connect components of a semiword
as well.

If s is a semiword such that γ(s) = {ε, s} we say that s is a connected semiword .

2

It is not difficult to see:

Corollary 1.1.8

a) A connected component of a semiword is also a subsemiword of it.

b) For a semiword s, γ(s) consists of mutual disjoint semiwords.

c) s 7→ γ(s) can be considered as a function γ : SW → P(SW ).

d) {ε, s} ⊆ γ(s).

e) γ(s) = {ε, s} iff s is a connected component.

where P(A) denote the power set of A.
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1.2 Operations on SW

In this section we shall introduce some of the operators on SW presented by Starke in
[Sta81] where he also displays the most fundamental properties of the operators.

Nullary

The semiword with canonic representative (∅, ∅) is denoted ε and is called the empty
(semi-) word. For every action a ∈ ∆ we select a corresponding semiword which has the
canonic representative ({a1}, {(a1, a1)}) and denote it a.

Corollary 1.2.1

a) γ(s) = {ε} ⇔ s = ε b) γ(a) = {ε, a}.

Unary

With the previous nullary operators and the concatenation of semiwords defined below,
we easily derive an unary operator a. for every a ∈ ∆. Namely:

Definition 1.2.2 Let a ∈ ∆. Then a. : SW → SW is defined by s 7→ as, where as
means the the concatenation of a and s. 2

From the properties of concatenation we derive:

Corollary 1.2.3

a) a.s = a⇔ s = ε b) a.s = b.t⇔ a = b, s = t

c) a.s ∈W ⇔ s ∈W

Binary

The definition of concatenation displayed as juxtaposition of the operands or placing a .
(dot) between the operands is:

Definition 1.2.4 Concatenation of semiwords, . : SW × SW → SW , is defined by
(s, t) 7→ s.t = st = (A,≤), where

A = As ∪ {ai+ψ(s,a) | ai ∈ At}
≤ ⊆ A× A is defined by:

∀ai, bj ∈ A. ai ≤ bj iff i ≤ ψ(s, a), j ≤ ψ(s, b), ai ≤s bj
or i ≤ ψ(s, a), ψ(s, b) < j
or ψ(s, a) < i, ψ(s, b) < j, ai−ψ(s,a) ≤t bj−ψ(s,b)
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2

Notice that As ⊆ Ast and ∀a ∈ As ∀b ∈ Ast \ As. a ≤st b.

Example:

a��1 a
PPq b

. b��1 b
PPq c

= a��1 a
PPq b ��1

PPq b��1 b
PPq c

Corollary 1.2.5 For all s, t, u ∈ SW :

a) st ∈ SW (well-defined)

b) s(tu) = (st)u (associative)

c) εs = s = sε (ε unit)

d) st = su⇒ t = u (left cancellation)

e) ts = us⇒ t = u (right cancellation)

Recalling the definition of subsemiword and complement semiword and inspecting the
definition of concatenation, we immediately get:

Corollary 1.2.6 s is a subsemiword of st and t the complement semiword of s in st.

The close connection between sub- and complement semiwords of a semiword and con-
catenation can be further illuminated by the following:

Proposition 1.2.7 Let s be a subsemiword of u. Define t to be the complement semiword
of s (w.r.t. u). Then:

a) Au = Ast

b) ∀a, b ∈ As. a ≤u b⇔ a ≤st b
c) ∀a ∈ As ∀b ∈ Au \ As. a ≤u b⇒ a ≤st b

d) ∀a, b ∈ Au \ As. a ≤u b⇔ a ≤st b

Notice that we cannot conclude u = st from a) – d). Later when dealing with partial
orders on SW , we will see some conditions which ensure that there exist such s and t.
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Proof
a) Ast = As ∪ {ai+ψ(s,a) | ai ∈ At} = As ∪ {ai+ψ(s,a) | ai ∈ {aj−ψ(s,a) | aj ∈ Au \ As}} =
As ∪ {a(j−ψ(s,a))+ψ(s,a) | aj ∈ Au \ As} = As ∪ (Au \ As) = Au, where the last equation
follows from the fact that s being a subsemiword of u implies As ⊆ Au.

b) s is a subsemiword of u wherefore ≤s agrees with ≤u restricted to As. s is also
subsemiword of st and the result follows.

c) Because of a) we see Au \ As = Ast \ As, so the rest is trivial since we have already
noticed by definition of concatenation that ∀a ∈ As ∀b ∈ Ast \ As. a ≤st b (no matter
whether a ≤u b or not).

d) Assume a and b actually are ai and bj respectively. Since ai, bj ∈ Au \ As we have
ai ≤u bj iff ai ≤u|(Au\As)2 bj which by definition of t is equivalent to ai−ψ(s,a) ≤t bj−ψ(s,b)

(notice that ai, bj ∈ Au\As, As ⊆ Au ⇒ ψ(s, a) < i, ψ(s, b) < j). This again, by definition
of concatenation, is equivalent to ai ≤st bj . 2

Proposition 1.2.8 Let u be a connected nonempty semiword. Then:

a) γ(ut) = {ε, ut} b) γ(su) = {ε, su}

c) s, t 6= ε⇒ γ(st) = {ε, st}

Proof
a) Assume γ(u) = {ε, u}. By corollary 1.1.8.d) {ε, ut} ⊆ γ(ut). So what remains to be
proved is r ∈ γ(ut) ⇒ r ∈ {ε, ut}. One consequence of r ∈ γ(ut) is r = ut|Ar . If either
Ar = ∅ or Ar = Aut the result is clear, so assume ∅ 6= Ar 6= Aut.
Then there exist a ∈ Ar, b ∈ Aut \Ar and since r is a connected component of ut, a and b
cannot be connected. We look at the different possible memberships of a, b w.r.t. Au and
Aut.

a, b ∈ Au ⊆ Aut: Since u is connected a and b must be connected—a contradiction.

a ∈ Au, b ∈ Aut \ Au: Then as noticed by concatenation a ≤ut b and thereby connected—
again a contradiction.

b ∈ Au, a ∈ Aut \ Au: Similar.

a, b ∈ Aut \ Au: Since {ε, u} 6= {ε} ⇒ u 6= ε there exists a c ∈ Au. Again as noticed
by concatenation c ≤ut a and c ≤ut b. Hence a and b are connected and we get a
contradiction again.

We have exhausted all possible memberships of a, b and each time got a contradiction, so
the assumption ∅ 6= Ar 6= Aut was wrong. Hence ε, ut are the only connected components
of ut.

b) Similar.

c) Let a, b ∈ Ast. If we can show that they are connected corollary 1.1.8.e) gives γ(st) =
{ε, st}. Three cases to consider.

a, b ∈ As: Since t 6= ε we have a c ∈ Ast \ As. By proposition 1.2.7.d) a ≤st c, b ≤st c, so
connected.
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a ∈ As, b ∈ Ast \ As: proposition 1.2.7 gives directly that they are connected.

a, b ∈ Ast \ As: Since s 6= ε we have some c ∈ As. Again by proposition 1.2.7 we have
c ≤st a, c ≤st b and thereby connected.

2

For words we have the following connection:

Corollary 1.2.9 st ∈W ⇔ s, t ∈W .

The parallel composition of semiwords is defined:

Definition 1.2.10 Let s, t be two disjoint semiwords. Then the parallel composition of
s and t is:

s ‖ t := (As ∪At,≤s ∪ ≤t)
2

So parallel composition is only partially defined.

Example:

a - b ‖ c��1 c
PPq d

=
a - b

c��1 c
PPq d

Corollary 1.2.11 For all s, t, u ∈ SW , mutual disjoint:

a) s ‖ t ∈ SW (well-defined)

b) s ‖ t = t ‖ s (commutative)

c) (s ‖ t) ‖ u = s ‖ (t ‖ u) (associative)

d) ε ‖ s = s = ε ‖ s (ε unit)

e) s ‖ t = s ‖ u⇒ t = u (left cancellation)

f) t ‖ s = u ‖ s⇒ t = u (right cancellation)

Since ‖ is associative we can omit brackets. Furthermore because ‖ additionally is com-
mutative and has ε as neutral element, we can even for a set D of semiwords write
‖{s | s ∈ D} or just ‖D for short to denote s1 ‖ s2 . . . ‖ sn where D = {s1, . . . , sn}. If
D = ∅ then ‖D denotes ε.

To avoid the proviso of disjointness of semiwords whenever writing expressions involving
‖ we will in the sequel tacitly assume this.
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Corollary 1.2.12 If s is a subsemiword of u and t the complement semiword of s in u,
similar for s′, t′, u′ then:

a) s ‖ s′ is a subsemiword of u ‖ u′ and

b) t ‖ t′ is the complement semiword of s ‖ s′ in u ‖ u′.

Proposition 1.2.13

a) γ(s ‖ t) \ {ε} = γ(s) \ {ε} ] γ(t) \ {ε} b) s = ‖ γ(s)

where ] means disjoint union of sets.

Proof
a) Trivial.

b) By induction on the size of γ(s)

|γ(s)| = 1: Since ε ∈ γ(s) for all s ∈ SW we have s = ε and γ(s) = {ε} from which the
result follows.

|γ(s)| > 1: Then there is a t ∈ γ(s) with t 6= ε. Clearly r = s|As\At is a subsemiword of s
(corollary 1.1.8) and s = t ‖ r. Since t 6= ε and hence At 6= ∅ we must have |γ(r)| < |γ(s)|
and the result then follows by applying the inductive hypothesis on r and using a). 2

From this proposition and the other concerning γ we obtain the following corollary.

Corollary 1.2.14

a) a.s = t1 ‖ t2 ⇒

t1 = a.s, t2 = ε
or
t1 = ε, t2 = a.s

b) s1 ‖ s2 = t1 ‖ t2
⇓
∃tji (∈ γ(t1) ∪ γ(t2)) i, j ∈ 2. si = ti1 ‖ ti2, ti = t1i ‖ t2i , i ∈ 2

c) ε = s ‖ t⇒ s = ε = t.

1.3 Partial Orders on SW

There are more natural partial orders on SW of which we shall see two in this section.
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1.3.1 Smoother Than

The idea of one semiword, s, being smoother than another, t, i.e., ≤s is a refinement of
≤t, can be captured formally as follows:

Definition 1.3.1 Let s, t ∈ SW . Then s is smoother than t (written s � t) iff As = At
and ≤s ⊇ ≤t. 2

Example:

a - b - c � a��1 b
PPq c

� a - b
c
�

a
b
c

Both = and ⊆ are partial orders so evidently:

Corollary 1.3.2 � partial orders SW .

Corollary 1.3.3 If s is a subsemiword of u, t the complement semiword in u and s, t
disjoint then u � s ‖ t.

The truth of this is evident since s, t disjoint implies As ∪ At = Au, s subsemiword of u
implies ≤s ⊆ ≤u and t disjoint complement (sub)semiword of s in u implies ≤t ⊆ ≤u.
Looking at this corollary one might think that s being a subsemiword of u and t the
complement implies st � u, but this is not in general true as can be seen from the
following example.

Example: Let u = a��1 b
PPq c

PPq
��1 d . Then s = a - b - d is a subsemiword of u and

t = c the complement semiword. But st 6� u because c ≤u d and c 6≤st d.

Later in proposition 1.3.28 we will se a sufficient condition for st � u.

Having defined � we are able to define the set of linearizations or the smoothing of a
semiword s, written λ(s).

Linearizations: λ

Definition 1.3.4 Define λ : SW → P(W ) by

s 7→ {t ∈W | t � s}

2

Proposition 1.3.5 For all s, t ∈ SW we have
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a) s � t⇔ λ(s) ⊆ λ(t) b) λ(s) 6= ∅

Before we proceed with the proof we need some small lemmas.

Lemma 1.3.6 ∀s ∈ SW ∀a, b ∈ As. (a 6≤s b, b 6≤s a⇒ ∃t ∈ SW. t ≺ s, a ≤t b)

Proof The idea is to get a smoothing of ≤s by adding (a, b) to ≤s and take the transitive
closure. Given s ∈ SW and a, b ∈ As such that a 6≤s b, b 6≤s a. Define t by At := As,
≤t := R+, where R = ≤s ∪ Q, Q = {(a, b)}. Clearly ≤s ⊂ ≤t and thereby t ≺ s, so the
only problem is to see t ∈ SW .

SW1 holds for t since At = As. Because ≤s ⊆ ≤t and ≤s is reflexive, SW2 holds for ≤t.
By construction ≤t is transitive.

Before considering the antisymmetry we prove:

∀c, d ∈ At. c Rn d, c 6≤s d⇒ c ≤s a, b ≤s d.(1.1)

by induction on n.

n = 1: Because c 6≤s d we must have c Q d. Then a = c, d = b and the result follows by
the reflexivity of ≤s.
n > 1: Then c Rn−1 e, e R d for some e ∈ At(= As). Two cases:

c ≤s e: From c 6≤s d and the transitivity of ≤s we conclude e 6≤s d. By hypothesis of
induction e ≤s a, b ≤s d and the result follows.

c 6≤s e: By hypothesis of induction c ≤s a, b ≤s e. If e ≤s d then transitivity gives b ≤s d
and if e 6≤s d the hypothesis yields b ≤s d directly.

Now to see:
c Rn d, d Rm c⇒ c = d(1.2)

assume on the contrary that there exists c, d ∈ At such that c Rn d, d Rm c, c 6= d. Since
≤s is antisymmetric we have either c 6≤s d or d 6≤s c. We investigate the different cases:

c 6≤s d, d 6≤s c: Since c Rn d, d Rm c (1.1) gives c ≤s a, b ≤s d, d ≤s a, b ≤s c. From
b ≤s c, c ≤s a we get b ≤s a which is a contradiction to b 6≤s a.

c ≤s d, d 6≤s c: Since d Rn c we have d ≤s a, b ≤s c. Collecting these facts: b ≤s c ≤s d ≤s
a and thereby b ≤s a—again a contradiction.

c 6≤s d, d ≤s c: Similar.

We have exhausted the cases and each time got a contradiction, so the assumption was
wrong. From (1.2) the antisymmetry of ≤t then follows.

2

Since s 6∈W implies ∃a, b ∈ As. a 6≤s b, b 6≤s a it follows that:

Corollary 1.3.7 ∀s ∈ SW : s 6∈W ⇒ ∃t ∈ SW. t ≺ s.
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Lemma 1.3.8 For all s ∈ SW we have: λ(s) = {t ∈ SW | t � s, 6 ∃t′. t′ ≺ t}.

Proof
⊆: Let t ∈ λ(s) be given. I.e., t � s, t ∈W .
We shall prove 6 ∃t′. t′ ≺ t. So assume on the contrary that there exists a t′ ≺ t i.e.,
t′ � t, t 6= t′. Now t′ ≺ t implies ≤t′ ⊃ ≤t. But ≤t′ ⊃ ≤t means ∃a, b ∈ At′ . a ≤t′ b, a 6≤t b.
We cannot have b ≤t a since this, by ≤t′ ⊃ ≤t, implies b ≤t′ a, a contradicting the
antisymmetry of ≤t′ . So we have a 6≤t b, b 6≤t a—a contradiction to t ∈W .

⊇: Let t ∈ SW be given such that t � s, 6 ∃t′. t′ ≺ t. We only need to show t ∈ W.
Now assume on the contrary t /∈ W . From corollary 1.3.7 we then have there exists a
t′ ∈ SW. t′ ≺ t—a contradiction. 2

We are now ready to prove a part of the last proposition.

Proof (of proposition 1.3.5)
a) ⇒: i.e., s � t⇒ λ(s) ⊆ λ(t).
Let r ∈ λ(s) be given. We shall prove r ∈ λ(t). By definition of λ we have r � s and from
the premise s � t, so by the transitivity of � we have r � t. By the previous lemma we
have r ∈ λ(s)⇒6 ∃r′. r′ ≺ r. Since r � t it then follows by the same lemma that r ∈ λ(t).

b) λ(s) 6= ∅:
We prove ∀s ∈ SW ∃t ∈W.t � s by induction on the number |δ(s)| from which the result
follows. The basis must be with |δ(s)| = 1 since ∀s ∈ SW. s ∈ δ(s). Furthermore notice
that by the previous lemma we have s ∈W ⇔ |δ(s)| = 1.

|δ(s)| = 1: Take t to be s. By reflexivity of � it follows that t � s.

|δ(s)| > 1: Then s 6∈ W and by corollary 1.3.7 ∃t′ ∈ SW. t′ ≺ s. Clearly δ(t′) ⊆ δ(s) and
s 6∈ δ(t′) wherefore |δ(t′)| < |δ(s)| and we can use the inductive hypothesis to obtain a
t ∈W such that t � t′. By the transitivity of � we get t � s. 2

Before proving the rest of the proposition we need one more little lemma.

Lemma 1.3.9 For all s ∈ SW and a, b ∈ As we have:

a) a ≤s b⇒ ∀t ∈ λ(s). a ≤t b b) a 6≤s b⇒ ∃t ∈ λ(s). b ≤t a

Proof
a) Immediate since t ∈ λ(s)⇒ t � s⇒ ≤s ⊆ ≤t.
b) We look at two cases of s.

s ∈ W : Then ≤s satisfies the trichotomy law. Choose t = s.

s /∈ W : There are two possibilities. Either b ≤s a or b 6≤s a. If b ≤s a the result follows
from a) and λ(s) 6= ∅. If b 6≤s a we conclude by lemma 1.3.6 that there exists a t′

such that t′ ≺ s and b ≤t′ a. From a) then ∀t ∈ λ(t′). b ≤t a. We have already
proved t′ � s⇒ λ(t′) ⊆ λ(s) so we are done.
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2

Proof (of proposition 1.3.5.a) continued)
We shall prove λ(s) ⊆ λ(t)⇒ s � t which is equivalent to s 6� t⇒ λ(s) 6⊆ λ(t). Assume
s 6� t. Two possibilities.

As 6= At: Then clearly λ(s) 6⊆ λ(t) since in general ∀r ∈ λ(s). Ar = As.

As = At: Then we must have ≤s 6⊇ ≤t. That means there exists a, b ∈ At such that a ≤t b
but a 6≤s b. By b) of the previous lemma a 6≤s b implies ∃s′ ∈ λ(s). b ≤s′ a. We
cannot have s′ ∈ λ(t). Suppose on the contrary we have s′ ∈ λ(t). From a) of the
same lemma we have a ≤t b implies ∀t′ ∈ λ(t). a ≤t′ b, hence also a ≤s′ b. By the
antisymmetry of ≤s′ : a ≤s′ b, b ≤s a implies a = b. Then a 6≤s b means a 6≤s a—a
contradiction to the reflexivity of ≤s.

2

From this proposition it follows that s = t iff λ(s) = λ(t) and since λ(s) is a finite
set of words a natural question is “Why not just consider finite sets of words instead
of semiwords?”. The main reason we are using semiwords, as opposed to finite sets
of words over ∆, is the semiwords agreement with our intuition of concurrency—the
partial order reflecting the dependencies between occurrences of actions and the lack
of such a dependency the concurrency. Furthermore they have a very simple graphical
representation which supports the intuition. Also the formal mathematical representation
(canonic representation) is simple. A consequence is simplified definitions and proofs.
Another technical reason is that not every set of words T (with same multiset) have an
s ∈ SW such that λ(s) = T . For a more detailed discussion of—and look at pos see
[Pra86].

The next proposition is concerned with the �-monotonicity of . and ‖.

Proposition 1.3.10

a) s � t⇔ sr � tr ⇔ rs � rt b) s � t⇔ s ‖ r � t ‖ r.

Proof
a) We look at the different implications one by one.

s � t ⇒ sr � tr: Given s � t. Shall prove sr � tr or equally Asr = Atr,≤tr ⊆ ≤sr.
Since s � t ⇒ As = At we see by the definition of concatenation that, in order to prove
Asr = Atr, it is enough to prove {ai+ψ(t,a) | ai ∈ Ar} = {ai+ψ(s,a) | ai ∈ Ar}, but this follows
directly from As = At ⇔ ∀a ∈ ∆. ψ(s, a) = ψ(t, a). To see ≤tr ⊆ ≤sr we must prove
∀ai, bj ∈ Atr(= Asr). a

i ≤tr bj ⇒ ai ≤sr bj . We look at the cases: i ≤ ψ(t, a), j ≤ ψ(t, b):
This implies by the definition of concatenation ai ≤t bj which by s � t implies ai ≤s bj .
Since ψ(s, a) = ψ(t, a), ψ(t, b) = ψ(s, b) the result follows for this case. The remaining
cases (i ≤ ψ(t, a), ψ(t, b) < j) and (ψ(t, a) < i, ψ(t, b) < j) follows similarly.

s � t⇒ rs � rt: Similar.
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sr � tr ⇒ s � t: As ⊆ At: Assume on the contrary As 6⊆ At. Then ∃ai ∈ As. ai 6∈ At.
This implies ψ(t, a) < i ≤ ψ(s, a). Clearly aψ(r,a)+ψ(s,a) = ak ∈ Asr. Now ak 6∈ At because
ψ(t, a) < ψ(s, a) ≤ k. Also ak 6∈ {aj+ψ(t,a) | aj ∈ Ar}.
If not, then ak−ψ(t,a) ∈ Ar. This gives us k − ψ(t, a) ≤ ψ(r, a) or equivalently ψ(r, a) +
ψ(s, a)−ψ(t, a) ≤ ψ(r, a) and thereby ψ(s, a) ≤ ψ(t, a) which contradicts ψ(t, a) < ψ(s, a).
So ak 6∈ Atr. But this contradicts Asr = Atr, so the assumption was wrong and we have
As ⊆ At.
Similarly, we see At ⊆ As, wherefore As = At. This also implies ψ(s, a) = ψ(t, a) for all
ai ∈ As(= At), hence by the definition of concatenation and the fact that ≤tr ⊆ ≤sr, it
follows ≤t ⊆ ≤s.
rs � rt⇒ s � t: In general we have Ar and {ai+ψ(r,a) | ai ∈ Au} are disjoint, so Ars = Art
implies {ai+ψ(r,a) | ai ∈ As} = {ai+ψ(r,a) | ai ∈ At}, hence As = At. Similar as above we
see ≤t ⊆ ≤s.
b) Obvious, since in general the disjointness of s and t gives As‖t = As]At, ≤s‖t = ≤s]≤t.

2

From this proposition and the transitivity of � we immediately get:

Corollary 1.3.11 If si � ti for i ∈ 2 then:

a) s1s2 � t1t2 b) s1 ‖ s2 � t1 ‖ t2.

The commutativity of ‖ is used in seeing b).

Proposition 1.3.12 For semiwords s, t and u: u � st⇒ ∃s′ � s, t′ � t. u = s′t′.

Proof Given u � st. Define s′ := u|As.
s is a subsemiword of st wherefore As fulfills SW1. Since u � st ⇒ Au = Ast and
As ⊆ Ast it follows that As ⊆ Au. Hence s′ is a subsemiword of u. Then we can define t′

to be the complement semiword of s′ w.r.t. u.

u = s′t′: Since s′ is a subsemiword of u and t the complement proposition 1.2.7.a) gives
Au = As′t′ and b) – d) most of ≤u = ≤s′t′ . Only three cases remains to be proved and this
in a situation with a ∈ As′, b ∈ Au \As′. u � st implies Au = Ast and by the definition of
s′ we have As′ = As, so the situation can be read as a ∈ As′ = As, b ∈ As′t′ \As′ = Ast\As.
As noticed by the definition of concatenation we then have

a ≤s′t′ b and a ≤st b(1.3)

a ≤s′t′ b⇒ a ≤u b: From u � st we also have ≤st ⊆ ≤u, wherefore (1.3) gives a ≤u b.
b ≤s′t′ a⇒ b ≤u a: Trivially true because b 6≤s′t′ a. To see this assume otherwise b ≤s′t′ a

and (1.3) together with the antisymmetry of ≤s′t′ would give a = b which contradicts
a and b belonging to disjoint sets.

b ≤u a⇒ b ≤s′t′ a: We cannot have b ≤u a since (1.3) and the first case implies a ≤u b
which then if b ≤u a would lead to a contradiction as in the last case.
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Proposition 1.3.13

a) u ∈ λ(st)⇔ ∃s′ ∈ λ(s) ∃t′ ∈ λ(t). u = s′t′

b) u ∈ λ(s ‖ t)⇔ ∃s′ ∈ λ(s) ∃t′ ∈ λ(t). u � s′ ‖ t′, 6 ∃u′. u′ ≺ u.

Proof
a) ⇒: By lemma 1.3.8 u ∈ λ(st) implies u � st, 6 ∃u′. u′ ≺ u. From u � st we see from
the last proposition that ∃s′ � s, ∃t′ � t. u = s′t′, so if we can prove 6 ∃s′′. s′′ ≺ s′ and
6 ∃t′′. t′′ ≺ t′ we are done since, then again by lemma 1.3.8 we have s′ ∈ λ(s) and t′ ∈ λ(s).
To see 6 ∃s′′. s′′ ≺ s′ assume on the contrary ∃s′′. s′′ ≺ s′. Then by proposition 1.3.10
s′′t′ ≺ s′t′ = u—a contradiction to 6 ∃u′. u′ ≺ u. Similarly, we prove 6 ∃t′′. t′′ ≺ t′.
⇐: s′ ∈ λ(s), t′ ∈ λ(s) implies s′ � s and t′ � t and by corollary 1.3.11 u = s′t′ � st. So
in order to have u ∈ λ(st) we just need to prove 6 ∃u′. u′ ≺ u. Assume this is not the case,
i.e., ∃u′. u′ ≺ u = s′t′. By the last proposition we clearly see this must mean ∃s′′ ≺ s′ or
∃t′′ ≺ t′—a contradiction to s′ ∈ λ(s) or t′ ∈ λ(s).

b) ⇒: u ∈ λ(s ‖ t) implies 6 ∃u′. u′ ≺ u. Since u ∈ λ(s ‖ t) means u � s ‖ t, we have
Au = As ] At,≤s ] ≤t ⊆ ≤u. So s′ := u|As and t′ := u|At are indeed subsemiwords of u.
At first we prove s′ � s and t′ � t. To see s′ � s notice As′ = Au|As = As and ≤s‖t ⊆ ≤u
implies ≤s‖t|As2 = ≤s′ . Since ≤s = ≤s‖t|As2 we have ≤s ⊆ ≤s′ and thereby s′ � s. t′ � t
is shown similarly.
Now to see s′ ∈ λ(s) we just need to prove s′ ∈ W ; i.e., ∀a, t ∈ As′. a ≤s′ b ∨ b ≤s′ a.
Let a, b ∈ As′ ⊆ As′ ] At′ be given. Since u ∈ λ(s ‖ t) and thereby u ∈ W we have
a ≤u b ∨ b ≤u a. W.l.o.g. assume a ≤u b. From a, b ∈ As we see a ≤u b implies a ≤u|As2 b
or what is the same a ≤s′ b. The proof of t′ ∈W is done in the same way.

To complete this implication we finally have to show u � s′ ‖ t′ or what comes to the
same: since Au = As′ ] At′ = As ∪ At that ≤s′ ∪ ≤t′ ⊆ ≤u. But this follows evidently
since ≤s′ = ≤u|As2 and ≤t′ = ≤u|At2.
⇐: Because 6 ∃u′. u′ ≺ u is assumed we see from lemma 1.3.8 that all we have to show
is that u = s′ ‖ t′ � s ‖ t. Since s′ ∈ λ(s) and t′ ∈ λ(s) imply s′ � s and t′ � t we
immediately get the result from corollary 1.3.11. 2

Corollary 1.3.14

a) λ(s)λ(t) = λ(st) b) a.λ(t) = λ(a.t)

�-downwards closure: δ

In the following we are concerned with the full �-downward closure. We will abbreviate
DC�(s) by δ(s). Notice that δ(s) is a finite set since As is finite and so only finitely many
refinements of ≤s are possible. Also λ(s) = W ∩ δ(s). Both δ and λ are extended to sets
of semiwords in the natural way. E.g., if S is a set of semiwords then δS =

⋃
s∈S δ(s).
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Proposition 1.3.15

a) s ∈ δ(s) b) δ(ε) = {ε} and ∀a ∈ ∆. δ(a) = {a}

c) δ(st) = δ(s)δ(t) d) δ(s) ‖ δ(t) ⊆ δ(s ‖ t)

Before giving the the proof we observe the following immediate consequence:

Corollary 1.3.16

a) δ(a.s) = a.δ(s) b) δ(s ‖ t) = δ(δ(s) ‖ δ(t))

b) of corollary 1.3.16 is seen as follows: ⊆ from d) implies δ(δ(s)‖δ(t)) ⊆ δδ(s‖t) ⊆ δ(s‖t)
and ⊇ by s ‖ t ∈ δ(s) ‖ δ(t)⇒ δ(s ‖ t) ⊆ δ(δ(s) ‖ δ(t)).

Proof (of proposition 1.3.15)
a) By the reflexivity of �.

b) Follows directly from a) and the fact that Aε = ∅ (Aa = {a1}) allows no refinement of
≤ε = ∅ (≤a = {(a1, a1)}).
c) Clear from proposition 1.3.12 and corollary 1.3.11

d) u ∈ δ(s) ‖ δ(t)⇒ (∃s′, t′. s′ � s, t′ � t, u = s′ ‖ t′)⇒ u = s′ ‖ t′ � s ‖ t⇒ u ∈ δ(s ‖ t). 2

�-upwards closure: υ

Similar to the abbreviation of DC�(s) by δ(s) we abbreviate UC�(s) upwards closure of
s w.r.t. � by υ(s) and extend υ to sets in the natural way.. We have already seen that
δ(s) is a finite set. The same turns out to be true for υ(s) because As is finite and so only
finitely many coarsenings of ≤s is possible. Whereas every po consistent refinement (i.e.,
it is reflexive, antisymmetric, transitive) of ≤s to ≤s′ yields a semiword s′, this is not the
case for every po consistent coarsening. For example, if

s = ({a1, a2}, {(a1, a2), (a1, a1), (a2, a2)})
then the only possible po consistent coarsening of ≤s is

{(a1, a1), (a2, a2)}
which isn’t a semiword (violates SW2).

Before we continue with properties of υ we prove:

Proposition 1.3.17 If s and t are disjoint we have

s ‖ t � u⇒ ∃s′, t′. s � s′, t � t′ and u = s′ ‖ t′
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Proof Given s ‖ t � u. Define s′ := u|As and t′ := u|At.
At first we show u = s′ ‖ t′.
By definition s ‖ t � u means As‖t = Au and ≤s‖t ⊇ ≤u. From As‖t = As ] At we
see Au = As ] At, so Au = Au|As ] Au|At = As′ ] At′ . Hence As′, At′ fulfills SW1
and by proposition 1.1.4 s′ and t′ are subsemiwords of u. Clearly they are disjoint, so
s′ ‖ t′ well-defined. Since As′‖t′ = As′ ] At′ we have As′‖t′ = Au. s ‖ t � u implies
≤u ⊆ ≤s′‖t′ = ≤s ] ≤t = ≤s|As2 ] ≤t|At2 which on second thoughts is seen to imply
≤u = ≤u|As2 ] ≤u|At2 . But ≤u|As2 ] ≤u|At2 = ≤s′ ] ≤t′ = ≤s′‖t′ , wherefore ≤u = ≤s′‖t′ .
Secondly we prove s � s′ and t � t′.
To see s � s′ at first notice As = As′ by construction, so the proof of s � s′ reduces
to ≤s′ ⊆ ≤s. s ‖ t � u implies ≤u ⊆ ≤s‖t which again implies ≤u|As2 ⊆ ≤As2 . Since
≤s′ = ≤u|As2 and ≤s‖t|As2 = ≤s we are done.
t � t′ is seen in the same way. 2

We are now ready to state and prove the following properties of υ.

Proposition 1.3.18

a) s ∈ υ(s) b) υ(ε) = {ε} and ∀a ∈ ∆. υ(a) = {a}

c) υ(s)υ(t) ⊆ υ(st) d) υ(s ‖ t) = υ(s) ‖ υ(t)

Corollary 1.3.19

a) υ(st) = υ(υ(s)υ(t)) b) υ(a.s) = υ(a.υ(s))

⊆ of a) is seen from st ∈ υ(s)υ(t) and ⊇ from c) of the proposition using υ(υ(st)) = υ(st).

Proof (of proposition 1.3.18)
a) Follows from the reflexivity of �.

b) Aε = ∅ allows no coarsening. No coarsening of {(a1, a1)} is po consistent—fails the
reflexivity.

c) u ∈ υ(s)υ(t)⇒ ∃s′, t′′. s � s′, t � t′, s′t′ ⇒ (corollary 1.3.11) st � s′t′ = u⇒ u = s′t′ ∈
υ(st).

d) ⊆ follows from the last proposition and ⊇ from corollary 1.3.11 2

Notice that in general δ(s‖t) 6= δ(s)‖δ(t) and υ(st) 6= υ(s)υ(t) when s, t 6= ε. This can be
seen by st ∈ δ(s ‖ t) but st 6∈ δ(s) ‖ δ(t) if s, t 6= ε and if s and t are disjoint and different
from the empty (semi)word. Under the same conditions s ‖ t ∈ υ(st) but s ‖ t 6∈ υ(s)υ(t).
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�-convex closure: χ

The preceding up- and downwards closures w.r.t. �, δ and υ ,were defined for single
semiwords and extended to sets in the natural way. This cannot be done in the same way
for the convex closure, χ, we are going to define now.

Definition 1.3.20 Let T be a (finite) set of semiwords. Then the convex closure of T
written χT is defined by:

χT := {s ∈ SW | ∃t, t′ ∈ T. t � s � t′}
2

From the definition of χ it appears:

Corollary 1.3.21 χT = δT ∩ υT .

As for δ and υ we derive some fundamental properties of χ.

Proposition 1.3.22 For S, T ⊆ SW we have

a) T ⊆ χT b) χ{s} = {s} for s ∈ SW

c) χSχT ⊆ χ(ST ) d) χS ‖ χT ⊆ χ(S ‖ T )

e) χS ∪ χT ⊆ χ(S ∪ T )

Since χχS = χS we can use a) to derive the opposite inclusions of c) – e) and so obtain:

Corollary 1.3.23

a) χ(ST ) = χ(χSχT ) b) χ(S ‖ T ) = χ(χS ‖ χT )

c) χ(S ∪ T ) = χ(χS ∪ χT )

Proof (of proposition 1.3.22)
Now first notice that in general if 2—an operator between sets—can be considered as the
natural extension of a operator, 2, between members of these sets, then:

(A ∩ B) 2 (C ∩D) ⊆ (A 2 C) ∩ (B 2D).(1.4)

a) – b) Immediate.

c) χSχT = (corollary 1.3.21) (δS ∩ υS)(δT ∩ υT ) ⊆ (by (1.4)) (δSδT ) ∩ (υSυT ) =
(proposition 1.3.15.c)) δ(ST )∩(υSυT ) ⊆ (proposition 1.3.18.c)) δ(ST )∩υ(ST ) = χ(ST ).

d) χS ‖ χT = (δS ∩ υS) ‖ (υT ∩ υT ) ⊆ (δS ‖ δT ) ∩ (υS ‖ υT ) ⊆ (proposition 1.3.15.d))
δ(S ‖ T ) ∩ (υS ‖ υT ) = ( proposition 1.3.18.d)) δ(S ‖ T ) ∩ υ(S ‖ T ) = χ(S ‖ T ).

e) χS∪χT = (δS∩υS)∪(δT∩υT ) ⊆ (δS∪δT )∩(υS∪υT ) = δ(S∪T )∩υ(S∪T ) = χ(S∪T ).
2
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That the opposite inclusion in c) – e) of proposition 1.3.22 does not hold as can be seen

by the following counter examples. Let S = {ε, a - b - c} and T =

{
ε,
a - b
c

}
. Then

S ∪ T ⊆ ST, S ‖ T and s = a��1 b
PPq c
∈ χ(ST ), χ(S ‖ T ), χ(S ∪ T ). But χS = S and χT = T ,

so s 6∈ χSχT , χS ‖ χT , χS ∪ χT .

Now for a special version of corollary 1.3.23.

Proposition 1.3.24

a) χ(S ∪ {ε}) = χS ∪ χ{ε} = χS ∪ {ε} b) χ({s}T ) = {s}χT

Proof
a) Evident since t = ε is the only semiword for which t � ε or ε � t.

b) ⊇: {s}χT = χ{s}χT ⊆ (by proposition 1.3.22.c) χ({s}T ).

⊆: Let u ∈ χ({s}T ) be given. We shall prove u ∈ {s}χT .
u ∈ χ({s}T ) implies ∃t, t′ ∈ T. st � u � st′. From proposition 1.3.12 and u � st′

we see that there exists v, v′ such that u = vv′, v � s, v′ � t′. Hence st � u means
st � vv′. Again by proposition 1.3.12 there must exists sv and sv′ such that st = svsv′
and sv � v, sv, � v′. Now sv � v � s implies Asv = As. Clearly Asv = As and st = svsv′
implies s = sv, t = sv′ . This again means s � v � s, t � v′ � t′. s � v � s gives v = s, so
u = sv′ for a v: t � v′ � t′ or equivalently us = v′ for a v′ ∈ χ{t, t′} ⊆ χT , so u ∈ {s}χT .

2

Corollary 1.3.25 χa.T = a.χT

1.3.2 Prefix of

We are now going to introduce another partial order on SW which shall be the general-
ization to SW of the well-known prefix partial order on ∆∗ (∼= W ). It will turn out that
in general s is a prefix of st. As for ∆∗ we have that s being a prefix of t ∈W implies that
there exists a t′ such that st′ = t, but this is not in general true for arbitrary t ∈ SW !

Definition 1.3.26 s is a prefix of the semiword t (written s v t) iff s is a subsemiword
of t and DC≤t(As) ⊆ As i.e., ∀ai ∈ As(⊆ At) ∀bj ∈ At. bj ≤t ai ⇒ bj ∈ As. 2

Notice that for a subsemiword s of t DC≤t(As) ⊆ As iff UC≤t(At \ As) ⊆ At \ As. This
makes the connection with the definition of the prefix-po in [Pra86] for pomsets clear. We
adopt his abbreviation π(s) for DCv(s) – the v-downwards closure of s.

Example: If s = a
b

d
PPq
��1 c

PPq
��1 e then:
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a
b

PPq
��1 c v s, but t =

a
b

PPq
��1 c - e 6v s

because e ∈ At, d ≤s e and d 6∈ At.

Proposition 1.3.27 v is a po on SW .

Proof Antisymmetry: s v t, t v s implies As ⊆ At, At ⊆ As. Hence As = At. Then
of course ≤t|As2 = ≤t|At2 = ≤t. Since s v t implies ≤s = ≤t|As2 we have ≤s = ≤t and
therefore s = t.

Reflexivity: s is a subsemiword of s, and the rest is immediate.

Transitivity: Given s v t v u. s v t implies s is a subsemiword of t, so As = At|As2 ⊆ At
and ≤s = ≤t|As2 . Similar we see At ⊆ Au and ≤t = ≤u|At2 from t v u.
Because As ⊆ At ⊆ Au we have Au|As = At|As = As. We also have ≤s = ≤t|As2 = (≤u
|At2)|As2 = (since As ⊆ At) ≤u|As2 . Hence s = u|As. s is a semiword wherefore As fulfills
SW1, so by proposition 1.1.4 s is a subsemiword of u.
In order to have s v u it now remains to prove DC≤u(As) ⊆ As. Let b ∈ As, a ∈ Au be
given such that a ≤u b. As As ⊆ At we have b ∈ At. Since DC≤u(At) ⊆ At it follows
that a ∈ At, so (a, b) ∈ ≤s|At2 = ≤t. Hence a ≤t b. Because DC≤t(As) ⊆ As it then also
follows that a ∈ As. 2

We now present the proposition promised at example on page 28 which gives a sufficient
condition for st ≺ u.

Proposition 1.3.28 If s v u and t is the complement semiword of s in u then st � u

Proof By proposition 1.2.7 it is only necessary to prove

∀a ∈ As, b ∈ Au \ As. b ≤u a⇒ b ≤st a
This follows directly from the fact that b 6≤u a for all a ∈ As, b ∈ Au \As. Assume on the
contrary ∃a ∈ As, b ∈ Au \ As. b ≤u a. Then b ∈ DC≤u(As) and b 6∈ As which contradicts
the definition of s v u. 2

From the proof it is seen that {s | s v u} exactly is the set, S, of subsemiwords of u for
which s ∈ S iff st � u, where t is the complement semiword of s in u. So in this way
we have found another characterization of v (this alternative characterization would not
hold with a more general notion of subsemiwords). That s v u or rather DC≤u(As) ⊆ As
is a necessary condition was illustrated in the example on page 28.

Proposition 1.3.29

a) a.(s ‖ t) � a.s ‖ t b) s(t ‖ u) � st ‖ u

c) (s ‖ s′)(t ‖ t′) � st ‖ s′t′
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provided the expressions are defined.

c) can be visualized as follows:
s -

��>
t

s′ -ZZ~ t′
� s - t

s′ - t′
.

Proof
a) is a special case of b) which in turn is a special case of c).

b) corollary 1.2.6 and corollary 1.2.12 are easely seen to hold for prefixes too. I.e., s v st,
t complement semiword of s in st. etc. So s ‖ s′ v st ‖ s′t′ and t ‖ t′ is the complement
semiword of s ‖ s′ in st ‖ s′t′. The result then follows from proposition 1.3.28 above. 2

Proposition 1.3.30 Let s, t, u ∈ SW . Then:

a.u � s ‖ t iff


∃s′. a.s′ � s, u � s′ ‖ t, a1 6∈ At
or
∃t′. a.t′ � t, u � s ‖ t′, a1 6∈ As

Proof
if : We only look at the case ∃s′. a.s′ � s, u � s′ ‖ t, a1 6∈ At since the other is handled
totally symmetric. By corollary 1.3.11 a.s′ � s implies a.s′ ‖ t � s ‖ t since a1 6∈ At
and s′, t are disjoint. By the same corollary we obtain a.u � a.(s′ ‖ t) from u � s′ ‖ t.
Using proposition 1.3.29 we see a.(s′ ‖ t) � a.s′ ‖ t, so collecting the facts we establish
a.u � a.(s′ ‖ t′) � a.s′ ‖ t � s ‖ t from which the result follows by the transitivity of �.

only if : Consider Aa∩As and Aa∩At. One of the intersections must be empty - otherwise
s and t would not be disjoint which is assumed for s ‖ t to make sense. W.l.o.g. assume
the latter is the case i.e., a1 6∈ At.
Since a.u � s‖ t implies Aa.u = As‖t = As∪At we get a1 ∈ As from a1 6∈ At and a1 ∈ Aa.u.
So a is a subsemiword of s and furthermore a v s. Let s′ be the complement semiword
of a in s. By proposition 1.3.28 a.s′ = as′ � s.
To see u � s′ ‖ t we prove Au = As′ ∪At and ≤s′‖t ⊆ ≤u.
Au = As′ ∪ At: By corollary 1.2.6 u is the complement semiword of a in au = a.u, so by
definition of complement semiword Au = {bi−ψ(a,b) | bi ∈ Aa.u \ Aa} = (since a.u � s ‖ t)
{bi−ψ(a,b) | bi ∈ As‖t \ Aa = (As ∪ At) \ Aa} = (because a1 6∈ At) {bi−ψ(a,b) | bi ∈
(As \Aa)∪At} = (because a1 6∈ At, bi ∈ At ⇒ ψ(a, b) = 0) {bi−ψ(a,b) | bi ∈ As \Aa}∪At =
(by definition of s′ being the complement of a in s) As′ ∪At.
≤s′‖t ⊆ ≤u: Let bi, cj ∈ As′‖t with bi ≤s′‖t cj. Clearly only the following two cases can
come into consideration.

bi, cj ∈ As′ : Then bi ≤s′‖t cj implies bi ≤s′ cj. Now bi ≤s′ cj ⇒ (again by definition
of s′ being the complement of a in s) bi+ψ(a,b) ≤s|(As\Aa)2 cj+ψ(a,c) ⇒ bi+ψ(a,b) ≤s
cj+ψ(a,c) ⇒ (by definition of ‖) bi+ψ(a,b) ≤s‖t cj+ψ(a,c) ⇒ (from a.u � s‖t) bi+ψ(a,b) ≤a.u
cj+ψ(a,c) ⇒ (by definition of concatenation and a.) bi ≤u cj .

bi, cj ∈ At: Then bi ≤s′‖t cj implies bi ≤t cj from which we get bi ≤s‖t cj. Using a.u � s‖ t
we then see bi ≤a.u cj . As earlier a1 6∈ At, bi, cj ∈ At ⇒ ψ(a, b) = 0 = ψ(a, c), so from
bi ≤a.u cj and the definition of concatenation we get bi = bi−ψ(a,b) ≤u cj−ψ(a,c) = cj.
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This proposition can be specialized to W .

Proposition 1.3.31 Let s, t, u ∈W . Then

a.u � s ‖ t iff


∃s′ ∈W. a.s′ = s, u � s′ ‖ t, a1 6∈ At
or
∃t′ ∈W. a.t′ = t, u � s ‖ t′, a1 6∈ As

Proof
if : Immediate from the previous proposition since a.s′ = s implies a.s′ � s, so by the
previous proposition a.u � s ‖ t.
only if : By the same proposition a.u � s ‖ t gives ∃s′. a.s′ � s, u � s′ ‖ t, a1 6∈ At or
∃t′. a.t′ � t, u � s‖ t′, a1 6∈ As. The result then follows since s, t ∈W and a.s′ � s, a.t′ � t
implies s′, t′ ∈W . 2

Proposition 1.3.32

a) s v t⇔ us v ut b) s v t⇒ s v tu

c) s v t⇔ s ‖ u v t ‖ u

Proof
a) Each implication is proven separately.

s v t ⇒ us v ut: Given s v t. We shall prove that us is a subsemiword of ut and that
the ≤ut-downwards closure of Aus is contained in Aus.
Since s v t implies s = t|As it follows that us is a subsemiword of ut if we can prove that
in general:

(ut)|Aus = u(t|As) (= us)(1.5)

At first observe that since

Aut = Au ] {ai+ψ(u,a) | ai ∈ At} and
Aus = Au ] {ai+ψ(u,a) | ai ∈ As}

we have:

Aut|Aus = Au ] {ai+ψ(u,a) | ai ∈ At}|{ai+ψ(u,a)|ai∈As}
= Au ] {ai+ψ(u,a) | ai ∈ At|As}
= Au ] {ai+ψ(u,a) | ai ∈ At|As}

It is now evident that ≤(ut)|Aus = ≤u(t|As ) by looking at the definition of concatenation
thereby establishing (1.5).
It remains to prove DC≤ut(Aus) ⊆ Aus. So let ai ∈ Aus and bj ∈ Aut with bj ≤t ai be
given. If bj ∈ Au then clearly bj ∈ Aus. So assume bj 6∈ Au, that is ψ(u, b) < j. Then
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bj ≤ut ai implies bj−ψ(u,b) ≤t ai−ψ(u,a). From this and s v t it follows that bj−ψ(u,b) ∈ As.
By definition of concatenation then bj = b(j−ψ(u,b))+ψ(u,b) ∈ Aus.
us v ut⇒ s v t: us v ut implies us = ut|Au and from (1.5) (ut)|Aus = u(t|As) so we can
conclude s = t|As a subsemiword of t.
Now let ai ∈ As, b

j ∈ At be given such that bj ≤t ai. Define k := i + ψ(u, a) and
l := j + ψ(u, b). Since ai ∈ As, bj ∈ At ⇒ i, j ≥ 1 we have ψ(u, b) < l and ψ(u, a) < k.
Clearly bj ≤t ai is the same as bl−ψ(u,b) ≤t ak−ψ(u,a) so by the definition of concatenation
we have bl ≤ut ak. Since ai ∈ As ⇒ ak ∈ Aus we have from us v ut and bl ≤ut ak that
bl ∈ Aus. Since ψ(u, b) < l it follows that bl−ψ(u,u) ∈ As which by the definition of l means
bj ∈ As.
b) s v t ⇒ s v tu: Given s v t. We shall prove that s is subsemiword of tu and
DC≤tu(As) ⊆ As.
Now s v t implies s = t|As which again implies As ⊆ At. Hence As ⊆ At ∪Atu \At = Atu
and since s is a semiword, As fulfills SW1, wherefore s is a subsemiword of tu (by
proposition 1.1.4).
To prove DC≤tu(As) ⊆ As let a ∈ As and b ∈ Atu be given such that b ≤tu a.
b cannot be in Atu \ At. If it was a ∈ As ⊆ At would imply a ≤tu b as noticed by the
definition of concatenation. By the antisymmetry of ≤tu and we would then get a = b—a
contradiction to a, b belonging to disjoint sets.
So b ∈ At. By definition b ≤tu a and s ∈ As ⊆ At then implies b ≤t a. b ∈ As then follows
from s v t.

c) At first notice s v t implies As ⊆ At, wherefore t disjoint from u implies s disjoint from
u—so well-defined under the proviso. The rest follows directly from As‖t = As ]At. 2

Corollary 1.3.33 If si v ti for i ∈ 2 then s1 ‖ s2 v t1 ‖ t2 provided t1 and t2 are disjoint.

Proposition 1.3.34

a) u v st⇒

u v s
or
∃t′ v t. u = st′

b) u v s ‖ t⇒ ∃s′ v s, t′ v t. u = s′ ‖ t′

Proof
a) u v st⇒ u v s or ∃t′ v t. u = st′:
Given u v st. Then u = st|Au and DC≤st(Au) ⊆ Au. Since u = st|Au implies Au ⊆ Ast =
As ] (Ast \ As) we have two principal cases:

Au ⊆ As: Claim: then u v s. Clearly st|Au = s|Au wherefore u is a subsemiword of s.
To see DC≤s(Au) ⊆ Au let a ai ∈ Au and bj ∈ As be given such that bj ≤s ai. Since
ai ∈ Au ⊆ As, b

j ∈ As implies i ≤ ψ(s, a), j ≤ ψ(s, b) we have from bj ≤s ai that bj ≤st ai.
Then ai ∈ Au and from DC≤st(Au) ⊆ Au it follows that bj ∈ Au and we are done for this
case.

Au 6⊆ As but Au ⊆ Ast \ As: At first we prove: As ⊆ Au(⊆ Ast). Let a ∈ As be given.
Au ∩ (Ast \As) cannot be empty since this would imply Au ⊆ As which we assume is not
the case, so there exists a b ∈ Au∩(Ast\As). As noticed at the definition of concatenation
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a ∈ As, b ∈ Ast \ As implies a ≤st b. Since also b ∈ Au we have from DC≤st(Au) ⊆ Au
that a ∈ Au.
Because As ⊆ Au and s, u are semiwords, it follows that s is a subsemiword of u, and so
s = u|As. Then we can define t′ to be the complement semiword of s w.r.t. u. Recall that
this means:

At′ := {ai−ψ(s,a) | ai ∈ Au \ As}
∀ai, bi ∈ At′ . ai ≤t′ bi iff ai+ψ(s,a) ≤u|(Au\As)2 bi+ψ(s,b)

Notice ak ∈ At′ iff ak+ψ(s,a) ∈ Au \ As. By the definition of concatenation it follows that
Ast′ = As ∪ {ak+ψ(s,a) | ak ∈ At′} = As ∪ {ak+ψ(s,a) | ak+ψ(s,a) ∈ Au \ As} = As ∪ {ai |
ai ∈ Au \ As} = As ∪ (Au \ As) = Au—the last equation is a consequence of s being a
subsemiword of u.

We now want to prove ≤u = ≤st′ , i.e., ∀ai, bj ∈ Au (= Ast′). a
i ≤u bj ⇔ ai ≤st′ bj .

⇒: Given ai, bj ∈ Au such that ai ≤u bj .
Since s is a subsemiword of u we can compare i and j with ψ(s, a) and ψ(s, b).

i ≤ ψ(s, a), j ≤ ψ(s, b): Then ai, bj ∈ As. Hence ai ≤u|As2 bj and by definition of s we
have ai ≤s bj . From the definition of concatenation we see that this implies ai ≤st′ bj .

i ≤ ψ(s, a), ψ(s, b) < j: Follows directly by the definition of concatenation.

ψ(s, a) < i, ψ(s, b) < j: Then ai, bj 6∈ As and so ai, bj ∈ Au \ As. From ai ≤u bj we then
conclude ai ≤u|(Au\As)2 bj which by the definition of ≤t′ implies ai−ψ(s,a) ≤t′ bj−ψ(s,b).
By the definition of concatenation we now get ai ≤st′ bj .

ψ(s, a) < i, j ≤ ψ(s, b): Then ai ∈ Au \As and bj ∈ As.
Now u v st implies Au ⊆ As∪(Ast\As) and since As ⊆ Au it follows that ai ∈ Au\As
implies ai ∈ Ast \ As. From u v st we also see ai ≤u bj only if ai ≤st bj . On the
other hand we noticed at the definition of concatenation that bj ∈ As, ai ∈ Ast \As
implies bj ≤st ai. Since ≤st is antisymmetric we must have ai = bj—a contradiction
to ai ∈ Au \ As and bj ∈ As, so we can rule out this case.

⇐: Given ai, bj ∈ Ast′(= Au) such that ai ≤st′ bj .
By the definition of concatenation one of the following cases must hold.

i ≤ ψ(s, a), j ≤ ψ(s, b), ai ≤s bj : Since s is a subsemiword of u this implies ai ≤u bj .
i ≤ ψ(s, a), ψ(s, b) < j: Then ai ∈ As ⊆ Au, b

j ∈ Au \ As. Similar as above we see
bj ∈ Au \ As implies bj ∈ Ast \ As, wherefore ai ≤st bj . Since ai, bj ∈ Au ⊆ Ast
we then also have ai ≤st|Au2 bj . Because u v st implies ≤u = ≤st|Au2 this means
ai ≤u bj .

ψ(s, a) < i, ψ(s, b) < j, ai−ψ(s,a) ≤t′ bj−ψ(s,b): By definition of t′ this implies:

a(i−ψ(s,a))+ψ(s,a) ≤u|(Au\As)2 b(j−ψ(s,b))+ψ(s,b)

or what is the same:
ai ≤u|(Au\As)2 bj

Obviously ≤u|(Au\As)2 ⊆ ≤u only if ai ≤u bj , so we have now proved: u = st′ for the
defined t′. Then u v st reads st′ v st which by the last proposition implies t′ v t.
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b) u v s ‖ t⇒ ∃s′ v s, t′ v t. u = s′ ‖ t′:
u v s‖ t implies u = (s‖ t)|Au which—because s and t are disjoint—equals s|Au ‖ t|Au . Let
s′ = s|Au , t′ = t|Au . We then have u = s′ ‖ t′ and s′ ‖ t′ v s ‖ t. Since As′ ⊆ As, At′ ⊆ At
and s, t are disjoint, it is trivial to see that s′ v s and t′ v t. 2

Proposition 1.3.35

a) ε, s ∈ π(s) b) π(ε) = {ε}, ∀a ∈ ∆. π(a) = {ε, a}

c) π(st) = π(s) ∪ {s}π(t) d) π(s ‖ t) = π(s) ‖ π(t)

Proof
a) Clearly, ε, s are subsemiwords of s and DC≤s(Aε) = DC≤s(∅) = ∅ = Aε so as
DC≤s(As) ⊆ As.

b) π(ε) = {ε} is evident, and from a) we have {ε, a} ⊆ π(a). Since ε, a are the only
possible subsemiwords of a it follows that π(a) ⊆ {ε, a}.
c) ⊆ follows from a) of the last proposition. {s}π(t) ⊆ π(st) follows from proposition
1.3.32.a) and π(s) ⊆ π(st) from b) of the same.

d) ⊆ follows from b) of the last proposition and ⊇ from the last corollary. 2

From c) and π(ε) = {ε} we immediately get the corollary:

Corollary 1.3.36 π(a.s) = a.π(s) ∪ {ε}

The next lemma concerned with pos will be used intensively in the proof of proposition
1.3.38 below.

Lemma 1.3.37 Let B be a subset of A and ≤ a po on A such that DC≤(B) ⊆ B.
Furthermore let Q be a relation such that either

a) Q is antisymmetric, transitive and ≤|B2 ⊆ Q ⊆ B2

or

b) Q ⊆ A× (A \B)

Define R to be ≤ ∪Q. Then R+ is a po on A and DCR+(B) ⊆ B.

Proof Notice that no matter whether a) or b) holds Q is not defined on (A \ B) × A.
Then we can prove:

b ∈ A \B, a ∈ B ⇒ ¬(b Rn a)(1.6)

by induction on n.

n = 1: Assume on the contrary b ∈ A \ B, a ∈ B and b R a. Since Q is not defined on
(A \B)× A we see that b R a implies b ≤ a—a contradiction to DC≤(B) ⊆ B.

n > 1: Again suppose on the contrary b ∈ A \ B, a ∈ B and b Rn a. Then b Rn−1 c and
c R a for some c ∈ A. Two cases:
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c ∈ B: By hypothesis of induction ¬(b Rn−1 c)—a contradiction to b Rn−1 c.

c 6∈ B: Then c ∈ A \B and by hypothesis ¬(c R a)—a contradiction.

DCR+(B) ⊆ B now directly follows from (1.6).

Since ≤ is reflexive on A2 and ≤ ⊆ R+ this must be the case for R+ too. By definition
R+ is transitive. We look at a) and b) separately when proving the antisymmetry of R+.

a) Assume ≤|B2 ⊆ Q ⊆ B2 and Q transitive, antisymmetric. At first we prove:

a, b ∈ B, a Rn b⇒ a Q b(1.7)

n = 1: Follows directly from ≤|B2 ⊆ Q.

n > 1: Then a Rn−1 c, c R b for some c ∈ A. We must have c ∈ B. Otherwise we would
have c ∈ A \B and from (1.6): ¬(c R b)—a contradiction. So c ∈ B. Then by hypothesis
a Q c, c Q b and from the transitivity of Q: a Q b.

Next we prove:
a, b ∈ A \B, a Rn b⇒ a ≤ b(1.8)

n = 1: We must have a ≤ b since Q is not defined on (A \B)2.

n > 1: Then a Rn−1 c, c R b for some c ∈ A. By (1.6) we cannot have c ∈ B, so c ∈ A\B.
By hypothesis of induction and the transitivity of ≤ we get a ≤ b.

From (1.6) – (1.8) and the antisymmetry of Q and ≤ we get:

∀a, b ∈ A. a Rn b, b Rm a⇒ a = b(1.9)

and thereby also the antisymmetry of R+.

b) Assume Q ⊆ A× (A \B). At first we prove:

a, b ∈ B, a Rn b⇒ a ≤ b(1.10)

n = 1: Follows directly since Q is not defined on B2.

n > 1: Then a Rn−1 c, c R b. By (1.6) we must have c ∈ B. (1.10) then follows by
hypothesis and transitivity of ≤.

Similar we prove:
a, b ∈ A \B, a Rn b⇒ a ≤ b(1.11)

From (1.6), (1.10), (1.11) and the antisymmetry of ≤ we get (1.9). 2

Notice that this lemma (with the b) proviso) also could have been used to prove R+ in
lemma 1.3.6 to be a po on As by letting B = DC≤s({a}).
The next proposition says that π distributes over δ and λ and “partly” over υ.

Proposition 1.3.38
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a) πδ(s) = δπ(s) b) πλ(s) = λπ(s)

c) πυ(s) ⊇ υπ(s)

Proof
a) πδ(s) ⊆ δπ(s): Let t ∈ πδ(s) be given. Then there exists a t′ ∈ δ(s) such that t v t′.
t′ ∈ δ(s) implies t′ � s. Consider u defined by u := s|At . We shall prove that u is a
semiword and t � u v s.

Since t v t′ � s implies At ⊆ At′ = As, u must be a subsemiword of s with Au = At.
In order to prove u v s we then just need to prove DC≤s(Au) ⊆ Au or what is the same
DC≤s(At) ⊆ At. Let a ∈ At and b ∈ As be given such that b ≤s a. We shall prove b ∈ At.
Since t′ � s implies ≤s ⊆ ≤t′ we have b ≤t′ a. Because t v t′ implies DC≤t′(At) ⊆ At we
get b ∈ At.
Next we prove t � u. Since At = Au we just need to prove ≤u ⊆ ≤t. Because t′ � s
implies ≤s ⊆ ≤t′ we get from At ⊆ At′ = As that ≤u = ≤s|At2 ⊆ ≤t′ |At2 . Since t v t′

gives ≤t = ≤t′ |At2 we are finished.

δπ(s) ⊆ πδ(s): Let t ∈ δπ(s) be given. I.e., there exists a t′ such that t � t′ v s. We
shall find a semiword u such that t v u � s.
Define u by Au := As and ≤u := R+, where R = (≤s ∪ ≤t).
We first want to examine if u is a semiword. Since Au = As it fulfills SW1, and because
≤s fulfills SW2, it follows that ≤u does so too provided ≤u is a po.. Now t′ v s implies
≤t′ = ≤s|At′2 and t � t′ implies At = At′ ,≤t′ ⊆ ≤t, so ≤s|At2 ⊆ ≤t and we see that a) of
lemma 1.3.37 is satisfied. Also DC≤s(At) ⊆ At because DC≤s(At′) ⊆ At′ and At = At′ .
From the lemma we can then conclude u is a semiword and DC≤u(At) ⊆ At.

Now clearly Au = As and ≤s ⊆ ≤u, so u � s.

To see t v u notice that At = At′ = As|At′ = Au|At′ = Au|At and ≤t ⊆ ≤u|At2 by definition
of ≤u.
≤u|At2 ⊆ ≤t follows from (1.7) of lemma 1.3.37. So t is a subsemiword of u and we already
know DC≤u(At) ⊆ At.

b) πλ(s) ⊆ λπ(s): Follows exactly as ⊆ of a), just notice that for the given t no t′ exists
such that t′ ≺ t.

λπ(s) ⊆ πλ(s): Here we cannot take over the corresponding proof of a) directly, since the
semiword u constructed there not necessarily belongs to λ(s). For the u of a) we know
that t v u � s. The idea is now to choose a u′ ∈ λ(u) ⊆ λ(s) and prove t v u′ � s.
But we have to be careful in choosing u′—not every u′ of λ(u) will do. On the way to
find u′ we define a v � u which will ensure that every u′ ∈ λ(v) will have t as prefix. Let
Q = {(a, b) | a ∈ At, b ∈ Au \ At}, R = ≤u ∪ Q, and define v by Av := Au,≤v := R+. In
this way every smoothing of v will have t as prefix.

Of course we shall at first prove that v is indeed a semiword.
Notice that ≤u and Q are contained in R ⊆ ≤v. Clearly SW1 and SW2 holds for v
because u ∈ SW and Av = Au,≤u ⊆ ≤v. Since t v u we have DC≤u(At) ⊆ At and by
construction Q satisfies b) of lemma 1.3.37 (with A = Au, ≤ = ≤u and B = At). Hence
we conclude that v is a semiword.
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Clearly v � u � s. By proposition 1.3.5 λ(v) 6= ∅, so chose a u′ ∈ λ(v). Then u′ � s.

To see t v u′ notice that Au′ = Au, hence At = Au|At. Clearly ≤u|At2 = ≤u′ |At2 since no
more refinements of ≤u|At2 were possible, because ≤t = ≤u|At2 and t ∈ W . That means
≤t = ≤u′ |At2 wherefore t is a subsemiword of u′, so we just need to prove DC≤u′ (At) ⊆ At.
Suppose this is not the case. Then there is some ∈ Au \ At, b ∈ At such that a ≤u′ b.
Now R+ ⊆ ≤v implies by lemma 1.3.9 that every v′ of λ(v) has R+ ⊆ ≤v′ . Especially we
have R+ ⊆ ≤u′ . Hence also Q ⊆ ≤u′ . Now a ∈ At, b ∈ Au \ At implies a Q b wherefore
a ≤u′ b. By antisymmetry of ≤u′ : a = b—which contradicts that a, b belongs to disjoint
sets.

c) υπ(s) ⊆ πυ(s): Let t ∈ υπ(s) be given. I.e., there exists t′ such that t′ v s and t′ � t.

The problem is now to find a u such that s � u and t v u. The idea is to define u such
that it is the least extension of t to the elements of As(⊇ At) such that u is a semiword.
Define u by Au := As and ≤u := R+, where R = ≤ ∪ ≤t and ≤ = {(a, b) ∈ As2 | (a, b) =
(ci, cj) for some c ∈ ∆ and i ≤ j}.
At first we want to show that u is a semiword.
Since Au = As and s ∈ SW we have Au fulfills SW1. Notice that ≤ is the least po on
Au which satisfies SW2. Because ≤ ⊆ R+ we see that R+ fulfills SW2 if R+ is a po.
Since ≤s satisfies SW2 and ≤ is the least po that does so we have ≤ ⊆ ≤s. Then we see
DC≤(At) ⊆ At because DC≤s(At′) ⊆ At′ , At = At′ . Also ≤|At2 is the least po on At which
satisfies SW2, so ≤|At2 ⊆ ≤t and a) of lemma 1.3.37 is satisfied (with A = As, Q = ≤t
and B = At). Hence we conclude that u is a semiword and DC≤u(At) ⊆ At.

Since ≤ ⊆ ≤s and ≤t ⊆ ≤t′ = ≤s |At′2 ⊆ ≤s it follows that ≤u ⊆ ≤s wherefore s � u.

To see t v u, at first notice At = At′ = As|At′ = Au|At′ = Au|At . ≤t ⊆ ≤u|At2 by definition
of ≤u. And from (1.7) of lemma 1.3.37 ≤u |At2 ⊆ ≤t follows. So t is a subsemiword of u
and we already know DC≤u(At) ⊆ At. 2

It is easy to see that πυ(s) 6⊆ υπ(s). Take for instance the semiword s = a - b. Then for

t′ =
a
b

we have t′ ∈ υ(s) and t = b ∈ π(t′). Hence t ∈ πυ(s). If t should belong to υπ(s)

there should be an s′ such that s′ � t and s′ v s. Now s′ � t implies As′ = {b1}. But
there is no prefix s′ of s with As′ = {b1} because a1 ∈ DC≤s(b

1) and therefore also should
be included in As′.

By χ it even gets worse. In general we have neither πχS ⊆ χπS nor χπS ⊆ πχS. The

latter can be seen by the example S =

{
a - b - c
d

,
a - b
c

}
, a��1 b

PPq c
∈ χπS and the former

by S =

{
a - b - c,

a - b
c

}
, a - c ∈ πχS.

In the next propositions the interrelation between the connected components of semiwords
which are in �.

Proposition 1.3.39 s � t⇒ ∀u ∈ γ(s)∃D ⊆ γ(t). u � ‖D.

Proof Induction on the number of connected components of s.
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|γ(s)| = 1: Then s = ε and therefore also t = ε. Chose D = {ε} = γ(t).

|γ(s)| > 1: Then there is an s′ ∈ γ(s). s′ 6= ε, and we can write s = s′ ‖ s′′, where
s′′ = ‖γ(s) \ {s′}. By proposition 1.3.17 we have s = s′ ‖ s′′ � t implies ∃s′ � t′, s′′ �
t′′. t = t′ ‖ t′′. From proposition 1.2.13.a) we see γ(t) = γ(t′) ∪ γ(t′′). Hence for s′ we can
chose D = γ(t′) ⊆ γ(t) and get s′ � t′ = ‖ γ(t′) = ‖D. This settles the case if u = s′.

So it remains to prove ∀u ∈ γ(s)\{s′}∃D ⊆ γ(t).u � ‖D. s′ ∈ γ(s) implies γ(s′) = {ε, s′},
so from s′ 6= ε and proposition 1.2.13.a) we get γ(s)\{s′} = γ(s′‖s′′)\{s′} = ((γ(s′)\{ε}]
γ(s′′)\{ε})∪{ε})\{s′} = (({s′}]γ(s′′)\{ε})\{s′})∪{ε} = (γ(s′′)\{ε})∪{ε} = γ(s′′). Since
t = t′‖t′′ only if γ(t′′) ⊆ γ(t) it follows that it is enough to prove ∀u ∈ γ(s′′)∃D ⊆ γ(t′′).u �
‖D. We have s′′ � t′′, so we get the wanted directly by hypothesis of induction if we can
prove |γ(s′′)| < |γ(s)|. Now proposition 1.2.13 gives |γ(s)\{ε}| = |γ(s′)\{ε}|+|γ(s′′)\{ε}|
so |γ(s′′)\{ε}| = |γ(s)\{ε}|− |γ(s′)\{ε}| = (since γ(s′) = {ε, s′}, s′ 6= ε) |γ(s)\{ε}|−1.
Because in general ε ∈ γ(v) for arbitrary v we have |γ(s′′)| = |γ(s)| − 1 < |γ(s)|. 2

In general γ(s) 6= ∅ wherefore we also have s � t⇒ ∃u ∈ γ(s)∃D ⊆ γ(t). u � ‖D.

If D is a set of semiwords we let AD denote ∪s∈DAs in the following proposition and it’s
proof.

Proposition 1.3.40 Given s, t such that As = At and for each s′ ∈ γ(s) a Ds′ ⊆ γ(t)
with As′ = ADs′ . Then:

γ(t) =
⋃

s′∈γ(s)
Ds′

Proof Let D denote ∪s′∈γ(s)Ds′. Because each Ds′ ⊆ γ(t) we clearly have D ⊆ γ(t).
To see D ⊇ γ(t) assume on the contrary that there exists a t′ ∈ γ(t) such that t′ 6∈ D.
At first notice t′ ∈ γ(t) implies At′ ⊆ At.
Next we prove t′ 6= ε. Because ε ∈ γ(s) we have a Dε ⊆ γ(t) with Aε = ∅ = ADε. Since
u = ε is the only semiword with Au = ∅ we must have Dε = {ε}. Hence ε ∈ D and from
t′ 6∈ D we then see t′ 6= ε.
Because D ⊆ γ(t) and γ(t) consists of disjoint semiwords t′ ∈ γ(t) \ D must imply
At′ ∩ At′′ 6= ∅ for every t′′ ∈ D. From t 6= ε and thereby At′ 6= ∅ we then conclude
At′ 6⊆ AD But this implies At′ 6⊆ AD =

⋃
s′∈γ(s)ADs′ =

⋃
s′∈γ(s)As′ = As = At which

contradicts At′ ⊆ At. 2

Because s � t only if As = At we have the following.

Corollary 1.3.41 Given s, t such that s � t and for each s′ ∈ γ(s) a Ds′ ⊆ γ(t) with
s′ � ‖Ds′. Then:

γ(t) =
⋃

s′∈γ(s)
Ds′

Proposition 1.3.42 a.s � t, |γ(t)| > 3 implies ∃u. a.s ≺ u ≺ t
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Proof Since t is finite and thereby |γ(t)| too we will by repeated use of proposition
1.3.30 find a t1 ∈ γ(t) such that a.t′1 � t1, s � t′1 ‖ (‖ γ(t) \ {t1}) for some t′1. Because
t1 ∈ γ(t) and |γ(t)| > 3 we can write ‖γ(t) \ {t1} as t2 ‖ t3 for some t2, t3 6= ε. So we have
a.s � t1 ‖ t2 ‖ t3, a.t′1 � t1, s � t′1 ‖ t2 ‖ t3.
Now chose u = a.(t′1 ‖ t2) ‖ t3.
From proposition 1.3.29.a) we have a.((t′1‖t2)‖t3) � a.(t′1‖t2)‖t3 = u. Since t3 6= ε we have
γ(a.t′1 ‖ t2 ‖ t3) 6= γ(u), so a.(t′1 ‖ t2 ‖ t3) ≺ u. From s � t′1 ‖ t2 ‖ t3 we see a.s � a.(t′1 ‖ t2 ‖ t3).
Hence a.s ≺ u. Again from proposition 1.3.29 we get a.(t′1 ‖ t2) � a.t′1 ‖ t2 and thereby
u = a.(t′1 ‖ t2) ‖ t3 � (a.t′1 ‖ t2) ‖ t3. As t2, t3 6= ε we conclude u ≺ a.t′1 ‖ t2 ‖ t3. Now
a.t′1 � t1 implies a.t′1 ‖ t2 ‖ t3 � t1 ‖ t2 ‖ t3 = t, so also u ≺ t. 2

The definition of the relation <· for a po (A,≤) is:

∀a, b ∈ A. a <· b iff a < b and 6 ∃c ∈ A. a < c < b

That is a <· b means a is an immediate predecessor of b in the relation <. The <· might be
empty some pos though ≤ is not, but for � on SW we in fact have ≺·+ = ≺ and ≺·∗ = �.
This is seen as follows. Let s ≺ t. This means As = At and s ∈ δ(t), t ∈ υ(s). So every
semiword u of a ≺-path from s ≺ t must be in δ(t) ∩ υ(s). As noticed earlier δ and υ
are in general finite, so all such path’s are finite as well wherefore there exists 0 ≤ n, and
some ui, i ∈ n such that s ≺· u1 ≺· u2 . . . ≺· un ≺· t. Clearly then ≺·+ = ≺ and ≺·∗ = �
The lately proved properties allows us to show a implication of s ≺· t.

Proposition 1.3.43 s ≺· t implies ∃s′ ∈ γ(s)\{ε}∃D ⊆ γ(t). γ(s)\{s′} = γ(t)\D, s′ ≺·
‖D.

Proof Clearly the proof must find an s′ ∈ γ(s) \ {ε} such that

∃Ds′ ⊆ γ(t). s′ ≺ ‖Ds′(1.12)

Notice that there is no t with ε ≺ t. For the same reason (1.12) cannot hold for s′ = ε
neither.

At first we prove that there is at most one s′ ∈ γ(s) \ {ε} such that (1.12) holds.
Assume on the contrary that there are (at least) two different nonempty connected com-
ponents of s for which (1.12) holds. I.e., assume ∃s′, s′′ ∈ γ(s) \ {ε}∃Ds′, Ds′′ ⊆ γ(t). s′ 6=
s′′, s′ ≺ ‖Ds′ , s

′′ ≺ ‖Ds′′.
By proposition 1.3.39 we find a Du ⊆ γ(t). u � ‖Du for every u ∈ γ(s). Let v = ‖{u | u ∈
γ(s)\{s′, s′′}} = ‖ γ(s)\{s′, s′′} and v′ = ‖{Du | u ∈ γ(s)\{s′, s′′}}. Clearly s = s′‖s′′‖v
and v � v′ so by corollary 1.3.41 we have Ds′ ∪ Ds′′ ∪ {Du | u ∈ γ(s) \ {s′, s′′}} = γ(t)
and thereby (‖Ds′) ‖ (‖Ds′′) ‖ v′ = t. From s′ ≺ ‖Ds′, s

′′ ≺ ‖Ds′′ and v � v′ we now
get s = s′ ‖ s′′ ‖ v ≺ (‖Ds′) ‖ s′′ ‖ v ≺ (‖Ds′) ‖ (‖Ds′′) ‖ v � (‖Ds′) ‖ (‖Ds′′) ‖ v′ = t—a
contradiction to s ≺· t.
Next we prove that there is at least one s′ ∈ γ(s) \ {ε} such that (1.12) holds.
Assume on the contrary there is no such s′. As noticed (1.12) does not hold for s′ = ε, so
we can in fact assume (1.12) not to hold for s′ ∈ γ(s).
From proposition 1.3.39 we see ∀s′ ∈ γ(s)∃Ds′ . s

′ � ‖Ds′. Since there by assumption
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is no s′ ∈ γ(s) such that (1.12) holds this implies ∀s′ ∈ γ(s). s′ = ‖Ds′. This has as
consequence γ(s′) = Ds′ and As′ = ADs′ for all s′ ∈ γ(s). Then by proposition 1.3.40 we
have γ(t) =

⋃
s′∈γ(s)Ds′ from which we get: γ(t) =

⋃
s′∈γ(s)Ds′ =

⋃
s′∈γ(s) γ(s′) = γ(s), so

s = t which contradicts s ≺· t.
Now let s′ ∈ γ(s) \ {ε} be the only one for which (1.12) holds and Ds′ the corresponding
subset of γ(t).
We know s′ 6= ε, so we might define D = Ds′ \ {ε} and still have D 6= ∅, s′ ≺ ‖D. Using
proposition 1.3.39 again we have ∀u ∈ γ(s)∃Du ⊆ γ(t). u � ‖Du. Since s′ is the only
semiword of γ(s) with s′ ≺ ‖D we have u = ‖Du for u ∈ γ(s) \ {s′}. From proposition
1.3.40 we now get γ(t) = D ∪ ⋃

u∈γ(s)\{s′}Du. D is disjoint to ∪u∈γ(s)\{s′}Du. If not then
we have a v ∈ D ∩ Du for some v ∈ γ(s) \ {s′}. Because ε 6∈ D we have v 6= ε. This
together with v ∈ D∩Du implies AD ∩ADu 6= ∅. Since AD = As′ and Au = ADu this also
means As′ ∩ Au 6= ∅ which contradicts u, s′ ∈ γ(s) \ {ε} and γ(s) consisting of disjoint
semiwords. Hence γ(t) = D ] ∪u∈γ(s)\{ε}Du. So γ(t) \ D =

⋃
u∈γ(s)\{s′}Du = (because

u = ‖Du) ∪u∈γ(s)\{s′}γ(u) = (because s′ 6= ε) γ(s) \ {s′}.
The conclusion of the first three steps of the proof is now:
s ≺· t implies ∃s′ ∈ γ(s) \ {ε}∃D ⊆ γ(t). γ(s) \ {s′} = γ(t) \D, s′ ≺ ‖D, so the final step
is to prove s′ ≺· ‖D.
Assume on the contrary that there exists a u with s′ ≺ u ≺ ‖D. Then s = s′ ‖ (‖ γ(s) \
{s′}) ≺ u ‖ (‖ γ(s) \ {s′}) ≺ (‖D) ‖ (‖ γ(s) \ {s′}) = (‖D) ‖ (‖ γ(t) \D) = ‖ γ(t) = t—a
contradiction to s ≺· t! 2
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Chapter 2

Tree Semiwords: TSW

2.0 Preliminaries

We are now going to define a particular subclass of semiwords called tree semiwords which
can be seen as reflecting non-synchronized behaviour.

Definition 2.0.1 A poset t of ∆× IN+ is a tree-semiword iff t fulfills SW1, SW2 and:

T : ∀a, b, c ∈ At. a ≤t c, b ≤t c⇒ a ≤t b ∨ b ≤t a
The class of tree-semiwords over ∆ is denoted TSW (∆) (TSW for short). 2

Corollary 2.0.2 W ⊆ TSW ⊆ SW

Technically it is convenient to introduce the notion of a rooted tree-semiword.

Definition 2.0.3 r is a rooted tree-semiword iff r is a tree-semiword and:

RT : ∃a ∈ Ar ∀b ∈ Ar. a ≤r b
The class of rooted tree-semiwords over ∆ is denoted RTSW (∆) (RTSW for short). 2

Corollary 2.0.4 W \ {ε} ⊆ RTSW ⊆ TSW .

It would be nice if we could carry over all the definitions and results of semiwords to the
subclass of tree-semiwords. Unfortunately, this cannot be done entirely, the main reason
being that though a construction from some tree-semiwords yields a semiword, it is not
ensured to be a tree-semiword. The most conspicuous example is that the concatenation
of two tree-semiwords does not necessarily give a tree-semiword.

Therefore, we will briefly repeat the definitions and results of the previous chapter, mak-
ing a few changes and necessary additions. Whenever a result or definition of this chapter
is referred (as e.g., corollary 1.2.14) later on and it is not stated here explicit it is be-
cause it carry over directly from chapter 1 (of course with SW changed to TSW ). To
emphasize that it is a tree-semiword version the reference will be subscribed with a T
like: propositionT .
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2.1 Basic Definitions

The definition of restriction, subsemiword and complement semiword of semiwords can
directly be carried over to tree-semiwords.

Proposition 1.1.4 now says that s|A2 and the complement semiword are tree-semiwords (if
A ⊆ As and A fulfill SW1).

Proof From the corresponding semiword proof we know they are semiwords, so we only
have to show that they have the T -property:

At first notice that in general for a poset (A,≤) having the T -property, any poset (B,≤|B2)
where B ⊆ A, has the T -property too. From the corresponding semiword proof we already
know that s|A is a semiword, and since it is a restriction of a tree-semiword s we know
that ≤s|A2 fulfills T and we are done with a).

For b) we also know that t is a semiword. But ≤t is just ≤u|(At\As)2 shifted left according
to s so ≤t must fulfill T too. 2

Also the definition of connected components of a semiword and the belonging results can
be carried over. Since we already know that a connected component is a subsemiword, we
only have to observe that it is a restriction, hence having the T -property too, wherefore
it is a tree-semiword.

Having the notion of rooted tree-semiwords we can get a finer view of tree-semiwords. We
extend corollary 1.1.8 with:

f) A nonempty connected component (of a tree-semiword) is a rooted tree-semiword.

This is perhaps not totally obvious, so we prove it:

Proof Let s be a connected component of a tree-semiword. We already know that it is a
tree-semiword so we shall prove that ≤s have the RT -property. Define R := (≤s ∪≤s−1).
That s is connected means ∀b, c ∈ As. b R+ c.

To continue we need an intermediate result:

b R+ c⇒ ∃a(∈ As). a ≤s b, a ≤s c(2.1)

We prove this by proving b Rn c⇒ ∃a. a ≤s b, a ≤s c by induction on n.

n = 1: I.e., b R c. This means either b ≤s c or c ≤s b. Let a equal b in the former case
and c in the latter.

n > 1: Then there exists a d such that b R d Rn−1 c. Using the hypothesis of induction
on d Rn−1 c we find a′(∈ As) such that a′ ≤s d, a′ ≤s c. We now look at the possibilities
of b R d.

b ≤s d: Since s ∈ TSW we have a′ ≤s d, b ≤s d ⇒ a′ ≤s b ∨ b ≤s a′. In the latter case
choose a = b and in the former a = a′. By reflexivity and transitivity of ≤s we are
then done.
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d ≤s b: Then let a = a′. We then have a ≤s c and by transitivity of ≤s also a ≤s b.
The next is:

∃a ∈ As ∀b ∈ B. a ≤s b if ∅ 6= B ⊆ As

We prove it by induction on the size of B. Since B 6= ∅ the induction basis must be:

|B| = 1: Then B = {b} for some b ∈ As. By reflexivity of ≤s we have b ≤s b. Choose
a = b. Because B ⊆ As we are done.

|B| > 1: Pick out some b ∈ B. Use the inductive hypothesis on B \ {b} to find a c ∈ As
such that ∀d ∈ B \ {b}. c ≤s d. Because s is connected b R+ c. Then by (2.1) there
exists an a ∈ As. a ≤s b, a ≤s c. By transitivity of ≤s: ∀d ∈ B \ {b}. a ≤s d. Hence also
∀b ∈ B. a ≤s b.
With the last result b) now follows directly by noticing that s nonempty implies As 6= ∅
and that As is a subset of itself. 2

2.2 Operations on TSW

Nullary

We have already noticed that W ⊆ TSW , so especially ε, a ∈ TSW .

Binary

We have already noticed that concatenation does not carry over as it is.

In fact we have:
∀s ∈ SW \W ∀t ∈ SW. t 6= ε⇒ st 6∈ TSW

Proof s ∈ SW \W implies that there exist a, b ∈ As such that a 6≤s b, b 6≤s a. Since
t 6= ε there exists a ci ∈ At. Then d = cψ(s,c)+i ∈ Ast \ As. As noticed by definition
1.2.4 we have a ≤st d, b ≤st d. Since ≤s and ≤st agree on As, a 6≤s b, b 6≤s a implies
a 6≤st b, b 6≤st a. Hence st is not a tree-semiword. 2

As a consequence of this we must restrict the domain of concatenation from TSW×TSW
to W × TSW .

The properties carry over. The only one we will dwell on is that st in fact is a tree-
semiword when s ∈ W . In order not to write s ∈ W whenever we consider st for
s, t ∈ TSW we take it as a convention from now on.

st is a tree-semiword:

Proof We already know that st is a semiword, so we shall convince ourselves that
∀a, b, c ∈ Ast. a ≤st c, b ≤st c ⇒ a ≤st b ∨ b ≤st a (T -property). Let us consider the
membership of c.
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c ∈ As: Then of course a, b ∈ As and the result follows because s and st agree on As.

c 6∈ As: I.e., c ∈ Ast \ As. If both a, b ∈ As then a ≤s b or b ≤s a because s ∈ W ,
hence a ≤st b or b ≤st a. If both a, b ∈ Ast \ As we get the result from t being a
tree-semiword and the correspondence between ≤st and ≤t. If a ∈ As, b ∈ Ast \ As
we already know a ≤st b. Similarly if a ∈ Ast \ As, b ∈ As.

So st is indeed a tree-semiword. 2

Whereas we had to restrict the definition of concatenation in order to get the tree-
semiwords as results this is not the case for parallel composition. The definition and
the results can be carried over.

We conclude this section by a proposition which bring light to the connection between
TSW (/RTSW ) and its operators.

Proposition 2.2.15

a) ∀s ∈ SW. s ∈ RTSW iff ∃a ∈ ∆, ∃t ∈ TSW. s = a.t

b) Every t ∈ TSW can be generated from ε, ‖ and a. (a ∈ ∆)

Proof
a) if : We already have that a.t ∈ TSW and in general ∀a ∈ As ∀b ∈ Ast \ As. a ≤st b, so
especially for a1 ∈ Aa ⊆ Aa.t we have ∀b ∈ Aa.t \ Aa. a1 ≤a.t b. Hence ≤a.t fulfills RT and
a.t ∈ RTSW .

only if : Given s ∈ RTSW . By definition there exists an a ∈ As such that ∀b ∈ As.a ≤s b.
Clearly a must have rank 1, so {a1} fulfills SW1. Then a = s|{a1} is a subtree-semiword
of s. Let t be the complement tree-semiword of a w.r.t. s. So we have t ∈ TSW . What
remains to prove is that s = a.t. Clearly As = Aa.t. ≤s = ≤a.t is seen by noticing
bj 6= a1 ⇔ bj ∈ As \ {a1} ⇔ ψ(a, b) < j and looking at the definition of concatenation
and complement tree-semiword.

b) Follows by induction, directly from t = ε ‖ (‖ γ(t) \ {ε}), proposition 1.2.13, corollary
1.1.8 and a) above. 2

2.3 Partial Orders on TSW

2.3.1 Smoother Than

The definition of smoother than and linearization carries over. However it is worth re-
marking that the �-downwards closure of a tree-semiword t within SW is not contained
in TSW . E.g., with

t =
c - b
a

∈ TSW and s =
c
a

PPq
��1 b ∈ SW(2.2)

we have s � t in SW but s 6∈ TSW .
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So it is clear that some care must be taken when using � on TSW , especially when
constructing a new (tree-)semiword which is claimed to be smoother than another tree-
semiword.

We will now pick out the cases where the difference is significant. One of the most
conspicuous cases is in fact the first lemma:

Lemma 2.3.6 ∀s ∈ TSW ∀a, b ∈ As. (a 6≤s b, b 6≤s a⇒ ∃t ∈ TSW. t ≺ s, a ≤t b)

Proof Whereas we before just added (a, b) to ≤s taking the transitive closure we cannot
do this any longer, as can be seen from the example above. In general there there can
be more least refinements of ≤s containing (a, b). E.g., in (2.2) above a - c - b and
c - a - b are two such least refinements of ≤s. So we can just as well choose in what way
to refine ≤s. By the new idea (a, b) still is added to ≤s but not necessarily directly. We
consider two cases.

a, b in As are not connected:
By corollary 1.1.8.f) the connected component which b belongs to is a rooted tree-
semiword. So let d denote the root and we have d ≤s b. Now define At = As,≤t = Q+,
where Q = (≤s ∪ {(a, d)}). Clearly a ≤t b and ≤s ⊂ ≤t. As in the proof for semiwords
we see that At fulfills SW1, ≤t fulfills SW2 and is transitive so as reflexive. Now for the
antisymmetry:
We shall show f Q+ g, g Q+ f ⇒ f = g.
Since a, d belongs to two different connected components of s we cannot have a ≤s d or
d ≤s a. Hence f Qn g implies f ≤s g or f ≤s(a, d)≤s g. Similar for g Qn f . So there
are four cases to consider. If f ≤s g, g ≤s f we get f = g from the antisymmetry of ≤s.
The remaining cases can be excluded since they all implies d ≤s a which as noticed is
impossible.
It remains to show the T -property of ≤t. Suppose f Q+ h, g Q+ h. We shall show f Q+ g
or g Q+ f . Again there are four cases:

f ≤s h, g ≤s h: Follows form ≤s having the property.

f ≤s h, g ≤s(a, d)≤s h: Then f ≤s d or d ≤s f . In the former case we must have f = d
by the way d is chosen. But then g ≤s(a, d) f i.e., g Q+ f . In the latter case
g ≤s(a, d)≤s f .

f ≤s(a, d)≤s h, g ≤s h: Symmetric.

f ≤s(a, d)≤s h, g ≤s(a, d)≤s h: Then f ≤s a, g ≤s a and the result follows.

Now suppose a, b are connected.
I.e., a R+ b, where R = (≤s∪≤s−1). By corollary 1.1.8.f) this component a and b belongs
to is a rooted tree-semiword so there exists a c′ ∈ As such that c′ ≤s a, c′ ≤s b. Let c
be the element of As such that c′ ≤s c, c ≤s a, c ≤s b and there is no c′′ with c <s c

′′

such that c′′ ≤s a, c′′ ≤s b, i.e., c is the greatest lower bound of a, b w.r.t. ≤s (exists since
DC≤s(s) and DC≤s(b) are finite). Since we are dealing with trees, the paths leading from
c to a and b must be unique. Let d denote the first element after c on the path to b. The
situation is as illustrated:

· · · c��1 · · · ·a
PPq d · · · b
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We are now ready to define t:

At = As and ≤t = Q+, where Q = ≤s ∪ {(a, d)}. By construction we immediately have
a ≤t b and ≤s ⊂ ≤t. As above we immediate see all the propertys of t in order to be a
semiword except for antisymmetry. To see this we first need some intermediate results.

f Q+ a ⇒ f ≤s a: Suppose f 6≤s a. Then it must be possible to write the path of Q
establishing f Q+ a as: f Qn(a, d)≤s a. This means d ≤s a. By the way d is chosen we
also have d ≤s b. But this contradicts the way c is chosen.

d Q+ g ⇒ d ≤s g: Similarly we see that d ≤s(a, d)Qm g, and the contradiction is obtained
in the same way.

Now if f 6≤s g and f Q+ g then f Qn a and d Qm g. From the above we see that
this implies f ≤s a and d ≤s g. The antisymmetry can now be seen as in the proof for
semiwords.

What remains to prove is that ≤t fulfills T . Assume f Q+ h and g Q+ h. We shall prove
either f Q+ g or g Q+ f .

f ≤s h, g ≤s h: Then we get it from ≤s having the property.

f 6≤s h, g 6≤s h: Here we by definition know that f ≤s a and g ≤s a, so the T -property
follows again.

f ≤s h, g 6≤s h: Then we have g ≤s a, d ≤s h. From the former case we conclude d ≤s f
or f ≤s d. If d ≤s f we have g ≤s(a, d)≤s f i.e., g Q+ f . For f <s d notice that
any path of ≤s from f to d must go through c since c is the immediate predecessor
of d, so f ≤s c (may be f = c). By the way c is chosen c ≤s a, so f ≤s a. From this
and g ≤s a we conclude f ≤s g or g ≤s f . If f = d clearly g ≤s(a, d) f or equally
g Q+ f .

f 6≤s h, g ≤s h: Is handled symmetrically.

2

The next lemmas and corollaries carry over directly, so proposition 1.3.5 also holds for
tree-semiwords.

The propositions concerning concatenation have to be modified a little. If we take over
the formulation s � t ⇔ sr � tr ⇔ rs � rt in proposition 1.3.10, it is trivial because it
only is defined when s, t ∈W . Instead we have the proposition.

Proposition 2.3.10 a) s � t⇔ rs � rt

The a) part of the next corollary can be left out since it is just a) of the proposition,
because s1 � t1 and s1, t1 ∈ w implies s1 = t1. From this we also get that the next
proposition is formulated:

Proposition 2.3.12 u � st⇒ ∃t′ � t. u := st′

The proof can be carried over with the addition s′ � s ∈W implies s′ = s.
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Proposition 2.3.13

a) u ∈ λ(st)⇔ ∃t′ ∈ λ(t). u = st′

b) u ∈ λ(s ‖ t)⇔ ∃s′ ∈ λ(s) ∃t′ ∈ λ(t). u � s′ ‖ t′, 6 ∃u′. u′ ≺ u

Proof

a) The proof of semiwords can be used directly because it only uses previous results
which we know hold for tree-semiwords.

b) Also this proof can be carried over.

2

Since s ∈ W implies δ(s) = {s}, c) of proposition 1.3.15 can be read δ(st) = sδ(t). The
proofs are identical.

We now turn to the �-upwards closure υ. proposition 1.3.17 is the same. c) in the next
proposition does not carry over because υ(s)υ(t) is not defined for all s ∈ W . Instead it
should be

Proposition 2.3.18 c) {s}υ(t) ⊆ υ(st).

Proof The same. 2

The corollary reads υ(st) = υ({s}υ(t)), but for s = a we do have υ(a.t) = υ(υ(a)υ(t))!

The definition of χ and the associated results carry over smoothly.

2.3.2 Prefix of

The definition of prefix can be used directly, so as e.g., the proof that v is a po an TSW .

The propositions concerning v/π alone and the proofs of these all carry over because when
constructing new semiwords these are either subsemiwords or complement semiwords and
we know that if these constructions derive from tree-semiwords, we will also have subtree-
semiwords or complement tree-semiwords respectively. Remember that when we write
u v st⇒ u v s or ∃t′ v t. u = st′ in proposition 1.3.34 we still presume s to be a word .

The matter is rather different when it comes to the relations between λ, δ, υ and π, i.e.,
proposition 1.3.38. In the proofs, semiwords are constructed where it is not obvious that
the constructions yield tree-semiwords when they are constructed from such.

Proof The only proof which we can take over directly is πλ(s) = λπ(s) because λ(s) ⊆W
and s ∈ W, t v s implies t ∈ W , such that the constructions yield tree-semiwords when
s ∈ TSW . We now look at the other proofs one by one.
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πδ(s) ⊆ δπ(s): The constructed u is to be a subsemiword of s. Since s ∈ TSW we know
that u ∈ TSW and the proof can be reused directly.

It is not easy to see that the constructed u in the proof of the other inclusion is a subtree-
semiword, but it will turn out that it in fact is a tree-semiword which we will now prove.

δπ(s) ⊆ πδ(s): With t � t′ v s, Au = As and ≤u = R+, where R = ≤s ∪ ≤t and under
the assumption t, s ∈ TSW . It is already proved to be a semiword so what remains is to
prove a R+ c, b R+ c⇒ a R+ b or b R+ a (T -property). We will prove this by proving:

a Rn c, b Rm c⇒ l < n+m and (a Rl b or b Rl a)

by induction on n +m.

n+m = 2: Then a R c, b R c. Look at the different possibilities.

a ≤s c, b ≤s c: Since s ∈ TSW we have a ≤s b or b ≤s a, hence also a R b or b R a.

a ≤t c, b ≤t c: Similar.

a ≤s c, b ≤t c: Since ≤t only is defined on At ⊆ As we conclude c ∈ At for b ≤t c.
From t � t′ we get At = At′ , hence c ∈ At′ t′ v s gives us that DC≤s(c) ⊆ At′ ,
so a ∈ At′ = At and a ≤t′ c by definition of v. Again from t � t′ we see
≤t′ ⊆ ≤t and therefore a ≤t c. The result now follows from the case above.

a ≤t c, b ≤s c: Symmetric.

n+m > 2: Then either n ≥ 2 or m ≥ 2. W.l.o.g. assume n ≥ 2. This implies that there
exists d such that a R d, d Rn−1 c. Using the hypothesis on d Rn−1 c, b Rm c we get
(d Rl′ b or b Rl′ d) and l′ < n +m− 1. We look at the two cases:

d Rl′ b: Then from a R d we get a Rl b, where l = l′ + 1 < n +m− 1 + 1 = n+m.

b Rl′ d: We have a R d, and since l′ + 1 < m + n we can use the hypothesis of
induction on this to obtain a Rl or b Rl a, where l < l′ + 1 < m+ n.

υπ(s) ⊆ πυ(s): The situation is that for a given t ∈ υπ(s) where s, t ∈ TSW a semiword u
with s � u and t v u is defined by u = (As, (≤∪≤t)+), where ≤ = {(a, b) ∈ As2 | (a, b) =
(ci, cj) for some c ∈ ∆ and i ≤ j}. So it just remains to prove u has the T -property in
order to get u ∈ TSW . Let a, b, c be given such that a ≤u c and b ≤u c. We shall prove
a ≤u b or b ≤u a. We consider two main cases:

c ∈ At: Clearly a ≤u c and b ≤u c then implies a ≤t c and b ≤t c. Since t ∈ TSW it
follows that a ≤t b or b ≤t a and so a ≤u b or b ≤u a.

c 6∈ At: There are actually four subcases:

a, b 6∈ At: Then a, b, c must be equal labelled and so are ordered by definition of ≤u.
a ∈ At, b 6∈ At: By a ≤u c and construction of ≤u from ≤ it then follows that there

is an element c′ labelled like c with a ≤t c′ ≤ c. From b 6∈ At and b ≤u c follows
c′ ≤ b ≤ c so a ≤u b.

a 6∈ At, b ∈ At: Symmetricly as in the last case we here see b ≤u a.
a, b ∈ At: As above we see there are elements c′ and c′′ of At labelled like c such

that a ≤t c and b ≤t c′′. Since c′ and c′′ are equally labelled either c′ ≤t c′′ or
c′′ ≤t c′. W.l.o.g. assume the former. Then a ≤t c′′ and b ≤t c′′ and the result
follows from t ∈ TSW .
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The remaining of chapter 1 carries over. Now to a proposition special for tree-semiwords.

Proposition 2.3.44 s ≺· t implies ∃u ∈ γ(s), D ⊆ γ(t). γ(s) \ {u} = γ(t) \ D and for
some a, b ∈ Act, s′, s′′, t′ ∈ TSW either

a) u = a.(s′ ‖ b.s′′), D = {a.s′, b.s′′}
or

b) u = a.s′, D = {a.t′}, s′ ≺· t′

Proof We already have s ≺· t⇒ ∃u ∈ γ(s)\{ε}, D ⊆ γ(t).γ(s)\{u} = γ(t)\D, u ≺· ‖D
from proposition 1.3.43, so it is enough to prove u ≺· ‖D and u ∈ γ(s) \ {ε} implies a) or
b).
Now since u is a nonempty connected component of s it is (by corollary 1.1.8.f) a rooted
tree-semiword. Hence u = a.u′ for some u′ ∈ TSW . Since u 6= ε, ε ∈ γ(s) and γ(s)\{u} =
γ(t) \ D we have ε 6∈ D, so γ(‖D) = D ] {ε}. Then by proposition 1.3.42 we see
a.u′ ≺· ‖D implies |D| ≤ 2. Since ε 6∈ D, D must consist of nonempty connected
components. By corollary 1.1.8.f) then D = {c.s′, b.s′′} or D = {c.t′} for some b, c ∈ Act,
s′, s′′, t′ ∈ TSW .

D = {c.t′}: Then u ≺· ‖D reads a.u′ ≺· c.t′. Clearly then a = c and u′ ≺· t′. Chose
s′ = u′.

D = {c.s′, b.s′′}: By proposition 1.3.30 we get w.l.o.g.: a.u′ ≺· c.s′ ‖ b.s′′ ⇒ ∃v. a.v �
c.s′, u′ � v ‖ b.s′′, (a1 6∈ Ab.s′′). We examine the cases of �.

a.v = c.s′, u′ = v ‖ b.s′′: Then a = c, v = s, u′ = s′ ‖ b.s′ and D = {a.s′, b.s′′}.
a.v ≺ c.s′, u′ = v ‖ b.s′′: a.v ≺ c.s′ ⇒ a = c, v ≺ s′. By proposition 1.3.29.a) we see

a.u′ = a.(v‖b.s′′) ≺ a.v‖b.s′′ since |γ(a.u′)| = 2, |γ(a.v‖b.s′′)| = 3⇒ γ(a.u′) 6=
γ(a.v ‖ b.s′′) ⇒ a.u′ 6= a.v ‖ b.s′′. Now v ≺ s′ implies a.v ‖ b.s′′ ≺ a.s′ ‖ b.s′′ =
c.s′ ‖ b.s′′ = ‖D, so a.u ≺ a.v ‖ b.s′′ ≺ ‖D which contradicts u = a.u′ ≺· ‖D
wherefore this case can be ruled out.

a.v = c.s′, u′ ≺ v ‖ b.s′′: Then a.u′ ≺ a.(v ‖ b.s′′) ≺ a.v ‖ b.s′′ = c.s′ ‖ b.s′′ = ‖D. A
contradiction.

a.v ≺ c.s′, u′ ≺ v ‖ b.s′′: As the previous case.

2
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Chapter 3

Semantics for a Simple Process
Language: PL

In this chapter we shall give three different semantics to a simple process language, PL, for
describing finite nondeterministic processes which in turn is a restricted subset of the basic
language, BL, obtained as the term algebra for the signature Σ—essentially the operators
(symbols) from the chapters with semiwords/ tree-semiwords. The restriction will be that
processes only can be parallel composed when they have no action symbols in common.
This restriction is mainly technical motivated, but can also be seen as reflecting the idea
that an atomic action cannot be duplicated (however it may reinitiated). The restriction
allows us to define the different interpretations of parallel composition of processes on the
basis of the corresponding partial defined parallel composition of tree-semiwords.

3.1 Denotational Semantics

The concrete signature, Σ, from which BL is derived as the term algebra is:

Definition 3.1.1 Σ is defined by:

Σ0 = {NIL}
Σ1 = {a.} where a ∈ Act
Σ2 = {+, ‖}
Σn = ∅ n > 3

2

Act is a set of abstract atomic action symbols fixed throughout the rest of this part.

Writing binary operators as usual as infixes and the unary as prefixes, BL can be consid-
ered defined from the following BNF-like schema:

p ::= NIL | a.p, a ∈ Act | p+ p | p ‖ p
To formalize the restriction we shall impose on the processes we for every p ∈ BL we
define it’s sort , L(p), or label set as follows:
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Definition 3.1.2 Let L : BL −→ P(Act) (= L) be defined by:

NIL 7→ ∅
a.p 7→ {a} ∪ L(p)

p+ q 7→ L(p) ∪ L(q)
p ‖ q 7→ L(p) ∪ L(q)

2

Whit this in the hand we can define the process language, PL, as those terms of BL
where every subterm of the form:

p ‖ q
satisfies:

L(p) ∩ L(q) = ∅
That is parallel composition is only allowed between processes with different sorts.

The next step will be to define the three interpretations of the terms from PL by means
of corresponding Σ-po algebras as explained in [Hen85a].

However because of the restriction on PL some modifications are needed. Formally the
semantics should be given within a theoretical framework which address the question
of giving semantics to terms with certain sorts as e.g., in sorted algebras [GTWW77].
This would to the opinion of the author obscure the presentation unnecessarily, since
these questions not are the main concern of this thesis. So under the conviction that
the presentation easely (but lengthly) could be given within such a framework, we shall
merely on the way state the most important changes which arrise.

Common to the carriers of the three Σ-po algebras is that they consists of closures of
prefix-closed sets of tree-semiwords over Act (i.e., ∆ = Act). The differences between the
carriers derive from the chosen closures which all are based on the smoother than relation
(�) between single tree-semiwords. The three closures are δ, υ and χ respectively. We
denote the three carriers by Cδ, Cυ and Cχ respectively. Formally:

Definition 3.1.3 For ? in {δ, υ, χ} we define:

?) C? := {S 6= ∅ | ∃T ⊆ TSW (Act). T is finite, S = ?(πT )}

and call it the ?-carrier. 2

It would have been nicer to define C? as the finite ? and π closed subsets of TSW (Act)
(TSW for short), but from propositionT 1.3.38 and the comments there we see that this
only could be done for ? = δ

In the sequel Pf(A) ⊆ P(A) will denote the finite sets of the power set. With this notation
we can read C? as:

{S | ∃T ∈ Pf (TSW ) \ ∅. S = ?(πT )}

60



Corollary 3.1.4 For ? in {δ, υ, χ} we have:

?) ∀T ∈ C?. ?(T ) = T

For each of these carriers we are going to define a interpretation Σ? of the symbols of the
signature Σ as a function from C?

n to C? where n is the rank of the symbol in question.
Most of the definitions of these functions will lean on the corresponding functions defined
on single tree-semiwords and the ?-closure properties.

Definition 3.1.5 The sort of a nonempty set of tree-semiwords, S, ambiguously denoted
L(S), is defined by:

L({s}) 7→ {a | ai ∈ As} (= {a | ψ(s, a) > 0})
L(S ∪ T ) 7→ L(S) ∪ L(T )

2

If S is a singleton set {s} we often just write L(s) in place of L({s}), so L can be
considered defined on TSW also. Notice that because tree-semiwords satisfies SW1 we
have for arbitrary tree-semiwords s and t: As ∩ At = ∅ iff L(s) ∩ L(t) = ∅. I.e., s and t
are disjoint iff there sorts are disjoint. Also remark that L(ε) = ∅.
For each carrier, C?, the function, ‖?, corresponding to the interpretation of ‖ will then be
partially defined: S ‖? T is only defined when L(S)∩L(T ) = ∅. But due to the restriction
on terms from PL it will be ensured that the interpretations are defined.

We are now ready to define the interpretations of the operator symbols.

Definition 3.1.6 With S and T considered to be elements of the appropriate C?-carrier
we define:

Σδ : NILδ = {ε}
a.δS = a.S ∪ {ε}

S +δ T = S ∪ T
S ‖δ T = δ(S ‖ T ) provided L(S) ∩ L(T ) = ∅

Συ : NILυ = {ε}
a.υS = υ(a.S) ∪ {ε}

S +υ T = S ∪ T
S ‖υ T = S ‖ T provided L(S) ∩ L(T ) = ∅

Σχ : NILχ = {ε}
a.χS = a.S ∪ {ε}

S +χ T = χ(S ∪ T )
S ‖χ T = χ(S ‖ T ) provided L(S) ∩ L(T ) = ∅
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The result of S +? T , S, T in C?, ? in {δ, υ} is easely seen to be a member of C? since δ
and υ distributes over ∪ for arbitrary sets. But χ does in general not distribute over ∪
for arbitrary sets, not even for χ-closed sets, as can be seen from the following example.

Example: Let S = {a - b - c}, T =


a
b
c

. Then χ(S) = S, χ(T ) = T and s = a��1 b
PPq c
∈

χ(S ∪ T ), but s 6∈ S ∪ T .

Therefore we define S +χ T to be χ(S ∪ T ).

Proposition 3.1.7 The operators of Σ?, ? in {δ, υ, χ} are well-defined. I.e., they are
functions from C?

n to C? for every ?.

Proof Notice at first that for all op? ∈ Σ?n and ? in {δ, υ, χ} op? is defined on C?
n under

proviso. What remains is to find a U ∈ Pf (TSW ) for every op? ∈ Σ?n and S̄ ∈ C?n such
that op?(S̄) = ?(πU), because then op?(S̄) ∈ C?.
NIL?: Let U = {ε}. For every ?-closure we have: ?(πU) = ?(π{ε}) = ?({ε}) = {ε} =

NIL?.

a.?S: S ∈ C? implies there exists a S ′ ∈ Pf (TSW ) such that S = ?(πS ′). Let U = a.S ′ ∈
Pf(TSW ).

? = δ: δπU = δπa.S ′ = (corollaryT 1.3.36) δ(a.πS ′ ∪ {ε}) = δa.πS ′ ∪ {ε} =
(corollaryT 1.3.16) a.δπS ′ ∪ {ε} = a.S ∪ {ε} = a.δS.

? = υ: υπU = . . . = υ(a.πS ′∪{ε}) (corollaryT 1.3.19) υa.υπS ′∪{ε} = υa.S∪{ε} =
a.υS.

? = χ: χπU = . . . = χ(a.πS ′ ∪ {ε}) = (propositionT 1.3.24) χa.πS ′ ∪ {ε} =
(corollaryT 1.3.25) a.χπS ′ ∪ {ε} = a.S ∪ {ε} = a.χS.

S +? T : S, T ∈ C? implies ∃S ′, T ′ ∈ Pf (TSW ). S = ?(πS ′), T = ?(πT ′). Let U = S ′ ∪ T ′.

? in {δ, υ}: Since π, δ and υ distributes over ∪ the result is immediate.

? = χ: χπ(S ′∪T ′) = χ(πS ′∪πT ′) = (corollaryT 1.3.23) χ(χπS ′∪χπT ′) = χ(S∪T ) =
S +χ T .

S ‖? T : Suppose S and T are disjoint. Furthermore let S ′ and T ′ be as in the case S+? T
and let U = S ′ ‖ T ′.

? = δ: δπU = δπ(S ′ ‖T ′) = (propositionT 1.3.35) δ(πS ′ ‖πT ′) = (corollaryT 1.3.16)
δ(δπS ′ ‖ δπT ′) = δ(S ‖ T ) = S ‖δ T .

? = υ: υπU = . . . = υ(πS ′ ‖ πT ′) = (propositionT 1.3.18) υπS ′ ‖ υπT ′ = S ‖ T =
S ‖υ T .

? = χ: χπU = . . . = χ(πS ′‖πT ′) = (corollaryT 1.3.23) χ(χπS ′‖χπT ′) = χ(S ‖T ) =
S ‖χ T .

2
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We now introduce a very simple Σ-po algebra Aπ which in this and later chapters will
prove useful in establishing properties of the A?-algebras (based C?) we are going to
introduce in a moment..

Definition 3.1.8 Let Cπ := Pf (TSW ) \ ∅ and for S, T ∈ Cπ define:

Σπ : NILπ = {ε}
a.πS = a.S ∪ {ε}

S +π T = S ∪ T
S ‖π T = S ‖ T provided L(S) ∩ L(T ) = ∅

2

Clearly the operators of Σπ are well-defined and monotone w.r.t. ⊆, so Aπ = (Cπ,≤π,Σπ),
where ≤π = ⊆, is indeed a Σ-po algebra. Of course ≤π-monotonicity of ‖π is relative to
the carrier upon which ‖π is defined. That is ‖π is e.g., left ≤π-monotone in the sense
that for S, S ′, T ∈ Cπ and L(S) ∩ L(T ) = ∅ = L(S ′) ∩ L(T ) we have:

S ≤π S
′ implies S ‖π T ≤π S

′ ‖π T

Monotonicity for parallel composition under this proviso will be indicated by writing:
(relative) monotone.

Also Cδ, Cυ, Cχ ⊆ Cπ wherefore we can formulate the following proposition which displays
the close connection between operators of Σπ and Σ?.

Proposition 3.1.9 Let ? be in {δ, υ, χ}. For all op? ∈ Σ?n , S̄ ∈ C?n we have:

op?(S̄) = ?opπ(S̄)

Proof In most of the operator cases we use corollary 3.1.4.

NIL?: Evident since NILπ = {ε} and δ(ε) = υ(ε) = χ(ε) = {ε}.
a.δ: a.δS = a.S ∪ {ε} = a.δS ∪ {ε} = δa.S ∪ {ε} = δ(a.S ∪ {ε}) = δa.πS.

a.υ: a.υS = υa.S ∪ {ε} = υ(a.S ∪ {ε}) = υa.πS.

a.χ: a.χS = a.S ∪ {ε} = a.χS ∪ {ε} = (corollaryT 1.3.25) χa.S ∪ {ε} = (propositionT
1.3.24) χ(a.S ∪ {ε}) = χa.πS.

+δ: S +δ T = S ∪ T = δS ∪ δT = δ(S ∪ T ) = δ(S +π T ).

+υ: Similar.

+χ: S +χ T = χ(S ∪ T ) = χ(S +π T ).

‖δ: S ‖δ T = δ(S ‖ T ) = δ(S ‖π T ).

‖υ: S ‖υ T = S ‖ T = υS ‖ υT = υ(S ‖ T ) = υ(S ‖π T ).

‖χ: As S ‖δ T .

2
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The next to define is the partial order ≤ ? on C?.

Definition 3.1.10 For every ? in {δ, υ, χ} define the ≤ ?—the partial order over C?—to
be the set inclusion (⊆). I.e.,

∀S, T ∈ C?. S ≤ ? T iff S ⊆ T

2

Clearly it is a partial order and {ε} is a least element in every C?.

Since the δ-, υ- and χ-closures in general are monotone w.r.t. ⊆ we immediately from
proposition 3.1.9 and opπ being monotone get:

Corollary 3.1.11 All op? ∈ Σ? are (relative) monotone on C? (w.r.t. ≤ ?) for all ? in
{δ, υ, χ} (with the modification that S ‖? T only is defined when L(S) ∩ L(T ) = ∅).

From the preceding and this corollary we then also have:

Corollary 3.1.12 For every ? in {δ, υ, χ} A? = (C?,≤ ?,Σ?) is a Σ-po algebra.

Our different models, M?, then consists of these Σ-po algebras and denotational maps,
[[ ]]? given below:

Definition 3.1.13 The interpretation, [[ ]]?, in the M? model of terms from PL is defined
compositionally (on the basis of A?) as follows:

[[NIL]]? = NIL?
[[a.p]]? = a.?[[p]]?

[[p+ q]]? = [[p]]? +? [[q]]?
[[p ‖ q]]? = [[p]]? ‖? [[q]]?

2

From L(p) = L([[p]]?) and p ‖ q ∈ PL only if L(p) ∩ L(q) = ∅ it is seen that the definition
is well-defined.

3.2 Operational Semantics

The operational semantics we are going to define are based on a labelled transition system
(lts for short) which determines a process’s ability to develop from one configuration to
another. For the purpose of this we define the set of possible configurations. In the
definition, actions of a set of atomic complementary action symbols, Act, disjoint but
equipotent to Act is used. Furthermore a bijective map : Act −→ Act.
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Definition 3.2.1 BL is defined to be the least set C which satisfies:

BL ⊆ C
ā.p ∈ C if p ∈ C and a ∈ Act

p1 ‖ p2 ∈ C if p1, p2 ∈ C

L is extended to BL by: L(ā.q) = {a} ∪ L(q).

The configuration language, CL, is defined to be the subset of BL where every subterm
of the form p ‖ q has L(p) ∩ L(q) = ∅. 2

Notice

i) L “forgets” whether a label belongs to Act or Act. So L(p) for p ∈ CL could be
defined as taking L on p′ ∈ PL, where p′ is p with all ’̄s striped of.

ii) PL ⊆ CL and p+ q ∈ CL only if p, q ∈ PL.

2

In the sequel we will have the implicit requirements L(p) ∩ L(q) = ∅ whenever writing
p ‖ q.
What remains to define for the lts over CL and Act ∪Act is the action relation.

Definition 3.2.2 Let −→ ⊆ CL×(Act∪Act)×CL (writing p
y−→ q for (p, y, q) ∈ −→)

be the least relation over CL which satisfies:

1) a.p
a−→ ā.p 2) ā.p

ā−→ p

3)
p

b−→ p′

ā.p
b−→ ā.p′

4)
p

a−→ p′

p+ q
a−→ p′

q + p
a−→ p′

5)
p

y−→ p′, y ∈ Act ∪ Act
p ‖ q y−→ p′ ‖ q
q ‖ p y−→ q ‖ p′

where y ∈ Act ∪ Act and a, b, . . . range over Act.

Corollary 3.2.3 p
y−→ p′ ⇒ L(y) ⊆ L(p), L(p′) ⊆ L(p).

The fact that p
y−→ p′ implies L(p′) ⊆ L(p) gives the well-definedness of the relation since

then p, q disjoint implies p′, q disjoint too in 5).

Proposition 3.2.4 ∀a ∈ Act∀p ∈ CL. |{q | p ā−→ q}| ≤ 1
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Proof Induction on the structure of p.

p ∈ PL: Then no subterm r of p is of the form b̄.r′, b ∈ Act. By inspection of definition
3.2.2 we clearly have {q | p ā−→ q} = ∅.

p = b̄.p′: Two cases: a 6= b: Again by inspection of the definition we see b̄.p′ 6 ā−→ or
equivalently {q | p = b̄.p′ ā−→ q} = ∅. a = b: We see ā.p′ ā−→ q implies q = p′.

p = p1 ‖ p2: By inspection and the disjointness of p1 and p2 we see p = p1‖p2
ā−→ q implies

that exactly one of the two cases p1
ā−→ p′1, q = p′1 ‖ p2 or p2

ā−→ p′2, q = p1 ‖ p′2 hold,

so the cardinality of {q | p ā−→ q} is equal to the cardinality of {p′ | p1
ā−→ p′} in

the former case and {p′ | p2
ā−→ p′} in the latter. By the inductive hypothesis these

will be less than or equal to one.

2

Intuitively one can think of the a.p as the process which can be signaled to initiate action
a and thereby transforming to ā.p. This term again represents a process which contains
an action a signaled to initiate and which can signal it’s completion by transforming by
ā into p. The inference rule 3) says that more actions can be signaled to initiate before
earlier signaled actions them selfs signal there completion. The term p+ q represents the
process which can act either as p or q, and p ‖ q represents the process which can act
both as p and as q, so actions of one subprocess can be signaled to initiate or complete
independent of the other.

Example: a.NIL+ b.(a.NIL ‖ b.NIL)
b−→ b̄.(a.NIL ‖ b.NIL)
a−→ b̄.(ā.NIL ‖ b.NIL)
b−→ b̄.(ā.NIL ‖ b̄.NIL)
b̄−→ ā.NIL ‖ b̄.NIL
ā−→ NIL ‖ b̄.NIL
b̄−→ NIL ‖NIL

We extend the (atomic) action relation to strings over Act ∪Act by:

p
z−→ p′ iff


z = ε, p′ = p
or

z = az′, p a−→ p′′, p′′ z′−→ p′

where z ∈ (Act ∪Act)∗.
On the basis of this and the notion of experiment we define how two processes are oper-
ational semantically related.

We consider two statements about a process p and an experiment e:

• p may accept e

• p may reject e
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The relations can then be defined as follows:

Definition 3.2.5 For processes p, q ∈ PL we define

p <∼a q iff for all experiments e: p may accept e implies q may accept e
p <∼r q iff for all experiments e: p may reject e implies q may reject e
p <∼ q iff p <∼a q and p <∼r q

2

The next thing to consider is which experiments we will allow and when a process may
accept/ reject an experiment.
An experiment , e, will be split out into two. First a set of actions A are signaled to initiate
and second a test t is done on these. So

an experiment, e, is a pair: (A, t).

In fact the signaled set of actions can be considered as a multiset over Act because we
want to be able to signal the same action more than once. If A is a finite multiset over
Act and a ∈ Act let |A|a denote the number of a’s in A. For a tree-semiword s and such
a multiset A we write:

As ∼= A iff ∀a ∈ Act. |A|a = ψ(s, a)

For a multiset A and a process p ∈ PL the set of possible configurations we can obtain
by signaling A is D(A, p) defined as follows:

Definition 3.2.6 D(A, p) := {p′ ∈ CL | ∃w ∈W. Aw ∼= A, p
w−→ p′} 2

Recall that W and Act∗ are isomorphic, so it gives sense to write p
w−→ p′ for a w ∈W .

Notice that nondeterministic choices are made when signaling A to initiate.

The next to decide is the test language TL. We will only allow tests on the actions which
are signaled to initiate, so the language must be based on Act. It shall be possible to test
the order in which the process can signal completions of the actions previously signaled
to initiate, so if t is a test ā.t is a test too. If p is a configuration the test t& t′ denotes
the test whether both the test t and t′ are possible on p. Similar t∇ t′ is the test whether
either t or t′ are possible. A test is ended with > to notify that the test was possible.

Definition 3.2.7 The test language, TL, is defined by the schema

t ::= > | ā.t, a ∈ Act | t& t | t∇ t

2
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Observe that for a test like t& t′ or t∇ t′ there is no restrictions on the sorts of t and t′.

>—the successful test—is one of the two possible outcomes of a test. The other—the
unsuccessful test—is denoted ⊥. When having a test like t& t′ one subtest can turn out
to be successful and the other unsuccessful, so during the total test, subconfigurations
like >&⊥ are possible.

Definition 3.2.8 The test configurations , TC, are defined by the schema:

o ::= (t, p), t ∈ TL, p ∈ CL | > | ⊥ | o& o | o∇ o

2

A test is finished when it is known to be successful or unsuccessful, i.e., when one of the test
configurations > or ⊥ are reached. The relation between the different test configurations
is determined by the test relation → ⊆ TC × TC defined below.

Definition 3.2.9 Let p, p′ ∈ CL, t ∈ TL, o, o′, o′′ ∈ TC in the following.

Axioms:

1)2: (t2 t′, p)→ (t, p) 2 (t′, p) for 2 ∈ {&,∇}

2) (>, p)→ >

3) &> : o&> → o >& : >& o→ o
&⊥ : o&⊥ → ⊥ ⊥& : ⊥& o→ ⊥
∇> : o∇> → > >∇ : >∇ o→ >
∇⊥ : o∇⊥ → o ⊥∇ : ⊥∇ o→ o

Inferences:

4)2:
o→ o′

o2 o′′ → o′ 2 o′′

o′′ 2 o→ o′′ 2 o′

for 2∈ {&,∇}

5)
p

ā−→ p′, a ∈ Act
(ā.t, p)→ (t, p′)

6)
p 6 ā−→, a ∈ Act
(ā.t, p)→ ⊥

p 6 ā−→ is just a shorthand notation for 6 ∃p′ : p
ā−→ p′.

Example:
(ā.̄b.>& b̄.ā.>, ā.NIL ‖ b̄.(c.NIL + d.NIL))
→ (ā.̄b.>, ā.NIL ‖ b̄.(c.NIL + d.NIL)) & (b̄.ā.>, ā.NIL ‖ b̄.(c.NIL + d.NIL))
→ (b̄.>, NIL ‖ b̄.(c.NIL + d.NIL)) & (b̄.ā.>, ā.NIL ‖ b̄.(c.NIL + d.NIL))
→ (b̄.>, NIL ‖ b̄.(c.NIL + d.NIL)) & (ā.>, ā.NIL ‖ (c.NIL + d.NIL))
→ (>, NIL ‖ (c.NIL + d.NIL)) & (ā.>, ā.NIL ‖ (c.NIL + d.NIL))
→ >& (ā.>, ā.NIL ‖ (c.NIL + d.NIL))
→ (ā.>, ā.NIL ‖ (c.NIL + d.NIL))
→ (>, NIL ‖ (c.NIL + d.NIL))
→ >

68



Notice that this only is one of many possible derivation that leads >.

A test configuration o is called terminal iff o 6→ (i.e., 6 ∃o′ ∈ TC. o → o′). In a moment
we will show that the only possible terminal test configuration is exactly one of > and ⊥,
such that a test is either successful or unsuccessful, and cannot be both. In this sense our
notion of test is well-defined.

The fact that the terminal configurations are {>,⊥} and that one and only one of these
can be reached from a test configuration, o, has as consequence:

∀p ∈ CL∀t ∈ TL. (t, p)→∗ > ⇔ (t, p) 6→∗ ⊥

An experiment e can now be considered as (A, t), where A is the multiset over Act, which
determines the actions that should be signaled to initiate, such that a test can be run on
them, and t is the actual test to run.

Informally a process p may accept the experiment e = (A, t) if

a) It gives sense to run the test, i.e., the actions of A can be signaled.

b) One of the processes p′ obtainable from p by signaling A to initiate, pass the test t
successfully.

Similar p may reject (A, t) if under the same conditions as above one of the obtainable
processes p′ pass the the test t unsuccessfully. Notice that we may have a process p and
experiment e such that p may accept e and p may reject e! Also notice that the two
statements are not dual. I.e., we do not have p ��may accept e implies p may reject e
(where p ��may accept e means it is not the case that p may accept e). This is because the
reason why p ��may accept e can be that it does not make sense to run the test t, in which
case we have p ��may reject e too. Formally:

Definition 3.2.10 Denote the set of experiments by E. I.e., e ∈ E iff e = (A, t), A is a
finite multiset over Act and t ∈ TL.

Let p ∈ PL and e = (A, t) be an experiment. Then:

a) p may accept e iff ∃q ∈ D(A, p). (t, q)→∗ >
b) p may reject e iff ∃q ∈ D(A, p). (t, q)→∗ ⊥

2

Example:
a.b.NIL + b.a.NIL+ a.NIL ‖ b.NIL may accept ({a, b}, ā.̄b.>& b̄.ā.>)

a.b.NIL + b.a.NIL ��may accept ({a, b}, ā.̄b.>& b̄.ā.>)

a.b.NIL + b.a.NIL+ a.NIL ‖ b.NIL may reject ({a, b}, ā.̄b.>∇ (b̄.ā.>& ā.̄b.>))

a.NIL ‖ b.NIL ��may reject ({a, b}, ā.̄b.>∇ (b̄.ā.>& ā.̄b.>))
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So we have now formally defined what was used in the definition of the three testing
preorders <∼a, <∼r and <∼ on PL. In the following <∼=∼ shall denote the equivalence of <∼.
Similar for the other preorders.

Example:

a.b.NIL + b.a.NIL

{
<∼a
<∼=∼r

}
a.b.NIL + b.a.NIL+ a.NIL ‖ b.NIL

{
<∼=∼a
=∼r

}
a.NIL ‖ b.NIL

a.NIL


<∼a
<∼r
<∼

 a.b.NIL

a.b.c.NIL + a.(b.NIL ‖ c.NIL) + a.NIL ‖ b.c.NIL <∼=∼ a.b.c.NIL + a.NIL ‖ b.c.NIL

As indicated by:

a.(b.NIL + c.NIL)


<∼=∼a
<∼=∼r
<∼=∼

 a.b.NIL + a.c.NIL

non of the equivalences are able to distinguish nondeterminism.

That p may accept e and p may reject e are not dual can now also formally easely be
seen:

¬(∃q ∈ D(A, p). (t, q)→∗ >) iff ∀q ∈ D(A, p)(t, q) 6→∗ >
iff ∀q ∈ D(A, p). (t, q)→∗ ⊥
��iff ∃q ∈ D(A, p). (t, q)→∗ ⊥

Before we give the promised proof of one and only one terminal configuration for every
test configuration we prove the following lemma, which also clears the rôle of & and ∇.

Lemma 3.2.11

a) o1 & o2 →∗ > iff o1 →∗ > and o2 →∗ >
b) o1 & o2 →∗ ⊥ iff o1 →∗ ⊥ or o2 →∗ ⊥
c) o1 ∇ o2 →∗ > iff o1 →∗ > or o2 →∗ >
d) o1 ∇ o2 →∗ ⊥ iff o1 →∗ ⊥ and o2 →∗ ⊥

Proof
a) only if : We prove it by proving o1 & o2 →n > only if o1 →∗ >∧ o2 →∗ > by induction
on n (n = 0 impossible because > is not of the form t& t′).

n = 1: By inspection of definition 3.2.9 we see o1 & o2 → > implies o1 = > = o2. Then of
course also o1 →∗ > and o2 →∗ >.

n > 1: o1&o2 → o, o→n−1 >. Looking at the definition again we see that only 3) &>,>&
or 4) & can come under discussion for the move o1 & o2 → o.
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3) &>,>&: W.l.o.g. assume o1 & o2 → o is o1 & > → o1. Then clearly o2 →∗ > and
o1 →n−1 > which implies o1 →∗ >.

4) &: Two cases: o1 → o′1, o = o′1 & o2 and o2 → o′2, o = o1 & o′2.
For the former then o →n−1 > means o′1 & o2 →n−1 >. By hypothesis of induction
o′1 →∗ > ∧ o2 →∗ >. o1 → o′1, o

′
1 →∗ > implies o1 →∗ >, so we are done for this

case.
The latter is handled symmetric. This also completes the inductive step.

if : It is enough to prove o1 →n >∧o2 →m > implies o1 &o2 →∗ > by induction on n+m.

n+m = 0: Then o1 = > = o2. No matter whether we use 3) & > or 3) >& we get
o1 & o2 → > and thereby o1 & o2 →∗ >.

n+m > 0: We split out in two subcases:
m > 0: This implies o2 → o′2 →m−1 >. By hypothesis of induction o1 & o′2 →∗ >. Using
4)& we now get o1 & o2 → o1 & o′2, hence o1 & o2 →∗ >.
n > 0: Then o1 → o′1 →n−1 >. Similar to the case n = 0.

b) -d): Similar to a). 2

Now for an o ∈ TC let B(o) denote the set of terminal configurations i.e.,

B(o) := {o′ ∈ TC | o→∗ o′, o′ 6→}
So what we shall prove is that {>,⊥} equals the terminal configurations and |B(o)| = 1
which follows from the proposition below.

Proposition 3.2.12 Let o ∈ TC. Then

a) {>,⊥} = terminal configurations b) o→∗ >∨̇ o→∗ ⊥

where ∨̇ means that exactly one of the possibilities are true.

Proof
a) By inspection of definition 3.2.9 we easely see that > and ⊥ are the only possible
terminal configurations.

b) We split the proof out in two, i) o →∗ > ∨ o →∗ ⊥ and ii) o →∗ o′, o′ ∈ {>,⊥} ⇒
B(o) = {o′}, from which b) can be seen.

i) We prove o→∗ > ∨ o→∗ ⊥ by induction on the structure of o.

o = > or o = ⊥ (basis): Immediate.

o = o1 & o2: By hypothesis of induction oi →∗ >∨ oi →∗ ⊥ for i ∈ 2. Four cases:
o1 →∗ >, o2 →∗ >: Using the if part of lemma 3.2.11 a) we get o = o1 & o2 →∗ >.
In the three other cases we get o→∗ ⊥ using the if part of b) in the lemma.

o = o1 ∇ o2: Similar.

o = (t, p), t ∈ TL, P ∈ CL: To prove this part of the inductive step we use induction on
the structure of t.
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t = >: 2) of definition 3.2.9 gives us o = (t, p) = (>, p)→ > hence o→∗ >.

t = ā.t′: Clearly either 5) and 6) can be used. In the latter case we directly get
o →∗ ⊥. In the former we have (ā.t′, p) → (t′, p′). By hypothesis of induction
either (t′, p′)→∗ > or (t′, p′)→∗ ⊥ and the result follows.

t = t1 & t2: Using 1)& we get o = (t1 & t2, p) → (t1, p) & (t2, p). By the hypothesis
of induction (ti, p) →∗ > ∨ (ti, p) →∗ ⊥ for i ∈ 2. Similar as in the case
o = o1 & o2 we get (t1, p) & (t2, p) →∗ > ∨ (t1, p) & (t2, p) →∗ ⊥. Hence also
o→∗ >∨ o→∗ ⊥.

t = t1 ∇ t2: Similar.

ii) Since o′ ∈ {>,⊥} we can part the proof in two:

o′ = >: Then we have to prove o→∗ > ⇒ B(o) = {>}. We will do this by induction on
the structure of o. Since > 6→ and o→∗ > implies > ∈ B(o) we only need to prove
o→∗ > ⇒ B(o) ⊆ {>}.
o = > or o = ⊥ (basis): Looking at definition 3.2.9 we see ⊥ 6→∗ > and B(>) =

{>}.
o = o1 & o2: By the only if part of lemma 3.2.11 we have o1 →∗ > and o2 →∗ >.

By hypothesis of induction we then have B(o1) = {>} and B(o2) = {>}. Now
assume B(o) 6⊆ {>}. Since > and ⊥ are the only terminal configurations (by
a)) this implies o = o1 &o2 →∗ ⊥ and by the only if part of lemma 3.2.11.b) we
have o1 →∗ ⊥ or o2 →∗ ⊥, which contradicts B(o1) = {>} and B(o2) = {>}.
So B(o) ⊆ {>}.

o = o1 ∇ o2: Symmetric.

o = (t, p), t ∈ TL, p ∈ CL: This part of the inductive step is also proved by struc-
tural induction, but this time on the structure of t.

t = >: Looking at definition 3.2.9 we see that only 2) can be used, hence
B(o) = B(>) = {>}.

t = ā.t′: Clearly only 5) or 6) can come under discussion. Two cases depending
on p.
∃q. p ā−→ q: By proposition 3.2.4 there is at most one such q. Hence
B(o) = B((t′, q)). By hypothesis of induction B((t′, q)) ⊆ {>}.
6 ∃q. p ā−→ q: This case can be excluded since o→ ⊥ is the only possibility,
⊥ 6→ and we assume o→∗ >.

t = t1 & t2: The only possibility is o = (t1 & t2, p)→ (t1, p)& (t2, p) = o′′ →∗ >
and B(o) = B(o′′). Similar as in the case o = o1 & o2 we get B(o′′) ⊆ {>}.

t = t1 ∇ t2: Symmetric.

o′ = ⊥: Similar as the case o′ = >, but now t = > can be excluded and in t = ā.t′,
6 ∃q. p ā−→ q no longer can be ignored. In this last case we get o = (ā.t, p)→ ⊥ and
B(o) = B(⊥) = {⊥}, which is wanted.

2

In the following we will investigate other properties of our test language which will be
useful in the following sections.

The most important property is that every test t has a normal form which we define in a
moment. On the way to show this we introduce some notation.
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Definition 3.2.13 For t, t′ ∈ TL we let t ∼= t′ denote:

∀p ∈ CL. B((t, p)) = B((t′, p))

or equivalently by the last proposition:

∀p ∈ CL. (t, p)→∗ >iff (t′, p)→∗ >

2

Proposition 3.2.14 ∼= is an equivalence relation on TL such that for all t, t′, t′′ ∈ TL:

a) t& t′ ∼= t′ & t b) t∇ t′ ∼= t′ ∇ t

c) t& (t′ & t′′) ∼= (t& t′) & t′′ d) t∇ (t′ ∇ t′′) ∼= (t∇ t′)∇ t′′

e) t∇ (t′ & t′′) ∼= (t∇ t′) & (t∇ t′′)

f) ā.(t& t′) ∼= ā.t& ā.t′ g) ā.(t∇ t′) ∼= ā.t∇ ā.t′

h) t ∼= t′ ⇒


ā.) ā.t ∼= ā.t′

&) t& t′′ ∼= t′ & t′′

∇) t∇ t′′ ∼= t′ ∇ t′′

Proof That ∼= is an equivalence relation is immediate from the definition.

a) – e) follows by lemma 3.2.11 from the similar properties of ∧ and ∨. This is not the
case with f) – h).

f) We shall prove (ā.(t& t′), p)→∗ > iff (ā.t & ā.t′, p)→∗ >.
if : By definition 3.2.9 (ā.t & ā.t′, p) →∗ > implies (ā.t, p) & (ā.t′, p) →∗ > which by
lemma 3.2.11 implies (ā.t, p) →∗ > and (ā.t′, p) →∗ >. Now (ā.t, p) →∗ > implies

(ā.t′, p)→ (t′, p′′)→∗ > where p
ā−→ p′. Similar (ā.t′, p)→ (t′, p′′)→∗ >, where p

ā−→ p′′.
By proposition 3.2.4 we must have p′ = p′′. Hence (t, p′)→∗ >, (t′, p′)→∗ > and p

ā−→ p′.
Using lemma 3.2.11 again we get (t, p′) & (t, p′)→∗ >. From this and p

ā−→ p′, 5), 1)& of
definition 3.2.9 we see (ā.(t& t′), p)→ (t& t′, p′)→ (t, p′) & (t′, p′)→∗ >.
only if : By inspection of definition 3.2.9 we see (ā.(t&t′), p)→∗ > implies (ā.(t&t′), p)→
(t& t′, p′)→ (t, p′)&(t′, p′)→∗ >, where p

ā−→ p′. From this definition 3.2.9 directly gives
us: (ā.t & ā.t′, p′)→ (ā.t, p) & (ā.t′, p)→ (t, p′) & (ā.t′, p)→ (t, p′) & (t′, p′)→∗ >.

g) Similar, but here proposition 3.2.4 is not necessary!

h) Assume t ∼= t′.

ā.): Let p ∈ PL, ā ∈ Act be given. Shall show that (ā.t, p)→∗ > iff (ā.t′, p)→∗ >. This
is evident from proposition 3.2.4.

&): Let a p ∈ CL and t′′ ∈ TL be given. Shall show (t& t′′, p)→∗ > iff (t′ & t′′)→∗ >.
if : (t′ & t′′, p) →∗ > implies (t′ & t′′, p) → (t′, p) & (t′′, p) →∗ >. By lemma 3.2.11
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this implies (t′, p) →∗ > and (t′′, p) →∗ >. From t ∼= t′ we then have (t, p) →∗ >.
Reversing the arguments we obtain (t& t′′, p)→∗ >.
only if : Symmetric.

∇): Similar.

2

Definition 3.2.15 t ∈ TL is a test normal form iff t is of the form

&
j∈n

( ∇
k∈nj

w̄jk>), wjk ∈W for k ∈ nj, 1 ≤ nj with j ∈ n, 1 ≤ n

where w̄ simply is the string w with every a in w exchanged with ā. 2

By a) – d) of proposition 3.2.14 it gives sense to use the notational convenience of & and
∇ in the definition of a normal form.

Proposition 3.2.16 For every t ∈ TL there is a normal form t′ ∈ TL such that t ∼= t′.

Proof We can transform t into a normal form t′ by using a) – h) of proposition 3.2.14.
At first we use e) and f) to get all &’s of t out on the outmost level such that we obtain
a t′′ = &j∈n tj , where tj is built from ∇, ā ∈ Act and > for j ∈ n.
Then for every j ∈ n transform tj by g) into t′j = ∇k∈nj wjk>. By the congruence h) it

should be clear that t′ = &j∈n t′j ∼= t. 2

By inspection of definition 3.2.9 the following corollary is evident.

Corollary 3.2.17 For all p ∈ CL, w ∈W we have:

∃q. p w̄−→ q iff w̄> ∈ TL, (w̄>, p)→∗ >

Proposition 3.2.18 Let t be on the normal form: &j∈n(∇k∈nj w̄jk>). Then for all p ∈
CL:

(t, p)→∗ > iff ∀j ∈ n∃k ∈ nj. (w̄jk>, p)→∗ >

Proof Follows immediately from lemma 3.2.11. 2

3.3 Full Abstractness

The aim of this section is to show that the denotational and operational semantics corre-
sponds or rather that ≤ δ, ≤ υ and ≤χ are fully abstract w.r.t. <∼a, <∼r and <∼ respectively.
Formally we want to prove:
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Theorem 3.3.1 Operational Characterization Theorem If p, q ∈ PL then <∼a, <∼r and <∼
are (relative) precongruences and

δ) [[p]]δ ≤ δ [[q]]δ iff p <∼a q

υ) [[p]]υ ≤ υ [[q]]υ iff p <∼r q

χ) [[p]]χ ≤χ [[q]]χ iff p <∼ q

As for Hennessy [Hen85a] it will prove convenient to introduce some more plain relations,
�∗, on processes from PL, which are entirely defined on basis of the lts, and which
coincide with the three testing preorders.

The rest of this section is devoted to definitions and intermediate results necessary to prove
the Semantic Characterization Theorem of these relations and the Operational Charac-
terization Theorem.

At first we define a map, θ̄, on configurations which associates in a natural way a tree-
semiword with the “barred” part of a configuration. I.e., for a configuration, p, θ̄(p) gives
a tree-semiword which reflects the causal order in which initiated actions can signal there
completion.

Definition 3.3.2

a) Let θ̄ : CL −→ TSW be defined inductively as follows:
p 7→ ε if p ∈ PL

ā.p 7→ a.θ̄(p)
p ‖ q 7→ θ̄(p) ‖ θ̄(q) if either p 6∈ PL or q 6∈ PL

b) Let Θ̄ : PL −→ P(TSW ) be defined by: Θ̄(p) := {θ̄(q) | ∃w ∈W. p w−→ q}

2

For arbitrary sets of semiwords we use the following notation:

S <a T iff ∀s ∈ S∃t ∈ T. s � t
S <r T iff ∀s ∈ S∃t ∈ T. t � s
S < T iff S <a T and S <r T

We can now formulate the three alternative preorders.

Definition 3.3.3 Let p, q ∈ PL. Then �a, �r and � are defined as follows:

p�∗ q iff Θ̄(p) <∗ Θ̄(q)

where ∗ as usual is either left out or one of a, r. 2

In the future we will mostly omit the comment about ∗.
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Theorem 3.3.4 Semantic Characterization Theorem For all p, q in PL:

p <∼∗ q iff p�∗ q

The first step in the prove of this theorem is a rewriting of p <∼∗ q.

Lemma 3.3.5 For ∗ = a (∗ = r) and oa = > (or = ⊥) we have:

p <∼∗ q
iff
∗) ∀(A, t)∀p′ ∈ D(A, p)∃q′ ∈ D(A, q). (t, p′)→∗ o∗ ⇒ (t, q′)→∗ o∗

Proof We only prove the case ∗ = a, since the case ∗ = r follows in exactly the same
way.
We prove p <∼a q iff a) by proving p 6<∼a q iff ¬a).
p 6<∼a q iff (by definition)

¬(∀(A, t)(∃p′ ∈ D(A, p). (t, p′)→∗ >)⇒ (∃q′ ∈ D(A, q). (t, q′)→∗ >)) iff

∃(A, t)(∃p′ ∈ D(A, p). (t, p′)→∗ >) ∧ (∀q′ ∈ D(A, q). (t, q′)→∗ ⊥) iff

∃(A, t)∃p′ ∈ D(A, p). ((t, p′)→∗ > ∧ ∀q′ ∈ D(A, q). (t, q′)→∗ ⊥) iff

∃(A, t)∃p′ ∈ D(A, p)∀q′ ∈ D(A, q). (t, p′)→∗ > ∧ (t, q′)→∗ ⊥ iff

¬a).
In these derivations we used (t, p) →∗ > iff (t, p) 6→∗ ⊥ which was a consequence of
proposition 3.2.12. 2

The next step is to prove that the ∀t-quantifier can be moved past ∃q′ ∈ D(A, q) in ∗) of
the last lemma.

Lemma 3.3.6 For ∗ = a (∗ = r) and oa = > (or = ⊥) we have:

i)∗ ∀(A, t)∀p′ ∈ D(A, p)∃q′ ∈ D(A, q). (t, p′)→∗ o∗ ⇒ (t, q′)→∗ o∗

iff

ii)∗ ∀A∀p′ ∈ D(A, p)∃q′ ∈ D(A, q)∀t′. (t′, p′)→∗ o∗ ⇒ (t′, q′)→∗ o∗

Proof We prove ¬i)∗ iff ¬ii)∗ for the two cases of ∗. I.e.,

¬i)∗ ∃(A, t)∃p′ ∈ D(A, p)∀q′ ∈ D(A, q). (t, p′)→∗ o∗ ∧ (t, q′) 6→∗ o∗

iff

¬ii)∗ ∃A∃p′ ∈ D(A, p)∀q′ ∈ D(A, q)∃t′. (t′, p′)→∗ o∗ ∧ (t′, q′) 6→∗ o∗

If D(A, q) = ∅ the result is trivial, so assume D(A, q) 6= ∅ in the following.
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∗ = a: The only if part is trivial since one just have to chose A, p′ as in ¬i)a and t′ = t
for every q′ ∈ D(A, q).
if : Given is ¬ii)a = ∃A∃p′ ∈ D(A, p)∀q′ ∈ D(A, q)∃t′. (t′, p′) →∗ > ∧ (t′, q′) →∗ ⊥.
From here we use the A and p′ in ¬ i)a. Now let t′q′ be the t′ which ¬ii)a ensures exists
for q′ ∈ D(A, q) such that (t′, p′)→∗ >∧ (t′, q′)→∗ ⊥. Then for all q′ ∈ D(A, q) we
have:

(t′q′ , p
′)→∗ > and (t′q′, q

′)→∗ ⊥(3.1)

Since t′q′ ∈ TL for every q′ ∈ D(A, q) andD(A, q) is finite, we have t = &q′∈D(A,q)t
′
q′ ∈

TL too. By lemma 3.2.11.a),c) and (3.1) we have (t, p′) →∗ > and for every q′ ∈
D(A, q). (t, q′)→∗ ⊥, thereby establishing ¬i)a.

∗ = r: Proved similar as the ∗ = a case, just with the difference in the if -part that t is
constructed as ∇q′∈D(A,q)t

′
q′ and lemma 3.2.11.b), d) is used in proving (t, p′)→∗ ⊥,

and for every q′ ∈ D(A, q). (t, q′)→∗ >.

2

As seen from the proof we could not have moved the ∀t-quantifier if our test language did
not contain & and ∇.

Lemma 3.3.7 Let Z = (Act ∪ Act)∗. For p1, p2 ∈ CL we have for z ∈ Z:

p1 ‖ p2
z−→ q

iff

∃zi ∈ Z, qi. pi zi−→ qi for i ∈ 2 and q = q1 ‖ q2, z � z1 ‖ z2

Notice that W ⊆ Z and W ⊆ Z, but Z 6⊆ W ∪W .

Proof Both of the implications in this lemma is proved by induction on the length of z.

if :

z = ε: z = ε � z1 ‖ z2 implies z1 = ε = z2, so qi = pi for i ∈ 2 and q = p1 ‖ p2. By
definition p1 ‖ p2

ε−→ p1 ‖ p2 = q, so ok.

z 6= ε: Then z = a.z′ for some a ∈ Act ∪ Act and z′ ∈ Z. By propositionT 1.3.31 this
implies ∃z′1. a.z′1 = z1, z

′ � z′1 ‖ z2 or ∃z′2. a.z′2 = z2, z
′ � z1 ‖ z′2. W.l.o.g. assume

the former is true. Then p1
z1−→ q1 is the same as p1

a.z′1−→ q1, so there exists some p′1
such that p1

a−→ p′1
z′1−→ q1. Since |z′| < |z| we can use the inductive hypothesis to

get p′1 ‖ p2
z′−→ q1 ‖ q2 = q. From the inference rule 5) of definition 3.2.2 we obtain

p1 ‖ p2
a−→ p′1 ‖ p2 from p1

a−→ p′1, so p1 ‖ p2
a.z′−→ q or equivalently p1 ‖ p2

z−→ q.

only if :

z = ε: Then q = p1 ‖ p2 and the result should be clear.

z 6= ε: Then z = a.z′ for some a ∈ Act ∪ Act and p1 ‖ p2
a−→ q′ z′−→ q for some q′ ∈ CL.

Looking at definition 3.2.2 we see that 5) must have been used to ensure p1 ‖ p2
a−→

q′. W.l.o.g. assume this is obtained from p1
a−→ p′1 such that q′ = p′1 ‖ p2. By
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hypothesis of induction we have that there exists z′1, z2 ∈ Z and q1, q2 such that

p′1
z′1−→ q1, p2

z2−→ q2, q = q1 ‖ q2, z′ � z′1 ‖ z2. Let z1 = a.z′1. From p1
a−→ p′1 we then

see p1
z1−→ q1 and from propositionT 1.3.31 we get z � z1 ‖ z2. This completes the

inductive step.

2

Lemma 3.3.8 For all p ∈ CL and w ∈W we have:

w ∈ πλθ̄(p) iff ∃p′. p w̄−→ p′

Proof We will prove w ∈ πλθ̄(p)⇔ ∃p′. p w̄−→ p′ by induction on the structure of p.

p ∈ PL: We split this case out in two depending of whether w = ε or not.

w = ε: Since p ∈ PL we have θ̄(p) = ε, so w = ε ∈ {ε} = λ(ε) = πλ(ε) = πλθ̄(p).

Also ∃p′. p ε̄−→ p′, since ε = ε̄ and p
ε−→ p by definition.

w 6= ε: We neither have a w′ ∈ πλθ̄(p) with w′ 6= ε nor any p′ such that p
w̄−→ p′,

when p ∈ PL and w 6= ε.
To see the latter assume on the contrary ∃p′. p w̄−→ p′. w 6= ε implies w = a.w′

for some w′ ∈ W and a ∈ Act. So w̄ = ā.w̄′. Then p
w̄−→ p′ can be written

p
ā.w̄′−→ p′ and implies p

ā−→ p′′ w̄′−→ p′ for some p′′ ∈ CL. But it is easely seen
that p ∈ PL, p y−→ implies y ∈ Act, which contradicts p

ā−→ p′′, ā ∈ Act.
The former is seen from πλθ̄(p) = {ε} as shown in the case w = ε.

p = ā.p′′, a ∈ Act: At first notice πλθ̄(p) = πλθ̄(ā.p′′) = (by definition of θ̄) πλa.θ̄(p′′) =
(deduced from propositionT 1.3.13) πa.λθ̄(p′′) = (corollaryT 1.3.36) a.πλθ̄(p′′)∪{ε}.
We show the implications separately.

⇒: w ∈ πλθ̄(p) implies w ∈ a.πλ(p′′) or w = ε which again implies w = a.w′ or
w = ε, where w′ ∈ πλθ̄(p′′). By definition p

ε−→ p = p′ which handles the

former case. In the latter we use the hypothesis of induction to get ∃p′. p′′ w̄′−→
p′. Using 3) of definition 3.2.2 we have p = a.p′′ ā−→ p′′. Hence p

w̄−→ p′.

⇐: Looking at definition 3.2.2 we see that p = ā.p′′ w̄−→ p′ implies w̄ = ε or

w̄ = ā.w̄′ for some w̄′ such that p′′ w̄′−→ p′. If w̄ = ε we have w = ε̄ = ε, so
w ∈ a.πλθ̄(p′′) ∪ {ε} = πλθ̄(p). In the other case w̄ = ā.w̄′, the hypothesis of
induction gives us w′ ∈ πλθ̄(p′′), so w = a.w′ ∈ a.πλθ̄(p′′) ∪ {ε} = πλθ̄(p).

p = p1 ‖ p2: At first notice that by lemma 3.3.7 we have:

p1 ‖ p2
w̄−→ p′ ⇔ ∃p′1, p′2 ∈ CL, w̄1, w̄2 ∈ W such that p1

w̄i−→ p′i for i ∈ 2, w̄ �
w̄1 ‖ w̄2, p = p′1 ‖ p′2.
Clearly we also have w̄ � w̄1 ‖ w̄2 iff w � w1 ‖ w2. The two implications:

⇒: We have πλθ̄(p1 ‖ p2) = (by propositionT 1.3.38 and definition of θ̄) λπ(θ̄(p1) ‖
θ̄(p2)) = λ(πθ̄(p1) ‖ πθ̄(p2)), so using propositionT 1.3.13 we get w ∈ πλθ̄(p)
implies ∃wi ∈ λπθ̄(pi), i ∈ 2 such that w � w1 ‖ w2. Since λπθ̄(pi) = πλθ̄(pi)

for i ∈ 2 we can use the hypothesis to get ∃p′i. pi w̄−→ p′i for i ∈ 2. Then, as

noticed, p = p1 ‖ p2
w̄−→ p′1 ‖ p′2 = p′.
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⇐: Using the noticed again p = p1‖p2
w̄−→ p′ implies pi

w̄i−→ p′i, i ∈ 2. By hypothesis
of induction wi ∈ πλθ̄(pi) = λπθ̄(pi). So since w ∈ W implies 6 ∃w′.w′ ≺ w and
w � w1 ‖ w2 we get from propositionT 1.3.13 w ∈ λ(πθ̄(p1) ‖ πθ̄(p2)) which, as
seen above, is the same as w ∈ πλθ̄(p).

2

Lemma 3.3.9 For p, q ∈ CL we have

θ̄(p) � θ̄(q) iff Aθ̄(p) = Aθ̄(q) and ∀t. (t, p)→∗ > ⇒ (t, q)→∗ >

Proof
if : Assume Aθ̄(p) = Aθ̄(q) and ∀t. (t, p)→∗ > ⇒ (t, q)→∗ >. We shall prove θ̄(p) � θ̄(q).

By propositionT 1.3.5 it is enough to prove λθ̄(p) ⊆ λθ̄(q). Let w ∈ λθ̄(p) be given.

Then also Aw = Aθ̄(p) and w ∈ πλθ̄(p), w ∈ W , so by lemma 3.3.8 ∃p′. p w̄−→ p′ and
from corollary 3.2.17 w̄> ∈ TL, (w̄>, p) →∗ >. By the assumption then (w̄>, q) →∗ >.
Using the same lemmas in the opposite direction we get w ∈ πλθ̄(q). We cannot conclude
w ∈ λθ̄(q) directly. Assume on the contrary w is a proper prefix of some w′ ∈ λθ̄(q). Then
Aw ⊂ Aw′. In general ∀s ∈ λ(t). As = At, so Aθ̄(p) = Aw ⊂ Aw′ = Aθ̄(q) which contradicts

the assumption Aθ̄(p) = Aθ̄(q). Hence w ∈ λθ̄(q).
only if : Assume θ̄(p) � θ̄(q). By definition Aθ̄(p) = Aθ̄(q). Let t ∈ TL be given such that
(t, p) →∗ >. We shall prove (t, q)→∗ >. By proposition 3.2.16 t can be chosen to be on
normal form. I.e.,

t = &
j∈n

( ∇
k∈nj

w̄jk>), wjk ∈W for k ∈ nj and j ∈ n

Then by proposition 3.2.18 (t, p) →∗ > implies ∀j ∈ n∃k ∈ nj . (w̄jk>, p) →∗ > and by

corollary 3.2.17 ∀j ∈ n∃k ∈ nj∃pjk. p w̄jk−→ pjk. By lemma 3.3.8 wjk ∈ πλθ̄(p) for j ∈
n, k ∈ nj. Now θ̄(p) � θ̄(q)⇒ (by propositionT 1.3.5) λθ̄(p) ⊆ λθ̄(q)⇒ πλθ̄(p) ⊆ πλθ̄(q),

so wjk ∈ πλθ̄(q) and using lemma 3.3.8 again ∃qjk. q w̄jk−→ qjk. Reversing the arguments
from above we get (t, q)→∗ >. 2

Lemma 3.3.10 For all p ∈ PL and w ∈W we have p
w−→ q implies w ∈ λθ̄(q).

For the proof of the lemma we shall temporarily assume to work with semiwords and not
just tree-semiwords.

Proof Actually we prove the stronger result:

for all p ∈ CL and w ∈W. p w−→ q ⇒ θ̄(p)w � θ̄(q)(3.2)

from which the lemma follows since p ∈ PL ⇒ θ̄(p) = ε and w � θ̄(q), w ∈ W ⇒
w ∈ λθ̄(q). Notice that though θ̄(p) ∈ TSW we do not necessarily have θ̄(p)w ∈ TSW .
However this does not change the truth of (3.2).

To prove (3.2) we first prove:

for all p ∈ CL, a ∈ Act. p a−→ q ⇒ θ̄(p)a � θ̄(q)(3.3)

by induction on the structure of p considered as a member of PL.
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p ∈ PL: Then θ̄(p) = ε, so we shall prove a � θ̄(q). This again will be proved by induction
on the structure of p.

p = NIL: Looking at definition 3.2.2 we see p 6 b−→ for all b, so we are done for this
case.

p = b.p′: Recalling p ∈ PL when inspecting definition 3.2.2 we see that only 1)
can could have been used to obtain p

a−→ q and b = a, so q = ā.p′. Since
p = a.p′ ∈ PL⇒ p′ ∈ PL we have θ̄(q) = θ̄(ā.p′) = a.ε = a.

p = p1 + p2: Only 4) could have been used. W.l.o.g. assume p1
a−→ q. By hypothesis

of induction a � θ̄(q).

p = p1 ‖ p2: Here only 5) can come under discussion. W.l.o.g. assume p1
a−→ p′1,

q = p′1 ‖ p2. By hypothesis of induction a � θ̄(p′1). Since p2 ∈ PL we have
a � θ̄(p′1) = θ̄(p′1) ‖ ε = θ̄(p′1) ‖ θ̄(p2) = θ̄(p′1 ‖ p2) = θ̄(q). This concludes the
inductive step in the proof of θ̄(p)a � θ̄(q) for p ∈ PL.

p = b̄.p′: Inspecting definition 3.2.2 we see p = b̄.p′ a−→ q, a ∈ Act implies p′ a−→ q′,
where q = b̄.q′. By induction θ̄(p′)a � θ̄(q′). By congruence of � we then have
θ̄(p)a = θ̄(b̄.p′)a = b.θ̄(p′)a � b.θ̄(q′) = θ̄(b̄.q′) = θ̄(q).

p = p1 ‖ p2: Only 5) could have been used. W.l.o.g. assume p1
a−→ p′1, q = p′1 ‖ p2.

Then by hypothesis θ̄(p1)a � θ̄(p′1). Since L(p1) ∩ L(p2) = ∅ and we in general for

r ∈ CL have: L(θ̄(r)) ⊆ L(r) and r
b−→ r′ ⇒ b ∈ L(r), L(r′) ⊆ L(r) it follows

that θ̄(p1)a and θ̄(p2) are disjoint so as θ̄(p′1) and θ̄(p2). Therefore (θ̄(p1) ‖ θ̄(p2))a,
θ̄(p′1) ‖ θ̄(p2) and θ̄(p1)a ‖ θ̄(p2) are well-defined and members of TSW . So we can
use propositionT 1.3.29 to get (θ̄(p1)‖ θ̄(p2))a � θ̄(p1)a‖ θ̄(p2). From the congruence
of � and θ̄(p1)a � θ̄(p′1) we get θ̄(p1)a ‖ θ̄(p2) � θ̄(p′1) ‖ θ̄(p2). By transitivity of
�: (θ̄(p1) ‖ θ̄(p2))a � θ̄(p′1) ‖ θ̄(p2). So θ̄(p)a = θ̄(p1 ‖ p2)a = (θ̄(p1) ‖ θ̄(p2))a �
θ̄(p′1) ‖ θ̄(p2) = θ̄(p′1 ‖ p2) = θ̄(q) thereby finishing the inductive step in the proof of
(3.3).

Having established (3.3) it is easy to prove (3.2) by induction on the length of w.

w = ε: Then q = p. Clearly θ̄(p)w = θ̄(q)ε � θ̄(q).

w = a.w′ for some a ∈ Act, w′ ∈W : Then p
a−→ p′ w′−→ q for some p′ ∈ CL. By hypothe-

sis of induction p′ w′−→ q ⇒ θ̄(p′)w′ � θ̄(q). From (3.3) we have p
a−→ p′ ⇒ θ̄(p)a �

θ̄(p′). Hence θ̄(p)a.w′ � θ̄(p′)w′ and by transitivity θ̄(p)w = θ̄(q)

2

Lemma 3.3.11 For ∗ = a (∗ = r) and oa = > (or = ⊥) and all p, q ∈ PL we have:

∗) ∀A∀p′ ∈ D(A, p)∃q′ ∈ D(A, q)∀t. (t, p′)→∗ o∗ ⇒ (t, q′)→∗ o∗
iff

Θ̄(p) <∗ Θ̄(q)

Proof
∗ = a: if : Let a multiset A over Act and a p′ ∈ D(A, p) be given. We shall find a
q′ ∈ D(A, q) such that

∀t. (t, p′)→∗ > ⇒ (t, q′)→∗ >(3.4)
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By definition p′ ∈ D(A, p) implies ∃w ∈W.p w−→ p′, Aw ∼= A and then from the definition
of Θ̄ we have θ̄(p′) ∈ Θ̄(p). The assumed premise is Θ̄(p) <a Θ̄(q), so ∃sq ∈ Θ̄(q). θ̄(p′) �
sq. Again by definition of Θ̄ we know that there exists w′ ∈W and a q′ such that q

w′−→ q′,
θ̄(q′) = sq. By lemma 3.3.9 θ̄(p′) � θ̄(q′) implies (3.4) and Aθ̄(p′) = Aθ̄(q′). So if we can
prove q′ ∈ D(A, q) we have proved this implication. From lemma 3.3.10 we see w′ ∈ W ,

q
w′−→ q′ implies w′ ∈ λθ̄(q′). Hence Aw′ = Aθ̄(q′) = Aθ̄(p) ∼= A. All in all we have w′ ∈ W ,

Aw′ ∼= A and q
w′−→ q′, so q′ ∈ D(A, q).

only if : Let sp ∈ Θ̄(p) be given. By definition of <a we shall find an sq ∈ Θ̄(q) such
that sp � sq. sp ∈ Θ̄(p) means ∃w ∈ W∃p′. p w−→ p′, θ̄(p′) = sp. By definition of ∼=
we have A ∼= Aw for the multiset A over Act defined by |A|a = ψ(w, a) for all a ∈ Act.
So p′ ∈ D(A, p). Assuming the premise of the implication to be true there exists a

q′ ∈ D(A, q) such that (3.4) holds. q′ ∈ D(A, q) implies ∃w′ ∈ W. q w′−→ q′, Aw′ ∼= A, so
for all a ∈ Act. ψ(w′, a) = |A|a, wherefore for all a ∈ Act. ψ(w′, a) = ψ(w, a) and thereby
Aw′ = Aw. By lemma 3.3.10 we see w′ ∈ λθ̄(q′) and w ∈ λθ̄(p′), so Aθ̄(q′) = Aw′ = Aw =

Aθ̄(p′). This and (3.4) together with lemma 3.3.9 gives θ̄(p′) � θ̄(q′). Defining sq := θ̄(q′)

this reads sp = θ̄(p′) � θ̄(q′) = sq. Now sq ∈ Θ̄(q) since q
w′−→ q′, w′ ∈ W by definition of

Θ̄ implies θ̄(q′) ∈ Θ̄(q).

∗ = r: The proof is similar as for the case ∗ = a, with the difference that another version
of lemma 3.3.9 is used:
θ̄(q) � θ̄(p) iff Aθ̄(q) = Aθ̄(p) and

∀t. (t, p)→∗ ⊥ ⇒ (t, q)→∗ ⊥(3.5)

To see this from lemma 3.3.9 notice that by proposition 3.2.12 we in general have

¬((t, r)→∗ >) iff (t, r)→∗ ⊥
wherefore (3.5) is equivalent to ∀t. (t, q)→∗ > ⇒ (t, p)→∗ >. 2

Proof of Semantic Characterization Theorem
Since for ∗ = a and ∗ = r we have Θ̄(p) <∗ Θ̄(q) iff p �∗ q we get the theorem from
lemma 3.3.5, lemma 3.3.6 and lemma 3.3.11 in the cases ∗ = a and ∗ = r.
Finally: p <∼ q iff p <∼a q and p <∼r q iff p�a q and p�r q iff p� q. 2

We have already seen the close connection between the operators of Aπ and A? for ? in
{δ, υ, χ} and soon we shall investigate how the interpretations of PL in A? are related to
the interpretation of PL in Aπ which we now define in exactly the same way as we did in
definition 3.1.13 for the A? algebras.

Definition 3.3.12 [[ ]]π : PL −→ Cπ is recursively defined as follows:

[[NIL]]π = NILπ
[[a.p]]π = a.π[[p]]π

[[p + q]]π = [[p]]π +π [[q]]π
[[p ‖ q]]π = [[p]]π ‖π [[q]]π
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2

Recalling definition 3.1.8 where the interpretations in the Σ-po algebra Aπ of the operator
symbols where defined, we see that definition 3.3.12 can be read as:

[[NIL]]π = {ε}
[[a.p]]π = a.[[p]]π ∪ {ε}

[[p + q]]π = [[p]]π ∪ [[q]]π
[[p ‖ q]]π = [[p]]π ‖ [[q]]π

Lemma 3.3.13 For all p ∈ PL : Θ̄(p) = [[p]]π

Proof Induction on the structure of p.

p = NIL: Since NIL 6→ we have Θ̄(NIL) = {θ̄(NIL)} = {ε} = [[NIL]]π .

p = a.p′: Θ̄(p) = Θ̄(a.p′) = {θ̄(q) | ∃w ∈W. a.p′ w−→ q} = {θ̄(q) | ∃w ∈W. w 6= ε, a.p′ w−→
q} ∪ {θ̄(p)} = (since p ∈ PL)

{θ̄(q) | ∃w ∈W. w 6= ε, a.p′ w−→ q} ∪ {ε}(3.6)

Inspecting definition 3.2.2 we see a.p′ w−→ q, w 6= ε iff w = a.w′, p′ w′−→ q′ and

q = ā.q′ for some w′ ∈ W . So (3.6) = {θ̄(ā.q′) | ∃w′ ∈ W. p′ w′−→ q′} ∪ {ε} = (by

definition of θ̄) a.{θ̄(q′) | ∃w′ ∈W. p′ w′−→ q′} ∪ {ε} =

a.Θ̄(p′) ∪ {ε}(3.7)

By hypothesis of induction Θ̄(p′) = [[p]]π , so (3.7) equals [[a.p′]]π.

p = p1 + p2: Θ̄(p) = Θ̄(p1 + p2) =

{θ̄(q) | ∃w ∈W. p1 + p2
w−→ q}(3.8)

Again from definition 3.2.2 we see p1 + p2
w−→ q iff either p1

w−→ q or p2
w−→ q, so

(3.8) equals {θ̄(q) | ∃w ∈W. p1
w−→ q} ∪ {θ̄(q) | ∃w ∈W. p2

w−→ q}. The result then
follows directly from the hypothesis.

p = p1 ‖ p2: Θ̄(p) = Θ̄(p1 ‖ p2) =

{θ̄(q) | ∃w ∈W. p1 ‖ p2
w−→ q}(3.9)

The next to see is that (3.9) equals

{θ̄(q1 ‖ q2) | ∃w1, w2 ∈W∃q1, q2 ∈ CL. p1
w1−→ q1, p2

w2−→ q2}(3.10)

⊆: Follows directly from lemma 3.3.7.

⊇: Let s in (3.10) be given. Then there exists wi ∈ W, qi ∈ CL. pi
wi−→ qi for

i ∈ 2. Since p1 ‖ p2 is well-defined we have L(p1) ∩ L(p2) = ∅. By corollary 3.2.3
then q1 ‖ q2 and w1 ‖ w2 are well-defined too, so we can define q := q1 ‖ q2. From
propositionT 1.3.5.b) we know λ(w1 ‖w2) 6= ∅, so there exists a w ∈W.w � w1 ‖w2.
Then we can use lemma 3.3.7 to get p1 ‖ p2

w−→ q. Hence s = θ̄(q1 ‖ q2) = θ̄(q) in
(3.9). Clearly (3.10) equals {θ̄(q1) | ∃w1 ∈W. p1

w1−→ q1} ‖ {θ̄(q2) | ∃w2 ∈ W. p2
w2−→

q2} = Θ̄(p1) ‖ Θ̄(p2) from which the result follows directly from the hypothesis of
induction.
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Lemma 3.3.14 For all S ⊆ SW (hence also for S ⊆ TSW ) we have

δS<aS<aδS
υS<rS<rυS
χS < S < χS

Proof δS <a S and υS <r S follows directly from the definition of δ and υ. S <a δS,
S <r υS and S < χS follows from the reflexivity of � and S ⊆ δS, υS, χS.
χS < S: We shall prove χS <a S and χS <r S. But this is evident since by definition
s ∈ χS implies t � s � t′ for some t, t′ ∈ S. 2

Combining the last two lemmas we immediately have:

Corollary 3.3.15 For all p, q ∈ PL:

p�a q iff δ[[p]]π <a δ[[q]]π
p�r q iff υ[[p]]π <r υ[[q]]π
p� q iff χ[[p]]π < χ[[q]]π

Lemma 3.3.16 For ? in {δ, υ, χ} and all p ∈ PL:

?) [[p]]? = ?[[p]]π

Proof If we for ?S ∈ C? have:

?opπ(?S) = ?opπ(S)(3.11)

then ?) is easely proved by induction on the structure of p as indicated here: [[op(p)]]? =
op?([[p]]?) = (by proposition 3.1.9) ?opπ([[p]]?) = (hypothesis of induction) ?opπ(?[[p]]π) =
(by (3.11)) ?opπ([[p]]π) = ?[[op(p)]]π.
In proving (3.11) we use the properties of (sets of) tree semiwords, the fact that δ and υ
distributes over ∪ and the closure properties of ?:

??S = ?S(3.12)

for arbitrary sets of semiwords S.
The proof of (3.11):

opπ = NILπ: Trivial.

opπ = a.π: ?a.π?S = ?(a.?S ∪ {ε}), which by the ∪-distributivity of δ, υ and for ? = χ:
PropositionT 1.3.24.a) equals ?a.?S ∪ ?{ε}. By corollaryT 1.3.19.b) in the case of
? = υ and (3.12), corollaryT 1.3.16.a), corollaryT 1.3.25 in the other cases we see
that this quantity is the same as ?a.S ∪ ?{ε}. With the same arguments as above
this equals ?(a.S ∪ {ε}) = ?a.πS.
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opπ = +π: ?(?S+π ?T ) = ?(?S ∪?T ) = (by (3.12), ∪-distributivity of δ, υ and in the case
? = χ: corollaryT 1.3.23.c)) ?(S ∪ T ) = ?(S +π T ).

opπ = ‖π: ?(?S ‖π ?T ) = ?(?S ‖ ?T ). Using corollaryT 1.3.16.b) when ? = δ, (3.12) and
propositionT 1.3.18.d) in the case ? = υ and finally for ? = χ: corollaryT 1.3.23.b),
we see ?(?S ‖ ?T ) = ?(S ‖ T ) = ?(S ‖π T ).

2

Lemma 3.3.17

δ) ∀S, T ∈ Cδ. S <a T iff S ≤ δ T

υ) ∀S, T ∈ Cυ. S <r T iff S ≤ υ T

χ) ∀S, T ∈ Cχ. S < T iff S ≤χ T

Proof Recall at first corollary 3.1.4 that for ? in {δ, υ, χ}: ?) ∀T ∈ C?. ?(T ) = T .

δ) if : Assume S ≤ δ T or equivalently S ⊆ T . We shall show ∀s ∈ S∃t ∈ T. s � t. Let
s ∈ S be given. Since S ⊆ T and � is reflexive we can chose t = s.
only if : Assume S <a T . We shall show S ⊆ T . Let a s ∈ S be given. By
assumption there exists a t ∈ T such that s � t. Since δT = T we have s ∈ T too.

υ) Similar.

χ) if : Assume S ≤χ T . We shall prove S <a T and S <r T . This follows as for δ) and
υ).
only if : Assume S < T . We shall prove S ⊆ T . Let s ∈ S. From S <a T we see
∃t′ ∈ T. s � t′ and from S <r T : ∃t ∈ T. t � s. Hence ∃t, t′ ∈ T. t � s � t′ and
thereby s ∈ χT . Since for χT = T the result follows.

2

From the last two lemmas and corollary 3.3.15 it follows:

Corollary 3.3.18 For all p, q ∈ PL:

δ) p�a q iff [[p]]δ ≤ δ [[q]]δ

υ) p�r q iff [[p]]υ ≤ υ [[q]]υ

χ) p� q iff [[p]]χ ≤χ [[q]]χ

We are now in a position to prove the operational characterization theorem on page 75.
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Proof (of Operational Characterization Theorem)
From the Semantic Characterisation Theorem and corollary 3.3.18 it follows that e.g., <∼a

and ≤ δ agrees on PL. By corollary 3.1.11 the different operators of Σδ are (relative) ≤ δ-
monotone, so from the compositional definition of [[ ]]δ we deduce that ≤ δ is a (relative)
precongruence. Because of the agreement between <∼a and ≤ δ this must be the case for
<∼a too. Similar for the other preorders. 2

Before ending the section we shall prove that the denotational maps can denote any
element of the relevant domain—a fact which will be used in the next chapter.

Proposition 3.3.19 [[ ]]? : PL −→ C? is surjective for ? in {δ, υ, χ}.

Proof Given a S ∈ C?. We shall find a p ∈ PL with [[p]]? = S. S ∈ C? implies that there
exists a T ∈ Pf (TSW ) \ ∅ such that ?πT = S. Because by lemma 3.3.16 [[p]]? = ?[[p]]π we
see that it is enough to find a p such that [[p]]π = πT since then [[p]]? = ?[[p]]π = ?πT = S.
Now π is ∪-distributive, so πT = ∪t∈Tπ(t). Hence we are done if we for every t ∈ T
can find a pt ∈ PL such that [[pt]]π = π(t), because then we can chose p to be Σt∈T pt
(T is finite) and get [[p]]π = (by definition of +π and propositionT 1.3.35.c)) ∪t∈T [[pt]]π =
∪t∈Tπ(t) = πT .

We will now find such a pt for a given t by induction on the size of t.

Basis: Clearly t = ε. Let pt = NIL. Then [[p]]π = NILπ = {ε} = π(ε) = π(t).

Inductive step: Then γ(t) 6= {ε} and t = ε ‖ (‖γ(t) \ {ε}) = ‖γ(t) \ {ε}. By corollaryT
1.1.8.f) t′ ∈ RTSW for every t′ ∈ γ(t) \ {ε}.
If γ(t) \ {ε} only consists of one rooted tree semiword, t′, propositionT 2.2.15.a)
gives us ∃t′′ ∈ TSW. t′ = a.t′′. By hypothesis of induction we can find a p′′ ∈ PL
such that [[p′′]]π = π(t′′). Let p = a.p′′. Then [[p]]π = a.π[[p

′′]]π = a.π(t′′) ∪ {ε} = (by
corollaryT 1.3.36) π(a.t′′) = π(t′) = π(‖γ(t) \ {ε}) = π(t).
If γ(t)\{ε} consists of more than one rooted tree-semiword we clearly can write t as
t1 ‖ t2, where t1, t2 are nonempty tree-semiwords of size less than t. By hypothesis
we find pi ∈ PL. [[pi]]π = ti for i ∈ 2. Let p = p1 ‖ p2. Then [[p]]π = [[p1]]π ‖π [[p2]]π =
π(t1) ‖ π(t2) = (by propositionT 1.3.35) π(t1 ‖ t2) = π(t).

2

Finally we will briefly compare the equivalences. Since <∼ is defined as the intersection of
<∼a and <∼r it is immediate from the full abstraction results of this section, that both [[ ]]δ
and [[ ]]υ is as abstract as [[ ]]χ. By the two process terms:

p1 = a.b.NIL + a.NIL ‖ b.NIL and p2 = a.NIL ‖ b.NIL
it follows that [[ ]]δ is strictly more abstract than [[ ]]χ (identified by [[ ]]δ but not by [[ ]]χ).
That [[ ]]υ also is strictly more abstract than [[ ]]χ is seen from p1 and

p3 = a.b.NIL

The same examples can be used to see that in general [[ ]]δ is not as abstract as [[ ]]υ and
vice versa; p1 and p2 are identified by [[ ]]δ but not by [[ ]]υ and conversely with p1 and p3.
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Chapter 4

Algebraic Characterization

The purpose of this chapter is to introduce two proof systems which on a purely syntactical
level enables us to reason about how processes of PL can be interrelated via the different
operational precongruences. The idea will be that if a certain relation between two process
terms can be shown in the proof system then they will be related via the corresponding
test preorder in the same way.

As for the previous chapter most of the concepts are as described in [Hen85a] and we shall
also use some of the results.

Given a set of variables, X, and an arbitrary Σ-po algebra, A = (CA,≤A,ΣA), an A-
assignment is a mapping ρA : X −→ CA, and from the proof of the freeness theorem we
know a structural defined unique extension of ρA to the term algebra for Σ(X). If BL is
extended to the term algebra for the signature with variables, the corresponding extensions
of the different A?-assignments would not always be well-defined. Some modifications are
therefore necessary.

For a set of variables, X, BL is extended to include terms with variables from X simply
by extending the signature Σ to Σ(X) by augmenting Σ0 with X. The so obtained term
algebra is denoted BL(X). We shall assume that each variable, x ∈ X, has an associated
sort/ label set, Lx and furthermore that there is an infinite number variables for every
possible sort (finite subset of Act). Extending the map L from BL to BL(X) by letting
L(x) = Lx for every x ∈ X we can similarly as PL was extracted from BL define PL(X)—
the open process terms—to be those terms of BL(X) where every subterm of form t ‖ t′
satisfies L(t) ∩ L(t′) = ∅. To emphasize the possibility of variables we shall often use
t, t′, . . . to denote terms from PL(X).

An A?-assignment, ρA? , is now defined to be a mapping X −→ C? such that for all x ∈ X
we have:

ρA?(x) = S ⇒ L(x) = L(S)

If ρA? is extended to PL(X) in the same way as in the freeness theorem, ρA? is in this way
ensured to be well-defined (and unique). Notice that [[p]]? = ρA?(p) for all A?-assignments,
ρA? , if p ∈ PL.

The same goes for syntactic substitutions , i.e., PL(X)-assignments. That is ρ : X −→
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PL(X) is a PL(X)-assignment if for every x ∈ X:

ρ(x) = t⇒ L(x) = L(t)

The extension of a PL(X)-assignment to syntactic substitution will be written postfix.

4.1 Proof Systems

In this section we are going to formulate two proof systems DEDδ and DEDπ respec-
tively. These proof systems DEDδ and DEDπ will contain the (usual) inference rules
for (relative) precongruence, instantiation, transitivity, reflexivity as well as the inference
rule for basic inequations:

Reflexivity:
t ≤ t

Transitivity:
t ≤ t′, t′ ≤ t′′

t ≤ t′′

Substitutivity:
t ≤ t′

a.t ≤ a.t′
t1 ≤ t′1, t2 ≤ t′2

t1 + t2 ≤ t′1 + t′2

t1 ≤ t′1, t2 ≤ t′2

t1 ‖ t2 ≤ t′1 ‖ t′2
provided L(t1) ∩ L(t2) = ∅ = L(t′1) ∩ L(t′2)

Instantiation:
t ≤ t′

tρ ≤ t′ρ
for every PL(X)-assignment ρ

Inequations:
t ≤ t′

for every (π-) δ-inequation t ≤ t′

The δ-inequations and π-inequations respectively are as displayed below:
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π-inequations:
+1 x+ (y + z) = (x+ y) + z
+2 x+ y = y + x
+3 x = x+NIL
+4 x = x+ x

‖1 x ‖ (y ‖ z) = (x ‖ y) ‖ z
‖2 x ‖ y = y ‖ x
‖3 x = x ‖NIL

.+ a.(x+ y) = a.x+ a.y
‖+ x ‖ (y + z) = x ‖ y + x ‖ z

+5 x ≤ x+ y

δ-inequations: π-inequations and

δ.‖ a.(x ‖ y) ≤ a.x ‖ y

So the inequations are just relations between terms of PL(X).

More generaly for a proof system DED(E) of inequations as described by Hennessy
[Hen85a], where E is the set of basic inequations we have the following notions.

The inequations inference rule gives a statement t ≤ t′ for every t ≤ t′ in E. These
statements together with t ≤ t obtained by the reflexivity inference rule (with no premise)
will be denoted the axioms.

A proof, P , is a sequence of statements

t1 ≤ t′1, t2 ≤ t′2, . . . , tn ≤ t′n

where each statement ti ≤ t′i, i ∈ n, is derived by applying the inference rules to statements
earlier in the sequence. Clearly each ti ≤ t′i, i ∈ n has it’s own proof which is a part of P .
We denote it by Pti≤t′i .

We will say that a proof has the simple instantiation property if instantiation only is
used on the axioms.

Later in section 4.3 we shall see that if P is a proof of t ≤ t′ then there is another proof
P ′ of r ≤ t′ with this property.

Notice that DEDδ and DEDπ just are special cases of DED(E) with E = δ-inequations
and E = υ-inequations respectively.

If the statement t ≤ t′ can be proved in DEDπ we shall write this as `π t ≤ t′. Similar
for the statements of DEDδ. Since the π-inequations are contained in the δ-inequations
it follows that `π t ≤ t′ implies `δ t ≤ t′. As mentioned in the beginning to the chapter
the proof systems can be used to deduce how processes can be operationally related. This
will be more accurately addressed in the next two sections.
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4.2 Soundness

In this section we shall see that all statements proved in DEDπ will hold for the differ-
ent operational (relative) precongruences. More precisely DEDπ is sound w.r.t. <∼∗ over
PL(X) in the sense:

`π t ≤ t′ implies t <∼∗ t
′

where <∼∗ is extended from PL to PL(X) in the usual way by letting:

t <∼∗ t
′ iff tρPL <∼∗ t

′ρPL for all PL-assignments ρPL

Furthermore the larger proof system, DEDδ, will also be sound w.r.t. <∼a.

Theorem 4.2.1 (Soundness)

DEDδ is sound w.r.t. <∼a over PL(X).

DEDπ is sound w.r.t. <∼r over PL(X).

DEDπ is sound w.r.t. <∼ over PL(X).

Proof For an arbitrary PL-assignment, ρPL, it is easy to see from the substitution
lemma (see [Hen85a]) that the A?-assignment, ρA? , given by ρA?(x) = [[ρPL(x)]]? fulfills

∀t ∈ PL(X). ρA?(t) = [[tρPL]]?(4.1)

Conversely it is, due to the surjectivity of [[ ]]? as seen in proposition 3.3.19, also possible
for any given A?-assignment, ρA? , to find a PL-assignment such that [[ρPL(x)]]? = ρA? .
From the substitution lemma, (4.1) then holds. Consequently for t, t′ ∈ PL(X) we have

[[tρPL]]? ⊆ [[t′ρPL]]? for all PL-assignments ρPL
iff

ρA?(t) ⊆ ρA?(t
′) for all A?-assignments ρA?

The theorem is then immediate from the following proposition and the full abstractness
results of the preceding chapter. The denotational preorders, ≤ ?, are extended to PL(X)
by:

t≤ ? t
′ iff ρA?(t) ⊆ ρA?(t

′) for all A?-assignments ρA?

2

Proposition 4.2.2

δ) DEDδ is sound w.r.t. ≤ δ over PL(X).

υ) DEDπ is sound w.r.t. ≤ υ over PL(X).
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χ) DEDπ is sound w.r.t. ≤χ over PL(X).

Proof In the δ)-case t ≤ δ t
′ (for t, t′ ∈ PL(X)) means that ρAδ(t) ≤ δ ρAδ(t

′) for every
Aδ-assignment ρAδ . So to show DEDδ sound w.r.t. ≤ δ over PL(X) is the same as to show
` t ≤ t′ implies ρAδ(t) ≤ δ ρAδ(t

′) for every Aδ-assignment ρAδ . To do this it is according
to Hennessy enough to show Aδ satisfies the set of δ-inequations. I.e., we shall show for
every t ≤ t′ in the δ-inequations and every Aδ-assignment, ρAδ , that ρAδ(t) ≤ δ ρAδ(t

′) or
equivalently by the definition of ≤ δ that ρAδ(t) ⊆ ρAδ(t

′). Since [[ ]]δ by proposition 3.3.19
is surjective and agrees with Aδ on closed terms this follows from the substitution lemma
if for all PL-assignments, ρPL, and all t ≤ t′ in the δ-inequations: [[tρPL]]δ ⊆ [[tρPL]]δ.

Similar considerations for the υ) and χ) case.

δ): We look at the (in)equations one by one.

+1: We shall show that for all p, q, r ∈ PL. [[p + (q + r)]]δ = [[(p + q) + r]]δ.
This is seen as follows: [[p+(q+ r)]]δ = [[p]]δ +δ [[q+ r]]δ = . . . = [[p]]δ ∪ ([[q]]δ ∪ [[r]]δ) =
([[p]]δ ∪ [[q]]δ) ∪ [[r]]δ = . . . = [[(p + q) + r]]δ

+2: Similar.

+3: We prove [[p]]δ = [[p+NIL]]δ for a given p ∈ PL. Now [[p+NIL]]δ = [[p]]δ∪ [[NIL]]δ =
[[p]]δ ∪ {ε}, so ⊆ is evident.
For all r ∈ PL we have ε ∈ [[r]]π and thereby also {ε} ⊆ δ([[r]]π). Hence by lemma
3.3.16

{ε} ⊆ [[r]]δ(4.2)

Using r = p in (4.2) we get ⊇ too.

+4: Evident.

‖1: The proof of this case is not as obvious as for +1. Let p, q, r ∈ PL be given.
[[p‖(q‖r)]]δ = . . . = δ([[p]]δ ‖δ([[q]]δ ‖ [[r]]δ)) = (corollary 3.1.4) δ(δ[[p]]δ ‖δ([[q]]δ‖ [[r]]δ)) =
(corollaryT 1.3.16) δ([[p]]δ ‖ ([[q]]δ ‖ [[r]]δ)) = (corollaryT 1.2.11) δ(([[p]]δ ‖ [[q]]δ) ‖ [[r]]δ) =
. . . = [[(p ‖ q) ‖ r]]δ.

‖2: By the commutativity of ‖.
‖3: [[p ‖NIL]]δ = . . . =

δ([[p]]δ ‖ {ε}) = δ[[p]]δ(4.3)

= (corollary 3.1.4)[[p]]δ. Equation (4.3) follows from {ε} being neutral to ‖ on
P(TSW ) which again is inherited from (corollaryT 1.2.11) ε being neutral to ‖
on TSW .

.+: [[a.(p + q)]]δ = . . . = a.([[p]]δ ∪ [[q]]δ) ∪ {ε} = a.[[p]]δ ∪ a.[[q]]δ ∪ {ε} = (a.[[p]]δ ∪ {ε}) ∪
(a.[[q]]δ ∪ {ε}) = . . . = [[a.p + a.q]]δ.

‖+: Similar, but with the additional use of the ∪-distributivity of δ.

+5: We shall show [[p]]δ ⊆ [[p + q]]δ which evidently is true since [[p + q]]δ = [[p]]δ ∪ [[q]]δ.

δ.‖: At first we show that in general for S, T ⊆ TSW we have

a.δ(S ‖ T ) ⊆ δ((a.S ∪ {ε}) ‖ T )(4.4)
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Clearly δ(a.S‖T ) ⊆ δ((a.S∪{ε})‖T ), so it is enough to show a.δ(S‖T ) ⊆ δ(a.S‖T ).
Let u ∈ a.δ(S ‖ T ). Then u = a.u′ where u′ ∈ δ(S ‖ T ) so there is exists some
s ∈ S, t ∈ T such that u′ � s ‖ t. By congruence of �, u = a.u′ � a.(s ‖ t).
From propositionT 1.3.29 we have a.(s ‖ t) � a.s ‖ t wherefore u � a.s ‖ t. Hence
u ∈ δ(a.S ‖ T ).

Letting S = [[p]]δ, T = [[q]]δ in (4.4) it reads a.δ([[p]]δ ‖ [[q]]δ) ⊆ δ((a.[[p]]δ ∪ {ε}) ‖ [[q]]δ).
Now δ((a.[[p]]δ∪{ε})‖[[q]]δ) = δ([[a.p]]δ‖[[q]]δ) = [[a.p‖q]]δ and a.δ([[p]]δ‖[[q]]δ) = a.[[p‖q]]δ,
so we have a.[[p ‖ q]]δ ⊆ [[a.p ‖ q]]δ.
By (4.2) we have {ε} ⊆ [[a.p ‖ q]]δ too, so [[a.(p ‖ q)]]δ = a.[[p ‖ q]]δ ∪ {ε} ⊆ [[a.p ‖ q]]δ.

υ): The arguments are almost as for the δ-case just using the properties of υ instead.

+1 – +4: As in the case δ)

‖1 – ‖2: Similar to +1 and +2 because ‖υ does not have explicit υ-closure.

‖3: Follows with the same arguments as in δ).

.+: This case is a little different from the δ)-case because we have explicit υ-closure in
the definition of a.υ, but it is just as easy though.
[[a.(p+q)]]υ = . . . = υa.([[p]]υ∪[[q]]υ)∪{ε} = υ(a.[[p]]υ∪a.[[q]]υ)∪{ε} = (∪-distributivity
of υ) υa.[[p]]υ ∪υa.[[q]]υ ∪{ε} = (υa.[[p]]υ ∪{ε})∪ (υa.[[q]]υ ∪{ε}) = . . . = [[a.p+ a.q]]υ.

‖+: As the .+-case.

+5: Similar to the δ-case.

χ): Here we deduce:

+1: Suppose p, q, r ∈ PL. Then [[p + (q + r)]]χ = χ([[p]]χ ∪ χ([[q]]χ ∪ [[r]]χ)) = (corollaryT
1.3.23) χ([[p]]χ ∪ [[q]]χ ∪ [[r]]χ) = χ(χ([[p]]χ ∪ [[q]]χ) ∪ [[r]]χ) = . . . = [[(p + q) + r]]χ

+2: Direct from definition of [[ ]]χ and commutativity of ∪.

+3: Similar arguments as for +3 of δ) but without χ.

+4: Evident.

‖1 – ‖3: Similar to the corresponding cases of δ) but corollaryT 1.3.16 is used in stead of
corollaryT 1.3.23.

.+: [[a.(p + q)]]χ = . . . = a.χ([[p]]χ ∪ [[q]]χ) ∪ {ε} = (propositionT 1.3.24.a)) χ(a.[[p]]χ ∪
a.[[q]]χ ∪ {ε}) = χ([[a.p]]χ ∪ [[a.q]]χ) = [[a.p + a.q]]χ.

+5: From a) of propositionT 1.3.22 follows [[p]]χ ⊆ χ([[p]]χ) so evidently [[p]]χ ⊆ χ([[p]]χ ∪
[[q]]χ) = [[p+ q]]χ for any p, q ∈ PL.

2

4.3 Completeness

We shall now see that DEDδ is powerful enough to derive any <∼a-relationship between
two process.

91



Theorem 4.3.1 (Completeness)
DEDδ is complete w.r.t. <∼a over PL. I.e.,

∀p, q ∈ PL. p <∼a q implies `δ p ≤ q

Proof Follows from [[ ]]δ being fully abstract w.r.t. <∼a and the proposition below. 2

From the π-inequations it appears that in DEDπ statements concerning prefix (-closures)
as well as more ordinary algebraic properties such as commutativity and associativity can
be proved. With the extra inequation, δ.‖ it becomes possible to deal with δ-closures.
Looking at the inequation δ.‖ it is then tempting to replace it with

υ.‖ a.x ‖ y ≤ a.(x ‖ y)

in order to obtain a complete proof system, DEDυ, for <∼r. However this inequation would
not be sound as can be seen by considering the instantiation of υ.‖:

a.b.NIL ‖ c.NIL ≤ a.(b.NIL ‖ c.NIL)

Then we would have a.b.NIL ‖ c.NIL may reject ({c}, a.>), but a.(b.NIL ‖ c.NIL) ��may
reject ({c}, a.>). This can just as easy be seen denotationally: c ∈ [[a.b.NIL ‖ c.NIL]]υ,
but c 6∈ [[a.(b.NIL ‖ c.NIL)]]υ.

We could obtain a more powerful proof system for <∼r than DEDπ by adding the sound
inequations:

a.x ‖ y ≤ a.(x ‖ y) + a.NIL ‖ y
a.x ‖ y ≤ a.(x ‖ y) + y

Still we would not be able to prove e.g., a.b.NIL ‖ c.NIL ≤ a.b.c.NIL+ a.NIL ‖ c.NIL.
Of course still more inequations could be added, but we have not been able to find a
complete set, wherefore we stick to DEDπ which is sound for all three preorders.

Proposition 4.3.2 DEDδ is complete w.r.t. ≤ δ over PL.

The proof can of course not be done so directly as the soundness proof and some auxiliary
propositions are needed. To motivate these and the necessary extra definitions below we
will at first outline the proof—the full proof is on page 108.

Proof (sketch)
The main idea for proving

p≤ δ q ⇒ `δ p ≤ q(4.5)

is to reduce p (via `δ) to a sum, p′, of composition forms (terms without +) with the
property that there is exactly óne summand for each tree semiword in the denotation of p
in the Mδ model. If the same is done for q thereby obtaining q′ then the premise of (4.5)
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and definition of ≤ δ ensures that q′ can be proved equal to a term of the form p′ + q′′

and so the consequence of (4.5) follows by applying +5. The sum of composition forms
with the desired property is obtained through more stages. At first a sum of composition
forms is obtained essentially using the axioms for distributivity, .+ and ‖+. Then all
prefixes of the composition forms are added by use of +3 whereupon the composition
forms corresponding to the downwards closure of the sum are included via δ.‖. Finally
all duplicates (up to commutativity and associativity of ‖) of the composition forms are
removed by means of +4 (idempotent) in order to get the óne to óne correspondence with
the denotation. 2

Definition 4.3.3
Let p be a process from our process language (p ∈ PL). At first we define two fundamental
sublanguages of PL.

p is a composition form (p ∈ cf) is inductively defined by:

NIL ∈ cf
a.p ∈ cf if p ∈ cf
p ‖ q ∈ cf if p, q ∈ cf

p is a sumnormal form (p ∈ snf) is defined by:

cf ⊆ snf
p+ q ∈ snf if p, q ∈ snf

We can now define the set of summands, S(p), of a sumnormal form p.
Let S : snf −→ P(cf) be defined by:

p 7→ {p} if p ∈ cf
p1 + p2 7→ S(p1) ∪ S(p2)

p is a minimal sumnormal form (p ∈ msnf) is defined by:

cf ⊆ msnf
p1 + p2 ∈ msnf if p1, p2 ∈ msnf and S(p1) ∩ S(p2) = ∅

We denote the set of syntactic “deterministic” prefixes of a term p by P(p). Formally:
P : PL −→ P(cf) is defined by:

NIL 7→ {NIL}
a.p 7→ a.P(p) ∪ {NIL}

p1 + p2 7→ P(p1) ∪ P(p2)
p1 ‖ p2 7→ P(p1) ‖ P(p2)

We define p is a prefix form (p ∈ pf) by
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p ∈ pf
iff

p ∈ snf and if this is the case P(p) = S(p).

2

Notice

i) ∀p ∈ snf. S(p) 6= ∅.
ii) p ∈ msnf ⇒ p ∈ snf.

iii) (p ∈ snf, (p ≡ a.p′ or p ≡ p1 ‖ p2))⇒ p, p′, p1, p2 ∈ cf.

iv) a.P(p) in the definition of P shall be considered as the natural extension of the
operator symbol a. to cover sets as well. I.e., a.P(p) = {a.q | q ∈ P(p)}.

2

Whereas the functions in the last definition mapped to sets of terms they will map to
tree-semiwords and sets of these in the following.

Definition 4.3.4
We define θ : cf −→ TSW by:

NIL 7→ ε
a.p 7→ a.θ(p)

p1 ‖ p2 7→ θ(p1) ‖ θ(p2)

and Θ : snf −→ P(TSW ) by:

Θ(p) := {θ(q) | q ∈ S(p)} = θS(p),

where θ is extended in the natural way to sets. 2

Notice that the ambiguity arising in using a. both for terms and for semiwords is solved
in the definition of θ when fixing θ’s domain and codomain.

We introduce some notational convenience. We will say that two terms p, q are sum
congruent written ` p =s q if we can show ` p = q by +1, +2 and the other inference
rules. Similar ` p =c q means that ` p = q can be shown using ‖1 and ‖2 and we say that
p and q are composition congruent . Often we will omit ` and just write p = q instead of
` p = q. This has as consequence that we also write e.g., ` p =s q as p =s q. To avoid
confusion we use ≡ for syntactic equality between terms instead of =. Furthermore p =i q
(i for idempotent) means only +4 together with the other inference rules are used in the
proof of p = q and p =n q (n for neutrality w.r.t. ‖) that only ‖3 is used. We will also use
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combinations of these as e.g., p =si q.
Finally for A,B ∈ P(cf) we let A ⊆nc B denote ∀p ∈ A∃q ∈ B. ` p =nc q.

Most of the following proofs will be induction on the structure of some closed term p con-
sidered as a member of PL or as being a composition-, sumnormal- or minimal sumnormal
form. We will then often just list the different cases to consider—of course starting with
the basic cases.
But we will have some proofs which are by induction on the proof of some statement
p ≤ q—actually on the length of the proof. To this end the following general lemma is
useful.

Lemma 4.3.5 Let DED(E) be a proof system of inequations E. Furthermore let P be
a proof of t ≤ t′. Then there exists a proof P ′ of t ≤ t′ with the simple instantiation
property.

Proof We will use induction on the length, |P |, of the proof P of t ≤ t′.

|P | = 1: Then t ≤ t′ is an inequation of E or t = t′ and we cannot have used instantiation,
so we can let P ′ := P .

|P | > 1: Assume |P | = n and the proof P is

t1 ≤ t′1, t2 ≤ t′2, . . . , tn ≤ t′n

Now look at the last inference rule used to obtain tn ≤ t′n. Two cases depending on
whether tn ≤ t′n is obtained by instantiation or not.

No instantiation used:

Assume tn ≤ t′n is obtained from ti1 ≤ t′i1 , . . . , tik ≤ t′ik , il ∈ n− 1, l ∈ k by some inference
rule. Since |Ptil≤t′il | < |P | = n for l ∈ k we can use the hypothesis of induction to find

proofs P ′
til≤t′il

of til ≤ t′il with the simple instantiation property. Let

P ′ := P ′
ti1≤t′i1

, . . . , P ′
tik≤t′ik

, tn ≤ t′n

where the last statement is obtained by the inference rule. Clearly P ′ is a proof of tn ≤ t′n
with the desired property.

Instantiation used:

Here we have two subcases.
tn ≤ t′n is an instantiation of an axiom.

Assume this axiom is tj ≤ t′j , j ∈ n− 1. We see that

P ′ := tj ≤ t′j, tn ≤ t′n

is a proof of tn ≤ t′n with the simple instantiation property.

tn ≤ t′n is an instantiation, but not of an axiom.

Assume it is a ρ-instantiation of tj ≤ t′j , j ∈ n− 1, i.e., tn ≡ tjρ, t
′
n ≡ t′jρ. Since tj ≤ t′j

is not an axiom some inference rule must have been used to derive tj ≤ t′j . We look at
the different possibilities.
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transitivity: Assume tj ≤ t′j is obtained from tk ≤ t′k and tl ≤ t′l where tj ≡ tk, t
′
l ≡ t′j ,

t′k ≡ tl and k, l ∈ j − 1. Then Ptj≤t′k , tjρ ≤ t′kρ and Pt′
l
≤t′j , t

′
lρ ≤ t′jρ, where the last

statement is obtained by a ρ-instantiation, are proofs of tjρ ≤ t′kρ and t′lρ ≤ t′jρ.
Now k, l < j < n implies k + 1, l + 1 < n so the length of these proofs are less than
n wherefore we can use the hypothesis to get proofs P ′

tjρ≤t′kρ and P ′
tlρ≤t′jρ with the

property. Then since t′k ≡ tl implies t′kρ ≡ tlρ

P ′ := P ′
tjρ≤t′kρ, P

′
tlρ≤t′jρ, tjρ ≤ t′jρ

is a proof of tn ≤ t′n with the property.

substitutivity (congruence): Suppose tj ≡ f(ti1 , . . . , tik), t
′
j ≡ f(t′i1 , . . . , t

′
ik

) for some f in
Σ of rank k and that tj ≤ t′j is obtained from ti1 ≤ t′i1 , . . . , tik ≤ t′ik . Similar as in
the case of transitivity we by substitutivity find a proof

P ′ := P ′
ti1ρ≤t′i1ρ

, . . . , P ′
tikρ≤t′ikρ

, f(ti1ρ, . . . , tikρ) ≤ f(t′i1ρ, . . . , t
′
ik
ρ)

of f(ti1ρ, . . . , tikρ) ≤ f(t′i1ρ, . . . , t
′
ik
ρ) with the simple instantiation property. Now

since substitution ρ is a homomorphism we see f(ti1ρ, . . . , tikρ) ≡ (f(ti1 , . . . , tik))ρ ≡
tjρ ≡ tn and similar f(t′i1ρ, . . . , t

′
ik
ρ) ≡ t′n. So P ′ is actually a proof of tn ≤ t′n.

Instantiation: Assume tj ≤ t′j is obtained by ρ′-instantiation of tk ≤ t′k, k ∈ j − 1. I.e.,
tj ≡ tkρ

′ and t′j ≡ t′kρ
′.

We have a proof P ′
tk≤t′k for tk ≤ t′k. The length of the proof

Ptk≤t′k , tkρ ◦ ρ′ ≤ t′kρ ◦ ρ′

(where the last statement is a ρ ◦ ρ′-instantiation of tk ≤ t′k) is less than or equal to
k + 1. Since k + 1 ≤ j < n we can use the hypothesis to find a proof P ′

tkρ◦ρ′≤t′kρ◦ρ′
with the simple instantiation property. By the Substitution lemma (of Hennessy
[Hen85a]) tkρ ◦ ρ′ ≡ (tkρ

′)ρ ≡ tjρ ≡ tn and similar t′kρ ◦ ρ′ ≡ t′n. So

P ′ := P ′
tkρ◦ρ′≤t′kρ◦ρ′

is a proof of tn ≤ t′n with the desired property.

2

The advantage of this lemma is that when proving some property on the basis of the
length of a proof of a statement p ≤ q where p, q ∈ PL we can assume that the proof has
the simple instantiation property. Since p and q are closed terms the instantiation must
be closed too. This means that we can leave out instantiation in our considerations if we
instead consider closed instantiations of the axioms when dealing with these.

The first lemma shows that an action prefix of a sumnormal form within the proof system
can be distributed over the summands thereby obtaining a sumnormal form.

Lemma 4.3.6 p′ ∈ snf ⇒ ∃p ∈ snf. ` p = a.p′, S(p) = a.S(p′)

Proof Induction on the structure of p considered as a sumnormal form.
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p′ ∈ cf: Let p ≡ a.p′. Reflexivity gives ` p ≡ a.p′ = a.p′. We also have p′ ∈ cf ⇒ p ≡
a.p′ ∈ cf and thereby p ∈ snf. So since S(p′) = {p′} we have S(p) = {p} = {a.p′} =
a.{p′} = a.S(p′).

p′ ≡ p′1 + p′2, p
′
1, p

′
2 ∈ snf: By hypothesis of induction ∃pi ∈ snf. ` pi = a.p′i, S(pi) =

a.S(p′i) for i ∈ 2. Let p ≡ p1 + p2. We have:
` p ≡ p1 + p2 = a.p′1 + a.p′2 by congruence

= a.(p′1 + p′2) by .+
= a.p′

It only remains to show S(p) = a.S(p′). Notice p ∈ snf because p1, p2 ∈ snf.
So S(p) = S(p1 + p2) = S(p1) ∪ S(p2) = a.S(p′1) ∪ a.S(p′2) = a.(S(p′1) ∪ S(p′2)) =
a.S(p′1 + p′2) = a.S(p′).

2

In the next lemma a composition form parallel composed with a sumnormal form is
distributed in over the summands.

Lemma 4.3.7 p1 ∈ cf, p2 ∈ snf ⇒ ∃p ∈ snf. ` p = p1 ‖ p2, S(p) = {p1} ‖ S(p2).

Proof The proof is here by induction on the structure of p2

p2 ∈ cf: Let p ≡ p1 ‖ p2. We have ` p ≡ p1 ‖ p2 = p1 ‖ p2.
p1, p2 ∈ cf ⇒ p1‖p2 ∈ cf ⊆ snf and thereby also p ∈ cf. As p, p2 ∈ cf we have S(p) =
{p} and S(p2) = {p2}. Then S(p) = {p} = {p1 ‖ p2} = {p1} ‖ {p2} = {p1} ‖ S(p2).

p2 ≡ q1 + q2, q1, q2 ∈ snf: By hypothesis of induction:

∃p′i ∈ snf. ` p′i = p1 ‖ qi, S(p′i) = {p1} ‖ S(qi) for i ∈ 2.

Let p ≡ p′1 + p′2. We have: ` p ≡ p′1 + p′2 = p1 ‖ q1 + p1 ‖ q2 by congruence
= p1 ‖ (q1 + q2) by ‖+
≡ p1 ‖ p2

Notice p ∈ snf, because p′1, p
′
2 ∈ snf, so S is defined on p. Then S(p) = S(p′1)∪S(p′2) =

({p1} ‖ S(q1)) ∪ ({p1} ‖ S(q2)) = {p1} ‖ (S(q1) ∪ S(q2)) = {p1} ‖ S(p2).

2

The last lemma easely generalize to sumnormal forms.

Lemma 4.3.8 p1, p2 ∈ snf ⇒ ∃p ∈ snf. ` p = p1 ‖ p2, S(p) = S(p1) ‖ S(p2).

Proof

p1 ∈ cf: Use the last lemma to find p. From p1 ∈ cf it follows S(p1) = {p1}, so S(p) =
{p1} ‖ S(p2) = S(p1) ‖ S(p2).

p1 ≡ q1 + q2, q1, q2 ∈ snf: We can use the hypothesis of induction on q1, q2 to get q′1, q
′
2 ∈

snf such that ` q′i = qi ‖p2 and S(q′i) = S(qi)‖S(p2) for i ∈ 2. Let p ≡ q′1 + q′2. Then:
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` p ≡ q′1 + q′2 = q1 ‖ p2 + q2 ‖ p2 by congruence
=c p2 ‖ q1 + p2 ‖ q2
= p2 ‖ (q1 + q2) by ‖+
≡ p2 ‖ p1 =c p1 ‖ p2

Furthermore S(p) = S(q′1)∪S(q′2) = (S(q1)‖S(p2))∪(S(q2)‖S(p2)) = (S(q1)∪S(q2))‖
S(p2) = S(p1) ‖ S(p2).

2

We are now in a position to show that any term can be reduced to as sumnormal form.

Proposition 4.3.9 p ∈ PL⇒ ∃q ∈ snf. ` p = q.

Proof We use induction on the structure of p considered as a member of PL.

p ≡ NIL: NIL ∈ snf by definition so chose q ≡ NIL and we have the result by reflexivity.

p ≡ a.p′: By hypothesis of induction ∃q′ ∈ snf. ` p′ = q′. By congruence ` p ≡ a.p′ = a.q′.
From lemma 4.3.6 we find a q ∈ snf such that ` q = a.q′ and the result follows by
transitivity.

p ≡ p1 + p2: ∃qi ∈ snf. ` qi = pi for i ∈ 2 by hypothesis of induction. Let q ≡ q1 + q2. By
congruence then ` p ≡ p1 + p2 = q1 + q2 ≡ q.

p ≡ p1 ‖ p2: From the hypothesis we get ∃qi ∈ snf. ` qi = pi for i ∈ 2. By congruence
` q1 ‖ q2 = p1 ‖ p2 ≡ p. The result then follows from lemma 4.3.8.

2

The next lemma merely states that no extra terms are gained by applying P more than
once.

Lemma 4.3.10 For p ∈ PL we have PP(p) = P(p).

If D is a set of terms, PD, is as usual to understand as the natural extension of P (defined
on single terms) to sets of terms. We will write P(p) for a single term and e.g., P{p} when
considering sets of terms.

Proof By induction on the structure of p ∈ PL.

p ≡ NIL: P(p) = P(NIL) = {NIL} = P{NIL} = PP(p).

p ≡ a.p′: Here we have:
P(p) = P(a.p′) = {NIL} ∪ a.P(p′)

= {NIL} ∪ a.PP(p′) (by hypothesis of induction)
= {NIL} ∪ ⋃

q∈P(p′) a.P(q)
= {NIL} ∪ ⋃

q∈P(p′)(a.P(q) ∪ {NIL})
= P{NIL} ∪ ⋃

q∈P(p′) P(a.q)

=
⋃
q∈a.P(p′)∪{NIL} P(q)

=
⋃
q∈P(a.p′) P(q)

= PP(a.p′) = PP(p).
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p ≡ p1 + p2: P(p) = P(p1 + p2) = P(p1) ∪ P(p2) = (by hypothesis) PP(p1) ∪ PP(p2) =
P(P(p1) ∪ P(p2)) = PP(p1 + p2) = PP(p).

p ≡ p1 ‖ p2: We deduce:
P(p) = P(p1) ‖ P(p2)

= PP(p1) ‖ PP(p2) (by hypothesis)
= {p′1 ‖ p′2 | (p′1, p′2) ∈ PP(p1)× PP(p2)}
= {p′1 ‖ p′2 | (p′1, p′2) ∈

⋃
(q1,q2)∈P(p1)×P(p2) P(q1)× P(q2)}

=
⋃

(q1,q2)∈P(p1)×P(p2){p′1 ‖ p′2 | (p′1, p′2) ∈ P(q1)× P(q2)}
=

⋃
(q1,q2)∈P(p1)×P(p2) P(q1) ‖ P(q2)

=
⋃

(q1,q2)∈P(p1)×P(p2) P(q1 ‖ q2)
=

⋃
q∈P(p1)‖P(p2) P(q)

=
⋃
q∈P(p1‖p2) P(q) = PP(p).

2

Lemma 4.3.11 p ∈ snf ⇒ P(p) = PS(p).

Proof Induction on the structure of p considered as a sumnormal form.

p ∈ cf: Then S(p) = {p} wherefore P(p) = P{p} = PS(p).

p ≡ p1 + p2, p1, p2 ∈ snf: We see P(p) = P(p1)∪P(p2) = (by hypothesis) PS(p1)∪PS(p2) =
P(S(p1) ∪ S(p2)) = PS(p1 + p2) = PS(p).

2

From the last to lemmas we get:

Lemma 4.3.12 If p ∈ snf and there exists a q ∈ PL such that S(p) = P(q) then p ∈ pf.

That is if p is a sumnormal form with summands equal to the prefixes of some other term
then the summands of p are already closed under prefix.

Proof p ∈ snf so we only have to show S(p) = P(p). But this is easely seen:
S(p) = P(q) by assumption

= PP(q) by lemma 4.3.10
= PS(p) by assumption again
= P(p) by lemma 4.3.11 and the fact that p ∈ snf.

2

Lemma 4.3.13 p′ ∈ pf ⇒ ∃p ∈ pf. ` p = a.p′.

Similar as the lemmas leading to proposition 4.3.9 we shall now see how different operators
can be distributed in over prefix forms to obtain new prefix forms.

Proof As p′ ∈ pf implies p′ ∈ snf we can use lemma 4.3.6 to find a q ∈ snf such that
` q = a.p′ and

S(q) = a.S(p′)(4.6)
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Now let p ≡ q+NIL. By +3 we have ` p ≡ q+NIL = q = a.p′. It just remains to show
p ∈ pf. Notice that because q ∈ snf we have p ≡ q+NIL ∈ snf. We show S(p) = P(a.p′).
S(p) = S(q) ∪ S(NIL)

= a.S(p′) ∪ {NIL} by (4.6)
= a.P(p′) ∪ {NIL} because p′ ∈ pf
= P(a.p′)

Since p ∈ snf we can deduce p ∈ pf from S(p) = P(a.p′) and lemma 4.3.12. 2

Lemma 4.3.14 p1, p2 ∈ pf implies ∃p ∈ pf. ` p = p1 ‖ p2.

Proof p1, p2 ∈ pf implies p1, p2 ∈ snf so we can use lemma 4.3.8 to find a p ∈ snf such
that ` p = p1 ‖ p2 and

S(p) = S(p1) ‖ S(p2)(4.7)

To get the result it remains to show p ∈ pf. Since S(p) = (by (4.7)) S(p1) ‖ S(p2) =
(because p1, p2 ∈ pf) P(p1) ‖ P(p2) = P(p1 ‖ p2) and p ∈ snf we obtain p ∈ pf by lemma
4.3.12. 2

Lemma 4.3.15 p ∈ cf implies ∃q ∈ pf. ` p = q.

Proof Induction on the structure of p considered as a composition form.

p ≡ NIL: Let q ≡ NIL. P(NIL) = {NIL} = S(NIL) and by reflexivity ` p ≡ NIL =
NIL ≡ q.

p ≡ a.p′, p′ ∈ cf: By hypothesis there exists a q′ ∈ pf. ` p′ = q′. Using congruence we get
` p ≡ a.p′ = a.q′. As q′ ∈ pf lemma 4.3.13 gives us a q ∈ pf such that ` q = a.q′.
We see ` p = q and q ∈ pf,

p ≡ p1 ‖ p2, p1, p2 ∈ cf: There exists p′1, p
′
2 ∈ pf such that ` p1 = p′1 and ` p2 = p′2 by

hypothesis of induction. By congruence then ` p ≡ p1 ‖ p2 = p′1 ‖ p′2. As p′1, p
′
2 ∈ pf

lemma 4.3.14 gives us a q ∈ pf with ` q = p′1 ‖ p′2 from which the result follows.

2

It now easely follows that any sumnormal form can be reduced to a prefix form.

Proposition 4.3.16 p ∈ snf implies ∃q ∈ pf. ` p = q.

Proof Induction on the structure of p considered as a sumnormal form.

p ∈ cf: By the last lemma.

p ≡ p1 + p2, p1, p2 ∈ snf: By hypothesis and congruence we find q1, q2 ∈ pf such that
` p ≡ p1 + p2 = q1 + q2. Let q ≡ q1 + q2. q1, q2 ∈ pf ⇒ q1, q2 ∈ snf wherefore q ∈ snf.
We just have to show S(q) = P(q) in order to have q ∈ pf.
S(q) = S(q1) ∪ S(q2)

= P(q1) ∪ P(q2) because q1, q2 ∈ pf
= P(q1 + q2) = P(q).
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2

With the next lemma it is possible (by commutativity and associativity) to bring any
summand of a sumnormal form, p, to the front of p.

Lemma 4.3.17 Let p ∈ snf. Then q ∈ S(p) implies p ≡ q or ∃q′ ∈ snf. ` p =s q + q′.

Proof

p ∈ cf: In this case we have S(p) = {p} so q ∈ {p} implies p ≡ q.

p ≡ p1 + p2, p1, p2 ∈ snf: Here we have S(p) = S(p1)∪S(p2) so q ∈ S(p) gives us two cases
to consider.

q ∈ S(p1): Using the hypothesis of induction we also have two possibilities to con-
sider here. p1 ≡ q2: Chose q′ ≡ p2. By reflexivity ` p ≡ p1 + p2 ≡ q + q′.
∃q′′ ∈ snf: ` p1 =s q + q′′: Chose q′ ≡ q′′ + p2. We have:
` p ≡ p1 + p2 =s (q + q′′) + p2 by p1 =s q + q′′ and congruence

= q + (q′′ + p2) by +1
≡ q + q′

q′ ∈ snf follows from q′′ ∈ snf and p2 ∈ snf.

q ∈ S(p2): Similar but with additional use of +2.

2

Any two sumnormal forms which are equal up to idempotents, commutativity and asso-
ciativity have the same summands. Formally:

Lemma 4.3.18 Let p, q ∈ snf. Then ` p =si q implies S(p) = S(q).

Proof For the purpose of this proof it is convenient to extend S defined on snf to S′

defined on PL. Let S′ : PL −→ P(cf) be defined by:

NIL 7→ {ε}
a.p 7→ a.S′(p)

p1 + p2 7→ S′(p1) ∪ S′(p2)
p1 ‖ p2 7→ S′(p1) ‖ S′(p2)

A number of subproofs are necessary, but they are all inductive and quite trivial so we
only give the principal line.
S′ well-defined i.e., S′(p) ∈ cf for all p ∈ PL is proved by induction on the structure of p.
That S′ coincide with S on snf is shown by first proving

p ∈ cf ⇒ S′(p) = S(p)(4.8)

by induction on the structure of p considered as a member of cf and next

p ∈ snf ⇒ S′(p) = S(p)
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also by structural induction, but this time with p considered as a sumnormal form, using
(4.8) in the basis.
Finally for p, q ∈ PL:

` p =si q ⇒ S′(p) = S′(p)

is shown by induction on the number of inferences used to prove p =si q. Since S′ coincide
with S on snf the lemma then follows as a special case.

The reason that we need the extension is that if we tried to prove the lemma directly by
induction on the inferences we would get the following problem by transitivity:
If p, q ∈ snf and p =si q was proved using p =si r and r =si q we cannot be sure that
r ∈ snf and therefore could not use the hypothesis. 2

By the definition of Θ we then have:

Corollary 4.3.19 If p, q ∈ snf then ` p =si q implies Θ(p) = Θ(q).

Lemma 4.3.20 p ∈ msnf and ` p =s q implies q ∈ msnf.

Proof Shown by induction on the number of inferences used to infer p =s q. At first we
consider the axioms.

Reflexivity: Evident since then p = q.

+1: p ≡ p1 + (p2 + p3) = (p1 + p2) + p3 ≡ q. p ∈ msnf implies p1, p2, p3 ∈ msnf,
S(p1)∩ S(p2 + p3) = S(p1)∩ (S(p2)∪ S(p3)) = ∅ and S(p2)∩ S(p3) = ∅. Clearly then
also S(p1 + p2) ∩ S(p3) = ∅ and S(p1) ∩ S(p2) = ∅ so q ∈ msnf.

+2: Similar arguments using ∩ commutative.

Inferences:
Transitivity: Assume ` p =s q is obtained from ` p =s r and ` r =s q. Using the
hypothesis of induction on ` p =s r we have r ∈ msnf so we can use the induction once
more to get q ∈ msnf.
Congruences:

a.: Assume p′ =s q
′ is used to show p ≡ a.p′ =s a.q

′ ≡ q. Now p ≡ a.p′ ∈ msnf implies
p′ ∈ cf. Since p′ =s q

′ it then follows that q′ ∈ cf and thereby q ≡ a.q′ ∈ cf. Hence
q ∈ msnf.

+: W.l.o.g. assume p′ =s q
′ is used to infer p ≡ p′ + r =s q

′ + r ≡ q. p ≡ p′ + r ∈ msnf
implies p′, r ∈ msnf and S(p′) ∩ S(r) = ∅. By hypothesis of induction we then from
p′ =s q

′ get q′ ∈ msnf. Then since msnf ⊆ snf: p′ =s q
′ by lemma 4.3.18 implies

S(p′) = S(q′). Hence S(q′) ∩ S(r) = ∅ and we conclude q ∈ msnf.

‖: Similar arguments as in the a.-case.

2

We now show that any sumnormal form can be minimalized.

Proposition 4.3.21 For p ∈ snf there exists a q ∈ msnf such that ` p =si q.
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Proof At first we prove:

q1, q2 ∈ msnf ⇒ ∃q ∈ msnf. ` q1 + q2 =si q(4.9)

by induction on the number n = |S(q1) ∩ S(q2)|
n = 0: I.e., S(q1) ∩ S(q2) = ∅ and q1, q2 ∈ msnf. Let q ≡ q1 + q2. Clearly q ∈ msnf and by
reflexivity ` q1 + q1 = q.

n > 0: Chose a q′ ∈ S(q1) ∩ S(q2). By lemma 4.3.17 we obtain for i ∈ 2: qi ≡ q′ ∨ ∃q′i ∈
snf. ` qi =s q

′ + q′i, so there are four subcases to consider.

q1 ≡ q′ ≡ q2: ` q1 + q2 ≡ q′ + q′ =i q
′. As q′ ≡ q1 ∈ msnf we can chose q ≡ q′.

q1 ≡ q′, (∃q′2 ∈ snf. ` q2 =s q
′ + q′2): We get ` q1 + q2 ≡ q′ + q2 =s q

′ + (q′ + q′2) =s

(q′ + q′) + q′2 =i q
′ + q′2 =s q2. Chose q ≡ q2 and the result follows since q2 ∈ msnf.

(∃q′1 ∈ snf. ` q1 =s q
′ + q′1), q2 ≡ q′: Symmetric.

∃q′i ∈ snf. ` qi =s q
′ + q′i for i ∈ 2: We get ` q1 + q2 =s (q′ + q′1) + (q′ + q′2) =s (q′ + q′) +

(q′1 + q′2) =i q
′ + (q′1 + q′2) =s (q′ + q′1) + q′2 =s q1 + q′2. According to lemma 4.3.20

we have q′ + q′2 ∈ msnf because q2 ∈ msnf and ` q2 =s q
′ + q′2. q

′ + q′2 ∈ msnf gives
us S(q′) ∩ S(q′2) = ∅. Hence |S(q1) ∩ S(q′2)| < n. q′ + q′2 ∈ msnf also gives q′2 ∈ msnf
so we can use the hypothesis of induction on q1, q

′
2 to find a q ∈ msnf such that

` q1 + q′2 =si q. All together we then have ` q1 + q′2 =si q thereby completing the
inductive step in proving (4.9).

With (4.9) we can now prove the proposition by induction on the structure of p considered
as a sumnormal form.

p ∈ cf: We then also have p ∈ msnf and can chose q ≡ p.

p ≡ p1 + p2, p1, p2 ∈ snf: Using the hypothesis of induction on p1, p2 we can find q1, q2 ∈
msnf such that ` p1 =si q1 and ` p2 =si q1. By congruence ` p ≡ p1 + p2 =si q1 + q2
and from (4.9) we find a q ∈ msnf. ` q1 + q2 =si q. The result then follows by
transitivity.

2

The next lemma establish the first connection to the denotations of terms.

Lemma 4.3.22 For p ∈ PL we have [[p]]π = θP(p).

Proof Induction on the structure of p considered as a member of PL.

p ≡ NIL: We see [[p]]π = NILπ = {ε} = {θ(NIL)} = θ{NIL} = θP(NIL).

p ≡ a.p′: [[p]]π = a.[[p′]]π∪{ε} = (induction and the definition of θ) a.θP(p′)∪{θ(NIL)} =
{a.θ(q) | q ∈ P(p′)}∪{θ(NIL)} = (definition of θ) {θ(a.q) | q ∈ P(p′)}∪{θ(NIL)} =
θa.P(p′) ∪ θ{NIL} = θ(a.P(p′) ∪ {NIL}) = θP(a.p′) = θP(p).

p ≡ p1 + p2: [[p]]π = [[p1]]π ∪ [[p2]]π = (hypothesis of induction) θP(p1) ∪ θP(p2) = (because
θ is extended to sets in the natural way) θ(P(p1) ∪ P(p2)) = θP(p).
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p ≡ p1 ‖ p2: [[p]]π = [[p1]]π ‖ [[p2]]π = (by induction) θP(p1) ‖ θP(p2) = {θq1 ‖ θq2 | (q1, q2) ∈
P(p1) × P(p2)} = (by definition of θ) {θ(q1 ‖ q2) | (q1, q2) ∈ P(p1) × P(p2)} =
θ(P(p1) ‖ P(p2)) = θP(p).

2

From the last lemma, the definition of Θ and the fact that p ∈ pf implies P(p) = S(p) we
have:

Corollary 4.3.23 If p ∈ pf then [[p]]π = Θ(p).

Lemma 4.3.24 If ` p = q′ and q′ ∈ S(q) for a q ∈ snf then ` q = p+ q.

Proof By lemma 4.3.17 it is enough to consider the following two possibilities:

q′ ≡ q: By +4 we have ` q ≡ q′ = q′ + q′ ≡ q′ + q. As ` p = q′ we get by congruence
` q′ + q = p+ q from which the result follows.

∃q′′ ∈ snf. ` q =s q
′ + q′′: Again by +4 we have ` q′ = q′ + q′ so by congruence ` q =

(q′ + q′) + q′′ =s q
′ + (q′ + q′′) =s q

′ + q. From ` p = q′ and congruence we now get
` q′ + q = p+ q and thereby ` q = p+ q.

2

Proposition 4.3.25 Suppose p ∈ msnf and q ∈ snf. Then S(p) ⊆nc S(q) implies `
p+ q = q.

Proof Induction on the quantity n = |S(p)|.
n = 1: From p ∈ msnf follows S(p) = {p}. Now {p} ⊆nc S(q) means ∃q′ ∈ S(q). ` p =nc q

′.
The result then follows from the last lemma.

n > 1: Chose a p1 ∈ S(p). As |S(p)| > 1 lemma 4.3.17 gives us that there exists a p2 ∈ snf
such that ` p =s p1+p2. By lemma 4.3.20 we get p1+p2 ∈ msnf from p ∈ msnf. According
to the definition of msnf we then also have p1, p2 ∈ msnf and S(p1) ∩ S(p2) = ∅. Since
S(p1) 6= ∅ 6= S(p2) then |S(pi)| < |S(p1) ∪ S(p2)| = |S(p1 + p2)| = |S(p)| = n for i ∈ 2.
Because p1, p2 ∈ msnf and S(p1), S(p2) ⊆ S(p1) ∪ S(p2) = S(p) ⊆nc S(q) the hypothesis of
induction gives us

` p1 + q = q and ` p2 + q = q.(4.10)

Then ` p+ q =s (p1 + p2) + q
= (p1 + p2) + (q + q) by +4
=s (p1 + q) + (p2 + q)
= q + q by congruence and (4.10)
= q by +4.

2

Lemma 4.3.26 θ(p) = ε, p ∈ cf ⇒` p =n NIL

Proof
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p ≡ NIL: Trivial.

p ≡ a.p′: Then θ(p) = a.θ(p′) 6= ε so the premise is not fulfilled.

p ≡ q ‖ r: Then θ(p) = θ(q) ‖ θ(r). corollaryT 1.2.14.c) gives us: ε = θ(q) ‖ θ(r)⇒ θ(q) =
ε = θ(r). So we can use the hypothesis of induction to get q =n NIL and r =n NIL.
Then: ` p ≡ q ‖ r =n NIL ‖NIL by congruence

=n NIL by ‖3.

2

Lemma 4.3.27 If p ∈ cf and θ(p) = a.s then there exists a p′ ∈ cf such that θ(p′) = s
and ` p =n a.p

′.

Proof

p ≡ NIL: θ(p) = ε 6= a.s so the premise is not fulfilled.

p ≡ b.q: θ(p) = b.θ(q). From corollaryT 1.2.3.b) we get a = b and s = θ(q). So p ≡ a.q.
Then just chose p′ ≡ q. As p ∈ cf it follows that p′ ≡ q ∈ cf. By reflexivity p =n a.p

′.

p ≡ q ‖ r: θ(p) = θ(q) ‖ θ(r) so by corollaryT 1.2.14.a) we then get w.l.o.g. θ(q) = a.s and
θ(r) = ε. Now p ∈ cf ⇒ q ∈ cf so we can use the hypothesis of induction to find a
p′ ∈ cf such that ` q =n a.p

′ and θ(p′) = s. By lemma 4.3.26 θ(r) = ε ⇒ ` r =n

NIL. Then by congruence and ‖3: ` p ≡ q ‖ r =n q ‖NIL =n q =n a.p
′.

2

Lemma 4.3.28 If p ∈ cf then θ(p) = s ‖ t implies that there exists p1, p2 ∈ cf such that
θ(p1) = s, θ(p2) = t and ` p =nc p1 ‖ p2.

Proof

p ≡ NIL: θ(p) = ε and s ‖ t = ε ⇒ s = ε = t. Let p1 ≡ p2 ≡ NIL ∈ cf. It is seen that
θ(p1) = s and θ(p2) = t. The result then follows by ‖3.

p ≡ a.p′: θ(p) = a.θ(p′). By corollaryT 1.2.14.a) we from a.θ(p′) = s ‖ t get either

a) s = a.θ(p′), t = ε or

b) s = ε, t = a.θ(p′).

We look at the two possibilities separately.

a) Let p1 ≡ a.p′ ∈ cf and p2 ≡ NIL ∈ cf. We have θ(p1) = a.θ(p′) = s,
θ(p2) = θ(NIL) = ε = t and ` p ≡ p1 =n p1 ‖NIL by ‖3

≡ p1 ‖ p2.

b) Symmetric with the addition that ‖2 is used too.

p ≡ q1 ‖ q2: θ(p) = θ(q1) ‖ θ(q2). By corollaryT 1.2.14.b) θ(q1) ‖ θ(q2) = s ‖ t implies that
there exists s′, s′′, t′, t′′ such that s = s′ ‖ s′′, t = t′ ‖ t′′, θ(q1) = s′ ‖ t′, θ(q2) = s′′ ‖ t′′.
Using the induction on the last two equations we find q′1, q

′′
1 , q

′
2, q

′′
2 ∈ cf such that

q1 =nc q
′
1 ‖ q′2, q2 =nc q

′′
1 ‖ q′′2(4.11)
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and θ(q′1) = s′, θ(q′′1) = s′′, θ(q′2) = t′, θ(q′′2) = t′′. Now let pi ≡ q′i‖q′′i , i ∈ 2. Evidently
θ(p1) = θ(q′1) ‖ θ(q′′1 ) = s′ ‖ s′′ = s and similar θ(p2) = t. We also have:
` p ≡ q1 ‖ q2 =nc (q′1 ‖ q′2) ‖ (q′′1 ‖ q′′2) by congruence and (4.11)

=c (q′1 ‖ q′′1) ‖ (q′2 ‖ q′′2) by ‖1 and ‖2
≡ p1 ‖ p2

As q′1, q
′′
1 , q

′
2, q

′′
2 ∈ cf it follows that p1, p2 ∈ cf. This concludes the inductive step.

2

Proposition 4.3.29 Let p, q ∈ cf. Then θ(p) = θ(q) implies ` p =nc q.

Proof

p ≡ NIL: θ(p) = θ(NIL) = ε. By lemma 4.3.26 it is seen that θ(q) = ε implies q =n NIL
and thereby ` p =nc q.

p ≡ a.p′: By lemma 4.3.27 and θ(q) = a.θ(p′) = θ(p), q ∈ cf we can find a q′ ∈ cf such
that q =n a.q

′ and θ(q′) = θ(p′). As p ∈ cf ⇒ p′ ∈ cf and q′ ∈ cf we can use the
induction to get q′ =nc p

′. By congruence then a.q′ =nc a.p
′ ≡ p. As q =n a.q

′ we
have ` q =nc p.

p ≡ p1 ‖ p2: From lemma 4.3.28 and θ(q) = θ(p1) ‖ θ(p2), q ∈ cf we see that there exists
q1, q2 ∈ cf such that q =nc q1 ‖ q2 and θ(q1) = θ(p1), θ(q2) = θ(p2). As p ∈ cf ⇒
p1, p2 ∈ cf we can use the hypothesis of induction to get ` pi =nc qi, i ∈ 2. By
congruence then q =nc q1 ‖ q2 =nc p1 ‖ p2 ≡ p.

2

It should be noticed that we up til now only have been using the π-inequalities. To
emphasise this we will write `π p = q whenever this is the case. So we could actual
rewrite all the previous properties with this addition. If in addition to the π-inequalities
also δ.‖ is used in proving p = q we write `δ p = q.

Proposition 4.3.30 Let q ∈ cf, θ(q) = t and s ∈ TSW . Then s ≺· t⇒ ∃p ∈ cf. `δ p ≤
q, θ(p) = s

Proof Recall propositionT 2.3.44:

s ≺· t implies ∃u ∈ γ(s), D ⊆ γ(t). γ(s) \ {u} = γ(t) \D
and for some a, b ∈ Act, s′, s′′, t′ ∈ TSW either

a) u = a.(s′ ‖ b.s′′), D = {a.s′, b.s′′}
or

b) u = a.s′, D = {a.t′}, s′ ≺· t′

This natural suggests to make the proof in the size of Aθ(s). Letting t = θ(q) we see from
above that there is two cases to consider.
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a) Then t can be written as a.s′ ‖ b.s′′ ‖ (‖ γ(t) \ D). Since θ(q) = t we can use lemma
4.3.28 to find q1, q2, q3 ∈ cf such that

`π q = q1 ‖ q2 ‖ q3(4.12)

and θ(q1) = a.s′, θ(q2) = b.s′′, θ(q3) = (‖ γ(t) \ D). We can then by lemma 4.3.27 find
q′1, q

′
2 such that

`π q1 = a.q′1,`π q2 = b.q′2(4.13)

and θ(q′1) = s′, θ(q′2) = s′′. Let p := a.(q′1 ‖ b.q′2) ‖ q3. We have:
`δ p ≡ a.(q′1 ‖ b.q′2) ‖ q3

≤ a.q′1 ‖ b.q′2 ‖ q3 by δ.‖ and congruence
=π q1 ‖ q2 ‖ q3 by (4.13) and congruence
=π q by (4.12)

We also have θ(p) = θ(a.(q′1 ‖ b.q′2) ‖ q3) = a.(θ(q′1) ‖ b.θ(q′2)) ‖ θ(q3) = a.(s′ ‖ b.s′′) ‖ (‖ γ(t) \
D) = u‖ (‖γ(t)\D) = u‖ (‖γ(s)\{u}) = ‖ γ(s) = s. In the proof of this case we actually
did not use the inductive hypothesis.

b) In this case we can write t as a.t′‖(‖ γ(t)\{a.t′}). As in the a)-case we find q1, q2, q
′
1 ∈ cf

such that
`π q = q1 ‖ q2,`π q1 = a.q′1(4.14)

and θ(q1) = a.t′, θ(q2) = ‖ γ(t) \ {a.t′}, θ(q′1) = t′.
Clearly |As′| < |As| so we can use the inductive assumption to find p′ ∈ cf such that

`δ p′ ≤ q′1(4.15)

and θ(p′) = s′. Let p := a.p′ ‖ q2. We have:
`δ p ≡ a.p′ ‖ q2

≤δ a.q′1 ‖ q2 by (4.15) and congruence
=π q1 ‖ q2 by the second part of (4.14)
=π q by the first part of (4.14)

Finally: θ(p) = a.θ(p′) ‖ θ(q2) = a.s′ ‖ (‖ γ(t) \ {a.t′}) = u ‖ (‖ γ(s) \ {u}) = s.
This also completes the inductive step. 2

Proposition 4.3.31 Let q ∈ snf. Then ∃p ∈ snf. `δ p = q,Θ(p) = δΘ(q)

Proof At first we prove an intermediate result. Notice that since ≺·+ = ≺ we see s ≺ t
implies s ≺·n t for some n ≥ 1. Then we can use induction on n to prove:

q ∈ cf, s ≺ θ(q)⇒ ∃p ∈ cf. `δ p ≤ q, θ(p) = s(4.16)

n = 1: I.e., s ≺· θ(q). The result follows from proposition 4.3.30 above.

n > 1: Then there exists some u such that s ≺·n−1 u, u ≺· θ(q). By proposition 4.3.30
there exists some r ∈ cf. `δ r ≤ q, θ(r) = u. Hence s ≺·n−1 θ(r), so by hypothesis
∃p ∈ cf. `δ p ≤ r, θ(p) = s. Then by transitivity `δ p ≤ q.

We now prove the proposition by induction on the structure of q considered as a sumnor-
mal form.
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q ∈ cf: Then we by (4.16) have for every s ≺ θ(q) a ps ∈ cf such that `δ ps ≤ q, θ(ps) = s.
Since in general S-closure is finite and thereby {s | s ≺ θ(q)} too, we have by
congruence `δ ∑

{s≺θ(q)} ps ≤
∑

{s≺θ(q)} q and `δ q +
∑

{s≺θ(q)} ps ≤ q +
∑

{s≺θ(q)} q.
+4 gives us `δ q +

∑
{s≺θ(q)} q = q, so `δ q +

∑
{s≺θ(q)} ps ≤ q and from +5 we then

deduce `δ q +
∑

{s≺θ(q)} ps = q. Now let p := q +
∑

{s≺θ(q)} ps. Then `δ p = q and
Θ(p) = {θ(q)} ∪ {θ(ps) | s ≺ θ(q)} = {θ(q)} ∪ {s | s ≺ θ(q)} = {s | s � θ(q)} =
δθ(q) = δ{θ(q)} = δ{θ(q′) | q′ ∈ {q}} = (since q ∈ cf) δ({θ(q′) | q′ ∈ S(q)} = δΘ(q).

q ≡ q1 + q2, q1, q2 ∈ snf: By hypothesis of induction we know that there exists pi ∈ snf. `δ
pi = qi,Θ(pi) = δΘ(qi) for i ∈ 2. Define p := p1 + p2 ∈ snf. Then `δ p ≡ p1 + p2 =
q1 + q2 ≡ q by congruence. Furthermore Θ(p) = Θ(p1 + p2) = {θ(p′) | p′ ∈
S(p1) ∪ S(p2)} = Θ(p1) ∪ Θ(p2) = δΘ(q1) ∪ δΘ(q2) = δ(Θ(q1) ∪ Θ(q2)) = . . . =
δΘ(q1 + q2) = δΘ(q).

2

Finally we are ready to prove the completeness in full detail.

Proof (of proposition 4.3.2) From the previous lemmas and propositions we at first show:

p ∈ PL⇒ ∃q ∈ msnf. `δ p = q, [[p]]δ = Θ(q)(4.17)

Given p ∈ PL. From proposition 4.3.9 we find a p1 ∈ snf. `π p = p1. Then from
proposition 4.3.16 also a p2 ∈ pf is obtained such that `π p1 = p2. Since `π p = p2 and
the proof system is sound we have [[p]]δ = [[p2]]δ. Now by proposition 4.3.31 we find a
p3 ∈ snf such that `δ p2 = p3 and δΘ(p2) = Θ(p3). Furthermore proposition 4.3.21 gives
us a q ∈ msnf. `π p3 =si q. By corollary 4.3.19 then Θ(p3) = Θ(q). Collecting the facts
we have `δ p = q and
[[p]]δ = [[p2]]δ

= δ[[p2]]π by lemma 3.3.16
= δΘ(p2) by corollary 4.3.23 and the fact that p2 ∈ pf
= Θ(p3) = Θ(q)

thereby establishing (4.17)

Now for the completeness. Assume [[p]]δ ≤ δ [[q]]δ.
By (4.17) we can find p′, q′ ∈ msnf. `δ p = p′,`δ q′ = q and [[p]]δ = Θ(p′), [[q]]δ = Θ(q′).
Then by definition of ≤ δ we have [[p]]δ≤ [[q]]δ implies Θ(p′) ⊆ Θ(q′) which by the definition
of Θ is the same as {θ(p′′) | p′′ ∈ S(p′)} ⊆ {θ(q′′) | q′′ ∈ S(q′)} or equivalently

∀p′′ ∈ S(p′)∃q′′ ∈ S(q′). θ(p′′) = θ(q′′)(4.18)

Since θ(p′′) = θ(q′′), p′′, q′′ ∈ cf by proposition 4.3.29 implies `π p′′ =nc q
′′ we see that

(4.18) can be written as
S(p′) ⊆nc S(q′)

Because p′, q′ ∈ msnf ⊆ snf we can use proposition 4.3.25 to deduce `π p′ + q′ = q′. By
+5 we have `π p′ ≤ p′ + q′ so `π p′ ≤ q′. Now p′ and q′ where found such that `δ p = p′

and `δ q′ = q wherefore `δ p ≤ q by transitivity and we are done. 2
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Chapter 5

Adding Recursion to PL

In this chapter we shall extend our process language, PL, to include recursively defined
processes and investigate their semantics as in chapter 3.
All concepts introduced in the previous chapters should be adjusted to the new set-up
and also new concepts are needed. We will make good use of the results obtained in these
chapters so as results and notions of Hennessy [Hen85b] which the reader will be assumed
to be acquainted with. Also some notions of [Hen87a]) are used.

5.1 Denotational Semantics

In order to define interpretations of the recursively defined processes the Σ-po algebras
are extended to Σ-domains. The signature remains the same, but the function symbol
NIL of rank 0 is nominated the rôle of Ω in [Hen87a], i.e., the syntactical representative
of the least element of the interpretations. The carriers are in principle the old ones but
extended to include infinite sets as well. Formally:

Definition 5.1.1 For ? in {δ, υ, χ} the carrier C? is defined by:

?) C? = {S 6= ∅ | ∃T ⊆ TSW. S = ?(πT )}

2

Notice that we have left out the restriction of finiteness. The elements of the ?-carriers
are of course ?-closed so corollary 3.1.4 remains true in this set-up. Also the definition
and results definition 3.1.5—corollary 3.1.11 carry over since the proofs there makes no
use of the finiteness of the sets. The only deviation is of course in definition 3.1.8 where
elements of Cπ now may be infinite sets as well.
The purpose of the next propositions is to show that the carriers are algebraic complete
partial orders (algebraic cpos for short).

Proposition 5.1.2 For each ? in {δ, υ, χ} the pair (C?,≤?) is an algebraic cpo with
least element ⊥C? = {ε} and every nonempty subset D of C? has a lub

⊔
?D = ?(

⋃
d∈D d)

109



or for short
⊔
?D = ?

⋃
d∈D d. In the case of ? in {δ, υ} ⊔

?D actually equals
⋃
d∈D d.

Furthermore the compact elements are the finite sets of C?.

Proof At first we show (C?,≤ ) to be a cpo. Recall that ≤ ? simply is ⊆. Already in
chapter 3 it was noticed (though for finite sets) that {ε} is the least element ⊥C? of C?
and that (C?,⊆) is a partial order. Now let D be a nonempty subset of C?.⊔
?D = ?

⋃
d∈D d ∈ C? is seen as follows: d ∈ C? implies d = ?(πTd) for some ∅ 6= Td ⊆

TSW . Clearly
⋃
d∈D Td ⊆ TSW and is nonempty since D is. Then ?(π(

⋃
d∈D Td)) =

?
⋃
d∈D πTd = (in case of χ: corollaryT 1.3.23) ?

⋃
d∈D ?(πTd) = ?

⋃
d∈D d. Notice that we

actually have ⊔
?
D =

⋃
d∈D

d if ? in {δ, υ}(5.1)

since δ and υ distributes over ∪.
Also

⊔
D is a lub of D: Obviously

⊔
?D is a ub for D. Suppose there exists a ub e ∈ C?

of D i.e., ∀d ∈ D.d ⊆ e. We shall show
⊔
?D ⊆ e and do this by proving t ∈ ⊔

?D implies
t ∈ e. By (5.1) this is clear in the case of ? in {δ, υ}. So we are left with the case ? = χ.
Now t ∈ ⊔

χD = χ
⋃
d∈D d implies ∃d, d′ ∈ D. t ∈ χ{d, d′}. By assumption d, d′ ⊆ e and

since e ∈ Cχ it must be χ-closed, so χ{d, d′} ⊆ e and thereby also t ∈ e.
Since every directed set is nonempty we then have that (C?,⊆) is a cpo.

Let a ∈ C? be a finite set. We shall show that a is compact. That is for a directed set D
such that a ⊆ ⊔

?D there exist an e ∈ D such that a ⊆ e. At first we prove

∀t ∈ a∃dt ∈ D. t ∈ dt
Assume t ∈ a. Since a ⊆ ⊔

?D we have t ∈ ⊔
?D wherefore ∃d, d′ ∈ D. t ∈ ?{d, d′}. D

directed implies that there exists a dt ∈ D such that d, d′ ⊆ dt. Because dt is ?-closed we
must have ?{d, d′} ⊆ dt and hence also t ∈ dt.
Now since a is finite Da = {dt | t ∈ a} must be finite too. The directedness of D implies
there is a ub e of Da in D and clearly a ⊆ e. So a is indeed compact.

Conversely we show that all compact elements are finite sets.
Suppose a ∈ C? is an infinite set. Then there exists a infinite subset T of TSW such
that a = ?πT . Since T is infinite it contains a countable infinite subset T ′ = {tn}n∈IN of
different tree semiwords. For all n ∈ IN define

Tn =
⋃
i≤n{ti}

Sn = {s ∈ T | ∀j > n. Atj 6⊆ As}
dn = ?π(Tn ∪ Sn)

At first we show that D = {dn}n∈IN forms an increasing chain.
Since Tn ⊆ Tn+1 and Sn ⊆ Sn+1 it follows that dn ⊆ dn+1, so it remains to show that the
chain is increasing i.e.,

∀n∃m > n. dn ⊂ dm(5.2)

Let n be given. In general for an arbitrary finite set V of (finite) semiwords there is only
finite many semiwords s such that there is a t ∈ V with As ⊆ At. So because Tn is finite
and T ′ is infinite there then exists a tm ∈ T ′ such that ∀t ∈ Tn. Atm 6⊆ At. It follows that
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m > n and tm ∈ dm. Also tm 6∈ dn.
Assume on the contrary tm ∈ dn. Then there exists s, t ∈ Tn∪Sn such that tm ∈ ?π{s, t}.
So either Atm ⊆ As or Atm ⊆ At. Consider Atm ⊆ As. s must come from Tn or Sn. If
s ∈ Tn this means Atm ⊆ Ati for some ti ∈ Tn. But this is impossible by the way tm is
chosen. If s ∈ Sn we have ∀j > n. Atj 6⊆ As, especially Atm 6⊆ As as m > n. Again a
contradiction. The case Atm ⊆ At is ruled out in the same way. Hence the assumption
was false.
Now where were we know that D is an increasing chain we convince ourselves that a ⊆⊔
?D

To begin with we show:
∀t ∈ T∃n. t ∈ Tn ∪ Sn(5.3)

If t ∈ T ′ then t = tn for some n and t ∈ Tn. So suppose t ∈ T \ T ′. There is only finite
many ti(∈ T ′) with Ati ⊆ At. So choose n to be the i of the last ti with Ati ⊆ At. Then
∀j > n. Atj 6⊆ At and so t ∈ Sn.
Next to show a ⊆ ⊔

?D let an s ∈ a be given. Since ∀n. dn ⊆ ⊔
?D it is enough to find

a dm such that s ∈ dm in order to have s ∈ ⊔
?D. s ∈ a implies ∃t, t′ ∈ T. s ∈ ?π{t, t′}.

Using (5.3) we obtain n and n′ for t and t′ respectively. W.l.o.g. assume n ≤ n′. Then
Tn ∪ Sn ⊆ Tn′ ∪ Sn′ and t, t′ ∈ Tn′ ∪ Sn′ wherefore ?π{t, t′} ⊆ dn′. So s ∈ ?π{t, t′} ⊆ dn′

and we can chose m = n′ to get the desired dm.

We can now return to the question of the compactness of a. Since a is assumed to be
compact and a ⊆ ⊔

?D there should exists a dn ∈ D such that a ⊆ dn. By (5.2) there
exists a m such that dn ⊂ dm or by the proof of (5.2) ∃tm. tm 6∈ dn. But this is a
contradiction to tm ∈ T ′ ⊆ a, so our assumption of a being an infinite set was wrong.

Knowing how the compact elements of C? looks like it easier to show (C?,⊆) algebraic.
We shall show ∀a ∈ C?. a =

⊔
?Da, where Da = {d | d ⊆ a, d compact}.

Since {ε} ⊆ a for all a it follows that Da is nonempty, so
⊔
?Da is defined. It is clear that⊔

?Da ⊆ a as a is a upper bound for Da. To see the other inclusion let a t ∈ a be given.
We prove t ∈ ⊔

?Da. t ∈ a = ?πT implies there exists s, s′ ∈ T such that t ∈ ?π{s, s′}.
?π{s, s′} ∈ Da follows from ?π{s, s′} ⊆ a and the finiteness of ?π{s, s′}. In general d ∈ D
implies d ⊆ ⊔

?D so we have t ∈ ?π{s, s′} ⊆ ⊔
?Da. 2

In order to see that we actually have obtained Σ-domains corollary 3.1.11 must be
strengthened to:

Proposition 5.1.3 All op? ∈ Σ? are (relative) continuous on C? w.r.t. ≤ ? for each ? in
{δ, υ, χ}.

Proof Since the operators of Σπ are natural extensions to sets they evidently are con-
tinuous w.r.t. ≤ π (⊆). The proofs of (3.11) and (3.12) on page 83 can be carried over to
infinite sets wherefore we get:

?opπ(?S) = ??opπ(S)(5.4)

where opπ ∈ Σ?n and ?S ∈ C?n. It is then an easy matter to show the operators to be
continuous. E.g., suppose D is a nonempty subset of C?. Then
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a.?
⊔
?D = ?a.π(?

⋃
D) definition of

⊔
? and proposition 3.1.9

= ??a.π
⋃
D by (5.4)

= ??
⋃
a.πD a.π continuous

= ?
⋃
?a.πD by the nature of ?

=
⊔
? a.?D

That we in general for a nonempty set, D, of sets of tree-semiwords have:

χχ
⋃
D = χ

⋃
χD (= χ

⋃
S∈D

(χS))

follows from c) of corollaryT 1.3.23. Similarly it is shown that +? and ‖? are left and right
continuous (‖? under the usual proviso). 2

Corollary 5.1.4 For each ? in {δ, υ, χ} A? = (C?,≤ ?,Σ?) is a Σ-domain.

We now proceed by defining the language, RPL(X), of the recursive process terms.
RPL(X) can be considered as the extension of PL(X) obtained by adding constructors
for recursion.

The recursive terms over Σ, RBL(X), is the terms obtained from the following schema:

t ::= NIL | x, x ∈ X | a.t, a ∈ Act | t+ t | t ‖ t | rec x. t, x ∈ X

RPL(X) is then defined to be those terms of RBL(X) where every subterm t meets the
usual requirement:

t = t1 ‖ t2 ⇒ L(t1) ∩ L(t2) = ∅(5.5)

and the additional requirement:

t = rec x. t′ ⇒ L(x) = L(t′)(5.6)

where L is extended to RBL(X) by defining L(rec x. t) = L(x) ∪ L(t).

FV (t) is defined in the normal way to be the free variables in t. The recursive processes
is the subset of RPL(X) with no free variables and is denoted RPL.

Notice

i) PL(X), PL ⊆ RPL(X) and PL = PL(X) ∩RPL.

ii) Since rec x. p intuitively stands for the “solution” of the equation x = p the require-
ment in c) of equal sorts of x and p is natural.

2

We shall refer to PL(X) ⊆ RPL(X) as the syntactic finite process terms.

The definitive consequences of the restriction on the arguments to ‖ become clear by the
introduction of rec x. as can be seen by the following example.
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Example: Consider the term p = a.NIL ‖ b.x ∈ PL(X). No matter what sort x might
have rec x. p cannot be a (legal) term of RPL(X) because the sort of x must contain a
and b in which case we would not have p ∈ PL(X). As a consequence rec x. can only
prefix terms containing ‖ if at most one of the arguments has nonempty sort. This means
that only terms like rec x. (NIL‖ p) ‖NIL are possible. On the other hand RPL(X) can
contain terms like (rec x. a.x+ b.x) ‖ (rec y. c.y + d.y).

The denotational maps [[ ]]δ, [[ ]]υ and [[ ]]χ are given in the standard way by means of
environments as described by Hennessy. Of course the environments shall be modified
as the A?-assignments in chapter 4. Notice that [[ ]]? is independant of the environement
when used on closed terms.

5.2 Operational Semantics

With the definitions and results of section 3.2 extended in the natural way to the new
setting we can take over most of them. We will in the following briefly state the main
differences.

RBL(X) is defined to be the least set C such that:

RBL(X) ⊆ C
ā.t ∈ C if t ∈ C and a ∈ Act

t1 ‖ t2 ∈ C if t1, t2 ∈ C

and RCL(X)—the recursive configuration terms—are defined to be the terms of RBL(X)
that satisfies (5.5) and (5.6) above. The recursive process configurations RCL are simply
the closed terms of RCL(X).

Of course definition 3.2.2 has to have a inference rule for rec x.−:

6)
p[rec x. p/x]

a−→ q, a ∈ Act
rec x. p

a−→ q

and the test configurations, TC, shall be changed to RTC in order to include recursive
process configurations (in (t, p)). The test language, TL, remain unchanged. The rest of
the corresponding section of chapter 3 extends smoothly.

5.3 Full Abstractness

The map θ̄ : CL −→ TSW associating tree-semiwords with configurations is extended
to RCL −→ TSW simply by letting θ̄(p) = ε if p ∈ RPL and otherwise keeping it’s
compositional definition (page 75).

In this section we shall also use the notions of algebraic relations and syntactic preorders
as explained in [Hen87a].
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For t, t′ ∈ RPL(X) we write t � t′ to mean that t is a syntactic approximation to t′ where
� is defined to be the least (relative) Σ-precongruence over RPL(X) which satisfies:

NIL � t
t[rec x. t/x] � rec x. t

(5.7)

For every t ∈ RPL(X), Fin(t) denotes {t′ ∈ PL(X) | t′ � t}; i.e., Fin(t) is the syntactical
finite approximations to t. � is extended to RCL(X) by taking it to be the least (relative)
Σ-precongruence over RCL(X) which satisfies (5.7) above.

A relation R over RPL is algebraic if for all t, u ∈ RPL:

t R u iff ∀t′ ∈ Fin(t)∃u′ ∈ Fin(u). t′ R u′

In the following it will prove useful to be able to limit the number of experiments necessary
to distinguish processes. To this end we first investigate the possibilities to reduce the
size of a test t in an experiment (A, t) on a process q without affecting the outcome of the
experiment.
Looking at definition 3.2.9 we get some ideas. As an example consider inference rule 6)

and the test ā.t. If p 6 ā−→ the test a.> would have the same outcome. Whether p
ā−→

or p 6 ā−→ depends naturally on p, but if we can find some criterions under which we can
deduce p 6 ā−→ for all a ∈ Act we can certainly reduce the test.
Now if we have signaled the multiset of actions A getting to p (i.e., p ∈ D(A, q)) it should

be clear that p
w̄−→ p′ implies |w| ≤ |A|. Hence we can make the reduction whenever we

are sure that at least |A| signaled actions have been tested. I.e., if ā.t is a subterm of the
test t′ in the experiment (A, t′) and the “path” leading to ā.t is |A| long we can replace
ā.t by ā.>. So this limits the necessary depth of a test t′ in an experiment (A, t′).

Another idea to reduce the set of experiments has it’s roots in the same inference rule.
Consider the same example as above. Clearly it makes no difference to the outcome of

the test if we replace a with b in ā.t as long as we are sure p 6 b̄−→.

These considerations leads to the following definition and proposition.

Definition 5.3.1 Given c ∈ Act and B ⊆ Act we successively for each n ∈ IN define
fnc,B : TL −→ TL structurally as follows:

n = 0: > 7→ >
ā.t 7→ c̄.>

t2 t′ 7→ f 0
c,B(t) 2 f 0

c,B(t′) for 2 ∈ {&,∇}
n > 0: > 7→ >

ā.t 7→ b̄.fn−1
c,B (t) where b =

{
a if a ∈ B
c otherwise

t2 t′ 7→ fnc,B(t) 2 fnc,B(t′) for 2 ∈ {&,∇}

2
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It should be clear that fnc,B is well-defined.

Notice

i) A subsequent test to ā. is discarted and > inserted when f 0
c,B is applied.

ii) If ā occurs in fnc,B(t) then a ∈ B ∪ {c}.

2

Proposition 5.3.2 Let p ∈ RPL and (A, t) ∈ E. If c 6∈ L(p) then:

p may x (A, t) iff p may x (A, f
|A|
c,L(A)(t))

where x either is accept or reject.

Before we prove this proposition we need the following definition and lemma. We will
define a function, ad, which given a p ∈ RCL gives an upper bound of the length of
w ∈ Act∗ where p

w̄−→. Notice there must not be any initiation of actions in the sequence
(w̄ ∈ Act∗). Latter we need the action depth, ad, of a closed syntactical finite term (∈ PL)
too so we introduce this notion here too. It will also be convenient with a function, L̄,
which yields the label set corresponding to the actions signaled to initiate.

Definition 5.3.3 The action depth, ad, of a process and the barred depth, ad, of a re-
cursive process configuration is defined as follows:

ad : PL −→ IN
NIL 7→ 0
a.p 7→ 1 + ad(p)

p + q 7→ max{ad(p), ad(q)}
p ‖ q 7→ ad(p) + ad(q)

ad : RCL −→ IN
p 7→ 0 if p ∈ RPL

ā.p 7→ 1 + ad(p)
p ‖ q 7→ ad(p) + ad(q)

and the map L̄ : RCL −→ Act is given by:

p 7→ ∅ if p ∈ RPL
ā.p 7→ {a} ∪ L̄(p)
p ‖ q 7→ L̄(p) ∪ L̄(q)

2

So ad actually estimates the necessary maximal “length” of a test.

The following lemma tells that nothing is lost in reducing the test as informally argued
previously.
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Lemma 5.3.4 For p ∈ RCL, B ⊆ Act and c ∈ Act such that ad(p) ≤ n, L̄(p) ⊆ B,
c 6∈ B we have:

(t, p) −→∗ > iff (fnc,B(t), p) −→∗ >

Proof
only if : Assume (t, p) −→∗ >. The proof will be by induction on n.

n = 0: Then clearly p 6 ā−→ for all b ∈ Act. We proceed by induction on the structure of
t.

t = >: Follows directly from f 0
c,B(>) = >.

t = ā.t′: Since p 6 ā−→ we can exclude this case.

t = t′ & t′′: By lemma 3.2.11 (t′ & t′′) −→∗ > implies (t′, p) −→∗ > and (t′′, p) −→∗ >.
Since f 0

c,B(t′ & t′′) = f 0
c,B(t′)& f 0

c,B(t′′) the result now follows using the hypothesis of
induction and lemma 3.2.11.

t = t′ ∇ t′′: Similar.

n > 0: Again we use structural induction.

t = >: Immediate.

t = ā.t′: (ā.t′, p) −→∗ > implies p
ā−→ p′, (t′, p′) −→∗ >. Clearly ad(p′) ≤ n − 1, a ∈

L̄(p′) ⊆ B and by corollary 3.2.3 L(p′) ⊆ L(p). Hence L̄(p′) ⊆ B and we can
use the hypothesis of (structural or natural) induction to get (fn−1

c,B (t′), p′) −→∗ >.

Since a ∈ B we have fnc,B(ā.p′) = ā.fn−1
c,B (t′) and from p

ā−→ p′ it then follows that
(fnc,B(ā.t′), p′) −→∗ >.

t = t′ & t′′, t′ ∇ t′′: Similar as in the case n = 0 using the hypothesis of structural induc-
tion.

if : Suppose (fnc,B(t), p) −→∗ > for some t. Again we use natural induction on n.

n = 0: As for the other implication we use structural induction.

t = >: Trivial.

t = ā.t′: Then f 0
c,B(t) = c̄.>. Since p 6 d̄−→ for all d ∈ Act when ad(p) ≤ 0 and because

(c̄.>, p) −→∗ > implies p
c̄−→ p′ for some p′ we can exclude this case.

t = t′ & t′′: We have f 0
c,B(t′&t′′) = f 0

c,B(t′)&f 0
c,B(t′′). From the assumption then (f 0

c,B(t′)&
f 0
c,B(t′′), p) −→∗ > and from lemma 3.2.11 (f 0

c,B(t′), p) −→∗ > and (f 0
c,B(t′′), p) −→∗

>. Using the hypothesis and the same lemma we get (t′ & t′′, p) −→∗ >.

t = t′ ∇ t′′: Similar.

n > 0: Structural induction on t.

t = >: Immediate.

t = ā.t′: Then fnc,B(t) equals b̄.fn−1
c,B (t′), where b = a if a ∈ B and b = c otherwise.

(ā.fn−1
c,B (t′), p) −→∗ > implies (fn−1

c,B (t′), p′) −→∗ > where p
b̄−→ p′. But p

b̄−→ p′

clearly implies L̄(p′) ⊆ L̄(p), b ∈ L̄(p) ⊆ B and ad(p′) ≤ ad(p) so by induction

(t′, p′) −→∗ >. Since b ∈ B and c 6∈ B we have b = a, i.e., p
ā−→ p′ and thereby

(ā.t′, p) −→∗ >.
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t = t′ & t′′, t′ ∇ t′′: Similar to the case n = 0.

2

Whit this lemma we can give the promised proof.

Proof of proposition 5.3.2.
Assume p ∈ RPL, (A, t) ∈ E and c 6∈ L(p). We show:

p may x (A, t) iff p may x (A,F
|A|
c,L(A)(t))

only if : Suppose p may x (A, t). Then ∃q ∈ D(A, p). (t, q) −→∗ >. Clearly q ∈ D(A, p)
implies ad(q) = |A| and L̄(q) = L(A). Because L(q) ⊆ L(p) and c 6∈ L(p) we can then

use lemma 5.3.4 to get (f
|A|
c,L(A)(t), q) −→∗ > and we are done for this implication.

if : Similar. 2

The next step in reducing the number of experiments is to observe that we just as well
can use test normal forms in the experiments. Finally notice that all duplicates in a test
normal form can be removed without affecting the outcome of the test. This leads to the
following definition.

Definition 5.3.5 t ∈ TL is a reduced test normal form iff

a) t is a test normal form. I.e., t = &j∈n(∇k∈nj wjk>).

b) ∀j ∈ n∀k, l ∈ njk 6= l⇒ wjk 6= wjl.

c) ∀i, j ∈ n. i 6= j ⇒ {wi1, . . . , wini} 6= {wj1, . . . , wjnj}.

2

From lemma 3.2.11 we get:

Corollary 5.3.6

a) t& t ∼= t

b) t∇ t ∼= t

With this, proposition 3.2.14 and proposition 3.2.16 we easely get:

Proposition 5.3.7 For every t ∈ TL there is a reduced test normal form t′ ∈ TL such
that t ∼= t′.

Proof At first we use proposition 3.2.16 to find a test normal form t′′ such that t ∼= t′′.
Then if there exists j ∈ n and k, l ∈ nj such that k 6= l and wjk = wjl we use proposition
3.2.14 and proposition 5.3.6.b) to remove e.g., wjk>. Iterating this we eventually get a
test normal form which fulfills b) of definition 5.3.5. Finally use proposition 3.2.14.a)-d)
and corollary 5.3.6.a) to obtain a reduced test normal form t′ with t′′ ∼= t′. By transitivity
then t ∼= t′. 2
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Using the definition of may x with x equal to either accept or to reject it is easy to see
that:

t ∼= t′ implies ∀p ∈ RPL∀A. p may x (A, t)⇔ p may x (A, t′)(5.8)

Definition 5.3.8 Let Fc denote the set {(A, t) ∈ E | t is a reduced test normal form and

∃t′ ∈ TL. t = f
|A|
c,L(A)(t

′)}.
For p, q ∈ PL we then write:

p <∼
Fc
x q iff ∀e ∈ Fc. p may x e⇔ q may x e

2

So if we consider p, q and c 6∈ L(p)∪L(q) then Fc denotes according to the previous ideas
a reduced set of experiments sufficient to characterize a testing preorder between p and
q. Formally we have:

Proposition 5.3.9 Given p, q ∈ RPL and c ∈ Act such that c 6∈ L(p) ∪ L(q). Then

p <∼x q iff p <∼
Fc
x q

Proof
only if : Immediate since Fc ⊆ E.

if : Assume p <∼
Fc
x q and p may x (A, t) for some (A, t) ∈ E. Since c 6∈ L(p) we have

according to proposition 5.3.2 p may x (A, f
|A|
c,L(A)(t)). By proposition 5.3.7 there exists a

reduced test normal form t′ such that t′ ∼= f
|A|
c,L(A)(t), so by (5.8) p may x (A, t′). Inspecting

the proof of proposition 5.3.7 and definition 5.3.5 we see that in the process of converging
f
|A|
c,L(A)(t) to t′ we get a member of Fc. Consequently by our assumption, p <∼

Fc
x q, we see

q may x (A, t′). Now using (5.8) we get q may x (A, f
|A|
c,L(A)(t)). Since c 6∈ L(q) we can

also use proposition 5.3.2 to obtain q may x (A, t). 2

So far when trying to limit the set of experiments we have concentrated on the test part
of it. We now search for conditions which can limit the set of actions to signal when the
process is known to be syntactical finite. The following lemma gives some limits for a
class of processes.

Lemma 5.3.10 Suppose p ∈ PL (i.e., finite or equally contains no occurrences of rec x. )
then there exists an n ∈ IN such that p may x (A, t)⇒ L(A) ⊆ L(p), |A| ≤ n.

Proof The first consequent L(A) ⊆ L(p) is immediate from corollary 3.2.3 and indepen-
dent of n. The second is seen from p being finite as follows:
Let n be the maximal action depth of p (n = ad(p)) and suppose p may x (A, t). This
means ∃q ∈ D(A, p). (t, q) −→∗ >/⊥. By definition q ∈ D(A, p) implies ∃w ∈W.Aw ∼= A,
p

w−→ q. We show
p

w−→ q ⇒ |w| ≤ ad(p)
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by natural induction on the size, ad(p), and the result follows.

ad(p) = 0: Inspecting the definition of ad we see that ad(p) = 0 implies p is either NIL
or combinations of NIL through + or ‖. So p

w−→ q must mean q = p and w = ε. But
|ε| = 0 so we are done.

ad(p) > 0: We use structural induction on p.

p = NIL: Then p
w−→ q implies w = ε—ok.

p = a.p′: a.p′ w−→ q implies w = aw′ and p′ w′−→ q′ for some q′ such that ā.q′ = q. Since
ad(p′) ≤ 1 + ad(p′) = ad(p) we by hypothesis get |w′| ≤ ad(p′). Clearly then
|w| ≤ ad(p).

p = p1 + p2: W.l.o.g. assume p
w−→ q is due to p1

w−→ q. By the hypothesis of structural
induction |w| ≤ ad(p1). Since ad(p1 + p2) ≥ ad(p)1 we are done for this case.

p = p1 ‖ p2: The case w = ε is trivial, so suppose w = aw′. Clearly p1 ‖ p2
aw′−→ q implies

either p1 = a.p′1 and p′1 ‖ p2
w′−→ q′1 ‖ q2, q = ā.q′1 ‖ q2 or similar for p2. Suppose

the former is true. Then since ad(p′1 ‖ p2) = ad(p′1) + ad(p2) < ad(a.p′1 ‖ p2) we by
hypothesis of natural induction get |w′| ≤ ad(p′1 ‖ p2). But |w| = |aw′| = 1 + |w′| ≤
1 + ad(p′1 ‖ p2) = ad(p) and we have concluded the inductive step.

2

The following statements will elucidate some of the (mainly operational) implications
when two terms are related via the syntactic preorder.

Lemma 5.3.11

a) p � q, q ∈ RPL⇒ p ∈ RPL
b) θ̄(p) 6= ε⇒ p 6= NIL

c) p
a−→ q ⇒ θ̄(q) 6= ε

Proof
a) is proved by induction on the length of the proof of p � q.

b) follows immediately from NIL ∈ RPL and the definition of θ̄.

c) follows by induction on the number of rules p
a−→ q is obtained with. 2

Because recursion constructors only occurs in processes p ∈ RPL we cannot have q =
rec x. q′ for a q′ ∈ RCL \RPL. This enables us to deduce:

Corollary 5.3.12 If p ∈ RCL \RPL then:

a) p = ā.p′ � q implies q = ā.q′ where p′ � q′

b) p = p1 ‖ p2 � q implies q = q1 ‖ q2 where pi � qi for i ∈ 2

119



It cause no problems to prove by structural induction:

Corollary 5.3.13 If p ∈ RCL then there is a p′ ∈ CL such that:

p′ � p and θ̄(p′) = θ̄(p)

Lemma 5.3.14 Suppose θ̄(p1 ‖ p2) = θ̄(q1 ‖ q2) and p1 � q1, p2 � q2 for p1, p2, q1, q2 ∈
RCL. Then θ̄(pi) = θ̄(qi) for i ∈ 2.

Proof Let arbitrary p, q ∈ RCL be given. An easy induction on the length of the proof
of p � q shows that θ̄(p) must be a prefix of θ̄(q):

p � q ⇒ θ̄(p) v θ̄(q)

Hence θ̄(pi) v θ̄(qi) for i ∈ 2. We cannot have θ̄(p1) < θ̄(q1) since this clearly would imply
θ̄(p1 ‖ p2) = θ̄(p1) ‖ θ̄(p2) < θ̄(q1) ‖ θ̄(q2) = θ̄(q1 ‖ q2) contradicting the assumption of the
lemma. So we must have θ̄(p1) = θ̄(q1). In the same way we infer θ̄(p2) = θ̄(q2). 2

Proposition 5.3.15 For w ∈ Act∗, p ∈ RPL and q ∈ RCL we have:

p
w−→ q

⇓
∃p′ ∈ PL, q′ ∈ CL. p � p′ w−→ q′, θ̄(q′) = θ̄(q)

Proof With the basic case trivial and lemma 5.3.16 in the inductive step we prove:

w ∈ Act∗, p, q ∈ RCL, p w−→ q � q′ ∈ CL and θ̄(q) = θ̄(q′)
⇓
∃p′ ∈ CL. θ̄(p) = θ̄(p′) and p � p′ w−→ q′

by induction on |w|. From this the proposition follows using corollary 5.3.13 and lemma
5.3.11. 2

Lemma 5.3.16 For a ∈ Act and p, q ∈ RCL we have:

P
a−→ q � q′ ∈ CL and θ̄(q) = θ̄(q′)

⇓
∃p′ ∈ CL. θ̄(p) = θ̄(p′) and p � p′ a−→ q′

Proof By a) of lemma 5.3.11 we know p
a−→ q only if θ̄(q) 6= ε, so from θ̄(q) = θ̄(q′) and

b) of the same lemma we get q′ 6= NIL. We will use this fact when proving the lemma
by induction on the number, n, of rules used to infer p

a−→ q.

n = 1: since a ∈ Act only one rule comes into consideration: p = a.r
a−→ ā.r = q. From

NIL 6= q′ ∈ CL and q′ � ā.r follows q′ = ā.r′ where r′ � r and r′ ∈ CL. p = a.r implies
r ∈ RPL and by r′ � r and r′ ∈ CL then r′ ∈ PL. With p′ = a.r′ therefore p′ ∈ PL ⊆ CL
and p′ a−→ q′. Because both p and p′ belongs to RPL we have θ̄(p) = ε = θ̄(p′).

n > 1: We consider each inference rule in turn.
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p = b̄.r and q = b̄.s where r
a−→ s: As above we deduce q′ = b̄.s′ where s′ � s and s′ ∈

CL. b.θ̄(s) = θ̄(q) = θ̄(q′) = b.θ̄(s′) clearly implies θ̄(s) = θ̄(s′) so by hypothesis of
induction then ∃r′ ∈ CL. θ̄(r) = θ̄(r′), r � r′ a−→ s′. Choose p′ = b̄.r′ ∈ CL. Then
θ̄(p′) = b.θ̄(r′) = b.θ̄(r) = θ̄(p), p′ � p and p′ a−→ q′.

p = p1 + p2
a−→ q: Suppose p1

a−→ q. By hypothesis of induction ∃p′1 ∈ CL such that
θ̄(p1) = θ̄(p′1), p1 � p′1

a−→ q′. Corollary 5.3.13 gives us a p′2 ∈ CL such that p′2 � p2

and θ̄(p2) = θ̄(p2). Then just choose p′ = p′1 + p′2. Similar if p2
a−→ q.

p = p1 ‖ p2
a−→ q: W.l.o.g. we assume q = q1 ‖ p2 and p1

a−→ q1. Since q′ 6= NIL we
must have q′ = q′1 ‖ q′2 where q1 � q′1 ∈ CL and p2 � q′2 ∈ CL. From lemma
5.3.14 we see θ̄(q′1) = θ̄(q1) and θ̄(q′2) = θ̄(p2). By hypothesis of induction then
∃p′1 ∈ CL. θ̄(p1) = θ̄(p′1), p1 � p′1

a−→ q′1. Let p′ = p′1 ‖ q′1 ∈ CL. Then θ̄(p′) =
θ̄(p′1) ‖ θ̄(q′1) = θ̄(p1) ‖ θ̄(p2) = θ̄(p) and p � p′ a−→ q′ as we wanted.

2

Proposition 5.3.17 If w ∈ Act∗, p, q ∈ RPL and r ∈ RCL then:

p � q, p
w−→ r ⇒ ∃s ∈ RCL. q w−→ s, θ̄(r) = θ̄(s)

Proof Proved along the lines of proposition 5.3.15 but using lemma 5.3.18 below in place
of lemma 5.3.16. 2

Lemma 5.3.18 If a ∈ Act and p, p′ ∈ RCL then:

θ̄(p) = θ̄(p′) and p � p′ a−→ q′

⇓
∃q. p a−→ q � q′ and θ̄(q) = θ̄(q′)

Proof By induction on the length of the proof of p′ � p. There are three cases in the
basis:

p = p′: Let q = q′.

p′ = NIL: Then p′ 6 a−→ and the implication holds vacuously.

p′ = p′′[rec x. p′′/x] and p = rec x. p′′: By the recursion rule rec x. p′′ = p
a−→ q′ follows

directly from p′′[rec x. p′′/x] a−→ q′. Let q = q′.

Now for the inductive step we consider the inference rules one by one.

p′ � p′′, p′′ � p: By induction on the structure of p′ ∈ RCL (from the definition of RCL
as extracted from RBL) we prove:

θ̄(p′) = θ̄(p′′) = θ̄(p)

p′ ∈ RPL: By definition of θ̄ then θ̄(p′) = ε and so θ̄(p) = ε. Hence also p ∈ RPL.
From p′′ � p and lemma 5.3.11 then p′′ ∈ RPL. Therefore θ̄(p′′) = ε = θ̄(p′) =
θ̄(p).
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p′ = ā.r′: By corollary 5.3.12 p′ � p′′ then implies p′′ = ā.r′′ and r′ � r′′. Using
the corollary once more we get p = ā.r where r′′ � r. From a.θ̄(r) = θ̄(p′) =
θ̄(p) = a.θ̄(r) clearly θ̄(r′) = θ̄(r) so by the hypothesis of structural induction
θ̄(r′) = θ̄(r′′) = θ̄(r). Therefore also θ̄(p′′) = a.θ̄(r′′) = a.θ̄(r′) = θ̄(p′) = θ̄(p).

p′ = p′1 ‖ p′2: We can assume p′ ∈ RCL \RPL since we already have dealt with the
case p′ ∈ RPL. Similar as above we then from corollary 5.3.12 get p′′ = p′′1 ‖ p′′1
and p = p1 ‖ p2 where p′i � p′′i � pi for i ∈ 2. From lemma 5.3.14 we then
conclude θ̄(p′i) = θ̄(pi) and the rest follow by induction as in the last case.

Now where we know θ̄(p′) = θ̄(p′′) = θ̄(p) we can use the main hypothesis of induc-
tion to find a q′′ such that p′′ a−→ q′′ � q′ and θ̄(q′′) = θ̄(q′). Again by induction
∃q. p a−→ q � q′′, θ̄(q) = θ̄(q′′). Then also q′ � q and θ̄(q) = θ̄(q′).

p′ = b.r′, p = b.r and r′ � r: b.r′ a−→ q′ implies a = b and q′ = ā.q′. From p′ = a.r′ and
p = a.r follows r, r′ ∈ RPL so θ̄(r′) = ε = θ̄(r). Then choose q = ā.r and we clearly
have q′ � q and θ̄(q′) = θ̄(q) so as p = a.r

a−→ ā.r = q.

p′ = b̄.r′, p = b̄.r and r′ � r: b̄.r
a−→ q′ only if r

a−→ s′ where q′ = b̄.s′. Then θ̄(p) = θ̄(p′)
implies θ̄(r) = θ̄(r′) so by induction r

a−→ s for some s � s′ with θ̄(s) = θ̄(s′). With
q = b̄.s then p = b̄.r

a−→ q � b̄.s′ = q′ and θ̄(q) = θ̄(q′).

p′ = p′1 + p′2, p = p1 + p2 and p′i � pi: W.l.o.g. we assume p′ a−→ q′ derives from p′1
a−→ q′.

From the form of p and p′ we deduce p1, p
′
1 ∈ RPL and therefore θ̄(p1) = ε = θ̄(p′1).

By hypothesis of induction we get a q such that p1
a−→ q � q′ and θ̄(q) = θ̄(q′).

Because p
a−→ q this case is settled.

p′ = p′1 ‖ p′2, p = p1 ‖ p2 and p′i � pi: Suppose p′ a−→ q′ is due to p′1
a−→ q′1 where q′ =

q′1 ‖ p′2. From θ̄(p) = θ̄(p′), p′i � pi and lemma 5.3.14 we get θ̄(pi) = θ̄(p′i) so by
induction p1

a−→ q1 for some q1 � q′1 with θ̄(q1) = θ̄(q′1). Letting q = q1‖p2 it follows
from q′1 � q1 and p′1 � p1 that q′ � q. Also θ̄(q) = θ̄(q1)‖θ̄(p2) = θ̄(q′1)‖θ̄(p′2) = θ̄(q′).
Because p1

a−→ q1 we by the rules for
a−→ directly have p

a−→ q. The other case
where p′2

a−→ q′2 is symmetric.

2

We are now in a position to prove the fundamental proposition:

Proposition 5.3.19 For p ∈ RPL, e ∈ E we have:

p may x e⇒ ∃d ∈ Fin(p). d may x e

Proof Assume e = (A, t). p may x (A, t) implies that there exists q ∈ D(A, p).(t, q) −→∗

ox where ox = > if x = accept and ox = ⊥ if x = reject. Now q ∈ D(A, p) implies p
w−→ q

for some w such that Aw ∼= A. Then from proposition 5.3.15 above there exists d ∈ Fin(p)
and q′ ∈ RCL such that d

w−→ q′ and θ̄(q) = θ̄(q′). Clearly q′ ∈ D(A, d) and from lemma
3.3.9 we get (t, q) −→∗ ox implies (t, q′) −→∗ ox. Hence d may x (A, t) = e. 2

We take full advantage of the previous results in the proof of the following.
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Proposition 5.3.20 Let d be a syntactical finite process (i.e., d ∈ PL and so contains
no occurrences of rec . ) and p ∈ RPL. If d <∼x p then d <∼x d

′ for some d′ ∈ Fin(p) (x =
a/ accept or x = r/ reject).

The proof is much like an equivalent proof of Hennessy with some minor adjustments to
our set-up.

Proof Since L(q) in general for q ∈ RPL is finite there is a finite set B ⊆ Act such that
L(d), L(p) ⊆ B. Because Act is infinite we can chose a c 6∈ B. According to proposition
5.3.9 we have q <∼x q

′ iff q <∼
Fc
x q′ for arbitrary q, q′ with L(q), L(q′) ⊆ B. Now because d

is finite lemma 5.3.10 ensures us a n such that d may x (A, t) ⇒ L(A) ⊆ L(d), |A| ≤ n.
So let Fc(d) = {(A, t) ∈ Fc | L(A) ⊆ L(d), |A| ≤ n}. Clearly then d may x e and e ∈ Fc
implies e ∈ Fc(d). Therefore to show d <∼x q for a q with L(q) ⊆ B it is sufficient to show
q may x e for those e in Fc(d) such that d may x e. Let F ′

c denote this subset of Fc(d).

A simple argument shows that Fc(d) is finite and hence also F ′
c. Since L(d) is finite there

is only finite many multisets A with L(A) ⊆ L(d) and |A| ≤ n. Also for a given finite A
there can only be finite many t’s with (A, t) ∈ Fc. (A, t) ∈ Fc implies t is a test normal
form i.e., of the form t = &j∈n(∇k∈nj w̄jk>). Furthermore since there exists a t′ such that

t = f
|A|
c,L(A)(t

′) we must have |wjk| ≤ |A|+1 and L(wjk) ⊆ L(A)∪{c}. There is only finitely
many strings with this property. Since there is no duplicates of the strings in ∇k∈nj w̄jk>
there can only be finitely many on this form. Similar we see that there are finitely many
tests of the form &j∈n(∇k∈nj w̄jk>). Hence a finite number of e ∈ Fc.
By the assumption of the lemma we know d <∼

Fc
x p and so p may x e for every e ∈ F ′

c.
From the previous proposition (proposition 5.3.19) we find a d(e) ∈ Fin(p) for every
e ∈ F ′

c. D = {d(e) | e ∈ F ′
c} must be finite since F ′

c has the same property. Then
because D ⊆ Fin(p) and Fin(p) is directed we can take d′ to be an upper bound of D and
d′ may x e for every e ∈ F ′

c. In general q ∈ Fin(p) implies L(q) ⊆ L(p) and it follows that
L(d′) ⊆ B so we have d <∼x d

′. 2

Proposition 5.3.21 The test preorders <∼a and <∼r extends � on RPL. I.e., � ⊆ <∼a, <∼r.

Proof Suppose p, q ∈ RPL and p � q. Given (A, t) ∈ E such that p may x we shall
show q may x in order order to have p <∼x q. Similar as in the proof of proposition 5.3.19
we see it is enough to show

∀p′ ∈ D(A, p)∃q′ ∈ D(A, q). θ̄(p′) = θ̄(q′)

But this follows immediately from proposition 5.3.17. 2

Proposition 5.3.22 The test preorders <∼x are algebraic over RPL, where x either is a,
r or left out.

With the results obtained so far the proof is very similar to a corresponding proof of
Hennessy.
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Proof Because <∼a and <∼r extends � it appears from the next proposition that <∼ is
algebraic when <∼a and <∼r are. So assume x = a or x = r in the following.

Suppose p <∼x q and d ∈ Fin(p). We must find a d′ ∈ Fin(q) such that d <∼x d
′. d ∈ Fin(p)

implies d � p. Then d <∼x p because <∼x extends � on RPL. Hence d <∼x q and by
proposition 5.3.20 d <∼x d

′ for some d′ ∈ Fin(q).

Conversely suppose for every d ∈ Fin(p) there exists a d′ ∈ Fin(q) such that d <∼x d
′. We

shall show p <∼x q. At first we deduce d <∼x q for every d ∈ Fin(q). By assumption d <∼x d
′

for some d′ ∈ Fin(q). d′ ∈ Fin(q) only if d′ � q and thus d′ <∼x q. From the transitivity
of <∼x then d <∼x q. Now to see p <∼x q suppose p may x e for some e ∈ E. By proposition
5.3.19 there is some d ∈ Fin(p) such that d may x e. From d <∼x q finally q may x e. 2

The following proposition is actually more general than needed in the previous proof. In
this proposition and a few others to follow we shall as in [Hen87a] use RECΣ to denote the
recursive terms that can be build from recursive combinators and a signature Σ. FRECΣ

is just the syntactic finite terms.

Proposition 5.3.23 Suppose v′ and v′′ are transitive relations over RECΣ and v is
defined as the intersection of v′ and v′′. If v′ and v′′ extends � and they both are
algebraic then v is algebraic too.

Proof We shall show for p, q ∈ RECΣ that p v q iff ∀d ∈ Fin(p)∃d′ ∈ Fin(q). d v d′.

if : ∀d ∈ Fin(p)∃d′ ∈ Fin(q). d v d′ implies ∀d ∈ Fin(p)∃d′ ∈ Fin(q). d v′ d′, d v′′ d′.
Since v′ and v′′ are algebraic this in turn implies p v′ q and p v′′ q. By definition of v
then p v q.

only if : p v q ⇒ p v′ q, p v′′ q. By the algebraicity of v′ and v′′ the consequence of the
implication gives: ∀d ∈ Fin(p)∃d′ ∈ Fin(q). d v′ d′ and ∀d ∈ Fin(p)∃d′′ ∈ Fin(q). d v′′ d′′

from which we get: ∀d ∈ Fin(p)∃d′, d′′ ∈ Fin(q). d v′ d′, d v′′ d′′. Because Fin(q) is
directed under � there is an e ∈ Fin(q) such that d′ � e and d′′ � e. Since v′ and v′′

both extends � this means d′ v′ e and d′′ v′′ e. From the transitivity of v′ and v′′ then
d v′ e and d v′′ e so by definition of v finally d v e. 2

Due to standard results as found in [Hen87a] it is now possible with a little elaboration
on the denotational aspects to get the full abstractness results.

Hennessy shows the general corollary: A[[t[rec x. t/t]] = A[[rec x. t]] from which it is quite
easy to see:

Proposition 5.3.24 ≤A extends � on RECΣ(X). I.e.,

t � t′ implies ∀ρA. A[[t]]ρA ≤A A[[t]]ρA

Proposition 5.3.25 Given a Σ-domain, A, assume the functions preserve Fin(A). Then
the denotational preorder, ≤A, arrising from A[[]] is algebraic on RECΣ. I.e.,

A[[p]] ≤A A[[q]] iff ∀d ∈ Fin(p)∃e ∈ Fin(q). A[[d]] ≤A A[[e]]
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Proof
if : A consequence of the proposition above is ∀e ∈ Fin(q). A[[e]] ≤A A[[q]] so from
the assumption of the implication we get ∀d ∈ Fin(p). A[[d]] ≤A A[[q]]. Hence also∨
AA[[Fin(p)]] ≤A A[[q]]. Since

∨
AA[[Fin(p)]] by Hennessy equals A[[p]] this actually reads

A[[p]] ≤A A[[q]].

only if : d ∈ Fin(p) and p ∈ RECΣ implies d ∈ FRECΣ. So if A[[]] on elements of FRECΣ

yields elements of Fin(A) (i.e., finite elements) we get this implication as follows:
A is a Σ-domain and ∀d ∈ Fin(p). A[[d]] ≤A A[[p]] ≤A A[[q]] so ∀d ∈ Fin(p). A[[d]] ≤A A[[q]].
Because A[[q]] =

∨
AA[[Fin(q)]], Fin(q) is directed and A[[d]] is assumed to denote a finite

element there exists an e ∈ Fin(q) such that A[[d]] ≤A A[[e]].

We owe to show t ∈ FRECΣ implies A[[t]] ∈ Fin(A). Using as hypothesis the assumption of
the proposition that ∀f ∈ Σ of arity k we have fA(A[[t̄ ]]) ∈ Fin(A) where A[[t̄ ]] ∈ Fin(A)k

this easely follows by induction on the structure of t. 2

From the results in chapter 3 and the characterization of the finite elements in proposition
5.1.2 it is seen that op? preserve finite elements in C? when ? ∈ {δ, υ, χ}. We then have:

Corollary 5.3.26 The denotational preorders ≤ δ, ≤ υ and ≤χ are algebraic on RPL.

Notice that from the proof of proposition 5.3.25 above it appears that [[ ]]? denotes finite
elements when restricted to PL and by 3.3.19 on page 85 all finite elements are denotable
by terms of PL so our different domains are actually finitary.

With the corollary it is now an easy matter to show the denotational models are fully
abstract w.r.t. the corresponding preorders.

Theorem 5.3.27 If p, q ∈ RPL then the different test preorders <∼a, <∼r and <∼ are
(relative) precongruences and:

δ) [[p]]δ ≤ δ [[q]]δ iff p <∼a q

υ) [[p]]υ ≤ υ [[q]]υ iff p <∼r q

χ) [[p]]χ ≤χ [[q]]χ iff p <∼ q

Proof From the last corollary we know that ≤ δ, ≤υ and ≤χ are algebraic and from
proposition 5.3.22 we also know that this is the case for <∼a, <∼r and <∼ so by the corre-
sponding result for syntactic finite processes, theorem 3.3.1, δ) – χ) then follows.

The test preorders are seen to be precongruences because they now are know to agree
with the corresponding denotational preorders which in turn are precongruence since the
denotational maps are built from (relative) continuous and thereby monotone operators.

2
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Index

Constants

⊥, 68
>, 67

Functions

[[ ]]π, 81
[[ ]]δ, [[ ]]υ, [[ ]]χ, 64

Operations

a., 23
‖, see semiword, parallel composition of

∼s
&, 67
ā., 67
∇, 67
], 27
∨̇, 71

Relations

a−→, 65
y−→, 65
→, 68
<·, see immediate predecessor
<a, <r, <, 75
�a,�r,�, 75
<∼
Fc
x , 118

<∼a, <∼r, <∼, 67
≤π, 63
≤ δ,≤υ,≤χ, 64
v, see semiword, prefix of
�, see smoother than
�, see syntactic approximation
=s,=c,=n,=i,=si, 94
⊆nc, 95
∼= (between tests), 73
`δ, 88
`π, 88

Alphabetical

Aπ, 63
Aδ, Aυ, Aχ, 64
Act, 59
Act, 64
action depth, 115
ad, 115
ad, 115
algebraic (a relation being ∼), 114
alphabet, 18
ai, 19
assignment, 86

B, 71
barred depth, 115
BL, 59, 60
BL(X), 86
BL, 65

Cδ, Cυ, Cχ, 60, 109
Cπ, 63
canonic representative, 19
carrier, 60
cf, see composition form
χ, 36
CL, 65
composition congruent, 94
composition form, 93
concatenation, 23
connected elements, 22
cpo, 109

D(A, p), 67
DC≤, see downwards closure
DEDδ, DEDπ, 87
∆, see alphabet
δ, 33
downwards closure, 18

ε, see semiword, empty
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experiment, 67

Fc, 118
fnc,B, 114
Fin, 114
FV , 112

γ, 22

immediate predecessor, 48
instantiation, 87

L, 59, 61, 65, 112
L̄, 115
labelled partial ordering, 18
λ, see linearization
linearization, 28
lpo, 18

msnf, see sumnormal form, minimal
may accept, 66, 69
may reject, 66, 69
Mδ,Mυ,Mχ, 64

n, see standard set

open process terms, 86

P, see syntactic prefixes
P(), 22
Pf(), 60
partial word, 19
pf, see prefix form
π, 37
PL, 59, 60
PL(X), 86
prefix form, 93
proof, 88
proof system, 87
propositionT , 50
ψ, 20
PW , see partial word

rank, 19
maximal, 20

RBL(X), 112
RBL(X), 113
rec x. , 112
reduced test normal form, 117
ρ, 86

RPL, 112
RPL(X), 112
RT , 50
RTSW , see semiword, rooted tree-∼
S, see summands
semiword, 19

complement, 20
connected, 22
direct sub∼, 20
disjoint ∼s, 22
empty, 23
generation of, 53
parallel composition of ∼s, 26
prefix of, 37
restriction of, 20
rooted tree-∼, 50
tree-∼, 50

Σ, see signature
Σπ, 63
Σδ,Συ,Σχ, 61
signature, 59
simple instantiation property, 88
smoother than, 28
snf, see sumnormal form
sort, 59
standard set, 18
substitutivity, 87
sum congruent, 94
summands, 93
sumnormal form, 93

minimal, 93
SW , see semiword
SW1, 19
SW2, 19
syntactic approximation, 114
syntactic prefixes, 93
syntactic substitution, 86

T , 50
t, 18
TC, 68
test configuration, 68

terminal, 69
test language, 67
test normal form, 74
test relation, 68
Θ, 94
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θ, 94
Θ̄, 75
θ̄, 75, 113
TL, 67
trichotomy law, 20
TSW , see semiword, tree-∼
UC≤, see upwards closure
υ, 34
upwards closure, 18

variables, 86

W , see word
word, 20

X, see variables
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Part II

Tracing Partial Orders
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Chapter 6

Pomsets

As mentioned in the presentation, the concept of labelled partial orders will be central
for the models we are going to present. The basic idea is that labelled partial orders will
represent individual behaviours of processes. In particular we will look at pomsets. We
shall use the interpretation and graphical representation of pomsets from [Gra81]. That
is

a��1 b
PPq c

PPq
��1 d(6.1)

is used to represent a behaviour of a process with four action occurrences, where the d
occurrence is causally dependent on the others, the b occurrence is causally dependent on
a, but not on c, a.s.o.

6.0 Basic Definitions

Pomsets are usually defined as isomorphism classes of labelled partial orders ([Gis88,
Pra86]). We will look at labelled partial orders, also known as labelled posets, over an
action alphabet ∆—a countably infinite alphabet (fixed through out the rest of this part
of the thesis). We assume ∆ to be disjoint from IN—the nonnegative integers.

The labelled partial orders are defined on basis of a fixed ground set which is assumed to
be closed under pairing and containing IN and ∆ (See e.g., [Hen87c] for a solution to the
simple set equation S = IN ∪∆ ∪ (S × S)).

Definition 6.0.1 Labelled Poset

A subset, X, of the ground set together with a partial order (reflexive, transitive and
antisymmetric), ≤, and a labelling function ` : X −→ ∆ is called a labelled poset (lpo for
short) and denoted 〈X,≤, `〉.
Given a lpo p then Xp = X, ≤p = ≤ and `p = ` if p = 〈X,≤, `〉.
The set of all such lpos is denoted LPO.

Given two lpos, a morphism f : 〈X,≤, `〉 −→ 〈X ′,≤′, `′〉 of labelled posets is a function
f : X −→ X ′ such that
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x ≤ y ⇒ f(x) ≤′ f(y) for all x, y ∈ X
`(x) = `′(f(x)) for all x ∈ X

An isomorphism f : p −→ q of labelled posets is a bijection f : Xp −→ Xq such that f
and f−1 are morphisms of labelled posets (then also x ≤p y iff f(x) ≤q f(y)).
If such a isomorphism exists between p and q we write p ∼= q.

The empty lpo, 〈∅, ∅, ∅〉, is denoted ε. 2

That LPO indeed is a set follows from the ground set being one. Observe that we use
x, y, . . . to range over elements of Xp, where p is a lpo.

x and y are said to be concurrent/causally independent in a lpo p,

x cop y iff x 6≤p y and y 6≤p x
Notice that cop is not reflexive! We say that Y ⊆ Xp is a cop-set if all the elements
of Y are concurrent in p, i.e., if cop|Y 2 = (Y × Y ) \ {〈y, y〉 | y ∈ Y } or alternatively if
≤p|Y 2 = {〈y, y〉 | y ∈ Y }.
If Y is a set and p = 〈X,≤, `〉 an lpo then the restriction of p to Y , p|Y , is the lpo
〈X|Y ,≤|Y 2, `|Y 〉.
For x ∈ Xp we sometimes (ambiguously) abbreviate p|{x} by x.

The definition of pomsets emerge almost immediately from that of lpos.

Definition 6.0.2 Pomsets

The equivalence class of a lpo p under ∼= is denoted [p] and p is called a representative of
the equivalence class. I.e., [p] = {q ∈ LPO | q ∼= p}. Whenever an lpo is denoted by a
single symbol, p, we define for convenience p to be [p].

The set of all pomsets is then the quotient set of LPO by ∼=, LPO/ ∼= and is denoted P.

A pomset p is contained in pomset q if a representative of p can be embedded in a
representative of q. Formally: p is a subpomset of q, written p ↪→ q, iff ∃Y. p = [q|Y ].

2

We have defined the notion of subpomset by means of a single representative so one should
check that the definition is independent of what representative used in the definition. E.g.,
if q ∼= q′ it is easy to see that q|Y ∼= q′|Y ′ where Y ′ is the subset of Xq′ isomorphic to
Y ∩Xq under the lpo isomorphism holding between q and q′. It will often be left to the
reader to check that definitions regarding pomsets are well-defined in this sense.

For a pomset p and a set of pomsets Q we denote by Q(p) those pomsets of Q which are
contained in p, i.e., Q(p) = {q ∈ Q | q ↪→ p}.

Example: If p is the pomset represented in (6.1) then e.g.,

p ↪→ p, a - c - d ↪→ p, a - d ↪→ p

and {
c, a - d,

b
c

PPq
��1 d

}
⊆ P(p)
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We overload notation and use ε and a to denote the empty pomset [〈∅, ∅, ∅〉] and the sin-
gleton pomset [〈{a}, {〈a, a〉}, a 7→ a〉] respectively. Similarly an denote the multisingleton
pomset [〈{〈a, k〉 | 1 ≤ k ≤ n}, {〈x, x〉 | x = 〈a, k〉, 1 ≤ k ≤ n}, 〈a, k〉 7→ a〉].
For a set of pomsets P we adopt the notation Pε for P ∪ {ε}.
Below we list different types of pomsets we shall deal with together with the symbols we
tend to use for them.

A,B, . . .∈ M — the multiset pomsets:
{p ∈ P | p 6= ε and Xp is a cop-set}

A,B, . . .∈ S — the set pomsets:
{p ∈ M | ∀x, y ∈ Xp. x 6= y ⇒ `p(x) 6= `p(y)}

an, bm, . . .∈ N — the multisingle multisingleton
{p ∈ M | ∀x, y ∈ Xp. `p(x) = `p(y)}

a, b, . . . ∈ ∆ — the singleton pomsets:
{p ∈ M | ∀x, y ∈ Xp. x = y}

Notice that we by this notation have a = a1 = {a}. The reader is obliged to sort out
from the context the ambiguity arising from this notation in return for a more tractable
presentation. The reader should also be aware that the sets ∆,N, S and M are defined not
to contain the empty pomset ε. As already stated e.g., M is augmented with ε by writing
Mε. In continuation with the notation above we then also have ε = a0 = ∅.
It will not be necessary to deal with infinite pomsets in the following so we will throughout
the rest of this part assume pomsets to be finite. More precisely: we shall only consider
pomsets p where Xp is finite.

Having restricted ourselves to finite pomsets we can now for a pomset associate a unique
multiplicity function over ∆ which for each action tells how many elements in the pomsets
that are labelled whit this action.

Definition 6.0.3 Multiplicity Function

A multiplicity function, m, (over ∆) is a map m : ∆ −→ IN .
m is said to be finite if m is 0 everywhere except on a finite subset of ∆.
The set of multiplicity functions are partially ordered by

m ≤ m′ iff ∀a ∈ ∆. m(a) ≤ m′(a)

Given a lpo p the associated multiplicity function, mp, is defined by ∀a ∈ ∆. mp(a) =
|{x ∈ Xp | `p(x) = a}|.
The multiplicity function, mp, of a pomset p is simply mp.
The preoder induced on pomsets by the partial order ≤ on multiplicity functions is (am-
biguously) denoted ≤ and defined by p ≤ q iff mp ≤ mq. 2

It is easy to see that every finite set M of multiplicity functions has a lub (least upper
bound)

∨
M = m′ where m′ is given by ∀a ∈ ∆. m′(a) = max≤{m(a) | m ∈ M}. If in

addition every m ∈M is finite then so is
∨
M . Also mp is finite for every p ∈ P because

we only deal with finite pomsets.
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Observe that multisets are nothing else than a pomset representation of multiplicity func-
tions. It is mainly for convenience that we have chosen to work with both notions.

Definition 6.0.4 Pomset Property

A lpo property, P∗, is ∼=-invariant if it is preserved under lpo isomorphism:

p ∼= q, P∗(p) implies P∗(q)

P∗ is a pomset property if it is induced from a∼=-invariant lpo property, Q∗, in the following
way:

P∗(p) iff Q∗(p)

2

Observe that the ∼=-invariance ensures the notion of pomset property to be well-defined.
In the sequel we shall make no distinction between a pomset property and the lpo property
it is induced from.

An example of a pomset property, P∗, is where P∗(p) demands ≤p to satisfy the trichotomy
law: ∀x, y ∈ Xp. x ≤p y or y ≤p x, i.e., that ≤p shall be total. The set of pomsets having
this property is denoted W (words) and we write the property as Pw. Pomsets of W
are by Gischer [Gis88] alternatively called tomsets. We shall often write w for w ∈ W ,
because of the one to one correspondence between ∆∗ and W (see [Sta81]).

We now give an example of a type of pomset property that can be defined in terms of a
set of nonempty multisets.

Definition 6.0.5 Multiset Induced Pomset Property

Given D ⊆ M we say that a pomset p has the PM⊆D-property if the (nonempty) multisets
contained in p are from D. Formally

PM⊆D(p) iff M(p) ⊆ D

The PM⊆D-pomsets are those with the PM⊆D-property and they are denoted PM⊆D. 2

It is easy to see that PM⊆D actually is a pomset property because it is induced from the
lpo property:

PM⊆D(p) iff [p|Y ] ∈ D for every nonempty cop-set Y ⊆ Xp

and co-sets are preserved by ∼=.

Example: Suppose p =
a -

��>
b

b - c
and q =

a - b
b - c

. Then PM⊆S(p) because

M(p) =

{
a, b, c,

a
b
,
b
c

}
⊆ S

but PM⊆S(q) does not hold because (b2 6∈ S)

M(q) =

{
a, b, c,

a
b
,
b
b
,
a
c
,
b
c

}
6⊆ S
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6.1 Operations on Pomsets

Pomsets have been equipped with a variety of operations ([Gra81, Sta81, Gis88, Pra86]).
In this part of the thesis we need only a few of these. Just as pomsets were defined on the
basis of labelled posets we shall do so with the operations. The following two are both
natural generalizations of concatenation of words: sequential and parallel composition.

Definition 6.1.1 Sequential Composition of Pomsets

Given two pomsets, p and q. Their sequential composition, p ·q, is obtained (informally)
by taking their disjoint union (component wise), and making all elements of q causally
dependent on all elements of p. Formally:

For two lpos p0 and p1 we define their sequential composition p0 · p1 = 〈X,≤, `〉, where

X is the set {0} ×Xp0 ∪ {1} ×Xp1

≤ is the partial order defined by

〈i, x〉 ≤ 〈j, y〉 iff i = j and x ≤pi y
or i = 0, j = 1

` is the function 〈i, x〉 7→ `pi(x)

For two pomsets p0 and p1 we then define p0 · p1 to be [p0 · p1]. 2

Example: a��1 b
PPq a
· c - d = a��1 b

PPq a��1
PPq c - d

Proposition 6.1.2 Suppose p, p0, p1 and p2 are lpos. Then

• p · ε ∼= p ∼= ε · p
• (p0 · p1) · p2

∼= p0 · (p1 · p2)

Proof To see the last property use as isomorphism (from the left hand side to the right
hand side) the function given by:

〈0, 〈0, x〉〉 7→ 〈0, x〉
〈0, 〈1, x〉〉 7→ 〈1, 〈0, x〉〉
〈1, x〉 7→ 〈1, 〈1, x〉〉

2

As a corollary we immediately get that for pomsets · is associative and has ε as left and
right neutral element.

Definition 6.1.3 Parallel Composition of Pomsets

Given two pomsets, p and q, their parallel composition, p × q, is simply the union
(component wise) of p and q. Formally:

For lpos p0 and p1 we define p0 × p1 = 〈X,≤, `〉, where

134



X is the set {0} ×Xp0 ∪ {1} ×Xp1

≤ is the partial order defined by

〈i, x〉 ≤ 〈j, y〉 iff i = j and x ≤pi y
` is the function 〈i, x〉 7→ `pi(x)

For pomsets p0 and p1 we define p0 × p1 to be [p0 × p1]. 2

Example: a��1 b
PPq a
× c - d =

a��1 b
PPq a

c - d

Proposition 6.1.4 Suppose p, p0, p1 and p2 are lpos. Then

• p× ε ∼= p ∼= ε× p
• p0 × p1

∼= p1 × p0

• p0 × (p1 × p2) ∼= (p0 × p1)× p2

Proof The second property is seen by using as isomorphism the function given by:

〈0, x〉 7→ 〈1, x〉
〈1, x〉 7→ 〈0, x〉

and the other properties are proved as in the last proposition. 2

So for pomsets × is associative, commutative and has ε as left and right neutral element.

The next operator refines the different elements of a pomset into different pomsets (a
formalization of the concept of “change of atomicity”).

Example: Consider the pomset a��1 b
PPq b

. Suppose we would like to refine the upper

occurrence of b to
d
e

PPq
��1 d, the lower to c - a and the a occurrence to

b
a

PPq
��1 a. Call this

refinement π and the associated operator <π>—then we would expect:

a��1 b
PPq b

<π> =
b
a

��>
d -

��>
d

PPq
��1 a - e

ZZ~ c - a

Actually it does not make sense talk about the upper, lower, etc. occurrence of b in a
pomset, but for a particular representative each individual element can be replaced by
“its own” pomset (representative) thus obtaining the representative of, a new pomset.
We now give a definition of this construction and then in a moment utilize this for the
definition of a function from pomsets.

The construction is not as simple as the others and we need to introduce some additional
notions.
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Definition 6.1.5 Particular Refinement
Let p be a lpo. A particular refinement for p is a mapping πp : Xp −→ LPO.
Given a lpo p and a particular refinement (p.ref. for short), πp, for p, we can construct
a new lpo, p<πp>,as follows: p<πp> is 〈X,≤, `〉, where

X is the set {〈x, x′〉 | x ∈ Xp, x
′ ∈ Xπp(x)}

≤ is the partial order defined by

〈x, x′〉 ≤ 〈y, y′〉 iff x ≤p y and
x = y ⇒ x′ ≤πp(x) y′

` is the function 〈x, x′〉 7→ `πp(x)(x
′)

Notice that p<πp> is a finite lpo. Following the idea of Gischer [Gis84] we introduce the
following lpos

C = 〈{0, 1}, {〈0, 0〉, 〈0, 1〉, 〈1, 1〉}, i 7→ ai〉 i.e., [C] = a0
- a1

S = 〈{0, 1}, {〈0, 0〉, 〈1, 1〉}, i 7→ ai〉 i.e., [S] =
a0

a1

where a0 and a1 are two fixed elements of ∆. For lpos p0 and p1 let πC(p0,p1) denote the
p.ref. for C given by πC(p0,p1)(i) = pi for i = 0, 1 and similar for πS(p0,p1).

From the definitions it immediately follows that sequential and parallel composition can
be derived from particular refinements of C and S in the following sense:

p · q = C<πC(p,q)>

p× q = S<πS(p,q)>

Therefore also p·q = [C<πC(p,q)>] and p×q = S<πS(p,q)>. That is to say with the words
of Gischer [Gis88] · and × are pomset definable operations on pomsets. Gischer actually
make refinement into a operation itself (called substitution) but it would not allow the
type of refinements we shall need. We therefore prefer to postpone the definition of the
pomset refinement operation to the section dealing with sets of pomsets.

6.2 Two Partial Orders on Pomsets

The first relation on pomsets we are going to present is used to compare the “concurrency”
of two pomsets.

Definition 6.2.1 �-ordering on Pomsets

The preorder, �, on lpos is defined: p � q iff there exists bijective function Xq −→ Xp

which also is a morphism of lpos.

This preorder induce a partial order, ambiguously denoted �, on pomsets as follows:

p � q iff p � q
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p � q can be read: the pomset p is smoother than [Gra81]/ subsumed by [Gis88]/less
nonsequential than the pomset q. 2

Notice that for lpos p and q, p � q does not imply p ∼= q. It is also useful to observe that
p � q implies mp = mq.

Example: a - b - c � a
c

PPq
��1 b � a - b

c
and

a -
��>
b

c -ZZ~ d
� a - b

c - d

The �-downwards closure of a pomset p, {p′ ∈ P | p′ � p}, is denoted δ(p).
Suppose P∗ is a property of pomsets then δ∗(p) will be a shorthand for the semi �-
downwards closure {p′ ∈ P | p′ � p and P∗(p′)}. E.g., δw(p) = {p′ ∈ P | p′ �
p and Pw(p′)} = {p′ ∈ W | p′ � p}. Though we might have p 6∈ δ∗(p) for some pomset
property P∗, we call it the δ∗-closure.

From the definition of p.ref. we directly see:

Proposition 6.2.2 Let lpos p and q be given with q = 〈Xp,≤q, `p〉 and ≤q ⊆ ≤p. Fur-
thermore suppose π and π′ are p.ref.’s for both p and q (Xp = Xq) such that ∀x ∈
Xp. Xπ′(x) = 〈Xπ(x),≤, `π(x)〉,≤ ⊆ ≤π(x). Then

p<π> � q<π>
p<π> � p<π′>

The following alternative characterization of � will often be more convenient to work
with.

Proposition 6.2.3 For pomsets p and q we have:

a) p � q iff p = 〈Xq′,≤p, `q′〉 and ≤p ⊇ ≤q′ for some q′ ∈ q

b) p � q iff 〈Xp′,≤q, `p′〉 = q and ≤p′ ⊇ ≤q for some p′ ∈ p

Proof Observe at first that in general p � q ∼= r ⇒ p � r and p ∼= q � r ⇒ p � r.

a) if : idXq′ is a label preserving bijective function from Xq′ to Xp because Xp = Xq′ and
`p = `q′. By ≤p ⊇ ≤q′ it is also order preserving. Hence p � q′ and since q′ ∈ q means
q′ ∼= q we get p � q and so p � q.
only if : By definition p � q implies the existence of a bijective function f : Xq −→ Xp

which also is a morphism of lpos. Then define q′ to be 〈Xp,≤q′ , `p〉 where ≤q′ is given by

x ≤q′ y iff f−1(x) ≤q f−1(y)

Clearly q′ ∼= q and q′ ∈ q. Also p = 〈Xq′,≤p, `q′〉 so it remains to show ≤q′ ⊆ ≤p. Assume
x ≤q′ y. Then f−1(x) ≤q f−1(y) by definition of q′ and because f is bijective and a
morphism of lpos therefore x = f ◦ f−1(x) ≤p f ◦ f−1(y) = y.

b) is proved similar. 2
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With the alternative characterization of �, proposition 6.2.2 above and the observations
made by the definition of particular refinement we get:

(6.2) · and × are �-monotone in their left and right arguments

Similar we with appropriate p.ref.’s deduce from the above example that:

(p× q) · (p′ × q′) � (p · p′)× (q · q′)(6.3)

We now turn to the second partial order on pomsets.

Definition 6.2.4 v-ordering on Pomsets

Given two pomsets p and q. Then p is a prefix of q, p v q, if p is a subpomset of q and
the elements of p only dominates the elements of p in q. Formally:

The lpo preorder, v, is defined p v q iff there exists a ≤q-downwards closed set Y such
that p is isomorphic to the restriction of q to Y . I.e.,

p v q iff ∃Y. p ∼= q|Y and {x ∈ Xq | ∃y ∈ Y. x ≤q y} ⊆ Y

The partial order, v ⊆ P×P, is induced from the lpo preorder by:

p v q iff p v q

π is defined to be the function which for a pomset p gives the v-downwards closure of p:
π(p) = {p′ ∈ P | p′ v p}. 2

That p v q implies p ↪→ q follows from p ∼= q|Y . Notice that p v p and p v q implies
mp ≤ mq. Also observe that {x ∈ Xq | ∃y ∈ Y. x ≤q y} ⊆ Y just is a formalization of: Y
is ≤q-downwards closed.

Example: a��1 b
PPq c

v a��1 b
PPq c

PPq
��1 d , but a - b - d 6v a��1 b

PPq c
PPq
��1 d

As for the partial order � there is an alternative characterization of v:

Proposition 6.2.5 For pomsets p and q we have:

a) p v q iff p′ = q|Xp′ for some p′ ∈ p with {x ∈ Xq | ∃y ∈ Xp′. x ≤q y} ⊆ Xp′

b) p v q iff p = q′|Xp for some q′ ∈ q with {x ∈ Xq′ | ∃y ∈ Xp. x ≤q′ y} ⊆ Xp

Proof a), b) if : Immediate because = ⊆ ∼=.

For the only if direction of a) and b) we by definition have

∃Y. p ∼= q|Y and {x ∈ Xq | ∃y ∈ Y. x ≤q y} ⊆ Y

W.l.o.g. we can assume Y ⊆ Xq (because q|Y = q|(Xq∩Y )).
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a) only if : Define p′ to be q|Y . Obviously p′ is a representative of p and because Y is a
subset of Xq we have Y = Xq|Y = Xp′. Hence p′ = q|Y = q|Xp′ and Xp′ is ≤q-downwards
closed.

b) only if : Here we shall find a representative of q which p is a part of. The idea will be
to find a representative q′′ of q which has no elements in common with p and then just
replace that part of q′′ which is isomorphic to p with p to obtain q′. The elements of p
are from the ground set which are composed of two-tuples. Clearly the “size”, |x|, of an
element x can be determined as follows

|x| =
{|x0|+ |x1| if x = 〈x0, x1〉

1 otherwise (x ∈ IN or x ∈ ∆)

If p is empty we can just choose q′ = q so assume it is not. Then since we work with finite
pomsets/ lpos it make sense choose a z ∈ Xp with maximal size according to the measure
above. Define q′′ = 〈X,≤, `〉 where

X is the set {〈x, z〉 | x ∈ Xq}
≤ is the partial order defined by

〈x, z〉 ≤ 〈y, z〉 iff x ≤q y
` is the function 〈x, z〉 7→ `q(x)

Evidently q′′ is a representative of q and p is a lpo isomorphic to q′′|Yz where Yz is the
≤q′′-downwards closed set {〈x, z〉 | x ∈ Y }. By construction all elements of Xq′′ have size
greater than those of Xp and so they cannot have any elements in common. The required
q′ is then obtained by replacing all elements from Xq′′ which under the lpo isomorphism
equals the elements of Xp with these corresponding elements of Xp. 2

With this alternative characterization it is useful to observe for lpos p and q:

• {0} ×Xp = Xp·ε = Xp×ε and {1} ×Xp = Xε·p = Xε×p

• Y ⊆ Xp·ε implies (p · q)|Y = (p · ε)|Y
• Xp·ε ⊆ Y implies (p · q)|Y ∼= p · (ε · q)|Y
• Y ⊆ Xp×ε implies (p× q)|Y = (p× ε)|Y (symmetric for ε× p)
• Xp×ε ⊆ Y implies (p× q)|Y ∼= p× (ε× q)|Y (symmetric for ε× p)

Then evidently a pomset is a prefix of two parallel composed pomsets iff it itself is the
parallel composition of two prefixes of the two parallel composed pomsets. It is also easy
to see p v q implies p v q · r and r ·p v r ·q. It takes more effort to prove the “reverse”:

Proposition 6.2.6 If p v q · r then either p v q or there exists a pomsets r′ such that
p = q · r′ and r′ v r.
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Proof Let p′,q and r be given such that p′ v q · r. q · r = [q · r] so by the alternative
characterization of prefix we know there is a representative p of p′ such that p = (q · r)|Xp
and Xp is ≤q·r-downwards closed.

IfXp ⊆ {0}×Xq then as observed p = (q·r)|Xp = (q·ε)|Xp. Of courseXp is ≤q·ε-downwards
closed and by the alternative characterization of prefix then p′ = p v [q · ε] = q.

So assume Xp 6⊆ {0} × Xq. We show at first {0} × Xq ⊆ Xp. Let an x ∈ {0} × Xq be
given. From p = (q · r)|Xp we have Xp ⊆ {0} ×Xq ∪ {1} ×Xr, so because Xp 6⊆ {0}×Xq

there must be a y of Xp in {1} × Xr. By definition of q · r then x ≤q·r y wherefore the
≤q·r-downwards closure of Xp yields x ∈ Xp. Now since Xε·q = {0} ×Xq ⊆ Xp we have
p ∼= (q · r)|Xp ∼= q · (ε · r)|Xp. That Xp is ≤ε·r-downwards closed is a simple consequence
of Xε·r ⊆ Xq·r and the ≤q·r-downwards closure of Xp. Defining r′ = (ε · r)|Xp we get
r′ v [ε · r] = ε · r = r by using the alternative characterization of prefix again. From
p′ 3 p = (q · r)|Xp ∼= q · (ε · r)|Xp = q · r′ then p′ = [q · r′] = q · r′ as desired. 2

The next proposition will prove extremely useful in proving various connections between
the two partial orders over pomsets.

Proposition 6.2.7 Given two pomsets p and q. Then

p v q⇒ ∃r ∈ P. p · r � q

Proof Assume p v q. By the alternative characterization of prefix we can find a
representative p′ of p such that p′ = q|Xp′ and Xp′ is ≤q-downwards closed. Define r to
be q|(Xq\Xp′ ) and q′ = 〈X,≤, `〉, where

X is the set {0} ×Xp′ ∪ {1} × (Xq \Xp′)
≤ is the partial order defined by

〈i, x〉 ≤ 〈j, y〉 iff x ≤q y
` is the function 〈i, x〉 7→ `q(x)

Clearly q′ ∼= q—i.e., q′ is a representative of q, and from the definition of p′, r and lpo
sequential composition we see Xp′·r = Xq′ and `p′·r = `q′ . To see ≤q′ ⊆ ≤p′·r assume
〈i, x〉 ≤ 〈j, y〉. Then x ≤q y and if i = 0 = j we have x, y ∈ Xp′ so x ≤p′ y then follows
from ≤p′ = ≤q|Xp′2 . Similar if i = 1 = j. If i = 0 and j = 1 then 〈i, x〉 ≤p′·r′ 〈j, y〉 by

the definition of p′ · r. We are left with the case i = 1 and j = 0. This is means x ≤q y,
x ∈ Xq \Xp′ and y ∈ Xp′—but this is impossible because Xp′ is ≤q-downwards closed and
we can exclude this case. So we actually have q′ = 〈Xp′·r,≤q′, `p′·r〉 and ≤p′·r ⊇ ≤q′ . The
alternative characterization of � then gives us p′ · r = [p′ · r] � q′ = q as we wanted. 2

With this result it is easy to prove:

Proposition 6.2.8 For pomsets p and q we have

∃r. p � r v q iff ∃s. p v s � q
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In [Pra86, page 49] Pratt outlines an alternative proof. He defines prefix in another, but
equivalent way: p is a prefix of q if ∃Y. p ∼= q|Y and Xq \ Y is ≤q-upwards closed. So this
proposition can be seen as just a reformulation of his theorem.

Proof only if : Assume p � r v q. By the previous proposition we know there is a
pomset r′ such that r · r′ � q. From p � r and �-monotonicity of · then p · r′ � q. But
p v p · r′ so we can just choose s = p · r′.
if : Suppose p v s � q. Then there are representatives p′ and q′ of p and q respectively
such that p′ = s|Xp′ , Xp′ is ≤s-downwards closed and q′ = 〈Xs,≤q′, `s〉 with ≤s ⊇ ≤q′ .
Define r to be q′|Xp′ . Then r is a lpo and to see that Xp′ is ≤r-downwards closed assume
x ≤r y ∈ Xp′. Then x ≤q′ y and from ≤q′ ⊆ ≤s also x ≤s y. x ∈ Xp′ follows now from the
≤s-downwards closure of Xp′. Hence r v q′. We also have r = 〈Xp′,≤q′ |Xp′2 , `p′〉, so from

≤q′ ⊆ ≤s then ≤r = ≤q|Xp′2 ⊆ ≤s|Xp′2 = ≤p′ . Thus p′ � r v q′ and p = p′ � r v q′ = q.
2

6.3 Sets of Pomsets

Sets of pomsets and operators on them are used extensively in the models we shall present,
so we briefly treat them here. The two operations on pomsets · and × generalize to sets in
the natural way e.g., P ·Q = {p ·q | p ∈ P,q ∈ Q}. We shall use ∪ to denote the normal
set union and P( ) the powerset operator. Also for a pomset property P∗, δ∗ generalize
to sets: δ∗(Q) =

⋃
q∈Q δ∗(q).

The previously mentioned refinement operator for pomsets is defined using the particular
refinement construction for lpos.

Definition 6.3.1 Refinements
A P(P)-refinement is a mapping % : ∆ −→ P(P).
We say that a P(P)-refinement, %, is ε-free iff ∀a ∈ ∆. ε 6∈ %(a) and % is image finite
if %(a) is finite for every a ∈ ∆.
A particular refinement πp for a lpo p is consistent with a P(P)-refinement % iff

∀x ∈ Xp. [πp(x)] ∈ %(`p(x))

The mapping associated with % is now defined as <%> : P −→ P(P) with p<%> =
{[p<πp>] | πp is a %-consistent p.ref. for p} and generalized to sets of pomsets by P<%> =⋃

p∈P p<%>.

For a finite lpo p and image finite refinement % we notice that there is only finitely many
different %-consistent p.ref. for p (up to ∼= in each x ∈ Xp) and consequently in general
p<%> is a finite set of pomsets because we only work with finite pomsets. Also P<%>
must be finite if P is a finite set of pomsets and % is a image finite refinement.

Example: Consider the same pomset as in the example for particular refinement on page

135. Suppose % is a P(P)-refinement such that a 7→
{
b
a

PPq
��1 a

}
and b 7→

{
c - a,

d
e

PPq
��1 d

}
.
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Then

a��1 b
PPq b

<%> =


b
a

��>
d -

��>
d

PPq
��1 a - e

ZZ~ c - a
,
b
a

��>
c - a

PPq
��1 a

ZZ~ c - a
,
b
a��1

PPq a
��7
d

��1 e
PPq dSSw e

��1
PPq d

��1
PPq d


Whereas it was quite obvious that · and × defined operations on sets of pomsets this is
not so easy to see for <%>. But we now prove that <%> actually defines a operation on
sets of pomsets.

Proposition 6.3.2 <%> is well-defined.

Proof From the definition of <%> we clearly see that is enough to show:

If πp is a %-consistent p.ref. for a lpo p then p ∼= q implies the existence of a
%-consistent p.ref., πq, for q such that p<πp> ∼= q<πq>.

Let f be a isomorphism of lpos from q to p. If πp is a p.ref. for p then πq := πp ◦ f is a
p.ref. for q. Also πq is consistent with % because:

∀x ∈ Xp. [πp(x)] ∈ %(`p(x))
m f is a bijection
∀x ∈ f(Xq). [πp(x)] ∈ %(`p(x))

m
∀x ∈ Xq. [πp(f(x))] ∈ %(`p(f(x)))

m f is label preserving, definition of πq
∀x ∈ Xq. [πq(x)] ∈ %(`q(x))

To see p<πp> ∼= t<πq> we show g : Xq<πq> −→ Xp<πp> given by 〈x, x′〉 7→ 〈f(x), x′〉 is
an isomorphism of lpos.

It is seen from: g(Xq<πq>) = {g(〈x, x′〉) | 〈x, x′〉 ∈ Xq<πq>}
= {〈f(x), x′〉 | x ∈ Xq, x

′ ∈ Xπp(f(x))}
= {〈x, x′〉 | x ∈ f(Xq), x

′ ∈ Xπp(x)} = Xp<πp>

Clearly g is bijective and g−1 is 〈x, x′〉 7→ 〈f−1(x), x′〉.
We have
`q<πq>(〈x, x′〉) = `πq(x)(x

′) = `πp(f(x))(x
′) = `p<πp>(〈f(x), x′〉) = `p<πp>(g(〈x, x′〉)),

so g is label preserving and since:
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〈x, x′〉 ≤q<πq> 〈y, y′〉
⇓ by construction of q<πq>

x ≤q y and
x = y ⇒ x′ ≤πq(x) y′

⇓ f morphism from q to p and πq = πp ◦ f
f(x) ≤p f(y) and
f(x) = f(y)⇒ x′ ≤πp(f(x)) y

′

⇓ by construction of p<πp>
〈f(x), x′〉 ≤p<πp> 〈f(y), y′〉

⇓ by definition of g
g(〈x, x′〉) ≤p<πp> g(〈y, y′〉)

g is also order preserving and therefore a morphism of lpos. Similarly it is seen that g−1

is a morphism of lpos. 2

The difference between our refinement operation and Gischers substitution can be illus-
trated by the following example.

Example: Suppose p = a - a and % is a P(P)-refinement with %(a) =

{
b,
c
d

}
. Then

p<%> =

{
b - b, b��1 c

PPq d
,
c
d

PPq
��1 b,

c -
��>
c

d -ZZ~ d

}
whereas the result by Gischer substitution would be{

b - b,
c -

��>
c

d -ZZ~ d

}

The different operations enjoy a number of properties, many of them inherited from the
corresponding properties of pomsets. Some of them are listed in:

Proposition 6.3.3

• ·, × and ∪ are associative

• × and ∪ are commutative

• {ε}<%> = {ε}, {a}<%> = %(a) and <%> distributes over ·, × and ∪

That <%> distributes over · may seem surprising. But if π is a %-consistent p.ref. for
p0 · p1 then one can find %-consistent p. refinements, πp0 for p0 and πp1 for p1 (just define
πpi(x) = π(〈i, x〉) for i = 0, 1) such that

(p0 · p1)<π> ∼= p0<πp0> · p1<πp1>

(the map 〈〈i, x〉, x′〉 7→ 〈i, 〈x, x′〉〉 is an isomorphism from X(p0·p1)<π> to Xp0<πp0>·p1<πp1>).
Then we have [(p0·p1)<π>] = [p0<πp0>·p1<πp1>]. And of course then also (p0·p1)<%> =
p0<%> · p1<%> which generalize to sets as well.

The partial order ⊆ on sets will be central to our models. ∪ and natural extensions to
sets are ⊆-monotone, so we get:
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Proposition 6.3.4 The operators ·, ∪, ×, <%> and δ∗ are ⊆-monotone in all their
arguments.

6.4 Two Types of Pomset Properties

The first type of pomset properties we shall consider is those where the property of a
pomset is inherited to all subpomsets.

Definition 6.4.1 Hereditary Pomset Properties

A pomset property, P∗, is hereditary , iff

∀p ∈ P. P∗(p),q ↪→ p⇒ P∗(q)

2

A pomset being a singleton/ multisingleton/ set/ multiset pomset are examples of hered-
itary pomset properties because p ↪→ q implies M(p) ⊆ M(q). Also the Pw-property
(page 133) is hereditary.

The following three propositions relates hereditary pomset properties with sequential and
parallel composition of pomsets.

Proposition 6.4.2 Let P∗ be a hereditary pomset property. Then

q � p0 · p1, P∗(q)
⇓
∃q0,q1. q = q0 · q1 and qi � pi, P∗(qi) for i = 0, 1

Proof We prove the proposition for lpos which then generalizes to pomsets. Let there
be given lpos p0, p1 and q such that q � p0 · p1 and P∗(q).

q � p0 · p1 implies the existence of a bijection f : Xp0·p1 −→ Xq which also is a morphism
of lpos.

By definition of · we have Xp0·p1 = ({0} × Xp0) ∪ ({1} × Xp1) so we define qi to be
〈Xpi,≤qi, `pi〉 where ≤qi ⊆ Xpi ×Xpi is defined by:

x ≤qi y iff f(〈i, x〉) ≤q f(〈i, y〉)
With this definition of qi we only have to prove ≤pi ⊆ ≤qi in order to have qi � pi. This
is seen as follows:

x ≤pi y ⇒ 〈i, x〉 ≤p0·p1 〈i, y〉 definition of p0 · p1

⇒ f(〈i, x〉) ≤q f(〈i, y〉) f is order preserving
⇒ x ≤qi y definition of qi

Next we prove q ∼= q0 · q1. We show f is an isomorphism from q0 · q1 to q. From
Xq0·q1 = Xp0·p1 we see that it makes sense. f is bijective and label preserving, so we just
have to show that f and f−1 preserve order: At first notice
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〈i, x〉 ≤q0·q1 〈i, y〉 ⇔ x ≤qi y definition of q0 · q1
⇔ f(〈i, x〉) ≤q f(〈i, y〉) definition of qi

Now suppose 〈i, x〉 ≤q0·q1 〈j, y〉, i 6= j. By definition of q0 · q1 then i = 0, j = 1. But then
also 〈i, x〉 ≤p0·p1 〈j, y〉 and since f preserves the order of p0 · p1 then f(〈i, x〉) ≤q f(〈j, y〉).
Suppose now f(〈i, x〉) ≤q f(〈j, y〉), i 6= j. If i = 0 and j = 1 we by definition of q0 · q1
also have 〈i, x〉 ≤q0·q1 〈j, y〉. This settles the case because i = 1 and j = 0 would lead to
a contradiction as follows:
If i = 1 and j = 0 we have 〈j, y〉 ≤p0·p1 〈i, x〉 and 〈j, y〉 6= 〈i, x〉. Since f preserves the
order of p0 · p1 and is injective we get f(〈j, y〉) ≤q f(〈i, x〉) and f(〈j, y〉) 6= f(〈i, x〉). But
this together with f(〈i, x〉) ≤q f(〈j, y〉) contradicts the antisymmetry of ≤q.
It remains to show P∗(q0) and P∗(q1). Clearly q|f({i}×Xqi )

∼= qi so because P∗ is hereditary
and invariant under ∼= the result follows. 2

Proposition 6.4.3 Let P∗ be a hereditary pomset property. Then

q � p0 × p1, P∗(q)
⇓
∃q0,q1. q � q0 × q1 and qi � pi, P∗(qi) for i = 0, 1

Proof The definitions of q0 and q1 so as the arguments are exactly as in the proof of the
previous proposition, except that · has to be exchanged to × and we cannot infer

f(〈i, x〉) ≤q f(〈j, y〉), i 6= j ⇒ 〈i, x〉 ≤q0×q1 〈j, y〉
because i 6= j implies 〈i, x〉 coq0×q1 〈j, y〉. For the same reason the proposition just states
q � q0 × q1. 2

Proposition 6.4.4 Let P∗ be hereditary pomset property. Then

a) δ∗(p0 · p1) ⊆ δ∗(p0) · δ∗(p1)

b) δ∗(p0 × p1) = δ∗(δ∗(p0)× δ∗(p1))

Proof
a) Suppose q ∈ δ∗(p0 · p1)—i.e., q � p0 · p1 and P∗(q). Then by the last but one
proposition there exists pomsets q0 and q1 such that q = q0 · q1 and qi � pi, P∗(qi) for
i = 0, 1. This implies qi ∈ δ∗(pi) for i = 0, 1 and q = q0 · q1 ∈ δ∗(p0) · δ∗(p1).

b) We prove each inclusion in turn.

⊆: Suppose q ∈ δ∗(p0 × p1). Then P∗(q) and q � p0 × p1. Using the last proposition
we find pomsets q0 and q1 such that q � q0 × q1 and qi � pi, P∗(qi) for i = 0, 1.
This gives q0×q1 ∈ δ∗(p0)× δ∗(p1). From P∗(q) and q � q0×q1 we then conclude
q ∈ δ∗(δ∗(p0)× δ∗(p1)) as desired.

⊇: Given q ∈ δ∗(δ∗(p0) × δ∗(p1)). Then P∗(q) and q � q0 × q1 for some qi ∈ δ∗(pi)
and i = 0, 1. This implies q0 � p0 and q1 � p1, so from the �-monotonicity of ×
then

q � q0 × q1 � p0 × q1 � p0 × p1

q ∈ δ∗(p0 × p1) then follows from P∗(q).
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2

Proposition 6.4.5 If P∗ is hereditary pomset property then πδ∗(p) ⊆ δ∗π(p).

Proof Let a q ∈ πδ∗(p) be given. This means there is a s such that P∗(s) and q v s � p.
q v s implies q ↪→ s, so because P∗ is hereditary we also have P∗(q). By proposition
6.2.8 there is a pomset r with q � r v p. Hence q ∈ δ∗π(p). 2

Notice that P∗ being hereditary was not used in ⊇ of b) of proposition 6.4.4 and if we
had closed the right hand side of a) similarly as in b) we would obtain equality.

But we shall deal with a certain type of pomset properties where it will not be necessarily
to close in this way in order to obtain equality. For this type one can deduce/ synthesize
the property for the sequential composition of two pomsets if they both have the property.

Definition 6.4.6 Dot Synthesizable Pomset Properties

A pomset property, P∗, is dot synthesizable, iff

∀p,q ∈ P. P∗(p) and P∗(q) implies P∗(p · q)(6.4)

2

The following proposition states a condition that ensures a pomset property to be dot
synthesizable.

Proposition 6.4.7 A pomset property P∗ is dot synthesizable if

for every lpo p and Y ⊆ Xp with ∀x ∈ Xp \ Y ∀y ∈ Y. x 6cop y we have:

P∗(p|Xp\Y ) and P∗(p|Y )
⇓

P∗(p)
(6.5)

Proof We show that p · q has the P∗-property if P∗ fulfills the condition. By definition
of p · q we have 〈0, z〉 ≤p·q 〈1, v〉 for all z ∈ Xp and v ∈ Xq and as a consequence

∀x ∈ {0} ×Xp∀y ∈ {1} ×Xq. x 6cop·q y

We also have P∗(p) so from p ∼= ε · p = (p · q)|Xp·ε we see P∗((p · q)|Xp·ε). Similar we get
P∗((p · q)|Xε·q). Using (6.5) we then conclude P∗(p · q). 2

With this proposition it is easy to prove that the multiset induced pomset properties are
examples of dot synthesizable pomset properties:

Proposition 6.4.8 The multiset induced pomset properties are dot synthesizable.
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Proof Given a set of multisets, D, we show that PM⊆D satisfies the condition in proposi-
tion 6.4.7 above. Let p be any lpo and Y a subset of Xp with ∀x ∈ Xp \Y ∀y ∈ Y. x 6cop y.
The latter of course implies that any (nonempty) cop-set, Z, must be contained in either
Xp\Y or Y . So if PM⊆D(p|Xp\Y ) and PM⊆D(p|Y ) we conclude that [p|Z ] must be contained
in D, and so PM⊆D(p) as desired. 2

That the condition in proposition 6.4.7 is not necessary for a pomset property to be dot
synthesizable can be seen from the following example.

Example: Let Pex be the dot synthesizable pomset property defined by: Pex(p) iff
every element of p has an immediate neighbour with the same label. E.g., Pex(ε) and

Pex(a
��1 a
PPq b

PPq
��1 b) but neither Pex(a) nor Pex(p) where p = a - b - a - b. If Y is the two

elements of Xp labelled with b then ∀x ∈ Xp \ Y ∀y ∈ Y. x 6cop y. Also [p|Xp\Y ] = a - a
and [p|Y ] = b - b which both have the Pex-property. As already stated Pex(p) does not
hold wherefore the condition of the proposition is not satisfied.

Of course we cannot be sure that δ∗(p) is nonempty no matter whether we have to do
with hereditary or dot synthesizable pomset properties. Take for instance the pomset
property which is not fulfilled by any pomset. The next proposition states a condition
which ensures δ∗(p) not to be empty.

Proposition 6.4.9 Let P∗ be a dot synthesizable pomset property such that P∗(ε) and
for every singleton pomset a, P∗(a). Then δ∗(p) 6= ∅ for every pomset p.

Proof Let a pomset p be given. The proof is by induction on the number of elements
in p. The basis p = ε holds by the assumption of the proposition. So assume p 6= ε. We
can then choose an x ∈ Xp minimal w.r.t. ≤p. Then {x} is ≤p-downwards closed and by
the alternative characterization of prefix then a := [p|{x}] v p. By proposition 6.2.7 we
find a p′ such that a ·p′ � p. Clearly p′ must have less elements than p, so by hypothesis
of induction ∃q ∈ δ∗(p′)—i.e., q � p′ and P∗(q). From the �-monotonicity of · then
a · q � a · p′ � p. By the assumption of the proposition P∗(a) and we know P∗(q) so
P∗(a · q) follows from proposition 6.4.7. Hence a · q ∈ δ∗(p). 2

As an example of the use of this proposition consider the pomset property Pw—a pomset
being a word. Using proposition 6.4.7 one from the definition (trichotomy law) easely sees
that Pw is dot synthesizable. Also the other assumptions of the lemma are fulfilled, so we
conclude δw(p) 6= ∅ for every pomset p.

Proposition 6.4.10 Let P∗ be a dot synthesizable pomset property. Then:

δ∗(p0 · p1) ⊇ δ∗(p0) · δ∗(p1)

Proof Given q ∈ δ∗(p0) · δ∗(p1). Then q = p′
0 · p′

1 for some p′
i ∈ δ∗(pi) and i = 0, 1.

This implies P∗(p′
i) and p′

i � pi for i = 0, 1, so as a consequence of the �-monotonicity of
· then p′

0 ·p′
1 � p0 ·p1, and P∗(p′

0 ·p′
1) since P∗ is dot synthesizable. Hence q ∈ δ∗(p0 ·p1).

2
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So if a pomset property, P∗, is both hereditary and dot synthesizable we from this propo-
sition and a) of proposition 6.4.4 see:

δ∗(p0 · p1) = δ∗(p0) · δ∗(p1)

If in addition P∗ holds for ε and the singleton pomsets we from proposition 6.4.5 and the
following proposition get:

δ∗π(p) = πδ∗(p)

In the following chapters we shall only meet such pomset properties.

Proposition 6.4.11 Suppose P∗ is a dot synthesizable pomset property holding for ε
and the singleton pomsets. Then for every pomset p:

δ∗π(p) ⊆ πδ∗(p)

Proof Suppose q ∈ δ∗π(p). Then P∗(q) and there is a pomset r with q � r v p. As
in the proof of proposition 6.2.8 we can find a r′ such that q · r′ � p. We presume the
same of P∗ as in proposition 6.4.9, so there is a p′ ∈ δ∗(r′). Hence P∗(p′) and by the
�-monotonicity of · also q · p′ � q · r′ � p. P∗(q · p′) follows from P∗(q) and P∗(p′).
Because q v q · p′ we actually have q ∈ πδ∗(p). 2
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Chapter 7

BL—A Basic Process Language

As mentioned in the presentation we shall study degrees of nonsequentiality as “orthogo-
nal” to existing study of branching, and as a consequence hereof the process expressions
we shall use will be from a very basic language, BL, over the abstract set of action
symbols, ∆, containing a combinator for internal nondeterminism beside combinators for
sequencing and parallelism with auto-parallelism (but without communication).

BL consists of expressions of the form:

E ::= a individual process labelled a ∈ ∆
E0 ; E1 sequential composition of E0 and E1

E0 ⊕ E1 internal nondeterministic composition of E0 and E1

E0 ‖ E1 parallel composition of E0 and E1.

In all models to come these binary operators are associative, a fact we shall make use of
in examples together with the combinator precedence:

⊕ < ‖ < ;

7.1 General Semantics

In the tradition as initiated in [HM80] our starting point will be the idea of an observer
experimenting by doing tests on a black-box containing a process.

�
��

�
��

���

ea
eb
ec · · ··
··

Tests consists in pushing buttons until some bulb is lightning up indicating the termination
of the process. A direct test could be to try to push a button and a full test can then be
considered as a maximal sequence of direct tests.

Within the branching tradition a widespread technique to increase an observers capability
to distinguish nondeterministic processes is to provide the observer more sophisticated,
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but natural means of making direct tests—e.g., in the readiness semantic where it is
directly possible to test which buttons one successfully could push. How powerful these
capabilities should be depends on the purpose and application [OH86].
In the line of this we shall look for natural direct tests which puts the observer in a
position to discriminate degrees of nonsequentiality by processes, but remains faithful to
the idea of an observer pushing buttons on a black-box.

Keeping the analogy of a human observer the weakest form of an direct test must be that
of an observer pushing buttons using just óne finger. But also simultaneously observations
are conceivable [Mil80]. Clearly some power of the direct test is gained if the observer
uses two fingers at the same time thereby enabling the observer to direct test whether
two different labelled individual processes could be started at the same time. Another
approach would be to realize the force used to push the button—reflecting how many
individual processes with equal label could be started at the same time. These two
directions for increasing the power of the direct test seems to span the possibilities for an
observer experimenting through pushing buttons by the fingers. Of course the combination
of these directions opens up for a large variety with óne button direct tests at one extreme
and finitely many button push with realized force for each, at the other extreme. It is
difficult to argue which one to choose in this spectrum and in the end it must be a
matter of application. As an example of one application consider the situation where
more processes have access to a common store. Here it would be suitable if only direct
tests with at most óne write in the common store is possible.

On the basis of sequences of direct test equivalences on a simple language, BL, will be
defined. We can then investigate what consequences a choice of direct tests can have.
However for an extension, RBL, of BL which allows change of atomicity, we shall later
see that the actual choice is irrelevant if the equivalences are demanded to be congruences.

We now formalize the direct tests and add some “natural” requirements.

Definition 7.1.1 A set of direct tests, G, is a set of nonempty multisets satisfying:

∆ ⊆ G
A ↪→ B,B ∈ G⇒ A ∈ Gε

The first demand says that an observer at least should be capable of doing the weakest
direct test: push óne button. The second demand means that an observer capable of
doing one direct test also should be able to do any weaker direct test.

Evidently our tests resembles the sequences of firing steps used to express nonsequential
behaviours of processes in Petri nets [Rei85].

It is possible to carry through more quibbling observations as the partial order observa-
tions of [DM87] and in [BC87] transitions like (a ; b ‖ a) are possible. However one might
argue that it is difficult to give “natural” intuition supporting such observations.
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7.2 Operational Set-up

The sequence of direct test which can be performed will be build up from the direct test
relation ⇒G holding through an A ∈ G between configurations, with each BL-expression
being a possible start configuration. Configurations are expressions from CL, which is
almost like BL with ∆ extended with † (a symbol distinct from those of ∆). Intuitively
† represents the extinct action. Formally CL is defined to be the least set C satisfying:

† ∈ C
BL ⊆ C

E0 ; E1 ∈ C if E0 ∈ C and E1 ∈ BL
E0 ‖ E1 ∈ C if E0, E1 ∈ C

The construction of CL reflects the idea that control cannot pass ; before all previous
actions are extinct.

Example: a ‖ († ; b) ∈ CL but † ⊕ a 6∈ CL and a ; († ; b) 6∈ CL.

We shall often prove properties by induction on the structure of an E ∈ CL. Strictly
speaking we then first prove the property for expressions from BL and then look at † and
sequential/ parallel composition afterwards. This implies that e.g., E = E0 ; E1 shall be
treated two times with the only difference that for the first time we can assume E0 not
to contain †. We will therefore treat these cases together except at rare occasions where
the distinction is crucial. The same applies for E = E0 ‖ E1.

So⇒G is actually a subset of CL×G×CL. If 〈E,A,E ′〉 ∈ ⇒G we write this as E
A⇒G E ′.

One can think of this as E can evolve to E ′ when the direct test A is performed.

We shall follow DeNicola [Nic87] and Hennessy [Hen88a] when defining ⇒G. Hennessy
does this in an extended labelled transition system by means of a relation >−→, which
reflects the step of an internal computation, and by a relation −→G for an external
computation step corresponding to a direct test. The slight deviation from Hennessy in
defining the relation, >−→, for internal steps are manily due to differences in the languages
considered.
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Definition 7.2.1 >−→ ⊆ CL×CL and −→G ⊆ CL× G×CL are defined as the least
relations satisfying the following axioms and inference rules.

a
a−→G †

E0
A−→G E ′

0

E0 ; E1
A−→G E ′

0 ; E1

E0
A−→G E ′

0

E0 ‖ E1
A−→G E ′

0 ‖ E1

E1 ‖ E0
A−→G E1 ‖ E ′

0

E0
A0−→G E ′

0, E1
A1−→G E ′

1, A0 × A1 ∈ G

E0 ‖ E1
A0×A1−→ G E ′

0 ‖ E ′
1

† ; E >−→ E
E0 >−→ E ′

0

E0 ; E1 >−→ E ′
0 ; E1

E0 ⊕E1 >−→ E0

E0 ⊕E1 >−→ E1

† ‖ E >−→ E
E ‖ † >−→ E

E0 >−→ E ′
0

E0 ‖ E1 >−→ E ′
0 ‖ E1

E1 ‖ E0 >−→ E1 ‖ E ′
0

In this way an internal step either resolves an internal nondeterministic choice or removes
an extinct action. The idea of using >−→ for other purposes than resolving internal
nondeterministic choices is not inconsistent with Hennessy—he also uses >−→ to unfold
recursive definitions.

Notice that the definition of
A−→G is well-defined because of the premise A0 × A1 ∈ G in

the rule for a composed action and because we assume ∆ ⊆ G (for a
a−→G †).

Example: Let G be a set of direct test containing a2. Then

a ; b ‖ a ; d
a2−→G † ; b ‖ † ; d >−→ † ; b ‖ d d−→G † ; b ‖ † >−→ b ‖ † b−→G † ‖ † >−→ †

The test relation,
A⇒G, is now defined as >−→∗ A−→G>−→∗ and for a sequence of direct

tests s ∈ G∗ and E,E ′ ∈ CL we define:

E
s⇒G E ′, s = A1A2 . . .An

iff
∃E1, . . . , En ∈ CL∃A1, . . . , An ∈ G, n ≥ 0.

E
A1=⇒G E1

A2=⇒G . . .
An=⇒G En = E ′

where the case n = 0 means E >−→∗ E ′.

With this notion of sequences of direct test it follows that any maximal sequence, s, of
direct is of the form E

s⇒G †, so we can define our basic operational preorder:

Definition 7.2.2 <∼G ⊆ BL× BL
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E0
<∼G E1

iff

E0
s⇒G † implies E1

s⇒G † for all s ∈ G∗
2

Notice that as expected the equivalence of <∼G, <∼>∼G, identifies a ; (b⊕ c) and a ; b⊕ a ; c.

Throughout this section we will fix G and so will leave it out as a subscript of −→G and
⇒G except when dealing with certain G’s. This will also be the case in the remaining
sections whenever the direct test set G in question is clear from the context.

Given a concrete sequence of internal and external steps, written
s⇒, we define its length

as the total number of steps in the sequence. If E under this sequence evolves to E ′ we
also write this as E

s⇒ E ′. This allows us to make induction on the length of a concrete
sequence.

As a first result notice that by an easy induction on the length of
s⇒ (where

s⇒ is a
concrete sequence for E0

s⇒ E ′
0) one can prove:

Proposition 7.2.3 Suppose E ∈ BL, E0, E1 ∈ CL and E0
s⇒ E ′

0. Then

• E0 ; E
s⇒ E ′

0 ; E

• E0 ‖ E1
s⇒ E ′

0 ‖ E1

• E1 ‖ E0
s⇒ E1 ‖ E ′

0

Since we only have a combinator for internal nondeterministic choice a natural ques-
tion to raise is whether a processes reacts successful to a test iff one of the syntactic
“controlled behaviours” of it does. Such a behaviour can be regarded as a deterministic
process (∈ DBL) or configuration (∈ DCL)—deterministic in the sense that no internal
nondeterminism is explicit present in the form of a ⊕-combinator, but of course their
might be indirectly as in a ‖ a. A behaviour would in Petri net terms correspond to a
possible process/ concurrent behaviour of a Petri net system—more accurately it would
correspond to to an occurrence net of a place/ transition net [BF88]. Formally:

Definition 7.2.4 Behaviours

The set of configuration behaviours, DCL, is defined to be the ⊕-free expressions of CL.
Similar DBL = DCL ∩ BL is the set of process behaviours.

The behaviours of a configuration expression is given by the map Beh : CL −→ P(DCL)
defined as follows:

Beh(†) = {†}
Beh(a) = {a}
Beh(E0 ; E1) = Beh(E0) ; Beh(E1)
Beh(E0 ⊕E1) = Beh(E0) ∪ Beh(E1)
Beh(E0 ‖E1) = Beh(E0) ‖ Beh(E1)
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where Beh(E0) ; Beh(E1) denotes {E ′
0 ; E ′

1 | E ′
0 ∈ Beh(E0), E

′
1 ∈ Beh(E1)}. Similar for ‖.

2

Notice that E ∈ BL implies Beh(E) ⊆ DBL.

Because BL ⊆ CL we from the proposition below deduce a positive answer to the ques-
tion whether a processes reacts successful to a test iff one of the syntactic “controlled
behaviours” of it does.

Proposition 7.2.5 For a configuration E ∈ CL and s ∈ G∗ we have

E
s⇒ † iff ∃F ∈ Beh(E). F

s⇒ †

Because in general † ∈ Beh(E) iff E = † this proposition is immediate from:

Proposition 7.2.6 Given s ∈ G∗ and configurations E and F ′. Then:

∃E′ s⇒ E ′, F ′ ∈ Beh(E′)
m
∃F ∈ Beh(E). F

s⇒ F ′

Proof Both implication are proven by induction on the length of
s⇒ using the following

three propositions. 2

Proposition 7.2.7 Given configurations E and F ′ we have:

∃E ′. E >−→ E ′, F ′ ∈ Beh(E′)
⇓
∃F ∈ Beh(E). F >−→∗ F ′

Proof By induction on the structure of E.

E = † or E = a: In both cases E cannot do any internal step so the implication holds
vacuously.

E = E0 ; E1: According to the definition of >−→ there are two subcases:
E0 = †: Then E ′ = E1 and F ′ ∈ Beh(E1). Now Beh(E) = † ; Beh(E1) so F :=
† ; F ′ ∈ Beh(E) and of course D >−→ F ′.

E0 >−→ E ′
1: I.e., E ′ = E′

0 ; E1, so F ∈ Beh(E′) means F ′ = F ′
1 ; F1 for some

F ′
0 ∈ Beh(E ′

0), F1 ∈ Beh(E1). By induction ∃F0 ∈ Beh(E0). F0 >−→∗ F ′
0. By

proposition 7.2.3 this implies F := F0 ; F1 >−→∗ F ′
0 ; F1 = F ′. Since Fi ∈ Beh(Ei)

for i = 0, 1 we also have F ∈ Beh(E).

E = E0 ⊕E1: By definition of >−→ then either E ′ = E0 or E ′ = E1. W.l.o.g. assume
E ′ = E0. Then F ∈ Beh(E′) means F ′ ∈ Beh(E0) ⊆ Beh(E0) ∪ Beh(E1) =
Beh(E0 ⊕ E1) so we can just choose F = F ′ since F ′ >−→0 F ′.
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E = E0 ‖ E1: Again according to the definition of >−→ there are four possibilities. If the
internal step E0 ‖ E1 >−→ E ′ derives from one of the axioms for ‖ the proof goes
similar/ symmetric as in the first subcase of E = E0 ; E1 and if it derives from one
of the inference rules for ‖ it goes as in the second subcase.

2

Proposition 7.2.8 If E and F ′ are configurations then:

∃F ∈ Beh(E). F >−→ F ′

⇓
∃E ′. E >−→∗ E ′, F ′ ∈ Beh(E′)

Proof By induction on the structure of E.

E = † or E = a: Then Beh(E) = {E} and F = E. Since E of this form can do no
internal step the implication holds trivially.

E = E0 ; E1: F ∈ Beh(E0 ; E1) means F = F0 ; F1 where Fi ∈ Beh(Ei) for i = 0, 1.
E0 = †: Since F0 ∈ Beh(†) implies F0 = † we see that F >−→ F ′ implies F ′ = F1.
Let E ′ = E1. We have E = † ; E1 >−→ E ′ with F ′ ∈ Beh(E′) as desired.

E0 6= †: Now F0 ∈ Beh(E0), E0 6= † implies F0 6= †. Inspecting the definition of
>−→ we see that F >−→ F ′ must be due to F0 >−→ F ′

0, F
′ = F ′

0 ;F1. By hypothesis
of induction there exists E ′

0 such that E0 >−→∗ E ′
0 and F ′

0 ∈ Beh(E′
0). Then also

E >−→∗ E ′
0 ; E1 and F ′ ∈ Beh(E′

0) ; Beh(E1). Choosing E ′ = E ′
0 ; E1 we are done.

E = E0 ⊕E1: F ∈ Beh(E) means F ∈ Beh(E0) or F ∈ Beh(E1). Suppose w.l.o.g.
F ∈ Beh(E0). Then by induction ∃E ′. E0 >−→∗ E ′, F ′ ∈ Beh(E′). By definition of
>−→ then also E0 ⊕E1 >−→ E0 >−→∗ E ′ and thereby E >−→∗ E ′.

E = E1 ‖ E1: Has similar/ symmetric subcases to those of E = E0 ; E1.

2

By an easy induction on the structure of E one can prove:

Proposition 7.2.9 For configurations E and F ′ we have:

∃E ′. E A−→ E ′, F ′ ∈ Beh(E′)
m
∃F ∈ Beh(E). F

A−→ F ′

7.3 Denotational Set-up

The well-known trace models (not necessarily maximal) e.g., [OH86, Hoa85] are based on
sets of sequences of actions from ∆ (words) and using the shuffle operator when dealing
with ‖. These and related models can be viewed as abstractions of computations trees
canonicical associated with the process expressions. In the trace models for the equivalence
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corresponding to the smallest set of direct tests the abstraction would consist in taking
the set of words which constitute the paths from the root to the leaves of the computation
tree as illustrated in:

Computation
tree

Set of
words

a ‖ b⊕ a ; b 7−→
•

a↙a↓ ↘ b
• • •

b ↓ b↓ ↓ a
• • •

7−→ {ab, ba}

a ; b⊕ b ; a 7−→
•

a↙ ↘ b
• •

b ↓ ↓ a
• •

7−→ {ab, ba}

With these models in mind it offers it self for the generalized traces, to look for models
based on sets of sequences of direct tests, i.e., subsets of G∗. However because immediate
tests are directed towards discovering concurrency as mirrored in pomsets and in order
to clear the way for the more complicated model in the next chapter we shall devise
corresponding models in the pomset framework. So the idea is to obtain a similar picture
as above using pomsets in stead.

Example: If we intuitively think of ℘ as associating pomsets to expressions and δw gives
the linearizations of pomsets we expect:

Set of
pomsets

Set of
pomsets

a ‖ b⊕ a ; b
℘7−→


a
b,
a - b

 δw7−→
{
a - b,
b - a

}

a ; b⊕ b ; a
℘7−→

{
a - b,
b - a

}
δw7−→

{
a - b,
b - a

}

To make this picture precise and generalize to an arbitrary set of direct tests, G, we shall
at first look for pomsets which only contains multisets from G. From G ⊆ M and the
definition of multiset induced pomset properties we know that PM⊆G are the pomsets we
are looking for.

For arbitrary pomset properties, P∗ and P∗′, we denote P∗ ∩ P∗′ by P∗,∗′ and similar for
the δ∗-closure we for a pomset p denote δ∗(p) ∩P∗′ by δ∗,∗′(p).

Notice that δ∗,∗′(p) alternatively may be written as {q ∈ P | q � p, P∗(p) and P∗′(p)}.
Next it seems natural to seek a pomset property reflecting the general nature of when the
multisets of a pomset are in sequence, i.e., pomsets of the form A1 ·A2 · . . . ·An. Pomsets
of this form can be considered as “layered” in the sense that they may be viewed as “a
linear order on top of a set of completely unordered pomsets (the individual multisets,
Ai’s)”. One way to formalize this property is the following:
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Definition 7.3.1 Pand-Property for Pomsets

A pomset p is said to have the Pand-property, Pand(p), iff for all x, x′, y, y′ in Xp we
have:

if
x
cop
y

then
∀z. x <p z ⇒ y <p z
and
∀z. y <p z ⇒ x <p z 2

Example:
a -

��>
b

c -ZZ~ d
has the Pand-property,

a - b
c -ZZ~ d

and
a - b
a

has not.

Proposition 7.3.2 The Pand-property is hereditary and dot synthesizable.

Proof Because of the universal quantification of x and y in the definition of Pand(p) and
because the partial order just is restricted in subpomsets it follows that the Pand-property
is hereditary.

It is also dot synthesizable as can be seen by using proposition 6.4.7: Let a lpo p and a
subset Y of Xp given such that Pand(p|Xp\Y ),Pand(p|Y ) and

∀x ∈ Xp \ Y ∀y ∈ Y. x 6cop y(7.1)

Suppose on the contrary ¬Pand(p). By definition there must be x, y, z ∈ Xp with y cop
x <p z and y 6<p z. y 6<p z cannot mean z ≤p y because we then would get x ≤p y
contradicting y cop x, so actually:

y cop x <p z cop y(7.2)

If x, y and z all are in one of the two sets Xp \ Y and Y , we get a contradiction to
Pand(p|Xp\Y ) and Pand(p|Y ). Otherwise one element must be in one of the sets and the
remaining two in the other set. From (7.2) we see that at least one of the two elements
belonging to the same set must be concurrent to the element in the other set—a contra-
diction to (7.1). 2

Proposition 7.3.3 The Pand-property has the following alternative characterization:

(p 6= ε and Pand(p)) iff ∃n ≥ 1∃A1, . . . , An ∈ M. A1 · . . . · An = p

From this and the definition of PM⊆G,and we immediately get:

(p 6= ε and PM⊆G,and(p)) iff ∃n ≥ 1∃A1, . . . , An ∈ G. A1 · . . . · An = p

We abbreviate PM⊆G,and by PG. PM⊆D is clearly hereditary so from the propositions 6.4.8
and 7.3.2 we get:

Corollary 7.3.4 The PG-property is hereditary and dot synthesizable.
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With the above biimplications it is not hard to see that G∗ and PG coincide (are isomor-
phic), and as a consequence we shall often identify them in the sequel. So there is hope
that we can base our models on subsets of PG.

It only remains to establish a connection from BL-expressions to nonempty subsets of
PG. To this end we introduce a canonical map which give a natural association of sets of
pomsets with BL-expressions.

Definition 7.3.5 Canonical Pomset Association
The canonical associated pomsets of a BL-expression is given by the map ℘ : BL −→
P(P \ {ε}) \ ∅ defined compositionally as follows:

℘(a) = {a}
℘(E0 ; E1) = ℘(E0) · ℘(E1)
℘(E0 ⊕E1) = ℘(E0) ∪ ℘(E1)
℘(E0 ‖ E1) = ℘(E0)× ℘(E1)

Example: ℘((a⊕ b) ; (a ‖ c)) =

{
a��1 a

PPq c
, b��1 a

PPq c

}

We can then let denotations in our models go via this map:

Definition 7.3.6 [[ ]]G : BL −→ P(PG \ {ε}) \ ∅ with [[E]]G = δG(℘(E)). 2

So, our G-model is finite sets of PG-pomsets partially ordered by inclusion: ⊆.

It is easy to check that the maps of the example on page 156 are correct and that they
composed correspond to the denotational map just defined.

[[ ]]G together with the partial order induces a denotational preorder ≤G over BL by:

E0 ≤G E1 iff [[E0]]G ⊆ [[E1]]G

Having models using sets of sequences from ∆∗ in mind it is not hard to come up with:

Theorem 7.3.7 [[ ]]G can be defined compositionally by:

[[a]]G = {a}
[[E0 ; E1]]G = [[E0]]G · [[E1]]G
[[E0 ⊕ E1]]G = [[E0]]G ∪ [[E1]]G
[[E0 ‖ E1]]G = δG([[E0]]G × [[E1]]G)

Notice that δG here acts as the natural generalization of the shuffle/ zip operator for ∆∗.

Proof At first notice that corollary 7.3.4 enables us to apply the propositions 6.4.4 and
6.4.10 in the proof. We look at the different cases:
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a: Evident by inspection of the definitions.

E0 ; E1: Follows directly from the fact that δG distributes over pomset sequential compo-
sition (proposition 6.4.4 and 6.4.10). See also the last case.

E0 ⊕E1: Similar because δG is a natural generalization to sets and therefore distributes
over sets.

E0 ‖ E1: [[E0 ‖ E1]]G = δG(℘(E0 ‖ E1)) definition of [[ ]]G
= δG(℘(E0)× ℘(E1)) definition of ℘
= δG(δG(℘(E0))× δG(℘(E1))) proposition 6.4.4
= δG([[E0]]G × [[E1]]G) definition of [[ ]]G

2

7.4 Full Abstractness

The first proposition says that ≤G is inherited in all BL-contexts.

Proposition 7.4.1 ≤G is a precongruence over BL.

Proof From theorem 7.3.7 we know a compositional definition of [[ ]]G using ⊆-monotone
operators (proposition 6.3.4), and hence ≤G is a precongruence. 2

Theorem 7.4.2 [[ ]]G is fully abstract w.r.t. <∼G, because

a) <∼G is a precongruence w.r.t. BL

b) E0
<∼G E1 iff E0 ≤G E1

Proof a) is a consequence of proposition 7.4.1 and b) which in turn is a direct conse-
quence of the proposition below. 2

Proposition 7.4.3 For every E0, E1 ∈ BL we have

[[E0]]G ⊆ [[E1]]G iff E0
<∼G E1

Proof In the last section we saw:

(p 6= ε and PG(p)) iff ∃n ≥ 1∃A1, . . . , An ∈ G. A1 · . . . · An = p

from which we immediately get:

PG(p) iff ∃n ≥ 1∃A1, . . . , An ∈ Gε. A1 · . . . ·An = p

Recalling our convention to identify G∗ and PG we then from lemma 7.4.4 below get for
E ∈ BL:

[[E]]G = {A1 · . . . · An ∈ G∗
ε | n ≥ 1, E

A1=⇒ . . .
An=⇒ †} = {s ∈ G∗ | E s⇒ †}(7.3)

with
∅⇒ interpreted according to the convention below.

The proof is now a simple matter: [[E0]]G ⊆ [[E1]]G iff {s ∈ G∗ | E0
s⇒ †} ⊆ {s ∈ G∗ |

E1
s⇒ †} iff E0

<∼G E1. 2
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For simplicity of the following lemmas we shall temporarily adopt the notation E
∅−→ E ′

to mean E = E ′ wherefore E
∅⇒ E ′ also means E >−→∗ E ′. For the same reason the

lemmas are formulated slightly stronger than needed where they are used.

Lemma 7.4.4 Given E ∈ BL and multisets A1, . . . , An ∈ Gε (n ≥ 1). Then

E
A1=⇒ . . .

An=⇒ † iff ∃p ∈ ℘(E). A1 · . . . · An � p

Proof Before proving each implication separately notice that p ∈ ℘(E) implies p 6= ε
for E ∈ BL and that every subexpression of E ∈ BL belongs to BL too..

If : By induction on the structure of E.

E = a: ℘(a) = {a} and we have p = a. Clearly A1 · . . . · An � a implies that exactly

one Ai = {a}, the rest of them equal to ∅. The result then follows from a
∅⇒ . . .

∅⇒
a

a−→ † ∅⇒ . . .
∅⇒ †.

E = E0 ; E1: From ℘(E) = ℘(E0) · ℘(E1) we then see p = p0 · p1 where pi ∈ ℘(Ei) for
i = 0, 1. By lemma 7.4.7 A1 · . . . · An � p0 · p1 implies n ≥ 2 and the existence of
a 1 ≤ j < n such that A1 · . . . · Aj � p0 and Aj+1 · . . . · An � p1. By hypothesis of

induction then E0
A1=⇒ . . .

Aj
=⇒ † and E1

Aj+1
=⇒ . . .

An=⇒ †. By proposition 7.2.3 then

E0 ; E1
A1=⇒ . . .

Aj
=⇒ † ; E1. Since † ; E1 >−→ E1 we get E0 ; E1

A1=⇒ . . .
Aj

=⇒ E1
Aj+1
=⇒

. . .
An=⇒ † as desired.

E = E0 ⊕E1: p ∈ ℘(E) = ℘(E0) ∪ ℘(E1) implies p ∈ ℘(E0) or p ∈ ℘(E1). Suppose

w.l.o.g. p ∈ ℘(E0). By hypothesis of induction E0
A1=⇒ . . .

An=⇒ † so from the rules

of >−→ then also E0 ⊕E1 >−→ E0
A1=⇒ . . .

An=⇒ †.
E = E0 ‖ E1: p ∈ ℘(E) = ℘(E0)× ℘(E1) implies p = p0 × p1 for some p0 ∈ ℘(E0) and

p1 ∈ ℘(E1). According to proposition 7.4.10 A1 · . . . · An � p0 × p1 implies the
existence of multisets A0

1, . . . , A
0
n, A

1
1, . . . , A

1
n such that Ai1 · . . . ·Ain � pi for i = 0, 1

and Aj = A0
j × A1

j for j = 1, . . . , n. This means Aij ↪→ Aj, so because G has the
closure property:

B ↪→ C,C ∈ G⇒ B ∈ Gε

the Aij ’s actually belongs to Gε. Hence we can use the hypothesis of induction to

see Ei
Ai1=⇒ . . .

Ain=⇒ † for i = 0, 1. By proposition 7.2.3 then E0 ‖E1
A1=⇒ . . .

An=⇒ †‖ †
and the result follows from † ‖ † >−→ †.

Only if : We shall also prove this implication by induction on the structure of E.

E = a: Since a 6>−→ and a
A−→ F implies A = a and F = † there is exactly one Ai = a

and the rest equal to ∅. Recalling ∅(= ε) neutral to · we see from a � a and
℘(a) = {a} that we are done.

E = E0 ; E1: Because E0 ∈ BL we cannot have E0 >−→∗ †. For purely structural reasons
we cannot for any E′

0 and E1 have E ′
0 ; E1 = † neither, so using lemma 7.4.5 on

E0 ; E1
A1=⇒ . . .

An=⇒ † we deduce n ≥ 2 and the existence of a 1 ≤ j < n such

that E0
A1=⇒ . . .

Aj
=⇒ † and E1

Aj+1
=⇒ . . .

An=⇒ †. By hypothesis then A1 · . . . · Aj � p0

160



and Aj+1 . . .An � p1 where pi ∈ ℘(Ei) for i = 0, 1. By �-monotonicity of · then
A1 · . . .Aj · Aj+1 · . . . · An � p0 · Aj+1 · . . . · An � p0 · p1 ∈ ℘(E0) · ℘(E1).

E = E0 ⊕E1: Inspecting the definition of >−→ and
A1−→ one easely sees that E0⊕E1

A1=⇒
. . .

An=⇒ † implies E0 ⊕ E1 >−→ F
A1=⇒ . . .

An=⇒ † where F = E0 or F = E1. The
result then follows from the hypothesis of induction and definition of ℘.

E = E0 ‖ E1: Then E0 ‖ E1
A1=⇒ . . .

An=⇒ †. Chosing E = † in lemma 7.4.6 we see that
there are A0

1, . . . , A
0
n, A

1
1, . . . , A

1
n ∈ Gε such that Aj = A0

j × A1
j for j = 1, . . . , n and

Ei
Ai1=⇒ . . .

Ain=⇒ † for i = 0, 1. Using the hypothesis of induction together with (6.3):

(p× q) · (p′ × q′) � (p · p′)× (q · q′)

the desired result is then obtained similarly as in the case E = E0 ; E1.

2

Notice that we only used the closure property of G in the if part of the proof.

Lemma 7.4.5 Suppose n ≥ 1 and E0 ; E1
A1=⇒ . . .

An=⇒ E for A1, . . . , An ∈ Gε and
E0 ; E1 ∈ CL. Then either

a) E0 >−→∗ †, E1
A1=⇒ . . .

An=⇒ E or

b) E0
A1=⇒ . . .

Aj
=⇒ †, E1

Aj+1
=⇒ . . .

An=⇒ E for a 1 ≤ j < n or

c) E0
A1=⇒ . . .

An=⇒ †, E1 >−→∗ E or

d) E0
A1=⇒ . . .

An=⇒ E ′
0, E

′
0 ; E1 = E for some E ′

0 ∈ CL

Proof At first we prove by natural induction for arbitrary m and F,E0 ; E1 ∈ CL:

E0 ; E1 >−→m F
⇓
i) E0 >−→∗ †, E1 >−→∗ F or

ii) E0 >−→∗ F ′
0, F

′
0 ; E1 = F

(7.4)

m = 0: Here E0 ; E1 = F and we can choose F ′
0 = E0.

m > 0: Then for some H ∈ CL we have E0 ; E1 >−→ H >−→m−1 F . According to the
definition of >−→ there are two cases:
E0 = † and H = E1: I.e., E1 >−→m−1 F and i) holds.
E0 >−→ H0 andH0 ;E1 = H : From the hypothesis of induction used onH0;E1 >−→m−1 F
we get either (H0 >−→∗ †, E1 >−→∗ F ) or (H0 >−→∗ F ′

0, F
′
0 ;E1 = F ). In the former case

i) is established because E0 >−→ H0 >−→∗ † and in the latter case we get ii).

Using (7.4) we can now prove the lemma by induction on n.

n = 1: If A1 = ∅ we have E0 ;E1 >−→∗ E and we can use (7.4) to see that c) or d) holds.

So assume A1 6= ∅ and we have E0 ; E1 >−→∗ F A1−→ F ′ >−→∗ E for some F, F ′ ∈ CL.
We consider two case according to (7.4):
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i) Here we have E0 >−→∗ †, E1 >−→∗ F A1−→ F ′ >−→∗ E and a) holds.

ii) E0 >−→∗ F ′
0, F

′
0 ; E1

A1−→ F ′ >−→∗ E. Since A1 6= ∅ we must have F ′ = F ′′
0 ; E1

where F ′
0

A1−→ F ′′
0 . Using (7.4) on F ′′

0 ; E1 >−→∗ E we see F ′′
0 >−→∗ †, E1 >−→∗

E or F ′′
0 >−→∗ E ′

0, E
′
0 ; E1 = E. In the former case we have E0 >−→∗ F ′

0
A1−→

F ′′
0 >−→∗ †, E1 >−→∗ E and c) holds. In the latter case E0 >−→∗ F ′

0
A1−→ F ′′

0 >−→∗

E ′
0, E

′
0 ; E1 = E so here d) holds.

n > 1: Then E0 ; E1
A1=⇒ F

A2=⇒ . . .
An=⇒ E. From the case n = 1 we know that for

E0 ; E1
A1=⇒ F there are the following three main possibilities:

E0 >−→∗ †, E1
A1=⇒ F : Then also E1

A1=⇒ . . .
An=⇒ E and a) holds.

E0
A1=⇒ †, E1 >−→∗ F : Here we get E1

A2=⇒ . . .
An=⇒ E and b) is established with j = 1.

E0
A1=⇒ F ′

0, F
′
0 ; E1 = F : The hypothesis of induction used on F ′

0 ;E1
A2=⇒ . . .

An=⇒ E yields:

a’) F ′
0 >−→∗ †, E1

A2=⇒ . . .
An=⇒ E or

b’) F ′
0

A2=⇒ . . .
Aj

=⇒ †, E1
Aj+1
=⇒ . . .

An=⇒ E for a 2 ≤ j < n or

c’) F ′
0

A2=⇒ . . .
An=⇒ †, E1 >−→∗ E or

d’) F ′
0

A2=⇒ . . .
An=⇒ E ′

0, E
′
0 ; E1 = E

Clearly we have E0
A1=⇒ † in the case a’) thereby getting b) for j = 1. In the

remaining cases b’), c’) and d’) we directly get b), c) and d) respectively.

2

Lemma 7.4.6 Suppose n ≥ 1 and E0 ‖ E1
A1=⇒ . . .

An=⇒ E for A1, . . . , An ∈ Gε and
E0 ‖ E1 ∈ CL. Then there are E′

0, E
′
0 ∈ CL and A0

1, . . . , A
0
n, A

1
1, . . . , A

′
n ∈ Gε such that

Aj = A0
j × A1

j for j = 1, . . . , n and

Ei
Aii=⇒ . . .

Ain=⇒ E ′
i for i = 0, 1 and

E′
0 ‖ E ′

1 = E or E ′
0, E

′
1 = {†, E}

Proof At first we by natural induction prove for arbitrary m and E0, E1 ∈ CL that
E0 ‖ E1 >−→m E implies the existence of some E ′

0, E
′
1 ∈ CL such that:

E0 >−→∗ E ′
0, E1 >−→∗ E ′

1 and

E ′
0 ‖ E ′

1 = E or {E ′
0, E

′
1} = {†, E}(7.5)

m = 0: Then E = E0 ‖ E1 and we can choose E ′
i = Ei.

m > 0: This means E0 ‖ E1 >−→ F >−→m−1 E. According to the definition of >−→
there are four cases:

E0 = † and E1 = F : Choose E′
0 = †, E′

1 = E and we are done.

E1 = † and E0 = F : Symmetric.
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E0 >−→ F ′
0 and F ′

0 ‖ E1 = F : Use the hypothesis of induction on F ′
0 ‖ E1 >−→m−1 E to

find E ′
0, E

′
1 such that F ′

0 >−→∗ E ′
0, E1 >−→∗ E ′

1 and (E ′
0 ‖ E ′

1 = E or {E ′
0, E

′
1} =

{†, E}). The result then follows because E0 >−→∗ F ′
0 >−→∗ E ′

0 or equally E0 >−→∗

E ′
0.

E1 >−→ F ′
1 and E0 ‖ F ′

1 = F : Symmetric to the last case.

Next we prove the lemma by induction on n:

n = 1: We have E0‖E1 >−→∗ F A1−→ H >−→∗ E. We can now use (7.5) on E0‖E1 >−→ F
to find F ′

0, F
′
1 ∈ CL such that Ei >−→∗ F ′

i for i = 0, 1 and (F ′
0 ‖ F ′

1 = F or {F ′
0, F

′
1} =

{†, F}). According to this there are two subcases:

{F ′
0, F

′
1} = {†, F}: Suppose w.l.o.g. F ′

0 = † and F ′
1 = F . Choosing E ′

0 = †, E′
1 = E and

A0
1 = ∅, A1

1 = A1 we are done because E0 >−→∗ E ′
0 implies E0

∅⇒ E ′
0 or equally

E′
0

A0
1=⇒ E ′

0 and because E1 >−→∗ F A1−→ H >−→∗ E implies E1
A1

1=⇒ E ′
1.

F ′
0 ‖ F ′

1 = F : In this situation we have F ′
0 ‖ F ′

1
A1−→ H >−→∗ E. Looking at the definition

of
A1−→ we see that F ′

0 ‖F ′
1

A1−→ H implies H = H ′
0 ‖H ′

1 where F ′
i

Ai1−→ Hi, A
i
1 ∈ Gε for

i = 0, 1 and A1 = A0
1 × A1

1 (recall the convention F ′
i = Hi if Ai1 = ∅). Using (7.5)

on H0 ‖H1 >−→∗ E we now find the desired E ′
0 and E ′

1 because Ei >−→∗ F ′
i

Ai1−→
Hi >−→∗ E ′

i.

n > 1: Then there must be a F ∈ CL and 1 ≤ j < n such that E0 ‖ E1
A1=⇒ . . .

Aj
=⇒

F
Aj+1
=⇒ . . .

An=⇒ E. By induction there are F ′
0, F

′
1 and Ai1, . . . , A

i
j for i = 0, 1 such that

Ei
Ai1=⇒ . . .

Aij
=⇒ F ′

i and (F ′
0 ‖ F ′

1 = F or {F ′
0, F

′
1} = {†, F}). Two cases:

{F ′
0, F

′
1} = {†, F}: Suppose w.l.o.g. F ′

0 = † and F ′
1 = F . Choosing E ′

0 = †, E′
1 = E and

A0
k = ∅, A1

k = Ak for k = j + 1, . . . , n we have F ′
0 = † ∅⇒ . . .

∅⇒ † = E ′
0 or equally

F ′
0

A0
j+1

=⇒ . . .
A0
n=⇒ E ′

0 from which we get the result.

F ′
0 ‖ F ′

1 = F : Then we can apply the hypothesis of induction once more and find the
desired E ′

0, E
′
1 and remaining Aik for i = 0, 1 and k = j + 1, . . . , n.

2

Lemma 7.4.7 Suppose A1, . . . , An ∈ Mε and p0,p1 6= ε. Then A1 · . . . · An � p0 · p1

implies n ≥ 2 and there is a 1 ≤ j < n such that

A1 · . . . ·Aj � p0 and Aj+1 · . . . · An � p1

Proof Let q = A1 · . . . ·An. By proposition 6.4.2 there are q0 and q1 such that q = q0 ·q1

where qi � pi for i = 0, 1. Since pi 6= ε we also have qi 6= ε. The lemma then follows
from

A1 · . . . · An = p0 · p1,p0,p1 6= ε
⇓

n ≥ 2, ∃1 ≤ j < n. A1 · . . . · Aj = p0, Aj+1 · . . . · An = p1

(7.6)

which we prove by induction on n:
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n = 1: The situation is A1 = p0 · p1. The premise cannot hold since p0,p1 6= ε implies
that there are at least two ordered elements of p0 · p1, but this contradicts A1 = p0 · p1

because the elements of A1 are unoredered (A1 ∈ Mε).

n > 1: Equally n ≥ 2. Since p0 6= ε we can apply proposition 7.4.8 below to find a p′
0

such that A1 · p′
0 = p0 and A2 · . . . ·An = p′

0 · p1.
If p′

0 = ε we have p0 = A1 and A2 · . . . · An = ε · p1 = p1 wherefore we can choose j = 1.
Otherwise if p′

0 6= ε we can use the induction to find 2 ≤ j < n such that A2 · . . . ·Aj = p′
0

and Aj+1 · . . . · An = p1. Since p0 = A1 · p′
0 = A1 · A2 · . . . · Aj we are done. 2

Proposition 7.4.8 For A ∈ Mε and a pomset p0 6= ε we have

A · q = p0 · p1

⇓
∃p′

0. A · p′
0 = p0,q = p′

0 · p1

Proposition 7.4.9 Suppose p · q � r0 × r1. Then there exists p0,p1,q0,q1 such that
pi · qi � ri for i = 0, 1 and p � p0 × p1 and q � q0 × q0.

Proof We prove it for lpos and the proposition follows immediately.

p · q � r0 × r1 means that there exists a bijection f : Xr0×r1 −→ Xp·q which also is a
morphism of lpos.

By definition of · and × we have Xp·q = {0} ×Xp ∪ {1} ×Xq and Xr0×r1 = {0} ×Xr0 ∪
{1}×Xr1 . So define pi as p restricted to {x ∈ Xp | 〈0, x〉 ∈ f({i}×Xri)} for i = 0, 1 and
similar for q0 and q1.

p0 · q0 � r0: Consider g : Xr0 −→ Xp0·q0 given by g(x) = f(〈0, x〉). It is easy to see that g
in- and surjective.

g order preserving : From f being order preserving and x ≤r0 y ⇒ 〈0, x〉 ≤r0×r1 〈y, 0〉
we see f(〈0, x〉) ≤p·q f(〈0, y〉). f(〈0, x〉) is of the form 〈i, x′〉 and f(〈0, y〉) is of the form
〈j, y′〉, so 〈i, x′〉 ≤p·q 〈j, y′〉. According to the definition of ≤p·q then

(i = 0 = j, x′ ≤p y′) or (i = 1 = j, x′ ≤q y′) or (i = 0, j = 1)

In the case x′ ≤p y′ we have x′ ∈ Xp, so we must have x′ ∈ Xp0. Also y′ ∈ Xp0. Similar
considerations in the case x′ ≤q y′ leads us to:

(i = 0 = j, x′ ≤p0 y′) or (i = 1 = j, x′ ≤q0 y′) or (i = 0, j = 1)

But then g(x) = f(〈0, x〉) = 〈i, x′〉 ≤p0·q0 〈j, y′〉 = f(〈0, y〉) = g(y).
g is directly seen to be label preserving: `r0(x) = `r0×r1(〈0, x〉) = `p·q(f(〈0, x〉)) =
`p0·q0(g(x)).

p1 · q1 � r1: similar as above.

p � p0 × p1: Let g : Xp0×p1 −→ Xp be given by g(〈i, x〉) = x. This time it is easy to see
that g is a morphism of lpos.

g injective: Assume 〈i, x〉 6= 〈j, y〉. We are done if x = y and i 6= j is impossible.
So suppose on the contrary x = y, i 6= j. Now 〈i, x〉 ∈ Xp0×p1 ⇒ x ∈ Xpi ⇒ 〈0, x〉 ∈
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f({i}×Xri)⇒ ∃〈i, x′〉 ∈ Xr0×r1.f(〈i, x′〉) = 〈0, x〉 and similar 〈j, x〉 ∈ Xp0×p1 ⇒ ∃〈j, x′′〉 ∈
Xr0×r1 . f(〈j, x′′〉) = 〈0, x〉. But since i 6= j and thereby 〈i, x′〉 6= 〈j, x′′〉 this is a contra-
diction to f being injective.

g surjective: x ∈ Xp ⇒ 〈0, x〉 ∈ Xp·q ⇒ (since f is surjective) (∃〈i, y〉 ∈ Xr0×r1. f(〈i, y〉) =
〈0, x〉) ⇒ (∃i ∈ {0, 1}. x ∈ Xpi) ⇒ ∃i ∈ {0, 1}. 〈i, x〉 ∈ Xp0×p1. From g(〈i, x〉) = x the
result then follows.

q � q0 × q1: Similar as the last case. 2

Proposition 7.4.10 If n ≥ 1 and A1, . . . , An ∈ Mε and A1 · . . . ·An � p0×p1 then there
exists multisets A0

1, . . . , A
0
n and A1

1, . . . , A
1
n such that Aj = A0

j × A1
j for j = 1, . . . , n, and

Ai1 · . . . · Ain � pi for i = 0, 1.

Proof By induction on n.

n = 1: A1 � p0 × p1 clearly implies p0 and p1 are multisets and A1 = p0 × p1. Chose
A0

1 = p0 and A1
1 = p1.

n > 1: A1 · (A2 · . . . · An) � p0 × p1 implies by the previous proposition the existence
of pomsets q0,q1, r0, r1 such that q0 · r0 � p0,q1 · r1 � p1, A1 � q0 × q1 and
A2 · . . . · An � r0 × r1. The last implies by hypothesis of induction that there are
multisets A0

2, . . . , A
0
n and A1

2, . . . , A
1
n with A0

2 · . . . · A0
n � r0, A

1
2 · . . . · A1

n � r1 and
A0
i ×A1

i = Ai for i = 2, . . . , n. From the case n = 1 we see that there exists A0
1 and

A1
1 with A0

1 � q0, A
1
1 � q1 and A1 = A0

1 × A1
1. By monotonicity and transitivity of

� we now get

A0
1 · (A0

2 · . . . ·A0
n) � q0 · (A0

2 · . . . · A0
n) � q0 · r0 � p0

and similar for the A1
i ’s.

2

7.5 Summary

In this section we show how the different G-semantics are related and some concrete
examples of G-semantics are given.

At first notice that if G and G′ are sets of direct observations then so are G∪G′ and G∩G′.
Hence the direct observation sets forms a lattice under the inclusion relation; the meet/
glb being intersection and join/ lub being union.

This carry over to models as follows:

Proposition 7.5.1 G ⊆ G′ iff =G′ ⊆ =G

Proof
only if : Suppose G ⊆ G′. Then G = G′ ∩G and PG = PG′ ∩PG. By definition of [[ ]]G and
[[ ]]G′ therefore [[ ]]G = [[ ]]G′ ∩PG. As a consequence ≤G′ ⊆ ≤G and =G′ ⊆ =G.
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if : We start out by some general observations for an arbitrary set of direct test G. If A is
any multiset let EA be a BL-expression obtained by parallel composing the atomic actions,
i.e., ℘(EA) = {A}. From section 7.3 we know p 6= ε, p ∈ PG iff ∃n ≥ 1∃A1, . . . , An ∈
G. A1 · . . . · An = p, so for all p ∈ PG \ {ε} there are EA1 , . . . , EAn such that {p} =
℘(EA1 ; . . . ; EAn). Composing such expressions with ⊕ one can then for any finite and
nonempty subset, P , of PG \ {ε} find an expression EP with ℘(EP ) = P .

The proof of the implication is now by contradiction. Suppose =G′ ⊆ =G but G 6⊆ G′.
Then there is an A ∈ G with A 6∈ G′. Of course then A ∈ PG and if P = δG′(A) we
have [[EP ]]G′ = δG′(P ) = δG′(A) = [[EA]]G′—i.e., EP =G′ EA. By assumption then also
EP =G EA. But clearly A ∈ [[EA]]G, so we must have A ∈ [[EP ]]G too. A ∈ [[EP ]]G
means A ∈ δG(δG′(A)) wherefore there must be a p ∈ PG′ such that A � p � A. Hence
A = p ∈ PG′—a contradiction to A 6∈ PG′. 2

From this proposition it immediately follows that G ⊂ G′ implies [[ ]]G is strictly more
abstract than [[ ]]G′ (i.e., all expressions identified by [[ ]]G′ are identified by [[ ]]G and there
is some expressions identified by [[ ]]G but not by [[ ]]G′).

In fact the lattice of our G-models has a least and a greatest model (in the sense of their
ability to distinguish expressions). The least model is of course the one generated from
G = ∆ and the largest the one generated from G = M. It is not hard to see that P∆ agrees
with W—the set of pomsets which are words (see page 133). As a consequence hereof
we shall in the following (chapter) subscript with w rather than ∆ when concerning the
minimal model/ the operational semantics obtained by the least set of direct tests.

The variation of the operational semantics arising from the different sets of direct test

manifest itself in the inference rule for a composed step:
A0×A1−→ G. For W the inference

rule totally vanish and for M it becomes

E0
A0−→M E ′

0, E1
A1−→M E ′

1

E0 ‖ E1
A0‖A1−→ M E ′

0 ‖E ′
1

I.e., no restrictions.

As examples of what models we might find in between the least and largest models we
end this section by giving two almost contrasting models.

Starke [Sta81] has introduced one natural candidate for semiwords, i.e., to some extend
half a word, half a (unordered) pomset. He defines a semiword to be a pomset, p, where
all equally labelled elements are ordered: Psw(p) iff for all x, y in Xp we have:

if
x
cop
y

then
`p(x)
6=
`p(y)

One might just as well take the opposite standpoint and define a semiwords to be a
pomset, p, where all unequally labelled elements are ordered: Psw(p) iff for all x, y in
Xp we have:
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if
x
cop
y

then
`p(x)
=
`p(y)

Notice that both properties are hereditary and dot synthesizable. However the candi-
date of Starke enjoys a number of nice properties: If Psw(p) then there is a canonic
representative, p̂ ∈ LPO, of p (in the sense that p = [p̂] and if p = q then p̂ = q̂)
and furthermore the partial order, �, on such semiwords may be characterized by p �
q iff p̂ � q̂ iff δw(p) ⊆ δw(q). We shall later in the next chapter see some consequences
of a pomset having the Psw-property.

On second thoughts one soon realizes that

Psw,and = PS and Psw,and = PN

So the most general linearizations of the semiwords of Starke corresponds to sequences
of sets (of ∆) whereas the most general linearisations of the other type of semiwords
corresponds to sequences of multisingletons (of ∆).

The inference rules for the composed step for these two sets of direct tests are particular
simple:

E0
A0−→S E

′
0, E1

A1−→S E
′
1, A0 ∪ A1 ⊆ ∆

E0 ‖ E1
A0∪A1−→ S E

′
0 ‖ E ′

1

and
E0

an−→N E ′
0, E1

am−→N E ′
1

E0 ‖ E1
an+m−→N E ′

0 ‖ E ′
1

7.6 An Adequate Logic

In this section we shall for each G-semantics of BL give an adequate logic LG. A logic for
our process language will be a set of (logic) formulae together with a satisfaction relation
which for each process and formula tells whether the process satisfies the formula. In
the sense of Hennessy and Milner [HM80] such a logic is adequate for a G-semantics iff
processes are identified by the G-semantics (by the equivalence, <∼>∼G, of <∼G) exactly when
they satisfy the same set of formulae in the logic (LG).

The branching aspect is on purpose left out of account and brought about partly by
having only a combinator for internal nondeterminism and partly by constructing the
operational preorders on the basis of sequences of direct tests. Pnueli [Pnu85] regards the
latter as taking the linear view and shows how a linear time logic can be appropriate in
this situation. In agreement with this we will define a process to satisfy a formula if all
the “syntactic controlled” behaviours of the process satisfies the formula. We shall in a
moment make these notions precise.

The different logics will share the same set of logic formulae, Lg, but have individual
satisfaction relation |=G—óne for each logic LG. Mainly for proof technical reasons we
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shall define Lg as a subset of a larger formula language, L, and base |=G on a larger
satisfaction relation for L.

The set of formulae, L, is defined in the BNF-like way:

f ::= tt | ff | 5 | 4 | A3f, A ∈ M | A2f, A ∈ M

and Lg ⊆ L is taken to be those formulae with no occurrence of the modality A3.

Similarly as for Hennessy-Milner logic [HM85] we for each G-semantic define a satisfaction
relation, |=G, between behaviours from DCL (see page 153 )and formulae of L using the

definitions of the operational G-semantics. The modalities A3 and A2 can be considered

as generalizations of the corresponding Hennessy-Milner modalities (with A = {a}). tt (ff)
has the standard interpretation that it always (never) is satisfied by a process. A process
satisfies 5 if it is terminated (i.e., no external computation step is possible) whereas 4
indicates that the process is alive. Formally:

Definition 7.6.1 |=G ⊆ DCL× L is defined inductively:

E |=G tt for all E ∈ DCL
E |=G 5 iff ∀a ∈ ∆. E 6 a⇒G
E |=G 4 iff ∃a ∈ ∆. E

a⇒G

E |=G
A3f iff ∃E ′. E A⇒G E ′ and E ′ |=G f

E |=G A2f iff ∀E ′. E A⇒G E ′ implies E ′ |=G f

where E
a⇒G means ∃E ′ ∈ CL. E a⇒G E ′. 2

Following the linear logic tradition we now for each logic, LG, say that a process E (∈ BL)
satisfies a formula f ∈ Lg,

E |=G f iff ∀E ′ ∈ Beh(E). E′ |=G f

The set of formulae from Lg which is satisfied in a logic LG by an E ∈ BL will be denoted
LG(E). I.e.,

LG(E) = {f ∈ Lg | E |=G f}

It will facilitate the proof of the the adequacy of the different LG logics to introduce some
additional notions.

At first we give a syntactic map : L −→ L which yield the “dual” of a formula. For
each f ∈ L define f by induction on the structure of f :

ff = tt tt = ff
4 = 5 5 = 4
A2f = A3f A3f = A2f
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Clearly f = f and an easy induction on the structure of f shows that f and f are dual
(for every satisfaction relation |=G) in the sense that

E 6|=G f iff E |=G f(7.7)

for all configuration behaviours E ∈ DCL. Now define

Lg = {f ∈ L | f ∈ Lg}

and for every E ∈ BL

LG(E) = {f ∈ Lg | ∃E ′ ∈ Beh(E). E′ |=G f}

Notice that Lg are the formulae of L whit no occurrence of the modality A2.

The following lemma display the close relationship between LG( ) and LG( ).

Lemma 7.6.2 For all E0, E1 ∈ BL we have:

LG(E0) ⊆ LG(E1) iff LG(E0) ⊇ LG(E1)

Proof We start out by inferring for an arbitrary formula f ∈ Lg and process E ∈ BL:

f 6∈ LG(E) iff E 6|=G f definition of LG( )
iff ∃E ′ ∈ Beh(E). E′ 6|=G f definition of |=G ⊆ BL× Lg
iff ∃E ′ ∈ Beh(E). E′ |=G f by (7.7)
iff f ∈ LG(E) definition of LG( )

Using the lemma below the proof is now merely logic rewriting:

LG(E0) ⊆ LG(E1)
m
∀f ∈ Lg. f ∈ LG(E0)⇒ f ∈ LG(E1)

m definition of Lg
∀f ∈ Lg. f ∈ LG(E0)⇒ f ∈ LG(E1)

m from the above
∀f ∈ Lg. f 6∈ LG(E0)⇒ f 6∈ LG(E1)

m
LG(E0) ⊇ LG(E1)

2

The adequacy of the different LG logics can now be seen from:

Theorem 7.6.3 (Linear Logic Characterization)
For all E0, E1 ∈ BL:

E0
<∼G E1 iff LG(E0) ⊇ LG(E1)

Proof Immediate from the preceding lemma and the following. 2
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Lemma 7.6.4 Suppose E0, E1 ∈ BL. Then

E0
<∼G E1 iff LG(E0) ⊆ LG(E1)

Proof From the definition of |=G it is almost trivial to prove for F ∈ DCL, f ∈ Lg and
n ≥ 1 that

F |=G
A13 · · · An3f iff ∃F ′. F A1=⇒G . . .

An=⇒G F ′, F ′ |=G f(7.8)

F |=G 5 iff F >−→∗ †(7.9)

by induction on n in the case of (7.8) and induction on the structure of E in case of (7.9).

The if part of the lemma now follows the definition of <∼G and by deducing for E ∈ BL
and n ≥ 1

E
A1=⇒G . . .

An=⇒G † iff A13 · · · An35 ∈ LG(E)(7.10)

as follows: E
A1=⇒G . . .

An=⇒G †
iff ∃F ∈ Beh(E). F

A1=⇒G . . .
An=⇒G † proposition 7.2.5

iff ∃F ∈ Beh(E)∃F ′. F A1=⇒G . . .
An=⇒G F ′ >−→∗ † definition of

An=⇒
iff ∃F ∈ Beh(E). F |=G

A13 · · · An35 by (7.8) and (7.9)

iff A13 · · · An35 ∈ LG(E) definition of LG( )

For the only if direction let an f ∈ LG(E0) be given. We consider each possible appearance
of f in turn.

At first notice that F ∈ Beh(E) and E ∈ BL implies F ∈ DBL, and that any F ∈ DBL
is capable of doing at least one action. So because E0 ∈ BL it follows that f = 5 is
impossible and if f = 4 we also have f ∈ LG(E1) since E1 ∈ BL.

ff is satisfied by no behaviour wherefore it should be clear that f cannot belong to LG(E1)
because E1 ∈ BL.

If f = tt then evidently f ∈ LG(E1) and if f is of the form A13 · · · An35 the result follows

from (7.10) and the definition of <∼G.

Now suppose f is of the form A13 · · · Ai3tt for some A1, . . . , Ai and i ≥ 1. This means

there is a F ∈ Beh(E0) such that F |=G
A13 · · · Ai3tt and from (7.8) we conclude F

A1=⇒G

. . .
Ai=⇒G F ′ for some F ′ ∈ DCL. Using proposition 7.2.6 we get E0

A1=⇒G . . .
Ai=⇒G E ′

0 for
some E′

0 (with F ′ ∈ Beh(E′
0)). Since we only have finite processes in BL and therefore also

finite configurations there must be some Ai+1, . . . , An ∈ G such that E′
0

Ai+1
=⇒G . . .

An=⇒G †.
The premise E0

<∼G E1 then gives E1
A1=⇒G . . .

Ai=⇒G . . .
An=⇒G † and by (7.10) thus

A13 · · · Ai3 · · · An35 ∈ LG(E1). A simple induction on i then shows that this implies

A13 · · · Ai3tt ∈ LG(E1).

We are left with the case where f is of the form A13 · · · Ai34. Using (7.8) it is easy to see
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by looking at the definition of F ′ |=G 4 that

A13 · · · Ai34 ∈ LG(E) iff ∃a ∈ ∆. A13 · · · Ai3 a3tt ∈ LG(E)

for E ∈ BL and i ≥ 1. Hence this case is reduced to the one we just have dealt with. 2

From the proof it is evident that the lemma still would hold if Lg only had formulae of

the form A13 · · · An35, and consequently a logic with formulae of L which only contained

4 and the modality A2 would be sufficient to obtain the linear logic characterization. So

why not be be content with this smaller formula language? Pnueli [Pnu85] argues that one
advantage of logic is the ability to deal with partial specifications. Clearly there is more
freedom to give partial specifications in the larger formula language. With little extra
effort we could even include disjunction in Lg without affecting the lemma. (7.7) would
also hold if we added conjunction to Lg and would therefore obtain the characterization
for this extended logic too.

Let us end this section by making the note that we easely could have obtained an alterna-
tive logic characterization of <∼G by chosing as formula language Lg and for each G take as
satisfaction relation |=′

G ⊆ CL×Lg with definition as 7.6.1 (on Lg) but with expressions
from CL and not just DCL. We could then for E ∈ BL let LG(E) be {f ∈ Lg | E |=′

G f}.
From proposition 7.2.6 and the form of the formulae of Lg it should be clear that lemma
7.6.4 still would hold for the changed set-up and could therefore serve as logic characteri-
zation. The reason why we have chosen to give the linear logic characterization is twofold.
In the first place we want to show that a linear view (perhaps not surprisingly) is sufficient
to capture the G-semantics. Secondly it prepares for a later logic characterization which
we could not make so easely in the changed set-up.
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Chapter 8

RBL—A Basic Process Language
with Refinement

It is well-known ([BC87, vGV87, Hen87b]) that a distinction between concurrency and
interleaving may be captured by adding a combinator to the process language, changing
the atomicity of actions.

To give a simple concrete example assume the processes E = Topneg ; Topneg and F =
Topneg ‖ Topneg when run accesses a nonempty stack of logical values. With Topneg
having the obvious effect on the stack E and F will run without problems leaving the
stack as it was. If however Topneg is refined to Pop ; Pushneg (again with the effect as
suggested by the name) in E and F getting E ′ and F ′ respectively the things change.
There will be no difference between E and E ′, but when F ′ is run the value of the top
element may have changed and in the case where the stack consists of one element stack
underflow may occur.

We look at the different semantics for BL introduced in the previous chapter 7 and
investigate the consequences of adding a combinator allowing an expansion of an individual
action into a process.

Formally define a BL-refinement to be a mapping % : ∆ −→ BL.

For each BL-refinement % we introduce a combinator, [%], into our language, with the op-
erational meaning that E[%] behaves operationally just like E with all a-occurrences sub-
stituted by %(a). We denote this extended language by RBL. The combinator precedence
will be the same as for BL except that [%] binds stronger than the binary combinators.

In spite of we have not given a more explicit formulation of substitution yet, we shall look
at an example which illustrates not only the idea of substitution but also a consequence
for the preorders.

Example: Let %(a) = a ; a, %(b) = b, and E0 = a‖ b, E1 = a ; b⊕ b ; a. The “substituted”
expressions F0 and F0 of E0[%]σ and E1[%]σ respectively will then be

F0 = a ; a ‖ b and F1 = a ; a ; b⊕ b ; a ; a

Clearly E0
<∼w E1 but F0

aba
=⇒w † and F1 6aba=⇒w. Hence <∼w will not be a precongruence for

RBL!
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Though the example illustrates that <∼w will not be a precongruence forRBL we cannot use
it to conclude the same for <∼G in general since many of the G-semantics would distinguish
E0 and E1, e.g., E0 6<∼S E1.

Our question is here: What is the precongruence associated with <∼G for RBL, <∼
c
G (the

largest precongruence contained in <∼G)? In the next section we give the different opera-
tional G-semantics and derive some results. We then pursue the question for <∼w in the
succeeding section through different considerations, gradually arriving at a model fully
abstract with respect to <∼

c
w. From the model considerations it then turns out that <∼

c
w

equals <∼
c
G for every G-semantics.

8.1 Operational Set-up

We shall give different operational semantics for RBL similar as in the chapter with
BL. In fact the extended labelled transition system will be the same except that the
configuration language RCL now is the least set C satisfying:

† ∈ C
RBL ⊆ C
E0 ; E1 ∈ C if E0 ∈ C and E1 ∈ RBL
E0 ‖ E1 ∈ C if E0, E1 ∈ C

and the definition of >−→ is augmented in order to cope with [%]:

a[%] >−→ %(a)

(E0 ; E1)[%] >−→ E0[%] ; E1[%]
E >−→ E ′

E[%] >−→ E ′[%]

(E0 ⊕E1)[%] >−→ E0[%]⊕E1[%]

(E0 ‖ E1)[%] >−→ E0[%] ‖ E1[%]

Notice that there is no rule to deal with a case like E[%′][%]. This is not necessary because
the [%]-inference rule allows “substitution” of [%′] in E by internal steps before starting
with [%].

Example: Suppose %′(b) = c ; d and %(c) = e. Then

(a ‖ b)[%′][%] >−→ (a[%′] ‖ b[%′])[%]
>−→ (a[%′] ‖ c ; d)[%]
>−→ a[%′][%] ‖ (c ; d)[%]
>−→ a[%′][%] ‖ c[%] ; d[%]

>−→ a[%′][%] ‖ e ; d[%]
e−→G . . .
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Notice that the “substitution” not necessarily has to follow a unique route. E.g., above it
is also possible with: (a[%′]‖b[%′])[%] >−→ a[%′][%]‖b[%′][%] >−→ a[%′][%]‖ (c ;d)[%] >−→ . . ..

The definitions of
A⇒G,

s⇒G and <∼G are generalized to RBL in the obvious way. We keep
the convention to leave out the subscript G in −→G and ⇒G except for certain G’s.

Proposition 7.2.3 extends smoothly to RBL with one addition:

Proposition 8.1.1 Suppose E ∈ RBL, E >−→∗ E ′ and E0, E1 ∈ RCL, E0
s⇒ E ′

0. Then

• E0 ; E
s⇒ E ′

0 ; E

• E0 ‖ E1
s⇒ E ′

0 ‖ E1

• E1 ‖ E0
s⇒ E1 ‖ E ′

0

• E[%] >−→∗ E ′[%]

We will now make it more precise what we mean by substitution. The substitution
is “performed” by a compositionally defined mapping σ : RCL −→ CL, using {%} :
BL −→ BL which (also compositionally) performs a single substitution in a refinement
free expression. Because of their syntactic nature we write them postfix. The definitions
of σ and {%} are in full:

†σ = †
aσ = a a{%} = %(a)

(E0 ; E1)σ = E0σ ; E1σ (E0 ; E1){%} = E0{%} ; E1{%}
(E0 ⊕ E1)σ = E0σ ⊕E1σ (E0 ⊕E1){%} = E0{%} ⊕E1{%}
(E0 ‖ E1)σ = E0σ ‖ E1σ (E0 ‖ E1){%} = E0{%} ‖ E1{%}

E[%]σ = (Eσ){%}

Notice that σ when restricted to RBL yield a map σ : RBL −→ BL. Because configura-
tions only contains expressions like E[%] when E ∈ RBL we then do not need a case for
{%} similar to †σ = † and we conclude that the definitions are well-defined.

Example: Suppose %′(a) = b ; c, %(b) = a ; b and otherwise %′(e) = %(e) = e. Then

(a ‖ b)[%′][%]σ = (b ; c ‖ b){%} = a ; b ; c ‖ a ; b

The rest of this section is devoted the proof of the following proposition which essentially
states: E ∈ RBL behaves operationally as if the refinements were substituted in advance:

Proposition 8.1.2 Suppose E ∈ RBL. Then for s ∈ G∗:

E
s⇒ † iff Eσ

s⇒ †
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Proof The proposition follow directly from:

(8.1)
E ∈ RCL,E s⇒ E ′

⇓
Eσ

s⇒ E ′σ

and

(8.2)
E ∈ RCL,Eσ s⇒ E ′

⇓
∃E ′′ ∈ RCL,E s⇒ E ′′, E′′σ = E ′

which both are proven by induction on the length of
s⇒ using the following two lemmas

in the inductive step of (8.1) and lemma 8.1.6 in the inductive step of (8.2). 2

Lemma 8.1.3 For E ∈ RCL we have: E >−→ E ′ implies Eσ >−→∗ E ′σ

Proof Induction on the structure of E.

E = † or E = a: Then E 6>−→ and the implication holds vacuously.

E = E0 ; E1: From the definition of >−→ we see that there are two cases:
E0 = † and E ′ = E1: We have († ; E1)σ = † ; E1σ >−→ E1σ = E ′.
E0 >−→ E ′

0 and E ′ = E ′
0 ; E1: By induction E0σ >−→∗ E ′

0σ, so from proposition
8.1.1 then Eσ = E0σ ; E1σ >−→∗ E ′

0σ ; E1σ = E ′σ.

E = E0 ⊕E1: W.l.o.g. assume E >−→ E0 = E ′. Clearly Eσ = E0σ ⊕ E1σ >−→ E0σ =
Eσ.

E = E0 ‖ E1: Similar and symmetric to the case E = E0 ; E1.

E = F [%]: In each case when the internal step derives from an axiom one easely from
the definition of σ and {%} show F [%]σ = E ′σ. Since E ′σ >−→0 E ′σ the result
then follows. It remains to look at the case where the internal step derives from
the inference rule. Here we have F >−→ F ′ and E′ = F ′[%]. By hypothesis of
induction Fσ >−→∗ F ′σ. Since Fσ ∈ BL we can use (8.3) below to get (F [%])σ =
Fσ{%} >−→∗ F ′σ{%} = F ′[%]σ = E ′σ as desired.

We used
n ≥ 0, E ∈ BL,E >−→n E ′ implies E{%} >−→∗ E ′{%}(8.3)

which is proved by induction on n and in the inductive step one prove (8.3) for n = 1
by induction on the structure of E. The arguments are identical to the ones used above
except that the things get easier because E ∈ BL and we therefore do not have to deal
with σ and the cases E = † and E = F [%]. 2

Lemma 8.1.4 For E ∈ RCL we have: E
A−→ E ′ implies Eσ

A−→ E ′σ

Proof By induction on the structure of E.

E = †: Trivially true.

E = a: The only possibility is A = a and E′ = †. We have aσ = a
a−→ † = †σ.
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E = E0 ; E1: According to the definition of
A−→ we can only have E0 ; E1

A−→ E ′ if

E0
A−→ E ′

0 and E ′ = E ′
0 ; E1. By hypothesis of induction E0σ

A−→ E ′
0σ. Using the

inference rule for ; we get Eσ = E0σ ; E1σ
A−→ E ′

0σ ; E1σ = E ′σ.

E = E0 ⊕E1:
A−→ is not defined for expressions of this form so the implication holds

trivially.

E = E0 ‖ E1: There are three potential ways the step could have been produced. If only
one part, E0 or E1, is involved the argument follow the case E = E0 ;E1. Otherwise

we have E ′ = E ′
0 ‖ E ′

1 where A = A0 × A1 ∈ G and Ei
Ai−→ E′

i for i = 0, 1. By

hypothesis of induction we then get Eσ = E0σ ‖E1σ
A−→ E ′

0σ ‖ E ′
1σ = E ′σ.

E = F [%]: There are no axioms or inference rules for
A−→ when E is of this form.

2

In the statement and proofs of the lemma to follow we shall make extensive use of some
special subsets RBL andRCL of the process expressions and the configuration expressions
respectively. The idea is that E ∈ RBL ⊆ RBL if no internal step can bring any
refinement combinator of E “inwards” in E. Similar if E ∈ RCL. Looking at the
rules for internal steps dealing with the refinement combinator one soon realize that the
refinement then only can appear in the scope of a ⊕-combinator or the right hand side of
a ;-combinator. This leads to the following inductive definition.

Definition 8.1.5 RCL is the least subset C of RCL which satisfies:

CL ⊆ C
E0 ; E1 ∈ C if E0 ∈ C and E1 ∈ RBL
E0 ⊕ E1 ∈ C if E0, E1 ∈ RBL
E0 ‖ E1 ∈ C if E0, E1 ∈ C

RBL is RBL ∩ RCL, i.e., RBL is the process expressions of RCL or equally those
expressions of RCL that contains no †. 2

Example: a[%]⊕ (b ; c[%]) ∈ RCL but a[%] ‖ (b ; c)[%] 6∈ RCL because a[%] >−→ %(a) and
[%] can be moved in over b ; c.

Lemma 8.1.6 If E ∈ RCL then

a) Eσ >−→ E ′ implies ∃E ′′ ∈ RCL. E >−→∗ E ′′, E′′σ = E ′

b) Eσ
A−→ E ′ implies ∃E ′′ ∈ RCL. E A⇒ E ′, E′′σ = E ′.

Proof

a) Using lemma 8.1.7 we find a F ∈ RCL fulfilling E >−→∗ F and Fσ = Eσ. So
Fσ >−→ E ′. Since F ∈ RCL we can use lemma 8.1.9 to find a E ′′ with F >−→ E ′′

and E ′′σ = E ′. Together we now have E >−→∗ F >−→ E ′′ and E ′′σ = E ′.
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b) Given Eσ
A−→ E ′. As in a) we find a F ∈ RCL such that E >−→∗ F and Fσ

A−→ E ′.
Because F ∈ RCL lemma 8.1.10 then yields F

A−→ E ′′ for a E ′′ with E′′σ = E ′.
Collecting the facts we have E >−→∗ F A−→ E ′′—i.e E

A⇒ E ′′ and E ′′σ = E ′.

2

The next lemma states that the refinement combinators can be brought entirely “inwards”
by internal steps.

Lemma 8.1.7 Given E ∈ RCL(RBL) there exists a E ′ ∈ RCL (RBL) such that
E >−→∗ E ′ and E ′σ = Eσ.

Example: E = a[%] ‖ (b ; c)[%] >−→ %(a) ‖ (b ; c)[%] >−→∗ %(a) ‖ (%(b) ; c[%]) = E ′ ∈ RCL
and Eσ = %(a) ‖ (%(b) ; (c[%]σ)) = E ′σ.

Proof By induction on the structure of E.

E = †: Then E ∈ RCL. But also E ′ := E = † ∈ CL ⊆ RCL.

E = a: Just choose E ′ = a ∈ BL ⊆ RBL ⊆ RCL.

E = E0 ; E1: Here we must have E0 ∈ RCL(RBL) and E1 ∈ RBL. By hypothesis of
induction there is a E ′

0 ∈ RCL(RBL) such that E0 >−→∗ E ′
0 and E ′

0σ = E0σ.
Let E ′ = E ′

0 ; E1. From proposition 8.1.1 then E0 ; E1 >−→ E ′ and of course
E′ ∈ RCL(RBL). Also E ′σ = E ′

0σ ; E1σ = E0σ ; E1σ = Eσ.

E = E0 ⊕E1: Clearly we can choose E ′ = E here.

E = E0 ‖ E1: Similar arguments as in the case E = E0 ; E1.

E = F [%]: E can only be of this form when F ∈ RBL. By hypothesis of induction
F >−→∗ F ′ for a F ′ ∈ RBL with F ′σ = Fσ. Since F ′ ∈ RBL we can use the
following lemma to find a E′ ∈ RBL such that F ′[%] >−→∗ E ′ and F ′[%]σ = E′σ.
From proposition 8.1.1 then E = F [%] >−→∗ F ′[%] >−→∗ E ′. We also have E ′σ =
F ′[%]σ = (F ′σ){%} = (Fσ){%} = F [%]σ = Eσ as desired.

2

We need a measure, h, for the inductive proof of the next lemma. Intuitively h measure
the number of internal steps necessary to move a refinement combinator [%] from outside
“entirely inwards” in an expression E ∈ RBL—i.e., if h(E) = n then there is a E′ such
that E[%] >−→n E ′ ∈ RBL. h(E) = 3 in the example above. Formally h : RBL −→ IN+

is given by:

h(a) = 1
h(E0 ; E1) = 1 + h(E0)
h(E0 ⊕E1) = 1
h(E0 ‖ E1) = h(E0) + h(E1)

Notice that we do not have to define h for expressions of the form E[%] because they
cannot belong to RBL.
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Lemma 8.1.8 If E ∈ RBL then there is an E ′ ∈ RBL such that

E[%] >−→∗ E ′ and E ′σ = E[%]σ

Proof By induction on h(E).

h(E) = 1: There are two cases:

E = a: Then E[%] >−→ %(a). Choose E ′ = %(a). Since E ′ ∈ BL ⊆ RBL by definition of
BL-refinements we have E ′σ = E ′ = %(a) = a{%} = Eσ.

E = E0 ⊕E1: Then E[%] >−→ E0[%] ⊕ E1[%] =: E′ ∈ RBL and the result follows from
the compositional nature of σ and {%}.

h(E) > 1: Again there are two cases:

E = E0 ; E1: Then h(E0) < h(E) and of course E0 ∈ RBL, so we can use the hypothesis
of induction to find an E′

0 such that E0[%] >−→∗ E ′
0 and E ′

0σ = E0[%]σ. Choosing
E ′ = E ′

0 ;E1[%] we get from proposition 8.1.1 (E0 ;E1)[%] >−→ E0[%] ;E1[%] >−→∗ E ′

and E ′σ = E ′
0σ ;E1[%]σ = E0[%]σ ;E1[%]σ = (E0σ ;E1σ){%} = (E0 ;E1)σ{%} = E[%]σ.

E = E0 ‖ E1: Here both h(E0) and h(E1) are less than h(E) so we can apply the hypo-
thesis of induction on both and obtain the result with similar arguments as in the
last case.

2

Lemma 8.1.9 Assume E ∈ RCL. Then

Eσ >−→ E ′

⇓
∃E ′′. E >−→ E ′′, E′′σ = E ′

Proof By induction (from the definition of RCL).

E ∈ CL: Then Eσ = E >−→ E ′ ∈ CL. Hence also E ′σ = E ′ and we can chose E ′′ = E ′.

E = E0 ; E1, E0 ∈ RCL and E1 ∈ RBL: We have Eσ = E0σ ; E1σ >−→ E ′. According
to the definition of >−→ there are two subcases to consider:

E0σ = † and E ′ = E1σ: E0σ = † implies E0 = †. Letting E ′′ = E1 we get E0 ;E1 =
† ; E1 >−→ E ′′ and E ′′σ = E1σ = E ′.

E0σ >−→ E ′
0 and E ′ = E ′

0 ; E1σ: By hypothesis ∃E ′′
0 .E0 >−→ E ′′

0 , E ′′
0σ = E ′

0. With
E ′′ = E ′′

0 ; E1 we get E0 ; E1 >−→ E ′′ and E ′′σ = E ′′
0σ ; E1σ = E ′

0 ; E1σ = E ′.

E = E0 ⊕E1 and E0, E1 ∈ RBL: Here the situation is Eσ = E0σ ⊕ E1σ. Inspecting the
definition of >−→ we see that there only is two possibilities. Assume w.l.o.g. that
E ′ = E0σ. Since E0 ⊕E1 >−→ E0 the result then follows if we let E ′′ = E0.

E = E0 ‖ E1 and E0, E1 ∈ RCL: Similar/ symmetric argument as in the case E = E0 ;E1.

2

Lemma 8.1.10 Suppose E ∈ RCL and A ∈ G. Then
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Eσ
A−→ E ′

⇓
∃E ′′. E A−→ E ′′, E′′σ = E ′

Proof By induction (from the definition of RCL).

E ∈ CL: Then Eσ = E
A−→ E ′ ∈ CL, so E ′σ = E ′ and we choose E ′′ = E ′.

E = E0 ; E1, E0 ∈ RCL and E1 ∈ RBL: We have Eσ = E0σ ; E1σ
A−→ E ′. Since there

only is one rule for
A−→ and expressions of this form we deduce E ′ = E ′

0 ;E1σ where

E0σ
A−→ E ′

0. Because E0 ∈ RCL we can use the hypothesis of induction to find an

E ′′
0 such that E0

A−→ E ′′
0 and E ′′

0σ = E ′
0. From the same rule we then get E0 ;E1

A−→
E ′′

0 ;E1. Choose E ′′ = E ′′
0 ;E1 and we have E ′′σ = E ′′

0σ ;E1σ = E ′
0 ;E1σ = E ′ as we

want.

E = E0 ⊕E1 and E0, E1 ∈ RBL: This means Eσ = E0σ ⊕ E1σ, but there is no rule for
A−→ and expressions of this form wherefore the implication holds trivially.

E = E0 ‖ E1 and E0, E1 ∈ RBL: Here we have Eσ = E0σ ‖ E1σ. Three inference rules
shall be taken into consideration. The ones with only one of E0σ and E1σ involved

in
A−→ goes similar/ symmetric as in the case E = E0 ; E1. If both are involved

we have E ′ = E0 ‖ E1 where A = A0 × A1 and for i = 0, 1, Eiσ
Ai−→ E ′

i and
Ai ∈ G. Since E0, E1 ∈ RCL the hypothesis of induction can be applied to get

for each i an E ′′
i such that Ei

Ai−→ E ′′
i and E′′

i σ = E ′
i. Since A ∈ G then also

E0 ‖ E1
A0×A1−→ E ′′

0 ‖ E ′′
1 . Choosing E ′′ = E ′′

0 ‖ E ′′
1 this reads E

A−→ E ′′ and we see
E′′σ = E ′′

0σ ‖ E ′′
1σ = E ′

0 ‖ E ′
1 = E ′ and we are done.

2

8.2 Denotational Set-up

As mentioned in the introduction to this chapter we will start out by searching a model
for <∼

c
w. To this end [[ ]]w is extended to RBL by letting

[[E]]w = [[Eσ]]w for E ∈ RBL

The induced denotational preorder ≤w then also extends to RBL and it follows from
proposition 8.1.2 and proposition 7.4.3 that <∼w = ≤w on RBL.

In the case of <∼
c
w it is much harder (than in the previous chapter) to see intuitively that

<∼
c
w should have a pomset based model at all—and if so what it should look like. But

following the pattern from the previous chapter we shall be looking for a model in which
the denotation of E is expressible as δ∗(℘(E)) for a suitable pomset property P∗—but
which?

Playing with examples, one soon realizes that a refinement combinator is quite a powerful
tool in distinguishing expressions, because much of the information represented in ℘(E)
may be reflected by suitable refinement combinator [%], in the sense of “overlapping”
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occurrences of %-images of concurrent elements in p ∈ ℘(E) (as indicated on page 172 in
the example of <∼w not being a precongruence for RBL). So clearly fewer identifications
should be made. Through examples like:

(a ‖ c) ; (b ‖ d) ℘7−→
{
a -

��>
b

c -ZZ~ d

}
δ7−→

<∼>∼
c
w

(a ‖ c) ; (b ‖ d)
⊕ a ; c ; (b ‖ d)

℘7−→


a -

��>
b

c -ZZ~ d,

a - c��1 b
PPq d


δ7−→



a - c - b - d,
c - a - b - d,
...
a - c��1 b

PPq d
,

...
a
c ��1

PPq b - d,

...
a -

��>
b

c -ZZ~ d


one might be led to the conjecture that δ(℘(E)) ordered under inclusion could be a model
for <∼

c
w. However, this is not the case, as can be seen by looking at the example:

Example:

E0 = (a ; (b ‖ d)) ‖ c
⊕ a ‖ (c ; (b ‖ d))

℘7−→


a - b
c

ZZ~ d,
a

��>
b

c - d


δ7−→ δ(℘(E0))

<∼>∼
c
w 6=

E1 = E0 ⊕ a ; b ‖ c ; d
℘7−→



a - b
c

ZZ~ d,
a

��>
b

c - d,
a - b
c - d


δ7−→ δ(℘(E1))

The inequallity follows from:

p =
a - b
c - d

∈ δ(℘(E1)),
a - b
c - d

6∈ δ(℘(E0))

We do not intend to prove operational that E0
<∼
c
w E1 and E1

<∼
c
w E0 (it will follow easily

from the denotational characterization to be developed), but invite the reader to find
convincing arguments for this fact.

So, presumable p should not belong to the denotation of E in a model for <∼
c
w. Intuitively,

an argument could be that no single linearization of a refinement version from p<%> can
reflect the full structure of p, in the sense that if the images of a and d overlap in such a
linearization (reflecting a and d being concurrent) then the image of c must precede that
of b, and vice versa. Following this intuition one may look for a property expressing when
the full structure of a pomset may be reflected in a single linearization of a refined version
of it (in the “overlapping” sense).
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Based on our example, we suggest the following formalization of this property—expressed
as a slight modification of the Pand-property.

Definition 8.2.1 Por-Property for Pomsets

A pomset p is said to have the Por-property, Por(p) iff for all x, x′, y, y′ in Xp we have:

if
x <p x

′

cop
y <p y

′
then

∀z. y <p z ⇒ x <p z
or
∀z. x <p z ⇒ y <p z 2

Example:
a - b
c -ZZ~ d

has the Por-property,
a - b
c - d

has not.

Por has an alternative characterization (used extensively in the following), the proof of
which is trivial:

Proposition 8.2.2 A pomset p = [p] has the Por-property iff for all x, x′, y, y′ in Xp:

if
x <p x

′

cop
y <p y

′
then

x <p y
′

or
y <p x

′

Proposition 8.2.3 The Por-property is hereditary and dot synthesizable.

Proof With the alternative characterization the proposition is proved with similar ar-
gumentation as the Pand-property was proved in proposition 7.3.2 to be hereditary and
dot synthesizable. 2

After these manœuvres we now give the denotation of an expression E ∈ RBL, [[E]]or,
in the model we informally arrived at, that is, finite sets of Por-pomsets partial ordered
under inclusion.

Definition 8.2.4 [[ ]]or : RBL −→ P(Por \ {ε}) \ ∅ is defined by [[E]]or = δor(℘(Eσ)). 2

As usual the induced denotational preorder is denoted ≤ or.

Returning to the example on page 180 using δor in stead of δ we now get:

E0 = (a ; (b ‖ d)) ‖ c
⊕ a ‖ (c ; (b ‖ d))

℘7−→


a - b
c

ZZ~ d,
a

��>
b

c - d


δor7−→ δor(℘(E0))

<∼>∼
c
w =

E1 = E0 ⊕ a ; b ‖ c ; d
℘7−→



a - b
c

ZZ~ d,
a

��>
b

c - d,
a - b
c - d


δor7−→ δor(℘(E1))
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where the equality follows from:

δor(℘(E1)) = δor(℘(E0)) ∪ δor(
{
a - b
c - d

}
) = δor(℘(E0)) ∪ δor(

{
a - b
c

ZZ~- d
,
a

��>
- b

c - d

}
) = δor(℘(E0))

For each BL-refinement % we associate the corresponding P(P)-refinement ℘(%), by letting
(℘(%))(a) = ℘(%(a)). Notice that ℘(%) is ε-free.

Theorem 8.2.5 [[ ]]or has the following compositional definition:

[[a]]or = {a}
[[E0 ; E1]]or = [[E0]]or · [[E1]]or
[[E0 ⊕ E1]]or = [[E0]]or ∪ [[E1]]or
[[E0 ‖ E1]]or = δor([[E0]]or × [[E1]]or)
[[E[%]]]or = δor([[E]]or<℘(%)>)

Proof Similar to that of theorem 7.3.7, but also using the compositional nature of σ.
The case E[%] is more difficult, so we use some lemma’s proved in the sequel.

[[E[%]]]or = δor(℘(E[%]σ)) definition of [[ ]]or
= δor(℘((Eσ){%})) definition of σ
= δor((℘(Eσ))<℘(%)>) lemma 8.2.7 and Eσ ∈ BL
= δor((δor(℘(Eσ)))<℘(%)>) lemma 8.2.6
= δor([[E]]or<℘(%)>) definition of [[ ]]or 2

Lemma 8.2.6 Let P be a set of pomsets and % an ε-free P(P)-refinement. Then

δor((δor(P ))<%>) = δor(P<%>)

Proof Clearly it is enough to prove δor((δor(p))<%>) = δor(p<%>) for a single pomset
p. Each inclusion is proven separately.

To see δor((δor(p))<%>) ⊆ δor(p<%>) let q ∈ δor((δor(p))<%>). Then Por(q) and there
exists a q′ ∈ (δor(p))<%> such that q � q′. Therefore q′ ∈ p′<%> for some p′ ∈ δor(p)
and we have p′ � p. But by the nature of <%> this implies ∀r′ ∈ p′<%>∃r ∈ p<%>.r′ � r
(see proposition 6.2.2 and proposition 6.2.3). Hence there exists a r ∈ p<%> such that
q � q′ � r. Since Por(q) we have q ∈ δor(p<%>).

δor((δor(p))<%>) ⊇ δor(p<%>): Suppose q ∈ δor(p<%>). This means Por(q) and q �
[p<πp>], where <πp> is a %-consistent particular refinement for a representative, p, of p.
So it is enough to find an p′ ∈ δor(p) such that q � [p′<πp′>], where πp′ also is consistent
with %.

By proposition 6.2.3 q � [p<πp>] implies the existence of a representative, q, of q such
that q = 〈Xp<πp>,≤q, `p<πp>〉 and ≤q ⊇ ≤p<πp>.

Define p′ := 〈Xp,≤p′, `p〉, where ≤p′ is the reflexive closure of <p′ ⊆ Xp
2 defined by:

x <p′ y
iff
∀〈x, x′〉, 〈y, y′〉 ∈ Xq. 〈x, x′〉 <q 〈y, y′〉

(8.4)
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That is, we order elements x, y in p′ if and only if all elements from πp(y) are causally
dependent on all elements πp(x) in q.

To see that p′ in fact is a lpo notice that ≤p′ by definition is reflexive, clearly also transitive
and the antisymmetry is seen from (8.4), the ε-freeness of πp (a consequence of % being
ε-free) and the antisymmetry of ≤q.
Xp = Xp′ and `p = `p′ so p′ � p follows by proving ≤p′ ⊇ ≤p. By definition x ≤p′ x.
If x <p y then x 6= y, so by the construction of p<πp> we have ∀〈x, x′〉, 〈y, y′〉 ∈
Xp<πp>. 〈x, x′〉 <p<πp> 〈y, y′〉 and from ≤q ⊇ ≤p<πp> this implies ∀〈x, x′〉, 〈y, y′〉 ∈
Xq. 〈x, x′〉 <q 〈y, y′〉. By definition of <p′ then x <p′ y.

If p′ have the Por-property it then follows that p′ ∈ δor(p).

Assume that p′ does not have the Por-property. That is Xp′ contain elements x1, x2, y1, y2

such that:

(8.5)
x1 <p′ y1

cop′
x2 <p′ y2

(8.6)
x1 6<p′ y2

and
x2 6<p′ y1

From the definition of p′, the ε-freeness of % and (8.6) it then follows that there exists
x′1, x

′
2, y

′
1, y

′
2 such that:

〈x1, x
′
1〉 6<q 〈y2, y

′
2〉

and
〈x2, x

′
2〉 6<q 〈y1, y

′
1〉

(8.7)

From (8.5) then:
〈x1, x

′
1〉 <q 〈y1, y

′
1〉

〈x2, x
′
2〉 <q 〈y2, y

′
2〉

(8.8)

But from (8.7) and (8.8) it follows that:

〈x1, x
′
1〉 coq 〈x2, x

′
2〉

and we have a contradiction to the fact that q has the Por-property.

It remains to prove q � [p′<πp′>] for some %-consistent p.ref., πp′ , for p′. Since Xp =
Xp′, πp is also a p.ref. for p′ and we know that it is %-consistent. For the same reason
Xp′<πp> = Xp<πp> = Xq and similarly `p′<πp> = `q.

Next we show ≤q ⊇ ≤p′<πp>. Assume 〈x, x′〉 ≤p′<πp> 〈y, y′〉. By construction of p′<πp>
this implies x <p′ y or (x = y, x′ ≤πp(x) y′). In the former case (8.4) directly gives
〈x, x′〉 <q 〈y, y′〉 and in the latter case we have 〈x, x′〉 <p<πp> 〈x, y′〉 from the construction
of p<πp>. Since ≤q ⊇ ≤p<πp> this implies 〈x, x′〉 <q 〈x, y′〉. Hence ≤q ⊇ ≤p′<πp>.
Collecting the facts we can use proposition 6.2.3 again to conclude q � [p′<πp>] as
desired. 2

Lemma 8.2.7 ℘(E{%}) = (℘(E))<℘(%)> for E ∈ BL.

Proof By induction on the structure of E.
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E = a: ℘(a{%}) = ℘(%(a)) = (℘(%))(a) = {a}<℘(%)> = ℘(a)<℘(%)>.

E = E0 ; E1: ℘(E{%}) = ℘(E0{%}) · ℘(E1{%}) definition of ℘ and {%}
= (℘(E0)<℘(%)>) · (℘(E1)<℘(%)>) hypothesis
= (℘(E0) · ℘(E1))<℘(%)> proposition 6.3.3
= ℘(E)<℘(%)> definition of ℘

E = E0 ⊕E1 and E = E0 ‖ E1: Similar.

2

8.3 Full Abstractness

The connection between [[ ]]or and [[ ]]w is indicated by:

Proposition 8.3.1 [[E]]w = δw([[E]]or) for E ∈ RBL.

Proof [[E]]w = δw(℘(Eσ)) definition
= δw(δor(℘(Eσ))) since δw ◦ δor = δw
= δw([[E]]or) by definition 2

Furthermore:

Proposition 8.3.2 ≤ or is a precongruence.

Proof Similar to proposition 7.4.1, but with the additional case of <%>, which also is
⊆-monotone (proposition 6.3.4). 2

And in fact:

Theorem 8.3.3 The denotation [[ ]]or is fully abstract w.r.t. <∼
c
w on RBL.

Proof We show that ≤ or is the largest precongruence contained in <∼w or equivalently
the largest precongruence contained in ≤w.

By proposition 8.3.2 ≤ or is a precongruence and the containment is seen as follows:
E0 ≤ or E1 ⇒ [[E0]]or ⊆ [[E1]]or by definition

⇒ δw([[E0]]or) ⊆ δw([[E1]]or) δw is ⊆-monotone
⇒ [[E0]]w ⊆ [[E1]]w proposition 8.3.1
⇒ E0 ≤w E1 by definition

To show that ≤ or is the largest precongruence contained in ≤w is harder, so we have
deferred the crux of the matter to lemma 8.3.4 below, from which we see E0 6≤ or E1

implies that there exists a BL-refinement % such that E0[%] 6≤w E1[%]. This means that
any preorder contained in ≤w larger than ≤ or would not be a precongruence w.r.t. this
combinator: [%]. 2
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In the following we will need a special type of refinements—fission refinements—which
splits an atomic action into two. In this way the original action is no longer atomic. Our
notation is inspired by Hennessy [Hen87b].

For each k ∈ IN+ we shall in the sequel denote the “standard” finite set, {1, . . . , k}, by
k. Now let a finite multiplicity function, m, be given. Because m is finite we can define
n(m) = max{k | k = 1 or ∃a ∈ ∆. m(a) = k} ∈ IN+.
Since ∆ is infinite, but countable, there exists an injective function h : ∆ × {S, F} ×
n(m) −→ ∆. I.e., ∀a, a′ ∈ ∆∀i, i′ ∈ {S, F}∀k, k′ ∈ n(m).

〈a, i, k〉 6= 〈a′, i′, k′〉 ⇒ h(〈a, i, k〉) 6= h(〈a′, i′, k′〉)(8.9)

For convenience we shall abbreviate h(〈a, i, k〉) by aik .

With such a function we associate a BL-refinement, %, by defining for all a ∈ ∆:

%(a) = aS1 ; aF1 ⊕ . . .⊕ aSn(m)
; aFn(m)

and call it a m-fission refinement.
The corresponding ε-free P(P)-refinement, (ambiguously denoted) %, has

%(a) = {aS1 · aF1 , . . . , aSn(m)
· aFn(m)

}

and is also called a m-fission refinement.

We shall refer to aSk and aFk as a fission pair of the m-fission refinement %. I.e., the pair
aSk and aFk is a fission of a.

If πp is a %-consistent p.ref. for a lpo p we can define two functions
πp
S ,

πp
F : Xp −→ Xp<πp>

as follows: x
πp
S (respectively x

πp
F ) is that element 〈x, x′〉 where x′ ∈ Xπp(x) and `πp(x)(x

′) =
aSk (respectively aFk) for some k ∈ n(m), a = `p(x). We will drop the superscript, πp,
when it is clear from the context. Due to the construction of p<πp> and the definition
of % from h (fulfilling (8.9)) we have:

xS = yS ⇔ x = y ⇔ xF = yF(8.10)

`p<πp>(xS) = aSk ⇔ `p<πp>(xF ) = aFk(8.11)

`p(x) = a⇔ ∃k ∈ n(m). `p<πp>(xS) = aSk(8.12)

`p<πp>(x) = aSk ⇒ ∃y ∈ Xp. yS = x(8.13)

`p<πp>(xS) = b⇒ ∃a ∈ ∆, k ∈ n(m). b = aSk(namely: a = `p(x))(8.14)

x <p y ⇒ xF <p<πp> yS(8.15)

xS <p<πp> xF(8.16)

Suppose p is a lpo with mp ≤ m (i.e ∀a ∈ ∆. mp(a) ≤ m(a)). Then there clearly are
%-consistent p. refinements, πp, injective in the sense:

∀x, y ∈ Xp. x 6= y ⇒ [πp(x)] 6= [πp(y)]

We call such a πp for a %-consistent particular fission refinement for p
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Notice that as a consequence of (8.9) and πp being injective we have for p<πp>:

∀x, y ∈ Xp<πp>. x = y ⇔ `p<πp>(x) = `p<πp>(y)(8.17)

We say that a lpo q is p-reflecting under the p. fission ref. πp if and only if any pair of
concurrent elements from p have overlapping Start/ Finish (fission pairs ) occurrences
in q, formally: iff q = 〈Xp<πp>,≤q, `p<πp>〉,≤q ⊇ ≤p<πp> (so q � [p<πp>] ∈ p<%>)
and for all x, y ∈ Xp:

if
x
cop
y

then
xS <q yF
and
yS <q xF

With this notation we can then say for pomsets q′ and p′ that q′ is p′-reflecting under
the fission refinement % iff there are representatives p and q of p′ and q′ respectively
together with a %-consistent p. fission ref., πp, such that q is p-reflecting under πp

Lemma 8.3.4 Given E0 ∈ RBL. Then there exists a refinement combinator, [%], such
that

∀E1 ∈ RBL. [[E0]]or 6⊆ [[E1]]or ⇒ [[E0[%]]]w 6⊆ [[E1[%]]]w

Proof Let m be the finite multiplicity function which is the lub for {mp | p ∈ [[E0]]or}
(finite set). Choose a m-fission refinement %. The associated refinement combinator,
[%], is the one we are after. To see this let an arbitrary E1 ∈ RBL be given such that
[[E0]]or 6⊆ [[E1]]or. The proof is by contradiction. Assume on the contrary [[E0[%]]]w ⊆
[[E1[%]]]w. [[E0]]or 6⊆ [[E1]]or only if there is a p ∈ [[E0]]or such that p 6∈ [[E1]]or. p ∈ [[E0]]or
implies Por(p) and by definition also mp ≤ m. By lemma 8.3.6 there is a w ∈ δw(p<%>)
which is p-reflecting.

Now w ∈ δw(p<%>) and p ∈ [[E0]]or implies w in δw([[E0]]or<%>) which, because δw ◦
δor = δw, equals δw(δor([[E0]]or<%>)). By theorem 8.2.5 and proposition 8.3.1 then also
w ∈ [[E0[%]]]w and so w ∈ [[E1[%]]]w by the assumption. Reversing the arguments we find a
q ∈ [[E1]]or such that w is a linearization of a pomset, r, of q<%>. Because w is p-reflecting
we then deduce from lemma 8.3.5 that p � q. Since Por(p) and [[E1]]or is δor-closed then
p ∈ [[E1]]or—a contradiction. 2

Lemma 8.3.5 Let a fission refinement % be given and suppose w′ is p′-reflecting. If
w′ � r ∈ q<%> then p′ � q.

Proof To see p′ � q we at first elucidate the situation. w′ being p′-reflecting implies
there are representatives w of w′ and p of p′ together with a %-consistent p. fission ref.,
πp, such that

w = 〈Xp<πp>,≤w, `p<πp>〉,≤w ⊇ ≤p<πp>
We also have w′ � r ∈ q<%> Therefore there is a %-consistent p.ref., πq, and a morphism
of lpos f : q<πq> −→ w.

We shall find a morphism g : q −→ p. Define

g(x) = y iff ∃y ∈ Xp. y
πp
S = f(x

πq
S )(8.18)
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This gives sense since Xq

πq
S−→ Xq<πq>

f−→ Xw = Xp<πp>

πp
S←− Xp.

To see that (8.18) actually defines a function g : Xq −→ Xp we shall prove that there for
a given x ∈ Xq is one and only one y ∈ Xp such that yS = f(xS). At first we notice from
f being label preserving and `w = `p<πp> that:

∀z ∈ Xq<πq>. `q<πq>(z) = `p<πp>(f(z))(8.19)

one: πq is %-consistent, so by (8.14) `q<πq>(xS) = aSk for some a and k. From (8.19) then
`p<πp>(f(xS)) = aSk and by (8.13) there exists a y ∈ Xp with yS = f(xS).
only one: Follows directly from (8.10).

Before continuing we prove

f(xS) = g(x)S, f(xF ) = g(x)F(8.20)

The first equation holds by definition of g and the second is seen from the first as follows:
f(xS) = g(x)S implies `p<πp>(f(xS)) = `p<πp>(g(x)S) which by (8.19) is the same as
`q<πq>(xS) = `p<πp>(g(x)S). Because πp and πq both are %-consistent we from (8.14)
get `q<πq>(xS) = aSk = `p<πp>(g(x)S) for some a and k, so by (8.11) and (8.19) then
`p<πp>(f(xF )) = `p<πp>(g(x)F ). Now πp is also a %-consistent p. fission ref. for p, so we
conclude f(xF ) = g(x)F from (8.17).

As the next step we show g to be bijective.
g injective: x 6= y ⇒ xS 6= yS by (8.10)

⇒ f(xS) 6= f(yS) f injective
⇒ g(x)S 6= g(y)S by (8.20)
⇒ g(x) 6= g(y) by (8.10)

g surjective: Given y ∈ Xp. By (8.14) then `p<πp>(yS) = aSk for some a and k. Since f is
surjective and label preserving there is an x′ ∈ Xq<πq> with f(x′) = yS and `q<πq>(x′) =
aSk . From (8.13) we see that there must be an x ∈ Xq with xS = x′.

In proving g to be a morphism of lpos it remains to show that g is label and order
preserving.

g label preserving: Suppose x ∈ Xq and `q(x) = b. Then from (8.12) `q<πq>(xS) = bSk for
some k, and therefore bSk = `p<πp>(f(xS)) = `p<πp>(g(x)S) by (8.19) and (8.20). Using
(8.12) again we obtain `p(g(x)) = b = `q(x).

g order preserving: Assume x ≤q y. In the case x = y the result follows from the
reflexivity of ≤p. In the case x <q y we have

g(x)F <w g(y)S(8.21)

because x <q y ⇒ xF <q<πq> yS by (8.15)
⇒ f(xF ) <w f(yS) f is order preserving
⇒ g(x)F <w g(y)S by (8.20)

We cannot have g(y) <p g(x) since it by (8.15) and (8.16) would imply g(y)S <p<πp> g(x)F
which in turn from ≤p<πp> ⊆ ≤w would imply g(y)S <w g(x)F—contradicting (8.21).
g(x) cop g(y) can also be excluded since we then from the fact that w is p-reflecting would
get g(y)S <w g(x)F—again contradicting (8.21). Hence we are left with g(x) <p g(y) as
the only possibility and we are done. 2
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For a pomset p, let in the sequel Mp ⊆ Xp denote the set of minimal elements of p (w.r.t.
≤p).
We state and prove the lemma referred to in the proof of lemma 8.3.4.

Lemma 8.3.6 Let p be a pomset with the Por-property and mp ≤ m, where m is some
finite multiplicity function over ∆. Also let % be a m-fission refinement. Then there exists
a linearization w of p<%> (i.e., w ∈ δw(p<%>)) which is p-reflecting under %.

Proof If p = ε it is trivial that w = ε will do, so we can assume p 6= ε in the following.
Since mp ≤ m there is a %-consistent p. fission ref., <πp>, for p. The result is then a
consequence of the corresponding statement for lpos:

Let πp be a p. fission ref. for p 6= ε. Assume the minimal elements Mp of p listed in
some arbitrary order are: x1, . . . , xn. Then there exists an p-reflecting linearization
w of p<πp> isomorphic to a lpo of the form:

x1S · . . . · xnS · v

The proof is by induction on the size of Xp.
The basis, Xp a singleton, is clear.
So assume |Xp| > 1. From proposition 8.3.7 we can find an element xi ∈Mp such that xi
is dominated in Xp by all successors of Mp. Consider now the lpo, p′, obtained by deleting
xi from p.

Notice that Mp \ {xi} is a subset of the minimal elements of p′, hence we may list Mp′ as
follows:

x1, . . . , xi−1, xi+1, . . . , xn, y1, . . . , yk

Clearly πp′ = πp|Xp′ is a %-consistent p. fission ref. for p′, so because the Por property is
inherited to p′ we can use the inductive hypothesis to find a p′-reflecting linearization w′

of p′<πp′> isomorphic to a lpo of the form

x1S · . . . · xi−1S · xi+1S · . . . · xnS · y1S · . . . · ykS · v′

Since xi is minimal in p there are no other elements before xiS and xiF in p<πp>, and so
xiS ·xiF ·w′ is isomorphic to a possible linearization of p<πp>. By the way xi was chosen,
the elements concurrent to xi are exactly Mp \ {xi}. Then xiS and xiF are concurrent to
x1S, . . . , xi−1S , xi+1S , . . . , xnS in p<πp>, from which it follows that

x1S · . . . · xiS · . . . · xnS · xiF · y1S · . . . · ykS · v′

must be isomorphic to a linearization, w, of p<πp>, which quite easily is seen to be
p-reflecting as desired. 2

Proposition 8.3.7 Let p be a nonempty lpo with the Por-property and M a subset of
the minimal elements Mp of p. Then there is an element z of M dominated by all the
successors of M .
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Proof By induction on the size of M . The basis where M = {z} is evident, and for the
inductive step choose an x ∈ M . By hypothesis of induction we can find a y ∈ M \ {x},
which is dominated by the successors of M \ {x}. If y is dominated by the successors of x
too, we can choose z = y. Otherwise, since p has the Por-property, and minimal elements
are mutual concurrent, the successors of y must dominate x. But the successors of y are
also the successors of M \ {x} and we can choose z = x. 2

8.4 Summary

Let us sum up the abstractness results we have proved in this chapter. If we let <∼>∼ denote
the equivalence associated with an operational preorder <∼, and if we extend [[ ]]G to RBL in
the same simple way as [[ ]]w were extended in section 8.2, we get the following immediate
corollary:

Corollary 8.4.1 For all E0, E1 ∈ RBL:

E0
<∼>∼w E1 iff [[E0]]w = [[E1]]w

E0
<∼>∼G E1 iff [[E0]]G = [[E1]]G

E0
<∼>∼
c
w E1 iff [[E0]]or = [[E1]]or

It follows from PM = Pand, Pand(p) ⇒ Por(p) and definitions that [[ ]]M is as abstract as
[[ ]]or on BL. The following two expressions:

E0 = a ; b ‖ c
E1 = (a ‖ c) ; b⊕ a ; (b ‖ c)

show that [[ ]]Mit is strictly more abstract than [[ ]]or (identified by [[ ]]M, but not by [[ ]]or).

Furthermore, from the full abstractness results, the fact that Pw ⇒ PG ⇒ PM(= Pand)⇒
Por, and the examples in the summary from the last chapter we get:

Corollary 8.4.2 For all E0, E1 ∈ RBL:

(E0
<∼
c
w E1)⇒ (E0

<∼G E1)⇒ (E0
<∼w E1)

and none of the implications hold in the other direction except of course in the last
implication if G equals w.

At this stage, it seems very natural to ask what would have happened, if we had chosen
to look for a denotational characterization of the RBL congruence associated with the
different operational G-sequences rather than action-sequences, i.e., a characterization
of <∼

c
G on RBL. Operationally it seems hard to say anything directly. However, from

<∼G ⊆ <∼w follows <∼
c
G ⊆ <∼

c
w so <∼

c
w is at least as large as the largest precongruence contained

in <∼G. <∼
c
w is a precongruence by definition and by <∼

c
w ⊆ <∼G it then follows that <∼

c
w is the

largest precongruence contained in <∼G, i.e., <∼
c
G = <∼

c
w. From the last corollary but one we

then obtain the full abstractness result:

Corollary 8.4.3 For all E0, E1 ∈ RBL:

E0
<∼
c
G E1 iff E0

<∼
c
w E1

E0
<∼>∼
c
G E1 iff [[E0]]or = [[E1]]or
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8.5 An Adequate Logic for RBL without Auto-Par-
allelism

Along the lines of section 7.6 we would in this section for RBL like to find an adequate
linear logic Lr

G for <∼>∼
c
G. Unfortunately it seems insurmountable to devise such a logic for

the full RBL language. We shall therefore confine ourselves to search for an adequate
logic for the sublanguage, RBL′, of RBL where processes have no auto-parallelism (see
[vGV87]). That is the same action may not occur on both sides of a ‖-combinator as in
e.g., a ; b ‖ c ; a. Similar BL′ will be the sublanguage of BL with no auto-parallelism.

Formally let L(E) denote the sort/ label set/ set of actions of an E ∈ BL. Then BL′

is those expressions of BL where all subexpressions of the form E0 ‖ E1 fulfills L(E0) ∩
L(E1) = ∅. A BL′-refinement will be a mapping % : ∆ −→ BL′ with the additional
requirement:

a 6= b⇒ L(%(a)) ∩ L(%(b)) = ∅
RBL′ is those E ∈ RBL where Eσ ∈ BL′ and if [%] is a refinement combinator of E then
% is a BL′-refinement. Due to the restrictions on the expressions of BL′ and RBL′ the
congruence and full abstractness results to follow should be modified accordingly.

The decisive importance of BL′ and RBL′ is that the canonical pomset association map,
℘, when used on expressions of BL′ yield pomsets with the Psw-property (i.e., semiwords)
we encountered in section 7.5. Recall that in a Psw-pomset all equally labelled elements
are ordered. Consequently one can speak of the ith occurrence of a label a ∈ ∆. The
corresponding element of p̂ will be 〈i, a〉 ∈ Xp̂, where p̂ is the canonic representative of p
we mentioned in section 7.5. For more details on this matter see Starke [Sta81]. From the
results there a stronger version of the alternative characterization of � on Psw-pomsets
appears: If p,q ∈ Psw then

p � q iff Xp̂ = Xq̂ and ≤p̂ ⊇ ≤q̂
Another of the Psw-pomsets characteristics is that:

if p ∈ P, q ∈ Psw and p � q then p ∈ Psw.

Combining this with the fact that ℘(E) ∈ Psw when E ∈ BL′ we see that the denotational
maps of the different models when restricted to BL′ respectively RBL′ only yield Psw-
pomsets. We can therefore choose to work with canonic representatives in stead.

To this end denote the set of lpos which are the canonic representatives of some Psw-
pomset by SW and call SW the set of semiwords (over ∆). For p, q ∈ SW the partial
order then becomes:

p � q iff Xp = Xq and ≤p ⊇ ≤q
and the pomset operations inherits to SW via the canonic representatives. E.g., p× q :=̂p× q where the ×-operator under ˆ is the lpo parallel composition introduced in section
6.1. In order to insure this to be well-defined p and q must be disjoint. This will be
assumed henceforth when writting p × q. Because as we noticed in section 7.5 the Psw-
property is both hereditary and dot synthesizable it follows that all the purely denotational
results carry over to BL′ and RBL′ (see also section 6.4).
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On the operational side nothing changes except that CL and RCL are changed accord-
ingly. But due to the nature of the process expressions we now focus on there is no point
in regarding set of direct tests larger than S ⊆ Psw. We shall therefore assume

∆ ⊆ G ⊆ S

The full abstractness results of course holds for BL′. It is however not so obvious that
<∼
c
G will be fully abstract with the semiword version of [[ ]]or. That this is the case can

be seen by passing through section 8.3 with semiwords in mind and observing that the
BL-refinement used in lemma 8.3.4 actually is a BL′-refinement. The result for <∼

c
w and

<∼S is also reported in [NEL89]. There a simpler BL′ refinement without ⊕ is used in the
lemma corresponding to lemma 8.3.4 (this only works for semiwords—see the conclusion
of that paper). Furthermore direct definitions of the different semiword operations is
given—especially the definition of the refinement operator is not strait forward.

We will now introduce the linear logics. For BL′ and <∼G we can use the logic LG from

section 7.6. Since G ⊆ S it will do with modalities A3 and A2 where A ∈ S.

For RBL′ a stronger modal language is needed. We shall also denote this language by L
and define it to be the formulae obtained from:

f ::= tt | ff | 5 | 4 | A
⋂
f | A

⋃
f | A3f | A2f

where A can be any element of S.

Lr ⊆ L is defined to be those formulae with no occurrence of the modalities A
⋂

and A3.

For each G the satisfaction relation is as in section 7.6 except for the modalities A
⋂

and
A
⋃

. The intuition behind A
⋃

is a kind of semi-deadlock. I.e., a process satisfies A
⋃
f if it

either is what Stirling [Sti85] calls a-deadlocked for some a ∈ A or it satisfies f . Dually a
process satisfies A

⋂
f if it is able to perform every a ∈ A and it also satisfies f . Formally:

Definition 8.5.1 |=G ⊆ DCL′ ×L is defined:

E |=G tt for all E ∈ DCL′

E |=G 5 iff ∀a ∈ ∆. E 6 a⇒G
E |=G 4 iff ∃a ∈ ∆. E

a⇒G
E |=G A

⋂
f iff A ⊆ {a ∈ ∆ | E a⇒G} and E |=G f

E |=G A
⋃
f iff (∃a ∈ A. E 6 a⇒G) or E |=G f

E |=G
A3f iff ∃E ′. E A⇒G E ′ and E ′ |=G f

E |=G A2f iff ∀E ′. E A⇒G E ′ implies E ′ |=G f

2

As in section 7.6 we say that a process E ′ ∈ BL′ satisfies a formula f ∈ Lr,

E |=G f iff ∀E ′ ∈ Beh(E). E′ |=G f
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With the syntactic substitution σ : RBL′ −→ BL′ it is then possible to extend |=G further
to RBL′ as follows: E ∈ RBL′ satisfies a formula f ∈ Lr,

E |=G f iff Eσ |=G f

For E ∈ RBL′ we define:
Lr

G(E) = {f ∈ Lr | E |=G f}
and in order to prove the adequacy of Lr

G w.r.t. <∼>∼
c
G on RBL′ we shall also introduce for

E ∈ RBL′:
Lr

G(E) = {f ∈ Lr | ∃E ′ ∈ Beh(Eσ). E ′ |=G f}
where Lr is {f ∈ L | f ∈ Lr} and : L −→ L is the syntactic map of section 7.6 extended
to this larger formula language by:

A
⋂
f = A

⋃
f A

⋃
f = A

⋂
f

That is the formulae of Lr are:

f ::= tt | ff | 5 | 4 | A
⋂
f | A3f

Similarly as we proved lemma 7.6.2 we here for E0, E1 ∈ RBL′ get:

Lr
G(E0) ⊆ Lr

G(E1) iff Lr
G(E0) ⊇ Lr

G(E1)(8.22)

We are now ready to give the theorem from which that adequacy of Lr
G follows:

Theorem 8.5.2 (Linear Logic Characterization) For all E0, E1 ∈ RBL′:

E0
<∼
c
G E1 iff Lr

G(E0) ⊇ Lr
G(E1)

Proof Immediate from (8.22) and lemma 8.5.17 at the end of the section which states:

Lr
G(E0) ⊆ Lr

G(E1) iff E0
<∼
c
G E1(8.23)

2

Lemma 7.6.4 corresponding to (8.23) for BL was proved through operational argumenta-
tion. This is not so easely done here, but if we introduce a satisfaction relation based on
semiwords we can utilize our knowledge of the models characterizing <∼

c
G. For this purpose

we introduce some additional concepts and conventions for semiwords.

As for the proof of lemma 8.3.6 Mp will for p ∈ SW denote the minimal elements of Xp

w.r.t. ≤p. Suppose a ∈ ∆ is the label of an element of Xp. Due to the nature of p ∈ SW
the first occurrence of an element of Xp labelled with a will then be 〈1, a〉 ∈ Mp. That
is 〈1, a〉 is the unique element of Mp labelled a (see page 190). For A ⊆ ∆ or equally
A ∈ S we can therefore make the convention to identify A with the uniquely determined
set {〈1, a〉 | a ∈ A} such that it is sensible to write e.g., A ⊆ Mp (or a ∈ Mp for that
matter). Obviously we then have:
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Corollary 8.5.3

a) Mp = ∅ iff p = ε

b) Ma = {a} (= a)

c) Mp·q =

{
Mp if p 6= ε
Mq if p = ε

d) Mp×q = Mp ∪Mq

With the conventions we can if A ⊆ Mp define the complement semiword , A
p
, of A in p

to be the semiword q̂ where q is p|(Xp\A). The construction of A
p

could of course be done
directly from A and p.

Example: Suppose A = {a, b} and p =
a - a
b -

��>
c -ZZ~ b

c
. Then Mp = {a, b, c} and A

p
=

a
c - c

PPq
��1 b

On second thoughts one realize the truth of

Corollary 8.5.4

a) εp = p, pp = ε

b) A ⊆ Mp implies A
p·q

= A
p · q

c) A ⊆ Mp, B ⊆Mq and p disjoint to q implies

A ∪B ⊆Mp×q and A×Bp×q
= A

p × Bq

It is also easy to observe that A ⊆Mp and A ⊆Mq implies:

A
p � A

q
iff Xp \ A = Xq \ A and ≤p|(Xp\A)2 ⊇ ≤q|(Xq\A)2(8.24)

Proposition 8.5.5

a) p � q ⇒Mp ⊆Mq

b) p � q and A ⊆Mp implies A
p � A

q

Proof
a) Assume on the contrary that there exists a x ∈ Mp such that x 6∈ Mq. Since Xp = Xq

and x ∈ Mp we have x ∈ Xq. Hence x 6∈ Mq implies there is a y ∈ Xq with y <q x. But
then from ≤p ⊇ ≤q also y <p x—a contradiction to x ∈Mp.

b) From a) and the hypothesis of the implication we see A ⊆Mq. Hence A
q
is well-defined.

p � q gives us Xp = Xq and ≤p ⊇ ≤q. b) is then immediate from (8.24). 2
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With the ability to regard elements of S as minimal elements of a semiword and with the
notion of complement semiwords we can define the semiword satisfaction relation |=sw

G :

Definition 8.5.6 |=sw
G ⊆ SW × Lr is defined inductively by:

p |=sw
G tt for all p ∈ SW

p |=sw
G 5 iff p = ε

p |=sw
G 4 iff p 6= ε

p |=sw
G A

⋂
f iff A ⊆Mp and p |=sw

G f

p |=sw
G

A3f iff A ∈ G, A ⊆Mp and A
p |=sw

G f

2

|=sw
G is extended to P(SW )× Lr by letting:

P |=sw
G f iff ∃p ∈ P. p |=sw

G f

At first we want to establish a connection between the operational based satisfaction
relation |=G (restricted to RBL′ × Lr) and the semiword based |=sw

G . ℘ is therefore
extended to CL′ by keeping it’s compositional definition, but adding ℘(†) = ε for the
extinct action. Naturally ℘(E) = {p} when E ∈ BL′ so we shall often identify ℘(E) with
p in such situations. To get the connection some lemmas are needed.

Lemma 8.5.7 Suppose E,E ′ ∈ DCL′. Then:

a) E >−→∗ E ′ implies ℘(E) = ℘(E ′)

b) ℘(E) = ε iff E >−→∗ †
c) E |=G 5 iff E >−→∗ †
d) {a ∈ ∆ | E a⇒G} = M℘(E)

Proof
a) Induction in the structure of E using the fact that ε is neutral to · and × on SW .

b) The only if part follows by a trivial induction on the structure of E and the if part is
just a special case of a)

c) (7.9) on page 170.

d) By induction on the structure of E.

E = †: {a ∈ ∆ | † a⇒G} = ∅ = Mε = M℘(E).

E = b: {a ∈ ∆ | E a⇒G} = {b} = Mb = M℘(E).

E = E0 ; E1: We consider two subcases:
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E0 6>−→∗ †: From lemma 7.4.5 and proposition 7.2.3 it then follows that {a ∈ ∆ |
E

a⇒G} = {a ∈ ∆ | E0
a⇒G} which by hypothesis of induction equals M℘(E0).

Now from b) E0 6>−→∗ † implies ℘(E0) 6= ε, so corollary 8.5.3 gives M℘(E0) =
M℘(E0)·℘(E1). By definition of ℘ then also M℘(E0) = M℘(E).

E0 >−→∗ †: Similar we see {a ∈ ∆ | E a⇒G} = {a ∈ ∆ | E1
a⇒G} and ℘(E0) = ε, so

the result follows in the same way but using the hypothesis on E1 instead.

E = E0 ‖ E1: This time we see {a ∈ ∆ | E a⇒G} = {a ∈ ∆ | E0
a⇒G} ∪ {a ∈ ∆ | E1

a⇒G}
from lemma 7.4.6 and proposition 7.2.3. The rest then follows along the lines above.

2

Lemma 8.5.8 For E ∈ DCL′:

a) E
A⇒G E ′ implies A ⊆M℘(E) and A

℘(E)
= ℘(E ′)

b) A ⊆ M℘(E) and A ∈ G implies ∃E ′. E A⇒G E ′

Proof
a) E

A⇒G E ′ only if there are F and F ′ such that E >−→∗ F A−→ F ′ >−→∗ E ′, so from a)
of the preceding lemma we see it is enough to prove

E
A−→G E ′ implies A ⊆M℘(E) and A

℘(E)
= ℘(E ′)

By induction of the size of E
A−→ E ′ one easely shows a ∈ A implies E

a−→G, so A ⊆
{a ∈ ∆ | E a⇒G}. By d) of the preceding lemma therefore A ⊆M℘(p).

We now know that A
℘(E)

is well-defined and it make sense to prove

E
A−→G E ′ implies A

℘(E)
= ℘(E ′)

by induction on the size, m, of E
A−→GmE

′. Only the inductive step is interesting. We
consider the different rules one by one.

E = a
A−→Gm+1E

′: Clearly A = a and E ′ = †. Now aa = ε and ℘(a) = a, so a℘(E) = ε =
℘(E ′).

E = E0 ; E1
A−→Gm+1E

′
0 ; E1 = E ′ where E0

A−→GmE
′
0: By induction A

℘(E0) = ℘(E ′
0). So

by corollary 8.5.4 c) A
℘(E)

= A
℘(E0)·℘(E1)

= A
℘(E0) · ℘(E1) = ℘(E ′

0) · ℘(E1) = ℘(E ′).

E = E0 ‖ E1
A−→Gm+1E

′: There are three ways E0 ‖E1
A−→Gm+1E

′ could be obtained, and
each case is proved essential as above but this time using corollary 8.5.4 d).

b) By induction on the structure of E.

E = †: ε 6∈ G by definition of G so A 6= ε (= ∅) and we cannot have A ⊆M℘(E) = ∅.
E = a: M℘(a) = a and we must have A = a. From a

a−→G † the implication follows with
E′ = †.
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E = E0 ; E1: We divide in two subcases.
℘(E0) 6= ε: By corollary 8.5.3 then A ⊆ M℘(E0)·℘(E1) implies A ⊆ M℘(E0). The

hypothesis of induction then gives us a E ′
0 such that E0

A⇒G E ′
0. Choosing E ′ =

E ′
0 ; E1 this subcase is settled with proposition 7.2.3.

℘(E0) = ε: Using corollary 8.5.3 we see that A ⊆ M℘(E1). By hypothesis of induction

there exists a E ′ such that E1
A⇒G E ′. From b) of the preceding lemma E0 >−→∗ †

when ℘(E0) = ε. Applying proposition 7.2.3 then E0;E1 >−→∗ †;E1 >−→ E1
A⇒G E ′

and so E
A⇒G E ′.

E = E0 ‖ E1: M℘(E) = M℘(E0)×℘(E1) = M℘(E0)∪M℘(E1), so A = A0∪A1 where Ai ⊆M℘(Ei)

for i = 0, 1. Because G has the property A ↪→ B,B ∈ G implies A ∈ Gε we see
A0, A1 ∈ Gε. The subcases:
A0 = ε or A1 = ε: Similar to the first subcase of E = E0 ; E1.

A0 6= ε 6= A1 Then A0, A1 ∈ G and by hypothesis of induction ∃E ′
i. Ei

Ai=⇒G E ′
i for

i = 0, 1. This also means there are F0, F
′
0 such that E0 >−→∗ F0

A0−→ F ′
0. Similar

for E1. By proposition 7.2.3 E0 ‖ E1 >−→∗ F0 ‖ F1 and because A0 ∪ A1 = A ∈ G,

or equally by convention A0 × A1 = A ∈ G, we get F0 ‖ F1
A−→G F ′

0 ‖ F ′
1. With

E ′ = F ′
0 ‖ F ′′

1 this all together reads E
A⇒G E ′.

2

With the previous two lemmas the connection between the two satisfaction relations can
now be stated and proved:

Lemma 8.5.9 If f ∈ Lr and E ∈ RBL′ then

E |=G f iff ℘(Eσ) |=sw
G f

Proof At first we prove a restricted/ modified version of the proposition:

If E ∈ DCL′ and f ∈ Lr then

f ∈ Lr
G(E) iff ℘(E) |=sw

G f(8.25)

The proof of this will be by induction on the structure of f .

f = tt or f = ff: Evident.

f = 5: E |=G 5 iff ∀a ∈ ∆. E 6 a⇒G definition of |=G
iff M℘(E) = ∅ lemma 8.5.7
iff ℘(E) = ε corollary 8.5.3
iff ℘(E) |=sw

G 5 definition of |=sw
G

f = 4: With the last case we see: E |=G 4 iff E 6|=G 5 iff ℘(E) 6|=sw
G 5 iff ℘(E) |=sw

G4.

f = A
⋂
g: By hypothesis of induction E |=G g iff ℘(E) |=sw

G g and from lemma 8.5.7

{a ∈ ∆ | E a⇒G} = M℘(E), so the result follows by the similarity of the definitions
of |=G and |=sw

G .
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f = A3: Follows directly from lemma 8.5.8, hypothesis of induction and the definitions

of |=G and |=sw
G .

With (8.25) the lemma now follows:

f ∈ Lr
G(E) iff ∃E ′ ∈ Beh(Eσ). E ′ |=G f definition of Lr

G
iff ∃E ′ ∈ Beh(Eσ). ℘(E ′) |=G f (8.25) above
iff ∃p ∈ ℘(Eσ). p |=sw

G f (8.26) below
iff ℘(Eσ) |=sw

G f by extension of |=sw
G to sets

In the deduction we used

∀E ∈ BL′. ℘(E) = {℘(E ′) | E ′ ∈ Beh(E)}(8.26)

which follows by induction on the structure of E using the compositional nature of ℘. 2

It is appropriate here to recall the note at the end of section 7.6 where it was pointed out
that an alternative logic characterization of <∼G (on BL′) could be obtained from Lg by
pretending definition 8.5.1 of |=G was for CL′ ×Lg and not just DCL′ ×Lg. The reason
was that for f ∈ Lg and E ∈ CL′ one would have:

E |=G f iff ∃E ′ ∈ Beh(E). E′ |=G f

For the extended logic language here this would not be true. Just consider E = a⊕ b and
f = A

⋂
tt where A = {a, b}. Then E |=G f , but for all E ′ ∈ Beh(E) = {a, b} E ′ 6|=G f .

With the last lemma we can now concentrate fully on properties of the semiword based
satisfaction relation.

Lemma 8.5.10 Suppose f ∈ Lr and p, q ∈ SW . Then

p |=sw
G f, p � q implies q |=sw

G f

Proof Induction on the structure of f .

f = tt,ff,5,4: Either trivial or follows directly from ε � p iff p = ε.

f = A
⋂
g: Then A ⊆ Mp and p |=sw

G g. By induction q |=sw
G g and from proposition 8.5.5

a) Mp ⊆Mq, so A ⊆ Mq and we get the result.

f = A3g: This implies A ⊆ Mp and A
p |=sw

G g. By proposition 8.5.5 b) it follows from

p � q that A
q

is well-defined and A
p � A

q
. By hypothesis of induction then

A
q |=sw

G g. Using proposition 8.5.5 a) we have A ⊆ Mq, so q actually satisfies

A3g = f as desired.

2

Lemma 8.5.11 If p ∈ SW then p ∈ max�(δor(q)) implies Mp = Mq

Proof Assume p ∈ max�(δor(q)).
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⊆: The assumption implies p � q, so this inclusion follows from proposition 8.5.5.

⊇: Given x ∈Mq. Suppose x 6∈Mp. We show that this leads to a contradiction by finding
a r ∈ δor(q) such that p ≺ r. Define r to be 〈Xp,≤r, `p〉, where ≤r = ≤p\{〈y, x〉 | y <p x}.
By a moments reflection one sees that≤r defines a partial order. p � r follows by definition
and p ≺ r from x ∈ Mr and x 6∈ Mp. Since we only have removed relations leading to x
we see from x ∈ Mq and p � q that r � q must hold. It remains to show that r has the
Por-property. Let y, y′, z, z′ ∈ Xr be given such that

y <r y
′

cor
z <r z

′
(8.27)

We shall then show y ≤r z′ or z ≤r y′. From p � r and (8.27) we see y <p y
′, z <p z

′

and since relations are removed from ≤p to obtain ≤r iff they lead to x, we conclude
x 6= y′, z′.

If y cop z then Por(p) implies y ≤p z′ or z ≤p y′. Since x 6= y′, z′ we must then also have
y ≤r z′ or z ≤r y′.
It remains to consider y 6cop z—i.e., either y ≤p z or z ≤p y. Suppose y ≤p z. Since
z <p z

′ the transitivity of ≤p yields y ≤p z′ and from x 6= z′ we then conclude y ≤r z′.
Similar for z ≤p y. 2

Lemma 8.5.12 Suppose A ∈ S and P ⊆ SW has the property ∀p ∈ P. A ⊆ Mp. Then
max�{Ap | p ∈ P} ⊆ {Ap | p ∈ max� P}.

Proof Given A
q ∈ max�{Ap | p ∈ P}. I.e., q ∈ P and there is no p ∈ P such that

A
q ≺ A

p
or by (8.24):

6 ∃p ∈ P. Xq \ A = Xp \ A, ≤q|(Xq\A)2 ⊃ ≤p|(Xp\A)2

So if p ∈ P and q � p we must have ≤q|(Xq\A)2 = ≤p|(Xp\A)2 . Hence the partial order of
any maximal element r of P (r ∈ max� P ) above q (q � r) agrees on Xq \ A, wherefore
A
q

= A
r

and we are done. 2

With P =

{
a
c

PPq
��1 b, a��1 b

PPq c

}
and A = a it follows that the right hand side of the inclusion

in the lemma may be different from the left hand side.

Lemma 8.5.13 If A ⊆Mq and P = {p ∈ δor(q) | A ⊆ Mp} then δor(A
q
) = {Ap | p ∈ P}.

Proof
⊆: Given r ∈ δor(Aq), i.e., Por(r) and r � A

q
. Let p = A · r. Then A

p
= r and we have

A
p � A

q
or equally by (8.24):

Xq \ A = Xp \ A, ≤q|(Xq\A)2 ⊇ ≤p|(Xp\A)2

Then Xp = Xq and because the elements of A in p are below all other elements of Xp we
conclude p � q. The Por-property is dot synthesizable so from Por(A) and Por(r) follows
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Por(A · r), i.e., p = A · r ∈ δor(q). Since A ⊆ MA·r = Mp then p ∈ P and this implication
is settled.

⊇: p ∈ δor(q) implies Por(p) and p � q. Since A ⊆Mp we get A
p � A

q
. The Por-property

inherits to A
p
, so A

p ∈ δor(Aq). 2

If A ⊆Mq we from the last two lemmas see that:

max
�

(δor(A
q
)) ⊆ {Ap | p ∈ max

�
{p ∈ δor(q) | A ⊆Mp}}(8.28)

Since A ⊆Mq we by lemma 8.5.11 also have:

max
�
{p ∈ δor(q) | A ⊆Mp} = max

�
(δor(q))(8.29)

Combining (8.28) and (8.29) then:

Corollary 8.5.14 If A ⊆Mq and q ∈ SW then

max
�

(δor(A
q
)) ⊆ {Ap | p ∈ max

�
(δor(q))}

That the converse inclusion does not hold can be seen as follows. Let q =
a - b
c - d

and

p =
a -

��>
b

c - d
. Then p ∈ max�(δor(q)) and ap = ��>

b
c - d

, but ap 6∈ max�(δor(a
q)) =

{
b

c - d

}
.

Lemma 8.5.15 Given f ∈ Lr and p ∈ SW . Then

p |=sw
G f implies ∃q ∈ δor(p). q |=sw

G f

Proof The lemma follows by proving the stronger

p |=sw
G f implies ∃q ∈ max

�
(δor(p)). q |=sw

G f

by induction in the structure of f .

f = tt,ff,5,4: Either trivial or follows from max�(δor(p)) = {ε} iff p = ε.

f = A
⋂
g: Then A ⊆ Mp and p |=sw

G g. By hypothesis of induction there is a q ∈
max�(δor(p)) such that q |=sw

G g. By lemma 8.5.11 we have Mq = Mp, so also
q |=sw

G A
⋂
g.

f = A3g: Here we must have A ∈ G, A ⊆ Mp and A
p |=sw

G g. Using the hypothesis of

induction we get a q′ ∈ max�(δor(A
p
)) such that q′ |=sw

G g. By corollary 8.5.14 then

q′ ∈ {Aq | q ∈ max�(δor(p))}. I.e., there is a q ∈ max�(δor(p)) such that A
q

= q′

and thereby A
q |=sw

G g. Because q ∈ max�(δor(p)) and A ⊆ Mp we can use lemma

8.5.11 to see A ⊆Mq. Hence q |=sw
G

A3g and q ∈ max�(δor(p)) as desired.

2
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Lemma 8.5.16 Suppose p ∈ SW and Por(p). Then there is a fp ∈ Lr such that:

a) p |=sw
w fp

b) q |=sw
G fp implies p � q

Proof The proof is by induction on the size of p (i.e., of Xp).

In the basis Xp = ∅ we can only have p = ε. Choose fp = 5. By definition ε |=sw
w 5.

For the inductive step we can assume the proposition to hold for all semiwords of size less
than the given p. Now consider Mp. Because Por(p) we by proposition 8.3.7 know there
is a a ∈Mp such that

∀x ∈Mp. x <p y ⇒ a <p y(8.30)

Denote ap by p′. Then the size of p′ is less than the size of p and we can apply the
hypothesis of induction to find a fp′ ∈ Lr such that p′ |=sw

w fp′ and q′ |=sw
G fp′ implies

p′ � q′. Since Mp 6= ∅ (when Xp 6= ∅) we can define:

fp = A
⋂

a3fp′ , where A = Mp

Clearly P |=sw
w fp. So let a q be given such that q |=sw

G fp. This means A ⊆ Mq and
q′ = aq |=sw

G fp′. From the hypothesis of induction we know p′ � q′ or equally ap � aq.
This means by (8.24):

(8.31) Xq \ {a} = Xp \ {a} and (8.32) ≤q|(Xq\{a})2 ⊇ ≤p|(Xp\{a})2
From a ∈ Mp, a ∈ Mq and (8.31) follows Xp = Xq, so we just have to prove ≤p ⊇ ≤q in
order to obtain p � q. By the reflexivity of ≤p is suffice to show x <q y implies x <p y
for given x, y ∈ Xq (= Xp). We distinguish three cases:

x, y 6= a: Follows from (8.32).

x 6= a, y = a: I.e., x <q a. But this contradicts a ∈Mq, so we can exclude this case.

x = a, y 6= z: Then x <q y reads a <q y wherefore y 6∈ Mq. Because Mp = A ⊆ Mq this
also implies y 6∈ Mp. Hence there is a z ∈ Mp such that z <p y. By (8.30) then
a <p y as we wish.

2

We can now prove the crucial lemma used in the proof of the linear logic characterization
of <∼

c
G.

Lemma 8.5.17 For E0, E1 ∈ RBL′ we have:

E0
<∼
c
G E1 iff Lr

G(E0) ⊆ Lr
G(E1)

Proof
only if : E0

<∼
c
G E1 implies [[E0]]or ⊆ [[E1]]or by the full abstractness result of section 8.4.

Now let f ∈ Lr
G(E0) be given. Then by lemma 8.5.9: ℘(E0σ) |=sw

G f which means there is
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a q ∈ ℘(E0σ) such that q |=sw
G f . Hence from lemma 8.5.15 p |=sw

G f for some p ∈ δor(q).
This means there is a p ∈ [[E0]]or with p |=sw

G f . Because [[E0]]or ⊆ [[E1]]or then also
p ∈ [[E1]]or and by definition of [[ ]]or there must be a r ∈ ℘(E1σ) such that p � r. So from
lemma 8.5.10 r |=sw

G f and ℘(E1σ) |=sw
G f . Using lemma 8.5.9 again we get f ∈ Lr

G(E1).

if : [[E0]]or ⊆ [[E1]]or implies E0
<∼
c
G E1 so it is enough to prove p ∈ [[E1]]or for a given

p ∈ [[E0]]or. Then Por(p) and by the previous lemma there is fp ∈ Lr such that p |=sw
w fp

and q |=sw
G fp implies p � q. Clearly p |=sw

w fp implies p |=sw
G fp. p ∈ [[E0]]or means there

is a r ∈ ℘(E0σ) such that p � r. Lemma 8.5.10 gives r |=sw
G fp because p |=sw

G fp, so from

lemma 8.5.9 then fp ∈ Lr
G(E0). Hence also fp ∈ Lr

G(E1) by assumption. As above we see
that there is a q ∈ ℘(E1σ) such that q |=sw

G fp. By the way fp was chosen then p � q.
Because Por(p) we finally have p ∈ [[E1]]or. 2

From this proof and lemma 8.5.16 (p |=sw
w fp) it appears that Lr

w actually would suffice
to characterize <∼

c
G and a closer look at fp shows that formulae generated by:

f ::= 5 | A
⋂
f, A ∈ S | a3f, a ∈ ∆(8.33)

would do. This can of course not come surprisingly because we from the full abstractnesss
result already know <∼

c
w = <∼

c
G for any set of direct tests G (∆ ⊆ G ⊆ S). It can also be

seen from the ability of A
⋂

and a3 to simulate the effect of the modality A3 under the

satisfaction relation |=G where A ∈ G.

Example: Suppose A = {a, c} and A ∈ G. Then

E |=G
A3tt iff E |=w A

⋂
a3 c3tt

The reason why formulae from Lr are used in place of just those of (8.33) is as in section
7.6 because they provide more freedom in specifications. How forcible formulae can be of
course depends on the available satisfaction relation.

Example: Suppose A and G are as in the example above. Furthermore let

E0 = (a ; a ‖ c) ; e and E1 = (a ‖ c) ; a ; e⊕ a ; (a ‖ c) ; e

Then the formula
f = A

⋂
a3 A3tt

would be sufficient to distinguish E0 and E1: E0 |=G f but E1 6|=G f . If only formulae of
(8.33) could be used then a formula like

A
⋂

a3A
⋂

c3 a3 e35

should be used to differentiate E0 and E1.
Notice by the way that no formulae of Lg can distinguish E0 and E1.
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Striving towards more freedom in specifications it is tempting when looking at the def-
inition for E |=G A

⋂
f to turn the modality A

⋂
into an atomic proposition with E |=G

A
⋂

iff A ⊆ {a ∈ ∆ | E a⇒G} and add conjunction to Lr (disjunction to Lr respectively).
However this would make the modal logic to strong which can be seen as follows.
Let E0 = (a‖ c) ;a‖ e⊕ c ‖a ; (a‖ e) and E1 = a ;a‖ c ;e. Then E0

<∼>∼
c E0⊕E1 (can be seen

from the denotations) but with f = a3 a3 c3tt ∧ e3 a3 a3tt we would have E0 ⊕ E1 |=w f

and E0 6|=w f .
One way out would be to restrict the admissible formulae to be those where any subfor-

mula of the form f ∧ g would have either f 6= A3f ′ or g 6= A3g′.

We end the section with a comment regarding the logic characterization of <∼
c
G for the full

RBL language.
Without problems the formula language could be extended to include formulae like A

⋂
f

where A ∈ M and not just A ∈ S as it is now. Taking the same definition of |=G but
as if it was for DCL one could similarly extend |=G to RBL and obtain a logic for
RBL. Nevertheless the logic would not be strong enough to characterize <∼

c
G on RBL: If

E0 = a ; a ‖ a ; a and E1 = a ; a ; a ‖ a ⊕ (a ‖ a) ; (a ; a) then E0 6<∼cG E1 but no formula of
Lr (or dually Lr) would be able to distinguish E0 and E1 as can be seen by an easy case
analysis. How, if possible, to characterize <∼

c
G on RBL remains open.
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Chapter 9

Adding Recursion to BL and RBL

In this chapter we shall equip the process languages BL and RBL of the two preceding
chapters with constructors for recursion in order to deal with infinite behaviours. The
crucial constructors will be of the form rec x. . If E is an expression with x at some places
(where an action could have been) then one can roughly think of rec x. E as the process
which evolve like E until an x is meet where after it (repeatedly) can evolve like rec x. E.
Example:

E = rec x. (a⊕ b ; x)
b⇒ E

b⇒ E
a⇒ †

But of course E could just as well evolve infinitely performing b’s

E
b⇒ E

b⇒ . . .
b⇒ E

b⇒ . . .

With our notion of (finite) maximal sequences of direct tests we would still be able to
distinguish recursive BL processes like:

rec x. (a⊕ b ; x) and rec x. (c⊕ b ; x)

because they obviously can do different maximal sequences. On the other hand there will
be no way to distinguish the processes:

rec x. (a ; x) and rec x. (b ; x)(9.1)

This is satisfactory if nontermination is viewed as unimportant and only termination
matters. Taking the opposite point of view, disregarding termination, they must be
distinguished. One way to go would be to find some notion of infinite sequences. Against
this one might argue that it breaks with the principle of finite observability: no (human)
experimenter can carry out infinite sequences of direct tests. But there seems no reason to
inhibit the experimenter from recording prefixes of a (possibly maximal) sequence. The
preorder arrising when the experimenter is endowed with this capability will be denoted
<∼ as opposed to <∼ from the previous chapters. The associated equivalence, <∼=∼, of <∼ will be
able to distinguish the expressions of (9.1) but in return identify

rec x. (b⊕ b ; x) and rec x. (b ; x)

which on the contrary would not be identified by <∼>∼—the equivalence of <∼. The appropriate
equivalence depends on what view is taken. However there is the serious drawback of <∼
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that it is not a precongruence—not even on BL:

a⊕ a ; b <∼ a ; b but (a⊕ a ; b) ; c 6<∼ (a ; b) ; c

We will therefore also be interested in <∼
c—the largest precongruence contained in <∼.

Recalling the operational semantics of BL we know that a sequence of E ; F involving
actions from F must contain a maximal sequence of E. The models from the previous
chapters all to some extend mirrored maximal sequences so here we already get the clue
that the previous models must be incorporated in the models which shall capture <∼

c (for
the various operational G-semantics). For the recursive RBL processes we shall similarly
look for models characterizing <∼

c and <∼
c.

There are standard ways of giving denotational semantics to recursive expressions and
from the previous chapters we have an god idea of how the models for the preorders
should look like. We will therefore in this chapter take the opposite angel and start out
by constructing the infinite models and then use the finite parts of the models as link to
the operational semantics.

9.1 General Set-up

In this section the definitions and results necessary for the remaining sections are intro-
duced. We shall assign meaning to recursive expressions as done by Hennessy in [Hen88a].
Except for borrowing his notation and some results the section is intended to be self con-
tained.

9.1.1 Denotations of Recursive Expressions

Given an infinite set, X, of variables and a signature, Σ, containing Ω which intuitively
represent the completely undefined process. The language of recursive expressions over
Σ, RECΣ(X), is the least set which satisfies

X ⊆ RECΣ(X)
f(t1, . . . , tk) ∈ RECΣ(X) if t1, . . . , tn ∈ RECΣ(X) and f ∈ Σ is of arity k

rec x. t ∈ RECΣ(X) if t ∈ RECΣ(X) and x ∈ X

The syntactically finite expressions are denoted FRECΣ(X)—i.e., those expressions of
RECΣ(X) with no occurrences of rec x. for any x ∈ X. A variable x is free in t if x is not
within the scope of a rec y. combinator where y = x, and an expression t is called open
(closed) if t contains (no) free variables. The set of free variables of an expression t is
denoted FV (t) and closed expressions of RECΣ(X) and FRECΣ(X) are denoted RECΣ

and FRECΣ respectively.

A syntactic substitution, ρ, is a RECΣ(X)-assignment, i.e., a map from X to RECΣ(X),
and is extended is extended to RECΣ(X) in the usual way, possible with renaming of
bound variables to avoid clashes. ρ[x → t] denotes the substitution which maps x to t
and otherwise is identical to ρ. [t/x] is a shorthand for I[x → t] where I is the identity
substitution.
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An expression t is a approximation to u if it is in the relation �, where the syntactic
preorder, �, is defined to be the least Σ-precongruence over RECΣ(X) which satisfies:

Ω � t
t[rec x. t/x] � rec x. t

For every t ∈ RECΣ(X), Fin(t) denotes {t′ ∈ FRECΣ(X) | t′ � t}. Intuitively Fin(t) is
the set of syntactic finite approximations to t and the meaning of t can thought of as the
limit of these approximations.

Having syntactic finite approximations the notion of algebraic relations can be introduced:

A relation R over RECΣ is algebraic if for all t, u ∈ RECΣ:

t R u iff ∀t′ ∈ Fin(t)∃u′ ∈ Fin(u). t′ R u′

The preorder � enjoys the following properties ([Hen88a, page 218]):

• � is a partial order on FRECΣ

• t � u implies tρ � uρ

• Fin(t) is directed w.r.t. �

A Σ-domain, A, is a triple 〈A,≤A,ΣA〉 where

• 〈A,≤A〉 is an algebraic complete partial order (algebraic cpo for short)

• for each f in Σ of arity k there is an associated continuous function fA : Ak −→ A
in ΣA.

• ΩA is the least element ⊥A of 〈A,≤A〉

We shall use Fin(A) to denote the compact elements of A.

Given a Σ-domain, A, the expressions of RECΣ(X) are assigned a meaning using envi-
ronments over A. An environment is an A-assignment, ρA, i.e., a map from X to A, and
similar as for syntactic substitution ρA[a/x] is the A-assignment which maps x to a and
otherwise equals ρA. The set of all environments, (X −→ A), is denoted ENVA. Two
A-environments ρ and ρ′ from ENVA are ordered by the induced pointwise ordering:

ρ ≤ ρ′ iff ∀x ∈ X. ρ(x) ≤A ρ′(x)

Proposition 9.1.1 ENVA is an algebraic complete partial order and the compact ele-
ments of ENVA are those ρA where there exists a finite subset Y of X such that

a) ∀x ∈ X \ Y. ρA(x) = ⊥A
b) ∀x ∈ Y. ρA(x) ∈ Fin(A)
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Notice that ⊥A is a compact elements so ρA ∈ Fin(ENVA) actually implies ρ(x) ∈ Fin(A)
for every x ∈ X.

Proof For convenience we will in this proof use f, g, . . . for elements of ENVA. By
Hennessy [Hen88a, page 123] (X −→ A) is a complete partial order. We show that the
compact elements of ENVA are as described above. It is then a simple matter to check
that every element is the lub of the compact elements below it.

For every compact element f there is a finite Y ⊆ X fulfilling a) and b): Let Y = {x ∈
X | f(x) 6= ⊥A}. To see that Y is a finite set assume on the contrary it is infinite. Then
Y contains a countable infinite subset Z = {zi}i∈IN . For each i ∈ IN define fi ∈ ENVA

by

fi(x) =


f(x) if x 6∈ Z
f(zj) if x = zj and j < i
⊥A otherwise

Clearly D = {fi}i∈IN is a chain f0 ≤A f1 ≤A . . . with lub f . Because f ≤ f and
f is compact there is an fi in D such that f ≤ fi, so ∀x ∈ X. f(x) ≤A fi(x) and
especially f(zi) ≤ fi(zi) = ⊥A. Hence f(zi) = ⊥A—a contradiction to the definition of Z
(z ∈ Z ⊆ Y only if f(z) 6= ⊥A).
By definition Y fulfills a) and to see b) let an y ∈ Y be given. We shall show f(y) ∈ Fin(A).
To this end let DA be a directed set in A such that f(y) ≤A ∨

ADA. Then we shall find
a d ∈ DA such that f(y) ≤A d. For every a ∈ DA define fa by

fa(x) =

{
f(x) if x 6= y
a if x = y

and let D be {fa | a ∈ DA}. D is directed because DA is and D has lub fD in ENVA

where

fD(x) =

{
f(x) if x 6= y∨
ADA if x = y

So f ≤ fD and because f is compact there is an fd ∈ D such that f ≤ fd. Then also
f(y) ≤ fd(y) = d ∈ DA.

That f is a compact element when there is a finite Y ⊆ X fulfilling a) and b) is easier to
see: Given a directed set D in ENVA such that f ≤ fD where fD is the lub of D in ENVA.
We shall find a g ∈ D such that f ≤ g. f ≤ fD implies ∀x ∈ X.f(x) ≤A ∨

A{g(x) | g ∈ D}.
Since ∀y ∈ Y. f(y) ∈ Fin(A) we then have ∀y ∈ Y ∃g ∈ D. f(y) ≤A g(y). For each y ∈ Y
let gy be such an g. Denote {gy | y ∈ Y } by GY . Since y is finite then so is GY and
because D is directed we can then find a g ∈ D such that ∀gy ∈ GY . gy ≤ g. Hence ∀y ∈
Y.f(y) ≤A g(y). Because ∀x ∈ X\Y.f(x) = ⊥A we actually have ∀z ∈ X\Y.f(x) ≤A g(x)
and we conclude f ≤ g. 2

Since ENVA is a cpo, meanings of expressions can now be given by means of the function:
A[[ ]] : RECΣ(X) −→ [ENVA −→ A] defined as follows:

A[[x]]ρA = ρA(x)
A[[f(t1, . . . , tk)]]ρA = fA(A[[t1]]ρA, . . . , A[[tk]]ρA)
A[[rec x. t]]ρA = Y λa. A[[t]]ρA[a/x]
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where Y is a function that yields the least fixpoint of λa.A[[t]]ρA[a/x] in A and [ENVA −→
A] is the continuous functions of (ENVA −→ A).

We select some of the results Hennessy displays:

Proposition 9.1.2 A[[rec x. t]]ρA = A[[t[rec x. t/x]]]ρA for all ρA ∈ ENVA.

With this proposition it is easy to see for t, u ∈ RECΣ(X) that:

t � u implies ∀ρA ∈ ENVA. A[[t]]ρA ≤A [[u]]ρA

I.e., the preorder defined as on the right-hand side extends � on RECΣ(X).

Theorem 9.1.3 (finite approximations) For every t in RECΣ(X) and ρA ∈ ENVA the
following holds: A[[t]]ρA =

∨
AA[[Fin(t)]]ρA :=

∨
A{A[[t′]]ρA | t′ ∈ Fin(t)}.

Lemma 9.1.4 If ρA, ρ
′
A ∈ ENVA and ρA ≤FV (t) ρ

′
A then A[[t]]ρA ≤A A[[t]]ρ′A

From this lemma it follows the value of A[[t]]ρA for a t ∈ RECΣ (the processes of
RECΣ(X)) is independent of ρA (FV (t) = ∅) and this value can be taken as the meaning
of t. So A[[ ]] can be thought of as defining a map RECΣ −→ A and we will therefore just
write A[[t]] when t is a closed expression.

Lemma 9.1.5 (Substitution Lemma) A[[tρ]]ρA = A[[t]](ρA ◦ ρ)
where the composition of the A-assignment ρA and the substitution ρ is the A-assignment:
(ρA ◦ ρ)(x) = A[[ρ(x)]]ρA.

We are now ready to reflect on extending preorders from closed to open expressions.

A preorder, ambiguously denoted ≤A, over RECΣ can be induced from the partial order,
≤A, of the Σ-domain by letting for t, t′ ∈ RECΣ:

t ≤A t′ iff ∀ρA ∈ ENVA. A[[t]]ρA ≤A A[[t′]]ρA

Since Y and the functions of a Σ-domain are continuous and especially monotone it is
self-evident from the definition of A[[ ]] that ≤A is a RECΣ-precongruence in the sense
that for closed expressions:

• for all f in Σ, f(t1, . . . , tk) ≤A f(u1, . . . , uk) whenever ti ≤A ui for i = 1, . . . , k

• t ≤A u implies rec x. t ≤A rec x. u

The latter actually does not tell us anything because A[[rec x. t]]ρA = (proposition 9.1.2
A[[t[rec x. t/x]]]ρA = (substitution lemma) A[[t]](ρA ◦ I[rec x. t/x]) which from lemma 9.1.4
and FV (t) = ∅ is seen to equal A[[t]]ρA.

This is the motivation for extending the preorder to RECΣ(X). There is at least two
ways to do this. For t, u ∈ RECΣ(X) define:
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a) t ≤A u iff ∀ρA ∈ ENVA. A[[t]]ρA ≤A A[[u]]ρA

b) t ≤′
A u iff for every closed (syntactic) substitutions ρ, A[[tρ]] ≤A A[[uρ]]

Notice that for closed substitutions tρ ∈ RECΣ.

With similar arguments as above it is now easy to see that≤A is aRECΣ(X)-precongruence
and one might argue that it is the most natural extension in a denotational set-up whereas
the other, ≤′

A, is more natural in an operational set-up. However we will now show
that under certain circumstances ≤A and ≤′

A coincide not only on RECΣ but also on
RECΣ(X).

We can then state:

Proposition 9.1.6 ≤A and ≤′
A defined above coincide over RECΣ(X) provided there

for every compact element of A is a t ∈ FRECΣ such that A[[t]] = a.

Proof Let t, t′ ∈ RECΣ(X) be given. Suppose that for all closed substitutions ρ,
A[[tρ]] ≤A A[[t′ρ]]. We show this implies A[[t]] ≤A A[[t′]]—i.e., ∀σA ∈ ENVA. A[[t]]σA ≤A
A[[t′]]σA. So let a σA ∈ ENVA be given. From the proposition 9.1.1 ENVA is algebraic
because A is. This means σA =

∨
F where F is the directed set consisting of the compact

elements in ENVA below σA. From the proposition we know that for a compact element
ρA ∈ ENVA we have ρA(x) is compact in A for all x ∈ X. By the proviso of the
proposition there then is a tx ∈ FRECΣ for each x ∈ X such that A[[tx]] = ρA(x).
Letting ρ be the closed syntactic substitution with ρ(x) = tx for all x ∈ X we then have
ρA ◦ ρ = ρA. I.e., for each ρA ∈ F there is a closed substitution ρ with ρA ◦ ρ = ρA.
Our assumption was that for all closed substitutions ρ′, A[[tρ′]] ≤A A[[t′ρ′]] (tρ′ and t′ρ′ are
closed), so especially A[[tρ]]ρA ≤A A[[t′ρ]]ρA for each ρA ∈ F . By the substitution lemma
then A[[t]](ρA ◦ ρ) ≤A A[[t′]](ρA ◦ ρ) for each ρA ∈ F , and since ρA ◦ ρ = ρA this actually
reads:

∀ρA ∈ F. A[[t]]ρA ≤A A[[t′]]ρA

From this the result then follows by the deduction

∀ρA ∈ . A[[t]]ρA ≤A A[[t′]]ρA
⇓
{A[[t]]ρA | ρA ∈ F} dominated by {A[[t′]]ρA | ρA ∈ F}

⇓ ∨
A{A[[t]]ρA | ρA ∈ F} ≤A ∨

A{A[[t′]]ρA | ρA ∈ F}
⇓ A[[t]] and A[[t′]] continuous (∈ [ENVA −→ A])

A[[t]](
∨
F ) ≤A A[[t′]](

∨
F )

⇓
A[[t]]σA ≤A A[[t′]]σA

It remains to show the other direction t ≤A t′ ⇒ t ≤′
A t

′.
Suppose A[[t]]ρA ≤A [[t′]]ρA for all ρA ∈ ENVA. Given a closed substitution ρ and a
ρA ∈ ENVA we show A[[tρ]]ρA ≤A A[[t′ρ]]ρA. The substitution lemma directly gives us
A[[tρ]]ρA = A[[t]](ρA ◦ ρ) and similar for t′ so because ρA ◦ ρ just is another A-assignment
(∈ ENVA) we are done. 2
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This result is closely related with the notion of substitutive relations as presented by
Hennessy in [Hen83]:

A relation R over RECΣ(X) is substitutive if for all t, u ∈ RECΣ(X):

t R u iff for all closed syntactic substitutions ρ, tρ R uρ

There Hennessy actually indicate the proposition above referring to [DNH84].

Proposition 9.1.7 When restricted to RECΣ the preorder ≤A is algebraic provided for
all t ∈ FRECΣ, A[[t]] is a compact element of A.

Proof We show for given t, u ∈ RECΣ:

A[[t]] ≤A A[[u]] iff ∀t′ ∈ Fin(t)∃u′ ∈ Fin(u). A[[t′]] ≤A A[[u′]]

Each implication is proven separately.

if : If we show that A[[u]] is a ub for A[[Fin(t)]] the implication follows because A[[t]] by
theorem 9.1.3 is a lub for A[[Fin(t)]]. Let an arbitrary element a ∈ A[[Fin(t)]] be given. This
means there is a t′ ∈ Fin(t) with A[[t′]] = a. By the antecedent of the implication there is
a u′ ∈ Fin(u) such that A[[t′]] ≤A A[[u′]]. u′ ∈ Fin(u) only if u′ � u so A[[u′]] ≤A A[[u]] and
by the transitivity of ≤A then a ≤A A[[u]].

only if : Assume A[[t]] ≤ A[[u]] and let a t′ ∈ Fin(t) be given. As above this implies
A[[t′]] ≤A A[[t]] and therefore also A[[t′]] ≤A A[[u]]. A[[u]] is also the lub for A[[Fin(u)]] so
actually A[[t′]] ≤A ∨

AA[[Fin(u)]]. By the proviso of the proposition A[[t′]] ∈ Fin(A). I.e.,
A[[t′]] is compact wherefore A[[t′]] ≤A a for some a ∈ A[[Fin(u)]] or equally A[[t′]] ≤A A[[u′]]
for some u′ ∈ Fin(u). 2

A Σ-domain is finitary if the map A[[ ]] : RECΣ −→ A when restricted to FRECΣ is
surjective onto Fin(A).

Corollary 9.1.8 If a Σ-domain, A, is finitary then the preorder over RECΣ(X) is
substitutive and when restricted to RECΣ it is algebraic.

9.1.2 Contexts

When considering a language a context, C[ ], is normally thought of as an expression with
zero or more “holes”, to be filled by some other expression of the language. Strictly
speaking C[ ] is not an expression of the language, but if we think of a “hole” as a special
constant symbol, a context will be an expression of the language extended with this
constant. We illustrate the idea on the language of recursive expressions, RECΣ(X),
built over the signature Σ.

We let the special constant symbol # (assumed not to be in Σ) take the rôle of a “hole”.
The set of RECΣ(X)-contexts is then simply RECΣ∪{#}(X), written RECΣ#(X) for
short. Notice RECΣ ⊆ RECΣ#. The context C ∈ RECΣ#(X) filled with (the context)
t ∈ RECΣ#(X), is denoted C[t] and defined by structural induction:
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f [t] =

{
t if f = #
f otherwise (any other constant)

x[t] = x

f(C1, . . . , Ck)[t] = f(C1[t], . . . , Ck[t]) for every f ∈ Σ of arity k ≥ 1.

(rec x. C)[t] = rec x. (C[t])

Notice that, as opposed to syntactic substitution, free variables of t may become bound
when filled in to C. Also observe that if t ∈ RECΣ(X) then C[t] ∈ RECΣ(X).

The advantage of considering contexts as ordinary expressions of an enlarged language
is that it allows us to use the syntactic precongruence � on contexts just as we do on
ordinary expressions. Recall that � is defined to be the least Σ-precongruence over
RECΣ(X) which satisfy

Ω � t
t[rec x. t/x] � rec x. t

Clearly the least Σ-precongruence over RECΣ#(X) which satisfies the two rules above will
agree with � on RECΣ so for convenience we shall make no distinction between them.

Lemma 9.1.9 If C and C′ are FRECΣ(X)-contexts and t, u are RECΣ(X)-contexts then

a) t � u implies C[t] � C[u]
b) C � C′ implies C[t] � C′[t]

Since RECΣ(X) ⊆ RECΣ#(X) the lemma of course applies for t, u ∈ RECΣ(X) (or
t, u ∈ FRECΣ(X)) too.

Proof a) By induction on the structure of C.
C = f 6= # or C = x: Here we have C[t] = C = C[u].
C = #: Then C[t] = t � u = C[u].
C = f(C1, . . . , Ck): C[t] = f(C1[t], . . . , Ck[t]) definition of [t]

� f(C1[u], . . . , Ck[u]) hypothesis and definition of �
= C[u]

b) Induction on the length of the proof of C � C′. For the basis either C = Ω or C = C′.
The latter case is trivial and in the former we have C[t] = Ω[t] = Ω � C′[t]. In the inductive
step C � C′ can because C′ ∈ FRECΣ# only mean C = f(C1, . . . , Ck) � f(C′1, . . . , C′k) = C
where Ci � C′i for i = 1, . . . , k. The result then follows similar as in a). 2

Lemma 9.1.10 Suppose C is a FRECΣ(X)-context and t ∈ RECΣ(X). Then u ∈
Fin(C[t]) implies there is a FRECΣ(X)-context C′ � C and a t′ ∈ Fin(t) such that
u � C′[t′].

Proof By induction on the structure of C. Recall u ∈ Fin(C[t]) means u � C[t] and
u ∈ FRECΣ(X).
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C = f 6= # or C = x: Then C[t] = C and u equals Ω of C. Letting C′ = u and t′ = Ω ∈
Fin(t) we have u = C′ = C′[Ω] = C′[t′].

C = #: I.e., u ∈ Fin(C[t]) = Fin(t). Choose C′ = # and t′ = u ∈ Fin(t). Then u = t′ =
#[t′] = C′[t′].

C = f(C1, . . . , Ck) for an f ∈ Σ: Here we have C[t] = f(C1[t], . . . , Ck[t]) so inspecting the
definition of � we see u � C[t] implies u = f(u1, . . . , uk) where ui �i Ci[t] for
i = 1, . . . , k. By hypothesis of induction there for each i = 1, . . . , k is a t′i ∈ Fin(t)
and a FRECΣ(X)-context C′i � Ci such that ui � C′i[t′i]. Since Fin(t) is directed there
is ub t′ ∈ Fin(t) for t′1, . . . , t

′
k. By lemma 9.1.9 then ui � C′i[t′] for each i and because

� is a Σ-precongruence we then have f(u1, . . . , uk) � f(C′i[t′], . . . C′k[t′]). Letting
C′ = f(C′1, . . . , C′k), C′ is then a FRECΣ(X)-context with C′ � C and u � C′[t′].

2

9.1.3 Σ-precongruences

Suppose LΣ′ is a language constructed from a signature Σ′. Given a preorder, v, over
LΣ′ and a Σ ⊆ Σ′ we denote the largest Σ-precongruence over LΣ′ contained in v by vΣ.
I.e.,

a) vΣ ⊆ v
b) vΣ is a Σ-precongruence

c) v′ ⊆ vΣ for any other Σ-precongruence, v′, contained in v

Now define vΣ# ⊆ LΣ′ × LΣ′ by

t vΣ# u iff ∀LΣ-contexts C. C[t] v C[u]

Proposition 9.1.11 vΣ# = vΣ, i.e., vΣ# is the largest Σ-precongruence contained in
v.

Proof We show that vΣ# fulfills a)—c).

a) Assume t vΣ# u. With C = # we especially have t = C[t] v C[u] = u.

b) Suppose f ∈ Σ of arity k and assume ti vΣ# ui for i = 1, . . . , k. Let a LΣ-context C
be given. We shall show C[f(t1, . . . , tk)] v C[f(u1, . . . , uk)]. For i = 1, . . . , k define Ci to
be the LΣ-context C[f(u1, . . . , ui−1,#, ti+1, . . . , tk)]. An easy induction on the structure
of C shows C1[t1] = C[f(t1, . . . , tk)], Ck[uk] = C[f(u1, . . . , uk)] and Ci[ui] = Ci+1[ti+1] for
i = 1, . . . , k− 1. By assumption Ci[ti] v Ci[ui] for i = 1, . . . , k. The result then follows by
the transitivity of v.

c) Given another Σ-precongruence v′ ⊆ v suppose t v′ u. For every LΣ-context C it is
easy to show C[t] v′ C[u] by induction on the structure of C using the fact that v′ is a
Σ-precongruence. Since v′ ⊆ v we by definition of vΣ# then have t vΣ# u. 2
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With this lemma we easely get

Proposition 9.1.12 Let a preorder, v, over LΣ′ be given together with signatures Σ1 ⊆
Σ2 ⊆ Σ′. Assume vΣ1

agrees on LΣ′ with another preorder, v′, which is a Σ2-precongruence.
Then vΣ1

equals vΣ2
.

Proof vΣ2 ⊆ vΣ1
by definition. To see the opposite inclusion assume t vΣ1

u. By
the previous proposition 9.1.11 is enough to show C[t] v C[u] for every LΣ2 context C.
So let an arbitrary LΣ2-context C be given. By the assumption of the lemma t vΣ1

u
implies t v′ u. Since v′ is a precongruence w.r.t. to the combinators of Σ2 we can then
by induction on the structure of C show C[t] v′ C[u]. Then again by the assumption of
the lemma C[t] vΣ1 C[u]. Because vΣ1

by definition is contained in v we actually have
C[t] v C[u] as desired. 2

Before proceeding with the useful theorem below we need a definition:

Definition 9.1.13 Given a preorder, v, over a language L and a subset A ⊆ L. L is
said to be A-expressive w.r.t. v iff for every t ∈ L there exists a characteristic context
Ct[ ] such that

∀u ∈ A. t vc u iff Ct[t] v Ct[u]
where vc is the largest precongruence w.r.t. to the combinators of L contained in v. If
A = L then L is simply said to be expressive w.r.t. v.

Theorem 9.1.14 Let v be an algebraic preorder over RECΣ containing the syntactic
preorder �. If FRECΣ is Fin(t)-expressive w.r.t v (restricted to FRECΣ) for every
t ∈ RECΣ then vΣ is algebraic too.

Proof Given t, u ∈ RECΣ we show

t vΣ u
m
∀t′ ∈ Fin(t)∃u′ ∈ Fin(u). t′ vΣ u′

⇑: Assume ∀t′ ∈ Fin(t)∃u′ ∈ Fin(u). t′ vΣ u′. In order to have t vΣ u it is by proposition
9.1.11 enough to show C[t] v C[u] for any given FRECΣ-context C. So suppose C is such a
context. Let a t′′ ∈ Fin(C[t]) be given. By lemma 9.1.10 there is a FRECΣ-context C′ � C
and a t′ ∈ Fin(t) such that t′′ � C′[t′]. By assumption there is a u′ ∈ Fin(u) with t′ vΣ u′

and so also C′[t′] v C′[u′] according to proposition 9.1.11. Clearly C′[u′] ∈ FRECΣ and
from u′ � u it follows by lemma 9.1.9 that C′[u′] � C[u′] � C[u] so we actually have
C′[u] ∈ Fin(C[u]). � ⊆ v and the transitivity of v gives t′′ v C′[u′]. Hence for every
t′′ ∈ Fin(C[t]) we have found a u′′ ∈ Fin(C[u]) such that t′′ v u′′. Because v is algebraic
this implies C[t] v C[u] as we wanted.

⇓: Assume t vΣ u and let a t′ ∈ Fin(t) be given. We shall find a u′ ∈ Fin(u) such
that t′ vΣ u′. Since t′ ∈ FRECΣ and FRECΣ is Fin(t)-expressive there (for this t′) is a
FRECΣ context, C, such that for all u′ ∈ Fin(u)

C[t′] v C[u′] iff t′ vΣ u′
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Let C be such a characteristic context for t′. We just have to find a u′ ∈ Fin(u) such that
C[t′] v C[u′]. Since t′ � t we by lemma 9.1.9 have C[t′] � C[t] and because C is a FRECΣ-
context this implies C[t′] ∈ Fin(C[t]). From t vΣ u we by proposition 9.1.11 especially
have C[t] v C[u] and by the algebraicity of v we deduce there must be a u′′ ∈ Fin(C[u])
such that C[t′] v u′′. Using lemma 9.1.10 we find a C′ � C and a u′ ∈ Fin(u) with
u′′ � C′[u′]. By lemma 9.1.9 u′′ � C′[u′] � C[u′] and from � ⊆ v and transitivity of v we
obtain C[t′] v C[u′] as desired. 2

Proposition 9.1.15 Given a preorder v over RECΣ′ extended to the open terms of
RECΣ′(X) in the substitutive way. Suppose Σ ⊆ Σ′ and v identifies expressions equal
up to rename of bound variables. Then vΣ is substitutive.

Proof Given t and u we show

t vΣ u iff ∀ρ (closed). tρ vΣ uρ

only if : For a particular ρ it will by proposition 9.1.11 do to show that for any closed ρ′

and Σ-context, C, we have (C[tρ])ρ′ v (C[uρ])ρ′ (C might contain free variables). Let such
a context and syntactic substitutions be given. Because FV (tρ) = FV (uρ) = ∅ there is a
closed context C′ such that

C′[tρ] = (C[tρ])ρ′ and C′[uρ] = (C[uρ])ρ′

Further more C′ must be incapable of binding variables since it steems from the Σ-context
C.
Now t vΣ u implies ∀ρ (closed)∀Σ-contexts C′. (C′[t])ρ v (C′[u])ρ. Since C′ above is closed
and C′ cannot bind any variables, (C′[t])ρ must equal C′[tρ] under v; similar for u. The
result then follows.

if : Assume tρ vΣ uρ for all closed ρ. Given a context, C, and some closed syntactic
substitution, ρ′, we show C[t]ρ′ v C[u]ρ′. Since C does not bind variables we must have
(C[tρ′])ρ′ = (C[t])ρ′ and similar for u. As a particular case of the assumption we have
(C[tρ′])ρ′ v (C[uρ′])ρ′ and are then done. 2

9.1.4 Obtaining Algebraic Complete Partial Orders

The algebraic cpos we are after can be obtained in a uniform way, so the construction of
them will be presented here in a more general set-up.

Suppose 〈P,v〉 is a preordered set and φ is a function φ : P −→ P(P )\∅ which is extended
to P(P ) −→ P(P ) in the natural way: φ(s) =

⋃
p∈s φ(p) for every s ⊆ P (φ(∅) = ∅).

Also let there be given a collection, Π, of subsets of P—i.e., Π ⊆ P(P ). About Π it is
assumed that

• if s ∈ Π and p ∈ s then also {p} ∈ Π

• every nonempty S ⊆ Π has lub w.r.t. ⊆:
⋃
S in Π—i.e

⋃
S =

⋃
s∈S s (Π closed

under union)
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• there is an element sΠ ∈ Π with φ(sΠ) ⊆ φ(s) for every s ∈ Π

Furthermore we shall assume that φ and v are interrelated such that for every p ∈ s and
s ∈ Π:

a) {q ∈ P | q v p} is finite

b) q ∈ φ(p) implies q v p

c) ∃q ∈ φ(p). p v q

Finally define:

Φ ⊆ P(P ) to be the set {φ(s) ∈ P(P ) | s ∈ Π}

In order to facilitate the overview it is intended to make use of symbols such that

p, q, . . .∈ P
s, t, . . .∈ Π and S, T, . . . ⊆ Π
a, b, . . .∈ Φ and A,B, . . .⊆ Φ

The idea is now to make Φ into an algebraic cpo by ordering it under inclusion.

Lemma 9.1.16 〈Φ,⊆〉 is a cpo with least element φ(sΠ) and every nonempty subset A of
Φ has a lub:

⋃
A. Furthermore for every nonempty S ⊆ Π we have φ(

⋃
S) = (

⋃
s∈S φ(s) =

)
⋃
φ(S) ∈ Φ.

Proof Because φ(sΠ) ⊆ φ(t) for every t ∈ Π it is a ⊆-least element of Φ. Now let a
nonempty subset A of Φ be given. Of course

⋃
A is a lub for A if it belongs to Φ. To see

this notice at first that by definition of Φ there for each a ∈ A exists a sa ∈ Π such that
a = φ(sa). Since φ is a natural extension we then get⋃

A =
⋃
a∈A

a =
⋃
a∈A

φ(sa) = φ(
⋃
a∈A

sa)

and because Π is closed under union and A 6= ∅ then
⋃
a∈A sa ∈ Π , so we conclude⋃

A ∈ Φ. From this it also appears that φ(
⋃
S) =

⋃
φ(S) ∈ Φ for every ∅ 6= S ⊆ Π. 2

We are now concerned with the compact elements of Φ.

Recall that D is a directed set if it is nonempty and for all d, d′ ∈ D there exists an ub
in D. An element a ∈ Φ is then compact if for every directed subset D and Φ such that
a ⊆ ⋃

D there is a d ∈ D with a ⊆ d.

Lemma 9.1.17 The compact elements of 〈Φ,⊆〉 is those φ(s), where s ∈ Π and s is a
finite set.

Notice that by a) and b) φ(s) must be finite too when s is.
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Proof It is standard that a finite set φ(s) = a ∈ Φ is compact when the partial order is
⊆ and lub is

⋃
: Let D ⊆ Φ be a directed set such that a ⊆ ⋃

D. Then for each p ∈ a we
can select a dp ∈ D with p ∈ dp. Denote the set of those dp’s by Da ⊆ D. Since a is finite
Da must be finite too and has an ub d ∈ D because D is directed, so a ⊆ ⋃

Da ⊆ d ∈ D.

Now Φ is not a ordinary subset of P(P )—it is induced from φ and a Π ⊆ P(P ), so it is
less standard to see that all compact elements φ(s) ∈ Φ are such that s is a finite set—for
instance it could be that φ “collapsed” an infinite set into a finite. But assume on the
contrary there is a compact element φ(s) = a ∈ Φ where s is infinite.

The idea will be to construct an increasing infinite chain D: d0, d1, . . . , di, . . . with a =⋃
D. Because a is compact and D is directed there will then be a d ∈ D such that a ⊆ d.

Since D is increasing then also d ⊂ d′ for a d′ ∈ D. From d′ ⊆ ⋃
D = a then a ⊂ a—a

contradiction.

We now construct the infinite increasing chain. Since s is infinite it contains a countable
infinite subset u = {pn}n∈IN . For each n ∈ IN define:

tn = {pi ∈ u | i ≤ n}
sn = {p ∈ s | ∀j > n. pj 6v p}
dn = φ(sn ∪ tn)

By the assumption of Π each element of s is contained in Π as singleton sets, and Π is
closed under union, so sn ∪ tn ∈ Π and dn ∈ Φ for every n ∈ IN . Clearly tn ⊆ tn+1

and sn = {p ∈ s | pn+1 6v p} ∩ sn+1 ⊆ sn+1 so because φ is ⊆-monotone it follows that
D = {dn}n∈IN forms a nondecreasing chain in Φ.

To see that D in fact forms an increasing chain it is then enough for each n ∈ IN to find
an m > n such that dn 6= dm.
Let n be given. By a) {q ∈ P | q v p} is finite for every p ∈ tn. From the finiteness of
tn we see that {q | ∃p ∈ tn. q v p} is finite too, so because u \ tn is infinite there must be
a pm ∈ u \ tn with ∀p ∈ tn. pm 6v p. It follows that m > n and by definition of sn then
∀p ∈ sn. pm 6v p, so we actually have

∀p ∈ sn ∪ tn. pm 6v p(9.2)

Using c) we can now find a q ∈ φ(pm) with pm v q. From (9.2) and the transitivity of v
we conclude ∀p ∈ sn ∪ tn. q 6v p. By b) we then see that q 6∈ φ(p) for all p ∈ sn ∪ tn which,
because dn = φ(sn∪tn) =

⋃
p∈sn∪tn φ(p) implies q 6∈ dn. Since q ∈ φ(pm) ⊆ φ(sm∪tm) = dm

we then get dn 6= dm as desired.

It remains to show a =
⋃
D. ⊇ follows from a being a ub for D and to see ⊆ let a q ∈ a

be given. Because a = φ(s) there must be a p ∈ s with q ∈ φ(p). If p ∈ u then p = pn for
a n ∈ IN and clearly then q ∈ φ(pn) ⊆ dn. If on the other hand p ∈ s \ u we know from
a) that there only is finitely many pi ∈ u with pi v p. Suppose pn is the last member of
u with pn v p. Then for all i > n, pi 6v p wherefore p ∈ sn and q ∈ φ(p) ⊆ φ(sn) ⊆ dn. In
both cases q ∈ dn for some dn ∈ D, so because

⋃
D is a ub for D we arrive at q ∈ ⋃

D. 2

Proposition 9.1.18 〈Φ,⊆〉 is an algebraic cpo.
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Proof From the previous two lemmas we know that 〈Φ,⊆〉 is a cpo and how the compact
elements look like. So let an element a ∈ Φ be given. We shall show that a is the lub
of the compact elements below a—i.e., that a =

⋃
Da, where Da = {φ(s) ∈ Φ | φ(s) ⊆

a, s is finite}. a being a ub for Da gives
⋃
Da ⊆ a and to see a ⊆ ⋃

Da let a q ∈ a be
given. Then q ∈ φ({p}) for some p ∈ sa ∈ Π, where a = φ(sa). Hence φ({p}) ⊆ a and
because {p} is finite, φ({p}) is compact. Therefore φ({p}) ∈ Da and q ∈ φ({p}) ⊆ ⋃

Da.
2

Proposition 9.1.19 Let Φ1 and Φ2 be two algebraic cpos constructed as above. Then
Φ = {〈φ1(s), φ2(t)〉 | s ∈ Π1, t ∈ Π2 and t ⊆ s} also is an algebraic cpo ordered under ⊆
(component wise) with least element 〈φ1(sΠ1), φ2(sΠ2)〉 and every nonempty D ⊆ Φ has
a lub

⋃
D = 〈⋃D1,

⋃
D2〉 ∈ Φ, where Di = {di | 〈d1, d2〉 ∈ D}. The compact elements of

Φ are those 〈φ1(s), φ2(t)〉 ∈ Φ where s and t are finite sets.

Proof Φ ⊆ Φ1 × Φ1 and the result can be derived from Hennessy [Hen88a, page 123].
At the first glance the result may seem obvious, but it has to be ensured that the lub
actually belongs to Φ. φi(

⋃
Di) =

⋃
φ(Di) is important here. Also the compact elements

must be dealt with. 2

9.2 Denotational Set-up

In this section we present two sets of models. One set will be the extension of the models
of the previous two chapters: the models corresponding to the operational G-semantics
(<∼G) and the Por-model for the precongruence (<∼

c
G) over RBL. For convenience we shall

denote such a extended model by M∗ where ∗ can be either or or G (a set of direct tests).
Mp

∗ on the other hand will denote a model from the other set of models corresponding
to the semantics (<∼G) where the experimenter records prefix’s of sequences. The domains
of the Mp

∗ (M∗) models will be denoted Ap∗ (A∗) and the operators corresponding to the
combinators of the different languages in question will follow the same notational scheme.

9.2.1 The Recursive Languages

In the first section we have seen different pleasant consequences of having domains where
the compact elements are denotable/ reachable. The goal will therefore be to extend the
domains of the models from the preceding chapters to deal with “infinity” while at the
same time enforcing constraints which ensures the reachability. The first subgoal is easely
attained simply by considering infinite sets of pomsets instead of finite. Recalling that
the different denotational maps were based on the canonical map, ℘, we get a clue for the
second subgoal. At first we look at what pomsets we can get by ℘. Here we shall lean on
a result of Grabowski [Gra81] which essentially states that the sets of pomsets generated
from the singleton pomsets and ε by sequential and parallel composition exactly are the
N -free pomsets.

Definition 9.2.1 PN -free-Property for Pomsets
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A pomset p is said to have the PN -free-property , PN -free(p) iff for all x, x′, y, y′ in Xp we
have:

if
x <p x

′

cop cop
y <p y

′
and x <p y

′ then y ≤p x′

If a pomset p has the PN -free-property we say that p is N -free.

We shall say that a P(P)-refinement, %, is N -free iff p is N -free for all p ∈ %(a) and
a ∈ ∆. Similar a particular refinement for a lpo p, πp, is N -free iff πp(x) is N -free for
all x ∈ Xp. 2

Example:
a -

��>
b

c -ZZ~ d
and

a - b
c

are N -free, but
a - b
c -ZZ~ d

is not.

Gischer [Gis88] also calls these pomsets for the series-parallel pomsets and give an al-
ternative and clear proof of the result, which (slightly modified for our set-up) can be
formulated:

Theorem 9.2.2 For all pomsets p:

PN -free(p) and p 6= ε iff ∃E ∈ DBL. ℘(E) = {p}

Because ℘(E0 ⊕E1) equals the union of ℘(E0) and ℘(E1) we immediately get:

Corollary 9.2.3 If P is a finite and nonempty set of N -free pomsets such that ε 6∈ P
then ∃EP ∈ BL. ℘(EP ) = P .

On top of the canonical map the relevant δ∗-closure were used top obtain the denotation.
This suggests to let the elements of A∗ be sets of pomsets which are obtained as the
δ∗-closure of a set of N -free nonempty pomsets. As already argued in the introduction to
this chapter, information of the M∗-models must be incorporated when it comes to the
Mp

∗ -models for the semantics concerning prefix. Using the π-closure of pomsets to capture
the idea of prefixes of sequences it appears that elements of Ap∗ should be pairs where the
second component is an element of A∗ and the first component is the δ∗- and π-closure of
a nonempty set of N -free pomsets with the additional constraint that this set of N -free
pomsets shall be a superset of the other set which the second component is a δ∗-closure
of. The additional constraint originates in the fact that if a maximal sequence can be
recorded then so can any prefix of it. As we have seen in corollary 7.3.4 and proposition
8.2.3 the PG and Por properties are both hereditary and dot synthesizable. By proposition
6.4.5 and proposition 6.4.11 δ∗ and π then commute so it make sense to talk about the
δ∗-/ π-closure of a set. Formally

A∗ = {δ∗(t) | t ⊆ PN -free, ε 6∈ t}
Ap∗ = {〈δ∗π(s), δ(t)〉 | s, t ⊆ PN -free, ε 6∈ t ⊆ s 6= ∅}
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We shall often make use of the observation that t ⊆ s ⇒ δ∗(t) ⊆ δ∗(s) ⇒ δ∗(t) ⊆ δ∗π(s)
because δ∗ is ⊆-monotone and because in general p ∈ π(p).

We use the results of subsection 9.1.4 of this chapter to show that A∗ and Ap∗ are algebraic
cpos. To this end notice that A∗ and Ap∗ can be written such that

A∗ = Φ2

Ap∗ = {〈φ1(s), φ2(t)〉 | φ1(s) ∈ Φ1, φ2(t) ∈ Φ2, t ⊆ s}
where

Φ1 = {φ1(s) | s ∈ Π1} Φ2 = {φ2(t) | t ∈ Π2}
φ1 = δ∗ ◦ π φ2 = δ∗
Π1 = {s ⊆ PN -free | s 6= ∅} Π2 = {t ⊆ PN -free | ε 6∈ t}

Clearly sΠ1 = {ε} ∈ Π1 and sΠ2 = ∅ ∈ Π2 are elements such that φi(sΠi) ⊆ φi(s) for every
s ∈ Πi and i = 0, 1.
Recall that we for each pomset, p, have a associated multiplicity function mp which
for each a ∈ ∆ gives the number of elements in p that are labelled a. We saw that
p ≤ q iff ∀a ∈ ∆. mp(a) ≤ mq(a) defined a partial order on pomsets. Since we only are
dealing with finite pomsets a moments reflection shows that {p′ ∈ P | ∃q. p′ � q v p} is
finite (given a multiplicity function, m′, which only differs from 0 on finitely many a ∈ ∆,
there is only finitely many m below m′, and for each such m there is only a finite number
of pomsets p with mp = m). Obviously q ∈ φi(p) implies mq ≤ mp for i = 0, 1. Since
δ∗(p) 6= ∅ for the pomset properties we are dealing with and q ∈ δ∗(p) only differs from
p by the ordering of elements we have mq = mp here. In the case of π we have p ∈ π(p)
so we conclude that there for i = 0, 1 exists a q ∈ φi(p) such that mp ≤ mq. With the
multiplicity preoder over pomsets and the other definitions above we from the results of
the first section get:

Proposition 9.2.4 〈A∗,⊆〉 and 〈Ap∗,⊆〉 (component wise) are algebraic cpos with least
elements ∅ and 〈{ε}, ∅〉 respectively. The compact elements are those δ∗(s) ∈ A∗ and
〈δ∗π(s), δ∗(t)〉 ∈ Ap∗ where s and t are finite sets. Every nonempty D ⊆ A∗ has a lub:∨

∗D =
⋃
D ∈ A∗ and similar every nonempty D ⊆ Ap∗ has a lub

∨p
∗D = 〈⋃D1,

⋃
D2〉 ∈

Ap∗ where Di = {di | 〈d1, d2〉 ∈ D} for i = 0, 1.

The next step is to equip the algebraic cpos with operators corresponding to the different
combinators of the languages in question.

In order to be in keeping with the notation we used in the previous chapters we will deviate
from Hennessy by letting RBLrecΩ (X) denote the set of recursive expressions over RBL.
I.e., in terminology of Hennessy RBLrecΩ (X) would be RECΣ(X) where the signature Σ
is a, ;,⊕, ‖ and [%]. The set of syntactic finite expressions (FRECΣ(X)) will be denoted
RBLΩ(X). RBLrecΩ is the set of recursive processes over RBL, i.e., the closed expressions
of RBLrecΩ (X). We use similar notation for the recursive expressions over BL, e.g., BLΩ

is the set of syntactic finite processes of BLrecΩ (X). The recursion combinators will be
assumed to have lower precedence than the other combinators of the language in question.
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Definition 9.2.5 Assume d = 〈P,Q〉 and di = 〈Pi, Qi〉 for i = 0, 1 are elements of Ap∗.
Then the operators of the Mp

∗ models are defined as follows:

Ωp
∗ = 〈{ε}, ∅〉
ap∗ = 〈{ε, a}, {a}〉

d0 ;p∗ d1 = 〈P0 ∪Q0 · P1, Q0 ·Q1〉
d0 ⊕p∗ d1 = 〈P0 ∪ P1, Q0 ∪Q1〉
d0 ‖p∗ d1 = 〈δ∗(P0 × P1), δ∗(Q0 ×Q1)〉
d[%]por = 〈δorπ(P<℘(%)>), δor(Q<℘(%)>)〉

The operators of the M∗ models are derived from those of the Mp
∗ simply by projecting

the second component. I.e., if P0, P1 ∈ A∗ then P0 ‖∗ P1 equals δ∗(P0 × P1).

Proposition 9.2.6 The operators in the definition above are well-defined.

Proof We give a proof for the operators on Ap∗. That the A∗-operators are well-defined
is then easely derived.

Ωp
∗: This constant equals 〈{ε}, ∅〉 = 〈δ∗π({ε}), δ∗(∅)〉 which is a member of Ap∗ because
{ε}, ∅ ⊆ PN -free and ε 6∈ ∅ ⊆ {ε} 6= ∅.

ap∗: From a ∈ PN -free and ε 6∈ {a} 6= ∅ we see ap∗ = 〈{ε, a}, {a}〉 = 〈δ∗π({a}), δ∗({a})〉 ∈
Ap∗.

For the binary operators on Ap∗ assume d0, d1 ∈ Ap∗. Then d0 = 〈δ∗π(s0), δ∗(t0)〉 for some
s0, t0 ∈ PN -free such that ε 6∈ t0 ⊆ s0 6= ∅. Similar for d1.

;p∗: From a) of proposition 9.2.7 below and the distributivity of δ∗ over · we immediately
get: d0 ;p∗ d1 = 〈δ∗π(s0∪ t0 · s1), δ∗(t0 · t1)〉. By Grabowski p ·q is N -free when p and
q are (can also be deduced from lemma 9.2.9 and the observations on page 136). So
d0 ;p∗ d1 ∈ Ap∗ then follows from ε 6∈ t0 · t1 because ε 6∈ t0, t1

⊆ s0 ∪ t0 · s1 since t1 ⊆ s1

6= ∅ by s0 6= ∅
⊕p∗: Immediate from the distributivity of δ∗ over ∪ and proposition 9.2.7.

‖p∗: From proposition 6.4.4 and proposition 9.2.7 we directly get d0 ‖p∗ d1 = 〈δ∗π(s0 ×
s1), δ∗(t0 × t1)〉. Because the parallel composition of N -free pomsets are N -free
d0 ‖p∗ d1 ∈ Ap∗ is then easely deduced from the assumptions of s0, s1, t0 and t1.

It remains to show that the [%]p∗ operator on Apor is well-defined. Let a d ∈ Apor be given
and assume d = 〈δorπ(s), δor(t)〉 where s, t ⊆ PN -free and ε 6∈ t ⊆ s 6= ∅. Using lemma
8.2.6 for the second component and d) of proposition 9.2.7 below for the first we get
d[%]p∗ = 〈δorπ(s<℘(%)>), δor(t<℘(%)>)〉.
%(a) ∈ BL for every a ∈ ∆, so from corollary 9.2.3 (℘(%))(a) is a set of N -free nonempty
pomsets when a ∈ ∆. Hence from lemma 9.2.9 we know that s<℘(%)> and t<℘(%)> are
sets of N -free pomsets because s and t are assumed to be N -free too. ℘(%) is ε-free so we
conclude that d[%]p∗ ∈ Ap∗. 2

The following proposition is useful not only for the proof of the proposition above but
also for other to come.
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Proposition 9.2.7 Let % be an ε-free P(P)-assignment and suppose P,Q and R are sets
of pomsets such that P ⊇ R. Then

a) δ∗π(P ) ∪ δ∗(R) · δ∗π(Q) = δ∗π(P ∪R ·Q)

b) δ∗π(P ) ∪ δ∗π(Q) = δ∗π(P ∪Q)

c) δ∗(δ∗π(P )× δ∗π(Q)) = δ∗π(P ×Q)

d) δorπ((δorπ(P ))<%>) = δorπ(P<%>)

Proof a) At first we deduce:

π(p · q) = π(p) ∪ {p} · π(q)(9.3)

from proposition 6.2.6 and the observations direct before that proposition. We then get:
δ∗π(P ) ∪ δ∗(R) · δ∗π(Q)

= δ∗(π(P ) ∪ R · π(Q)) δ∗ distributes over · and ∪
= δ∗(π(P ) ∪ π(R) ∪R · π(Q)) R ⊆ P and π is ⊆-monotone
= δ∗(π(P ) ∪ π(R ·Q)) by (9.3)
= δ∗π(P ∪ R ·Q) π distributes over ∪
b) Follows from the distributivity of δ∗ and π over ∪.

c) δ∗(δ∗π(P )× δ∗π(Q))
= δ∗(π(P )× π(Q)) proposition 6.4.4
= δ∗π(P ×Q) π distributes over ×
d)δorπ((δorπ(P ))<%>)
= πδor((δorπ(P ))<%>) δor and π commutes
= πδor((π(P ))<%>) lemma 8.2.6 (% is ε-free)
= δorπ((π(P ))<%>) δor and π commutes
= δorπ(P<%>) lemma 9.2.8 below

2

Lemma 9.2.8 Let P be a set of pomset and % a P(P)-refinement. Then

π((π(P ))<%>) = π(P<%>)

Proof π is a natural extension to sets of pomsets so it will do to show:

π((π(p))<%>) = π(p<%>)

⊇: Immediate from p ∈ π(p).

⊆: Let a q ∈ π((π(p))<%>) be given. Then q v r for some r ∈ s<%> where s v p.
By definition of <%>, r ∈ s<%> implies there is a %-consistent p.ref. πs for s with r =
[s<πs>]. Since s v p we can by the alternative characterization of v find a representative
p′ of p such that s = p′|Xs and Xs is ≤p′-downwards closed. Xs ⊆ Xp′ so we can extend
πs to a %-consistent p.ref. πp′ for p′. Because s = p′|Xs and πp′ equals πs on Xs we see
s<πs> = p′<πp′>|Xs<πs> .
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We now show that Xs<πs> is ≤p′<πp′>-downwards closed. Suppose 〈x, x′〉 ≤p′<πp′> 〈y, y′〉
and 〈y, y′〉 ∈ Xs<πs>. By construction of p′<πp′> the former implies x ≤p′ y. The latter
similarly implies y ∈ Xs. Since Xs is ≤p′-downwards closed then x ∈ Xs. Now x′ ∈ Xπp′(x)
so because πp′ equals πs on Xs we also have x′ ∈ Xπs(x). Hence 〈x, x′〉 ∈ Xs<πs>.

Using the alternative characterization of v again we conclude [s<πs>] v [p′<πp′>]. From
the transitivity of v, q v r = [s<πs>] and [p′<πp′>] ∈ p′<%> = p<%> we then get
q ∈ π(p<%>) as desired. 2

Lemma 9.2.9 Suppose P is a set of N -free pomsets and % is a N -free P(P)-refinement.
Then P<%> is a set of N -free pomsets too.

Proof The lemma follows from p<%> being a set of N -free pomsets when p is N -free.
To see this it is clearly enough to show that p<πp> is N -free for any %-consistent p.ref.
πp for p (also N -free). Of course πp is N -free when % is. The proof that p<πp> is N -free
is by contradiction. Assume p<πp> = 〈X,≤, `〉 is not N -free. By construction of p<πp>
this implies the existence of 〈x, x′〉, 〈y, y′〉, 〈z, z′〉, 〈v, v′〉 ∈ X such that

〈x, x′〉 < 〈z, z′〉
co co
〈y, y′〉 < 〈v, v′〉

and 〈x, x′〉 < 〈v, v′〉(9.4)

holds, but 〈y, y′〉 6< 〈z, z′〉.
We consider the different cases:

(x = v, y 6= v) or (x 6= v, y = v): If x 6cop y then by the construction of p<πp> this implies
〈x, x′〉 6co 〈y, y′〉—a contradiction to the assumption. To see x 6cop y assume w.l.o.g.
(x = v, y 6= v) holds. From y 6= v and the construction of p<πp> we deduce that
〈y, y′〉 < 〈v, v′〉 only can be due to y <p v. v = x then gives y <p x and so x 6cop y.

(x = v, x 6= z) or (x 6= v, x = z): Similar as above we find z 6co v which leads to a contra-
diction in the same way.

x 6= v, y 6= v, x 6= z: From (9.4) and the construction of p<πp> we derive

x <p z
cop cop
y <p v

and x <p v

Hence y <p z follows from the N -freeness of p and then 〈y, y′〉 < 〈z, z′〉—a contra-
diction to 〈y, y′〉 6< 〈z, z′〉

x = v, y = v, x = z: I.e., x = v = y = z so this time (9.4) and the construction of p<πp>
gives:

x′ <πp(x) z
′

coπp(x) coπp(x)
y′ <πp(x) v

′
and x′ <πp(x) v

′

By the N -freeness of πp then also y′ <πp(x) z
′. Since x = y = z the construction of

p<πp> yields 〈y, y′〉 < 〈z, z′〉—again a contradiction.
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A careful examination of the cases above shows that they actually exhaust all possible
combinations of x = / 6= v, y = / 6= v and x = / 6= z. Each time we reached a
contradiction so the assumption, p<πp> is not N -free, was wrong. 2

Proposition 9.2.10 The operators of Ap∗ and A∗ are continuous.

Proof The continuity of the A∗-operators is easely derived from the continuity of the Ap∗-
operators which we now deal with. Constants are continuous. For the binary operators
it is enough to show that they are left and right continuous. To this end let D′ be a
nonempty subset of Ap∗ and suppose 〈P,Q〉 is a member of Ap∗.

;p∗: Right continuous: Let D = 〈P,Q〉 ;p∗ D′ = {〈P ∪Q · P ′, Q · Q′〉 | 〈P ′, Q′〉 ∈ D}. Then
D1 = {R1 | 〈R1, R2〉 ∈ D} = {P ∪ Q · P ′ | 〈P ′, Q′〉 ∈ D′} = {P ∪ Q · P ′

1 | P ′
1 ∈ D′

1} =
P ∪Q ·D′

1 where the last equation follows from D′
1 6= ∅ which in turn is a consequence of

D′ 6= ∅. Also D2 = {Q · Q′ | 〈P ′, Q′〉 ∈ D′} = Q · D′
2. We then have:

∨p
∗(〈P,Q〉 ;p∗ D′) =

〈⋃D1,
⋃
D2〉 = 〈⋃(P ∪Q ·D′

1),
⋃

(Q ·D′
2)〉 = 〈P ∪Q · (⋃D′

1), Q · (
⋃
D′

2)〉 = 〈P,Q〉 ;p∗
∨p

∗D
′.

Left continuous: Here we have:
∨p

∗(D
′ ;p∗〈P,Q〉) = 〈⋃{P ′∪Q′ ·P | 〈P ′, Q′〉 ∈ D′},⋃{Q′ ·Q |

〈P ′, Q′〉 ∈ D′}〉 = 〈(⋃〈P ′,Q′〉∈D′ P ′) ∪ (
⋃

〈P ′,Q′〉∈D′ Q′) · P,⋃(D′
2 · Q)〉 = 〈(⋃D′

1) ∪ (
⋃
D′

2) ·
P, (

⋃
D′

2) ·Q〉 = 〈⋃D′
1,

⋃
D′

2〉 ;p∗ 〈P,Q〉 = (
∨p

∗D
′) ;p∗ 〈P,Q〉.

⊕p∗: Obvious left and right continuous since it just is the union of the respective compo-
nents.

‖p∗: Right continuous: With D = 〈P,Q〉 ‖p∗ D′ we have D1 = δ∗(P × D′
1) and D2 =

δ∗(Q×D′
2). Because δ∗ is the natural extension to sets we have

⋃
D1 = δ∗(

⋃
(P ×D′

1)) =
δ∗(P×⋃

D′
1) and similar for

⋃
D2. It follows that

∨p
∗(〈P,Q〉‖p∗D′) = 〈δ∗(P×⋃

D′
1), δ∗(Q×⋃

D′
2)〉 = 〈P,Q〉 ‖p∗

∨p
∗D

′.

Left continuous: Symmetric.

Only the [%]por-operator is missing.
∨p

∗(D
′[%]por) =

∨p
or{〈δorπ(P ′<℘(%)>), δor(Q

′<℘(%)>)〉 |
〈P ′, Q′〉 ∈ D′} = 〈⋃ δorπ(D′

1<℘(%)>),
⋃
δor(D

′
2<℘(%)>)〉. Since both δor and π as well as

<℘(%)> are natural extensions to sets we immediately get:
∨p

∗(D
′[%]por) =

〈δorπ((
⋃
D′

1)<℘(%)>), δor((
⋃
D′

2)<℘(%)>)〉 = 〈⋃D′
1,

⋃
D′

2〉[%]por = (
∨p
orD

′)[%]por 2

Now where we have showed that A∗ and Ap∗ are algebraic cpos and that the different
operators are continuous on the respective domains, we are in a position to apply the
results presented in the previous section.

So for BLrecΩ (X) we get the denotational maps:

AG[[ ]] : BLrecΩ (X) −→ [ENVAG
−→ AG]

ApG[[ ]] : BLrecΩ (X) −→ [ENVAp
G
−→ ApG]

and for RBLrecΩ (X):

Aor[[ ]] : RBLrecΩ (X) −→ [ENVAor −→ Aor]

Apor[[ ]] : RBLrecΩ (X) −→ [ENVApor −→ Apor]

Ap∗[[ ]]1 and Ap∗[[ ]]2 will be used to refer to the first and second component of Ap∗[[ ]] respec-
tively. Notice that if E is a closed expression then A∗[[E]] = Ap∗[[E]]2 ⊆ Ap∗[[E]]1.
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9.2.2 The Syntactic Finite Sublanguages

In this subsection we shall lift some of the results we obtained in the preceding chapters
for BL and RBL to the corresponding syntactic finite expressions of BLrecΩ and RBLrecΩ

respectively, namely BLΩ and RBLΩ.

When we dealt with BL and RBL the canonical map, ℘, associating sets of pomsets to
BL-expressions, served as basis for the denotational maps in a natural way. It appears
to be difficult to extend this idea (and ℘) to say BLrecΩ , but an extension to BLΩ seems
manageable. How such an extension should be depends on what we are aiming at. If we
want to use ℘ as basis for maps concerned with different kinds of maximal pomsets it
might be natural to let ℘(Ω) be the empty set, ∅, because Ω represents the process we
know nothing about. If on the other hand we also want information about possible prefixes
it might be just as natural to associate ε with Ω because ε is prefix of any pomset. Our
Mp

∗ -models consists of pairs of pomsets with the “old” denotations from the M∗-models
as second component. We therefore arrive at the following:

Definition 9.2.11 The map ℘p : BLΩ −→ P(P)× P(P) is defined inductively:

℘p(Ω) = 〈{ε}, ∅〉
℘p(a) = 〈{ε, a}, {a}〉
℘p(E0 ; E1) = 〈℘p1(E0) ∪ ℘p2(E0) · ℘p1(E1), ℘

p
2(E0) · ℘p2(E1)〉

℘p(E0 ⊕ E1) = 〈℘p1(E0) ∪ ℘p1(E1), ℘
p
2(E0) ∪ ℘p2(E1)〉

℘p(E0 ‖ E1) = 〈℘p1(E0)× ℘p1(E1), ℘
p
2(E0)× ℘p2(E1)〉

where ℘p1(E) = P and ℘p2(E) = Q if ℘p(E) = 〈P,Q〉, i.e., ℘p1 and ℘p2 are the projections
of ℘p to the first and second component respectively.
The ordinary canonical map ℘ is extended to BLΩ by ℘ = ℘p2.

Observe that ∀E ∈ BLΩ. ℘
p
2(E) ⊆ ℘p1(E).

Example: From ℘p(Ω ; d) = 〈{ε}, ∅〉 follows

℘p((a ; b) ; (Ω ; d⊕ c)) = 〈{ε, a, a - b, a - b - c}, {a - b - c}〉

and
℘p((a ; (Ω ; d)⊕ b) ; c) = 〈{ε, a, b, b - c}, {b - c}〉

The following proposition justifies to think of ℘p1 as the canonical association of pomset
prefixes of an expression.

Proposition 9.2.12

a) If E ∈ BL then ℘p1(E) = π(℘(E)).

b) If E ∈ BLΩ then ℘p1(E) = π(℘p1(E)).
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Proof By structural induction on E using (9.3) and ℘p2 = ℘ in the case of E = E0 ; E1.
2

Clearly the definition of ℘p is designed with the denotations of the Mp
∗ -models in mind.

An easy structural induction in fact shows:

Proposition 9.2.13 Given an E ∈ BLΩ then ℘p(E) = 〈P,Q〉 implies ε 6∈ Q ⊆ P 6= ∅
and P,Q are finite subsets of PN -free.

Having generalized ℘ to BLΩ we seek results like theorem 7.3.7 and theorem 8.2.5 for M∗
and Mp

∗ . The situation is diametrically opposite here since compositional definitions of
the denotational maps are given and we want an alternative definitions using ℘ and ℘p.

Proposition 9.2.14 For any E ∈ BLΩ:

a) A∗[[E]] = δ∗(℘(E))

b) Ap∗[[E]]i = δ∗(℘
p
i (E)) for i = 1, 2

Proof a) By induction on the structure of E. In the case E = Ω we have A∗[[E]] = ∅ =
δ∗(∅) = δ∗(℘(E)). The remaining cases goes similar as in the proof of theorem 7.3.7.

b) Since ℘ = ℘p2 and A∗[[E]] equals Ap∗[[E]]2, a) also reads

Ap∗[[E]]2 = δ∗(℘
p
2(E))(9.5)

Then b) follows from
Ap∗[[E]]1 = δ∗(℘

p
1(E))

which is proven by induction on the structure of E.

E = Ω: Ap∗[[E]] = {ε} = δ∗({ε}) = δ∗(℘
p
1(E)).

E = a: Ap∗[[E]] = {ε, a} = δ∗({ε, a}) = δ∗(℘
p
1(E)).

E = E0 ; E1: Here we have:
Ap∗[[E]]1 = Ap∗[[E0]]1 ∪ Ap∗[[E0]]2 · Ap∗[[E1]]1 definition of Ap∗[[ ]]

= δ∗(℘
p
1(E0)) ∪ δ∗(℘p2(E0)) · δ∗(℘p1(E1)) induction and (9.5)

= δ∗(℘
p
1(E0) ∪ ℘p2(E0) · ℘p1(E1)) δor distributes over ∪ and ·

= δ∗(℘
p
1(E0 ; E1)) = δ∗(℘

p
1(E)) definition of ℘p

E = E0 ⊕E1 and E = E0 ‖ E1: Similar, but without use of (9.5).

2

From a) of the proposition, definition 7.3.6 and definition 8.2.4 we as expected see [[E]]∗ =
A∗[[E]] when E ∈ BL.

A simple consequence of this proposition and proposition 9.2.12 is:

Corollary 9.2.15 Ap∗[[E]] = 〈δ∗π(℘(E)), δ∗(℘(E))〉 for every E ∈ BL
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With the results obtained so far we are now able to show that the different models are
surjective.

Proposition 9.2.16 Every compact element of Ap∗ and A∗ is the denotation of a syntactic
finite expression.

Proof The result for A∗ is easely derived from the corresponding proof for Ap∗. To see
this we for a given compact element a ∈ Ap∗ just find an expression E ∈ BLΩ ⊆ RBLΩ

such that A∗[[E]] = a. So it will actually not be necessary to involve the refinement
combinators in order to denote the compact elements of Apor. Recall at first that a is an
element of Ap∗ in the Mp

∗ model when

a = 〈δ∗π(s), δ∗(t)〉(9.6)

where s and t are two sets of N -free pomsets such that ε 6∈ t ⊆ s 6= ∅. Also the the
compact elements were characterized to be those where s and t are finite sets.

If u is an arbitrary finite and nonempty set of N -free pomset such that ε 6∈ u we from the
last corollary and corollary 9.2.3 deduce there exists an Eu ∈ BL with

Ap∗[[Eu]] = 〈δ∗π(u), δ∗(u)〉(9.7)

Now let a compact element a like (9.6) be given. We deal with different cases of s and
t:

ε 6∈ s and t = ∅: Then we can find an Es ∈ BL fulfilling (9.7). Hence E = Es ; Ω ∈ BLΩ

and we get:
Ap∗[[E]] = 〈δ∗π(s) ∪ δ∗(s) · {ε}, δ∗(s) · ∅〉 definition of Ap∗[[ ]]

= 〈δ∗(π(s) ∪ s), ∅〉
= 〈δ∗π(s), δ∗(∅)〉 = 〈δ∗π(s), δ∗(t)〉 s ⊆ π∗(s)

ε 6∈ s and t 6= ∅: Because ε 6∈ t and s 6= ∅ we can then find Es, Et ∈ BL fulfilling (9.7).
Therefore E = (Es;Ω)⊕Et ∈ BLΩ and A∗[[E]] = Ap∗[[Es;Ω]]⊕p∗Ap∗[[Et]] = 〈δ∗π(s), ∅〉⊕p∗
〈δ∗π(t), δ∗(t)〉 = 〈δ∗π(s)∪δ∗π(t), ∅∪δ∗(t)〉 = 〈δ∗π(s∪t), δ∗(t)〉 = 〈δ∗π(s), δ∗(t)〉 where
the last equation follows from t ⊆ s.

s = {ε}: Because t ⊆ s and ε 6∈ t we must have t = ∅ in this situation and E = Ω will do.

ε ∈ s and s \ {ε} 6= ∅: Then no matter whether t = ∅ or t 6= ∅ we can as above find a
E′ ∈ BLΩ such that Ap∗[[E

′]] = 〈δ∗π(s \ {ε}), δ∗(t)〉. Letting E = Ω ⊕ E ′ we get
Ap∗[[E]] = 〈δ∗π({ε} ∪ (s \ {ε})), δ∗(∅ ∪ t)〉 = 〈δ∗π(s), δ∗(t)〉.

Inspecting how s and t can be for compact elements like (9.6) of Ap∗ we see that all cases
are covered. 2

As for RBL and BL we are able to establish a connection between RBLΩ and BLΩ via
the map σ which we together with {%} extend to RBLΩ as follows:

Ωσ = Ω Ω{%} = Ω
aσ = a a{%} = %(a)

(E0 ; E1)σ = E0σ ; E1σ (E0 ; E1){%} = E0{%} ; E1{%}
(E0 ⊕ E1)σ = E0σ ⊕E1σ (E0 ⊕E1){%} = E0{%} ⊕E1{%}
(E0 ‖ E1)σ = E0σ ‖ E1σ (E0 ‖ E1){%} = E0{%} ‖ E1{%}

E[%]σ = (Eσ){%}
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Proposition 9.2.17 For every E ∈ RBLΩ we have:

a) Aor[[E]] = Aor[[Eσ]]

b) Apor[[E]] = Apor[[Eσ]]

Proof a) Since Apor[[ ]]2 equals Aor[[ ]] this is just a simple consequence of b).

b) The proof is by induction on the structure of E. The basis is immediate because
Ωσ = Ω and aσ = a. In the inductive step there are four cases:

E = E0 ; E1: Then:
Apor[[E]] = Apor[[E0]] ;por A

p
or[[E1]] definition of Apor[[ ]]

= Apor[[E0σ]] ;por A
p
or[[E1σ]] induction

= Apor[[E0σ ; E1σ]] definition of Apor[[ ]]
= Apor[[(E0 ; E1)σ]] = Apor[[Eσ]] definition of σ

E = E0 ⊕E1 and E = E0 ‖ E1: Similar

E = F [%]: In this case we have:
Apor[[E]] = (Apor[[F ]])[%]por definition of Apor[[ ]]

= (Apor[[Fσ]])[%]por induction
= (Apor[[(Fσ){%}]]) lemma 9.2.18 and Fσ ∈ BLΩ

= (Apor[[(F [%]σ)]]) = Apor[[E]]

2

Lemma 9.2.18 If E ∈ BLΩ then

a) Aor[[E{%}]] = (Aor[[E]])[%]or

b) Apor[[E{%}]] = (Apor[[E]])[%]por

Proof a) The proof is like lemma 8.2.7 for RBL but with the additional case Ω (see also
b)).

b) Since Aor[[E]] equals Apor[[E]]2 we from a) and the definition of [%]por deduce

Apor[[E{%}]]2 = δor(A
p
or[[E]]2<℘(%)>)(9.8)

With this we then by induction on the structure of E ∈ BLΩ prove

Apor[[E{%}]]1 = δorπ(Apor[[E]]1<℘(%)>)

from which b) then follows using (9.8).

E = Ω: Apor[[Ω{%}]]1 = Apor[[Ω]]1 = {ε} = δorπ({ε}<℘(%)>) = δorπ(Apor[[Ω]]1<℘(%)>).

E = a: Then:
Apor[[a{%}]]1 = Apor[[%(a)]]1 definition of {%}

= δor(℘
p
1(%(a))) %(a) ∈ BL and proposition 9.2.14

= δorπ(℘(%(a))) ℘p1 = π ◦ ℘—proposition 9.2.12
= δorπ((℘(%))(a)) definition of ℘(%)
= δorπ({ε, a}<℘(%)>) proposition 6.3.3
= δorπ(Apor[[a]]1<℘(%)>)
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E = E0 ; E1: We get:
Apor[[E{%}]]1 = Apor[[E0{%} ; E1{%}]]1 definition of {%}

= Apor[[E0{%}]]1 ∪ Apor[[E0{%}]]2 ·Apor[[E1{%}]]1 definition of Apor[[ ]]
= δorπ(Apor[[E0]]1<℘(%)>)
∪δor(Apor[[E0]]2<℘(%)>) · δorπ(Apor[[E1]]1<℘(%)>) induction and (9.8)

= δorπ(Apor[[E0]]1<℘(%)> proposition 9.2.7 and
∪Apor[[E0]]2<℘(%)> · Apor[[E1]]1<℘(%)>) Apor[[E0]]2 ⊆ Apor[[E0]]1

= δorπ((Apor[[E0]]1 ∪Apor[[E0]]2 ·Apor[[E1]]1)<℘(%)>) proposition 6.3.3
= δorπ(Apor[[E0 ; E1]]1) definition of Apor[[ ]]

E = E0 ⊕E1 and E = E0 ‖ E1: Similar.

2

Proposition 9.2.19 The denotation of a syntactic finite expression is a compact element.

Proof The proof for the Mp
∗ models is exemplary for the corresponding for the M∗

models. Suppose E ∈ BLΩ. Then

Ap∗[[E]] = 〈δ∗(℘P1 (E)), δ∗(℘(p2(E))〉 proposition 9.2.14
= 〈δ∗π(℘P1 (E)), δ∗(℘(p2(E))〉 proposition 9.2.12

By proposition 9.2.13 it then follows that Ap∗[[E]] ∈ Fin(Ap∗). Now if E ∈ RBLΩ, that is
∗ = or, then by proposition 9.2.17 Ap∗[[E]] = Ap∗[[Eσ]] and because Eσ ∈ BLΩ it follows
that Apor[[E]] denotes a compact element in Apor. 2

From this proposition and proposition 9.2.16 we immediately have:

Corollary 9.2.20 The different M∗ and Mp
∗ models are finitary.

We end this section with a proposition corresponding to proposition 8.3.1 which gives a
connection between the denotations of the Mp

or-model and the Mp
w-model.

Proposition 9.2.21 Suppose E ∈ RBLΩ. Then

a) Aw[[Eσ]] = δw(Aor[[E]])

b) Apw[[Eσ]]i = δw(Apor[[E]]i) for i = 1, 2

Proof As in the preceding proofs a) is just the special case of b) with i = 2.

b) The case i = 2 follows exactly as the case i = 1:
Apw[[Eσ]]1 = δw(℘p1(Eσ)) proposition 9.2.14

= δwδor(℘
p
1(Eσ)) δw ◦ δor = δw (from Pw ⇒ Por)

= δw(Apor[[Eσ]]1) proposition 9.2.14
= δw(Apor[[E]]1) proposition 9.2.17

2
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9.3 Operational Set-up

9.3.1 The Recursive Languages

The configuration languages are as earlier obtained by adding †. With refinement the set
of recursive configuration expressions, RCLrecΩ (X), is then in the usual way defined as the
least set C which satisfies:

† ∈ C
RBLrecΩ (X) ⊆ C

E0 ; E1 ∈ C if E0 ∈ C and E1 ∈ RBLrecΩ (X)
E0 ‖ E1 ∈ C if E0, E1 ∈ C

RCLrecΩ is the set of recursive process configurations, i.e., the closed configuration ex-
pressions of RCLrecΩ (X). RCLΩ(X), RCLΩ, CLrecΩ (X) etc. can then be considered as
RCLrecΩ (X) restricted to the appropriate sublanguage.

The different extended labelled transition systems are all changed in the same way to
cope with the new situation and further the change only affects the definition of internal
steps. The following rules are added:

Ω >−→ Ω
Ω[%] >−→ Ω
rec x. E >−→ E[rec x. E/x]

The intuition behind the first and last rule is explained by Hennessy [Hen88a, pages 202–
203] and the rule in the middle is there mainly for proof technical reasons. It can easely
be shown to have no operational effect. It is worth to notice that (modulo this rule) no
extra rules are needed for refinement to cope with recursion. From the next example one
can see how it works.

Example: Suppose E = a⊕ a ; x and % is a BL-refinement with %(a) = b and %(b) = a.
Then the following scenario shows a possible evolvement of F = (rec x. E)[%]:

F >−→ (a⊕ a ; rec x. E)[%] >−→ a[%]
>−→ (a ; rec x. E)[%] >−→ b
>−→ a[%] ; F
>−→ b ; F

b
=⇒ F · · ·

With a slight change F = rec x. (E[%]) we instead have:

F >−→∗ (a ; F )[%]
>−→∗ (b ; F [%])

b
=⇒ F [%]
>−→∗ (b ; F [%])[%]
>−→∗ (a ; F [%][%])

a
=⇒ (F [%])[%] · · ·
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The definition of <∼G remains the same, but of course it is now defined over RBLrecΩ

and BLrecΩ respectively. The new operational preorder, <∼G, from the introduction to the
chapter can be formulated:

Definition 9.3.1 <∼G ⊆ RBLrecΩ × RBLrecΩ is defined

E0
<∼G E1 iff ∀s ∈ G∗. E0

s⇒ implies E1
s⇒

Restricting <∼G appropriately to the different sublanguages gives the remaining preorders.
2

Up till now we have got along with mainly structural induction. When it comes to
recursion it will be convenient with the notion of the size of a step. For an internal step
E >−→ E ′ the size, m, will be indicated by a relation >−→m, i.e., E >−→m E ′. >−→0

is the empty relation. Similar for external steps. m in E >−→m E ′ can be thought of as
stating that there is a proof of E >−→ E ′ from the rules of >−→ with no more than m
stages. E.g., if E0 >−→m E ′

0 then E0 ‖E1 >−→m+1 E
′
0 ‖E ′

1. See [Win85] for more details.

9.3.2 The Syntactic Finite Sublanguages

Not all notions can be carried over directly to the extended languages with recursion. For
instance it is difficult to make sense in talking about the behaviours of a process of BLrecΩ /
RBLrecΩ since a process now may continue infinitely. At least it is hard to see how the
map Beh should be extended to say BLrecΩ and we will not find any use for it. It will later
turn out that the different operational preorders are determinated by their restriction to
the sublanguages of syntactic finite expression, i.e., BLΩ and RBLΩ. We will therefore
now look at how the previous obtained results for BL and RBL can be lifted to BLΩ and
RBLΩ. If a proposition need no reformulation (except e.g., BL should be replaced with
BLΩ) will in the sequel simply be referred by writing it as: propositionΩ.

Both proposition 7.2.3 and proposition 8.1.1 extends directly to propositionΩ 7.2.3 and
propositionΩ 8.1.1.

As we also saw for the denotational set-up, the syntactic map, σ, removing refinements will
be useful to establish connections from RBLΩ to BLΩ or when it comes to configurations,
from RCLΩ to CLΩ. We extend σ from RCL to RCLΩ in the same way as σ was extended
from BL to RBLΩ namely by letting Ωσ = Ω and similar for {%} we let Ω{%} = Ω. It
should be clear that the maps σ : RCLΩ −→ CLΩ and {%} : CLΩ −→ CLΩ when
restricted to RCL and BL respectively gives the old maps.

The first important result we shall extend to RBLΩ is proposition 8.1.2:

∀E ∈ RBLΩ. E
s⇒ † iff Eσ

s⇒ †

According to our convention we shall refer to it as propositionΩ 8.1.2. Of course some
care has to be taken because we now have to deal with one more extra case in the proofs:
Ω, but because of the additional rule Ω[%] >−→ Ω, this only give rise to minor changes.
We briefly comment on selected parts of the results used to prove propositionΩ 8.1.2. In
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lemmaΩ 8.1.4 the case E = Ω is trivially true and the same case is also easy in lemmaΩ

8.1.3. Here however there is also the case E = F [%] where F = Ω. It is exactly here the
rule Ω[%] >−→ Ω is considered: Since F [%]σ = Ωσ{%} = Ω{%} = Ω >−→ Ω this goes
through smoothly and in (8.3)Ω one just use Ω{%} = Ω. In lemmaΩ 8.1.7 E = Ω is similar
to E = a and in the following lemma it is even simpler.

If we go back and look at the proof of propositionΩ 8.1.2 we see that the proposition just
is a special case of a more general result which also implies:

Proposition 9.3.2 For every E ∈ RBLΩ and s ∈ G∗:

E
s⇒ iff Eσ

s⇒

The only remaining purely operational results from the preceding chapters are lemma 7.4.5
and lemma 7.4.6 which carry over totally unchanged, because Ω is not directly involved
in the rules for expressions of the form E0 ; E1 and E0 ‖ E1.

9.4 Full Abstractness

In this section we connect the denotational semantics with the operational through full
abstractness results which are obtained by lifting via algebraicity of the involved preorders
the corresponding results for the (syntactic) finite sublanguages.

9.4.1 The Recursive Languages

As mentioned in the beginning of the chapter we are after the largest precongruence
contained in the relevant preorder. There we were just concerned with the ordinary
combinators of the language in question, but of course we want the obtained preorder to
be a precongruence w.r.t. to the recursive combinators too. If this shall make sense the
operational preorders have to be extended to open expressions. This is usually done in
what might be called the substitutive way:

E0
<∼G E1 iff for every closed syntactic substitution ρ, E0ρ <∼G E1ρ

E0
<∼G E1 iff for every closed syntactic substitution ρ, E0ρ <∼G E1ρ

The largest precongruence over BLrecΩ (X) contained in <∼G will as usual be denoted <∼
c
G.

Similar for the other preorders. We can now formulate:

Theorem 9.4.1 The following denotations are fully abstract:

a) AG[[ ]] on BLrecΩ (X) w.r.t. <∼G

b) Aor[[ ]] on RBLrecΩ (X) w.r.t. <∼
c
w

c) ApG[[ ]] on BLrecΩ (X) w.r.t. <∼
c
G

d) Apor[[ ]] on RBLrecΩ (X) w.r.t. <∼
c
w
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Proof oThe denotational preorders ≤ ∗ and ≤ p
∗ are qua induced by the denotational

maps, precongruences w.r.t. all the combinators—the recursion combinators inclusive. By
proposition 9.1.12 it is then enough to show the theorem to hold where the operational
precongruences now are understood to be the largest w.r.t. the ordinary combinators.

By corollary 9.1.8 the associated (denotational) induced preorders are then substitutive
as well as algebraic. The different operational preorders are by definition substitutive
and by proposition 9.1.15 then so are the associated precongruences. Hence if we can
manage to show that the involved operational precongruences are algebraic and agrees
with the denotational preorders on the syntactic finite sublanguages (closed expressions)
the theorem then follows.

From theorem 9.4.18 we know that <∼G and <∼G are algebraic over RBLrecΩ and therefore
also over BLrecΩ . Since theorem 9.4.19 gives the corresponding results full abstractness for
the syntactic finite sublanguages it only remains to show the operational precongruences
(w.r.t. the ordinary combinators) are algebraic:

a) <∼G is algebraic on BLrecΩ and agrees on the finite expressions, BLΩ, with ≤G so <∼G
is also a precongruence w.r.t. the ordinary combinators.

c) <∼G is algebraic on BLrecΩ and by theorem 9.4.22 BLΩ is {E ′ ∈ BLΩ | L(E ′) ⊆ A}-
expressive w.r.t. <∼G for every finite subset A of ∆. For every E ∈ BLrecΩ , L(E) is
finite and if E ′ ∈ Fin(E) then L(E ′) ⊆ L(E). Hence BLΩ is Fin(E)-expressive for
all E ∈ BLrecΩ and from theorem 9.1.14 it then follows that <∼

c
G is algebraic over

BLrecΩ and this case is done.

b) and d) Both <∼w and <∼w are algebraic and by theorem 9.4.22 RBLΩ is expressive
w.r.t. both preorders. Theorem 9.1.14 then gives us that <∼

c
w and <∼

c
w are algebraic

over RBLrecΩ .

2

In the above proof we have just seen that <∼G and <∼G as well as <∼
c
w and <∼

c
w are algebraic.

With arguments similar to those in the beginning of the proof we then from corollary
9.4.21 deduce:

Corollary 9.4.2 For E0, E1 ∈ RBLrecΩ (X) we have

(E0
<∼
c
w E1)⇒ (E0

<∼G E1)⇒ (E0
<∼w E1)

and
(E0

<∼
c
w E1)⇒ (E0

<∼G E1)⇒ (E0
<∼w E1)

Using the same considerations as in section 8.4 also:

Corollary 9.4.3 For all E0, E1 ∈ RBLrecΩ (X):

E0
<∼
c
G E1 iff E0

<∼
c
w E1

E0
<∼>∼
c
G E1 iff Aor[[E0]] = Aor[[E1]]

E0
<∼
c
G E1 iff E0

<∼
c
w E1

E0
<∼=∼
c
G E1 iff Apor[[E0]] = Apor[[E1]]
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Since Aor[[E]] = Apor[[E]]2 we from this corollary and the expressions of (9.1) in the intro-
duction to the chapter get:

Corollary 9.4.4 For all E0, E1 ∈ RBLrecΩ (X):

E0
<∼
c
G E1 ⇒ E0

<∼
c
G E1

and in general the implication does not hold in the other direction.

We shall now prove all the propositions we used to get the different full abstractness
results.

In connection with the denotational set-up for recursion we have already meat the syn-
tactic preoder �. There it was used a relation telling what processes, E, that might be
thought of as approximations to a process, F , possibly with recursion constructors, i.e.,
E � F . We saw that the denotation of F was the limit of all its syntactic finite approxi-
mations. When it comes to the operational set-up here, � will play a similar rôle. Recall
that � was defined to be the least relation over RBLrecΩ (X) satisfying:

E � E Ω � E E[rec x. E/x] � E

E � F, F � G

E � G

E0 � F0, E1 � F1

E0 ; E1 � F0 ; F1

E0 ⊕E1 � F0 ⊕ F1

E0 ‖ E1 � F0 ‖ F1

E � F

E[%] � F [%]

� is extended to RCLrecΩ (X) simply by letting � be the least relation over RCLrecΩ (X)
which satisfies the rules above. Notice that in this way we may only have E � F [%] if E
and F comes from RBLrecΩ (X). It is also important to notice that † � E implies E = †
and that � contains the old precongruence over RBLrecΩ (X).

Having extended � to RCLrecΩ (X) we at first show that if E is an approximation of F
then F can do all the sequences E can. A stronger formulation of this is

Lemma 9.4.5 Suppose E,E ′ ∈ RCLrecΩ . Then

E � E ′ s⇒ F ′ implies ∃F. E s⇒ F � F ′

Proof As usual by induction on the size of
s⇒ using the analogous lemma 9.4.9 for single

steps. 2

Before proving lemma 9.4.9 consider the situation where E � E ′ >−→ F ′. We cannot
expect that E immediately can do an internal step and evolve into F with F � F ′. This
is because E ′ � E can imply that some of the recursive subexpressions of E have been
“unwound” by � in order to obtain an expression equal to E ′ (up to Ω at some places in
E′). By the recursion rule for >−→ it is possible to do one unwinding, so given E ′ � E we
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would ideally like to unwind E by internal steps to a E ′′ which equals E ′ up to Ω. Then
we could be sure that whatever internal (or external for that matter) step E ′ could do,
E′′ would be able to do a similar. There is however the snag about it that the definition
of >−→ does not open up for unwinding in the right hand argument of the ;-combinator
and neither in the arguments of the ⊕-combinator. The situation is closely related with
the one in chapter 8 where we wished to “perform” the substitutions of the refinement
combinator of an expression. Thought by the experience there we define a subpreorder,
�u, of � as the least relation over RCLrecΩ (X) which can be inferred from the rules:

E �u E E �u F, F �u G
E �u G

Ω �u E

E0 �u F0, E1 � F1

E0 ; E1 �u F0 ; F1

E0 � F0, E1 � F1

E0 ⊕ E1 �u F0 ⊕ F1

E0 �u F0, E1 �u F1

E0 ‖ E1 �u F0 ‖ F1

E �u F
E[%] �u F [%]

Example: (rec y. E) ; (a ‖ rec x. (a ‖ x)) �u (rec y. E) ; rec x. a ‖ x but
(a ‖ rec x. (a ‖ x)) ; rec y. E 6�u (rec x. a ‖ x) ; rec y. E

This definition of �u deserves several remarks:

• The requirement that �u shall be over RCLrecΩ (X) has the implication that an
inference rule only may be used when for the consequent, E �u F , it is ensured that
E, F ∈ RCLrecΩ (X)

• �u ⊆ �
• The preorder � is used in the premisses of the ;- and ⊕-inference rule just in order

to capture the unwindings which cannot be done by internal steps.

• There is no rule for rec x. . This reflects that the expressions are equal up to Ω
(except of course in connection with ; and ⊕)

By the last remark the following useful lemma is reasonable:

Lemma 9.4.6

a) † �u F (a �u F ) implies F = † (F = a)

b) E0 ; E1 �u F implies F = F0 ; F1, E0 �u F0 and E1 � F1

c) E0 ⊕ E1 �u F implies F = F0 ⊕ F1, E0 � F0 and E1 � F1
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d) E0 ‖ E1 �u F implies F = F0 ‖ F1, E0 �u F0 and E1 �u F1

e) rec x. E �u F implies F = rec x. E

Proof Using structural arguments each implication is proven by a simple induction on
the number of rules used to prove the left hand side of the implication. 2

In the following we need to be able to see that an internal step solely originate in an
unwinding of a recursive subexpression. We write this as E > u−→ F .
Formally > u−→ ⊆ >−→ is defined to be the least relation over RCLrecΩ which can be
deduced from rec x. E > u−→ E[rec x. E/x] and the > u−→ equivalent versions of the >−→
inference rules.
The lemma now states:

Lemma 9.4.7 Given E,E′ ∈ RCLrecΩ then

E � E ′ implies ∃F. E > u−→∗ F �u E ′

Before proving the lemma observe that there is an “unwind version” of propositionrecΩ

8.1.1.

Proof By induction on the number of rules used in the proof of E ′ � E. There are three
case in the basis:

E = E′: Let F = E and E > u−→0 F �u F = E ′.

E ′ = Ω � E: Then also Ω �u E and we can choose F = E as above.

E′ = G[rec x. G/x] � rec x. G = E: By the recursion rule for > u−→ it is seen that E > u−→
G[rec x. G/x] = E ′ �u E ′ so we can choose F = E ′.

Now for the inductive step there are five ways E ′ � E could have been obtained.

E ′ � E ′′, E′′ � E: By hypothesis of induction there are F ′ and F ′′ such that E ′′ > u−→∗

F ′ �u E ′ and E > u−→∗ F ′′ �u E ′′. From lemma 9.4.8 below we know that F ′′ �u
E ′′ > u−→∗ F ′ implies the existence of a F such that F ′′ > u−→∗ F �u F ′. Then we
actually have E > u−→∗ F ′′ > u−→∗ F �u F ′ �u E ′ as we want.

E′ = E ′
0 ; E ′

1, E = E0 ; E1 and E ′
0 � E0, E

′
1 � E1: Using the inductive hypothesis on E0 �

E ′
0 we find a F0 such that E0 > u−→∗ F0 �u E ′

0. The unwind version of propositionrecΩ

8.1.1 then gives E = E0 ; E1 > u−→∗ F0 ; E1. Since E ′
1 � E1 we by definition of �u

actually have E ′ = E ′
0 ; E ′

1 �u F0 ; E1 and we can let F = F0 ; E1.

E ′ = E ′
0 ⊕ E ′

1, E = E0 ⊕ E1 and E ′
0 � E0, E

′
1 � E1: Then also E �u E ′ so we can choose

F = E because E > u−→0 F = E �u E ′.

E′ = E ′
0 ‖ E ′

1, E = E0 ‖ E1 and E ′
0 � E0, E

′
1 � E1: By induction there for i = 0, 1 exists a

Fi such that Ei > u−→∗ Fi �u E ′
i, so if we use the unwind version of propositionΩ 8.1.1

we get E = E0 ‖E1 > u−→∗ F0 ‖F1. Letting F = F0 ‖F1 we have F �u E ′
0 ‖E′

1 = E ′.

E ′ = G′[%], E = G[%] and G′ � G (and G,G′ ∈ RBLrecΩ ): As above we find a H such that
G > u−→∗ H �u G′. By definition of �u we then have F := H [%] �u G′[%] = E ′ and
of course E > u−→∗ F .
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2

Lemma 9.4.8 If E,E′ ∈ RCLrecΩ then

E �u E ′ > u−→∗ F ′ implies ∃F. E > u−→∗ F �u F ′

Proof By induction on the number of unwinding steps using:

E �u E ′ > u−→ F ′ ⇒ ∃F. E > u−→ F �u F ′(9.9)

which in turn is proven by induction on the size, m, of E ′ > u−→m F ′.
Since > u−→0 = ∅ the basic case is trivial and in the inductive step we can assume (9.9)
holds for m when proving (9.9) for m+1. The different rules are handled one by one:

E ′ = rec x. G > u−→m+1 G[rec x. G/x] = F ′: By lemma 9.4.6 E �u rec x. G implies E =
rec x. G. Let F = F ′ and we use the same rule to get E > u−→ F �u F = F ′.

E′ = E ′
0 ; E ′

1 >
u−→m+1 F

′
0 ; E ′

1 = F ′ where E′
0 >

u−→m F ′
0: E

′
0 ;E ′

1 �u E implies E = E0 ;E1

where E′
0 �u E0 and E ′

1 � E1. We can then use the hypothesis of induction to get
an F0 with E0 > u−→ F0 �u F ′

0. Then also E = E0 ; E1 > u−→ F0 ; E1 �u F ′
0 ; E ′

1 = F ′

and we can choose F = F0 ; E1.

E′ = E ′
0 ‖ E ′

1 >
u−→m+1 F

′: There are two subcases which are handled similar/ symmetric
as the rule for ;.

E′ = G′[%] > u−→m+1 H
′[%] = F ′ where G′ > u−→m H ′: By lemma 9.4.6 E �u G′[%] only if

E = G[%] and G′ �u G. Then by induction G > u−→ H �u H ′ for some H and we
get E > u−→ H [%] �u H ′[%] = F ′ as desired.

2

We are now ready to prove the equivalent lemma of 9.4.5 for single steps.

Lemma 9.4.9 Given E,E′ ∈ RCLrecΩ and A ∈ G. Then:

• E � E′ >−→ F ′ implies ∃F. E >−→∗ F � F ′

• E � E ′ A−→ F ′ implies ∃F. E A⇒ F � F ′

Proof Immediate form the preceding lemma 9.4.7 and the two following lemmas. 2

Lemma 9.4.10 If E,E ′ ∈ RCLrecΩ then

E �u E ′ >−→ F ′ implies ∃F. E >−→∗ F � F ′

Proof By induction on the size, m, of the internal step E ′ >−→m F ′.
The basic case is trivial and in the inductive case the lemma can be assumed to be true
for all internal steps of size m. We now investigate all the rules.
Using the fact that �u ⊆ � and propositionrecΩ 8.1.1 the inference rules are handled exactly
as in the proof of lemma 9.4.8. E.g., E ′ = G′[%] >−→m+1 H

′[%] = F ′ where G′ >−→m H ′.
By lemma 9.4.6 E �u G′[%] implies E = G[%] where G′ �u G, so by hypothesis of induction
then G >−→∗ H for some H � H ′. By definition of � we have F := H [%] � H ′[%] = F ′

and by propositionrecΩ 8.1.1 also E = G[%] >−→∗ H [%] = F . We will therefore just look at
the ordinary rules for >−→.
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E ′ = Ω >−→m+1 Ω = F ′: Then E ′ = F ′ and we can choose E = F . Then E >−→0 F =
E �u E ′ = F ′ and since �u ⊆ � we are done.

E ′ = † ; E′
1 >−→m+1 E

′
1 = F ′: By lemma 9.4.6 † ; E1 �u E implies E = † ; E1 where

E′
1 � E1. With F = E1 we then get E = † ; E1 >−→ F = E1 � E ′

1 = F ′.

E = E′
0 ⊕E ′

1 >−→m+1 F
′: Suppose w.l.o.g. F ′ = E ′

0. E
′
0 ⊕E ′

1 �u E only if E = E0 ⊕ E1

where E ′
0 � E0 and E ′

1 � E1. But then also E >−→ E0 � E ′
0 = F ′.

E ′ = E ′
0 ‖ E ′

1 >−→m+1 F
′: Similar/ symmetric as the case with E ′ = † ; E′

1 but with the
addinnal use of �u ⊆ �.

E′ = G′[%] >−→m+1 F
′: then E ′ �u E means E = G[%] where G′ �u G. There are five

ordinary rules according to the structure of G′:

G′ = Ω and F ′ = Ω: Let F = E. Since E ′ �u E implies E ′ � E we then get
E >−→0 F = E � E ′ = Ω[%] � Ω = F ′.

G′ = a and F ′ = %(a): a �u G only if G = a, so we actually have E = E ′ and one
can choose F = F ′.

G′ = G′
0 ;G′

1 and F ′ = G′
0[%] ;G′

1[%]: G
′
0 ;G′

1 �u G implies G = G0 ;G1 where G′
0 �u

G1 and G′
1 � G1. Again since �u ⊆ � we by letting F = G0[%] ; G1[%] get

F ′ � F and also E = (G0 ;G1)[%] >−→ G0[%] ;G1[%] = F .

G′ = G′
0 ⊕G′

1 and G′ = G′
0 ‖G′

1: Similar as last case.

2

Lemma 9.4.11 Suppose E,E′ ∈ RCLrecΩ and A ∈ G. Then E �u E ′ A−→ F ′ implies

∃F. E A−→ F � F ′

Proof By induction on the size of the step E ′ A−→ F ′. The proof follows exactly the line
of the previous lemma, except that we do not have to use propositionrecΩ 8.1.1. 2

Up til now we have showed that if E is the approximation of F then F can do all the
sequences E can. Now we take the opposite angel and show that if a (possible recursive)
process is able to perform a sequence, then there is a syntactic finite approximation which
also can do this sequence.

Lemma 9.4.12 Suppose E ∈ RCLrecΩ . Then

E
s⇒ F � F ′′ ∈ RCLΩ implies ∃E ′, F ′ ∈ RCLΩ. E � E ′ s⇒ F ′ � F ′′

Proof By induction on the size of
s⇒. In the basic case we have E = F and can choose

E′ = F ′ = F ′′. In the inductive step there as usual are two maincases:

E >−→ G
s⇒′

F � F ′′: (where
s⇒ = >−→ s⇒′

and the length of
s⇒′

is less than that of
s⇒)

By hypothesis of induction there are G′, H ∈ RCLΩ such that G � G′ s⇒ H � F ′′.
Now E >−→ G � G′ implies by lemma 9.4.14 below the existence of E ′, G′′ ∈ RCLΩ

with E � E ′ >−→∗ G′′ � G′. We can then use lemma 9.4.5 on G′′ � G′ s⇒ H
to find an F ′ which fulfills G′′ s⇒ F ′ � H . Collecting the facts so far we have
E � E′ >−→∗ G′′ s⇒ F ′ � H � F ′′ and so E � E ′ s⇒ F ′ � F ′′. For E ′ ∈ RCLΩ we
easely prove E ′ s⇒ F ′ implies F ′ ∈ RCLΩ so this case is settled.
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E
A−→ G

s′⇒ F � F ′′: Similar but using lemma 9.4.15 in place of lemma 9.4.14.

2

Before proving the lemmas for single steps it will be useful to prove:

Lemma 9.4.13 For E ∈ RCLrecΩ (X) we have:

a) † � E iff E = †
b) If E 6= Ω then for � ∈ {;,⊕, ‖}, E � F0 � F1 implies E = E0 � E1 where E0 � F0

and E1 � F1

c) If E 6= Ω then E � F ′[%] implies E = E′[%] where E ′ � F ′

Proof Each implication is proven by a simple induction on the number of rules (from
the definition of �) used to prove the left hand side of the implication. 2

We should mention that e.g., E � F ′[%] implies F ′[%] ∈ RBLrecΩ (X), because � only is
defined on RCLrecΩ (X) and expressions only can be of this form when F ′ ∈ RBLrecΩ (X).
Also notice that the opposite implications of b) – c) does not hold in general. E.g., from
E0 ‖ E1 � F one cannot deduce that F is of the form F = F0 ‖ F1 where E0 � F0 and
E1 � F1 because F might equal rec x. G where G[rec x. G/x] = E0 ‖E1. The only reason
we can deduce something about E in a) when † � E is because all recursive expressions
are from RBLrecΩ (X) and because † 6∈ RBLrecΩ (X).

Lemma 9.4.14 If E ∈ RCLrecΩ then

E >−→ F � F ′′ ∈ RCLΩ implies ∃E ′, F ′ ∈ RCLΩ. E � E ′ >−→∗ F ′ � F ′′

Proof If F ′′ = Ω the lemma follows by choosing E ′ = F ′ = Ω ∈ RCLΩ. Hence we will
assume F ′′ 6= Ω when proving the lemma by induction on the size, m, of E >−→m F .
We assume the lemma holds for m when proving it for m+ 1 by considering the different
rules.

E = Ω >−→m+1 Ω = F � F ′′: This can only mean F ′′ = Ω so we can choose E ′ = F ′ = Ω.

E = E0 ; E1 >−→m+1 F � F ′′: There are two subcases:

E0 = † and F = E1: Let E ′ = † ; F ′′ ∈ RCLΩ and F ′ = F ′′.
F = F0 ; E1 where E0 >−→m F0: We assume F ′′ 6= Ω so by lemma 9.4.13 we know

that F ′′ � F0 ; E1 implies F ′′ = F ′′
0 ; E ′′

1 for some F ′′
0 � F0 and E ′′

1 � E1. By
hypothesis of induction there areE′

0, F
′
0 ∈ RCLΩ with E0 � E0 >−→∗ F ′

0 � F ′′
0 .

Because F ′′ ∈ RCLΩ implies E ′′
1 ∈ RBLΩ we then have E ′ := E ′

0 ;E′′
1 ∈ RCLΩ

and F ′ := F ′
0 ; E ′′

1 ∈ RCLΩ. Also E ′ >−→∗ F ′ and E ′ = E ′
0 ; E ′′

1 � E0 ; E ′′
1 �

E0 ; E1 so as F ′′ = F ′′
0 ; E ′′

1 � F ′
0 ; E ′′

1 = F ′.

E = E0 ⊕E1 >−→m+1 F � F ′′: W.l.o.g. we just consider the case where F = E0. Then
let E ′ = F ′′ ⊕ Ω ∈ RCLΩ and F = F ′′. Clearly E ′ = F ′′ ⊕ Ω � F ⊕ E1 = E and
E ′ >−→ F ′′ � F ′′. Let F ′ = F ′′.
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E = E0 ‖ E1 >−→m+1 F � F ′′: The four subcases are handled similar/ symmetric to the
rules for ; above.

E = G[%] >−→m+1 F � F ′′: There are six subcases to be dealt with.

G = Ω and F = Ω: Then E, F ∈ BLΩ and we can choose E ′ = E and F ′ = F .

G = a and F = %(a): Again E, F ∈ BLΩ.

G = G0 ;G1 and F = G0[%] ;G1[%]: Since F ′′ is assumed to be different from Ω we
by lemma 9.4.13 from F � F ′′ ∈ RBLΩ deduce F ′′ = F ′′

0 ;F ′′
1 where for i = 0, 1

either F ′′
i = Ω or (F ′′

i = G′′
i [%] and Gi � G′′

i ∈ RBLΩ). There are actually
four subcases to consider, but we just treat F ′′

0 = G′′
0[%] and F ′′

1 = Ω because
the other follow in the same way. Choose E ′ = (G′′

0 ; Ω)[%] ∈ RBLΩ and
F ′ = G′′

0[%] ; Ω[%] ∈ RBLΩ. Then clearly E ′ >−→ F ′ and E ′ � (G0 ; Ω)[%] �
(G0 ;G1)[%] = E and also F ′′ = G′

0[%] ; Ω � G′′
0[%] ; Ω[%] = F ′.

G = G0 ⊕G1 and G = G0 ‖G1: Analogous to the last case.

F = H [%] where G >−→m H : By lemma 9.4.13 Ω 6= F ′′ � H [%] only if F ′′ = H ′′[%]
for some H ′′ � H . By hypothesis of induction there are G′, H ′ ∈ RBLΩ such
that G � G′ >−→∗ H ′ � H ′′. Now G′ � G ∈ RBLrecΩ and G′ ∈ RCLΩ

implies G′ ∈ RBLΩ and similar for H ′ so we obtain E ′ := G′[%] ∈ RBLΩ

and F ′ := H ′[%] ∈ RBLΩ so as E ′ >−→∗ F ′ from propositionΩ 8.1.1. Clearly
E ′ � E and F ′′ = H ′′[%] � H ′[%] = F ′.

E = rec x. G >−→m+1 G[rec x. G/x] = F � F ′′: Choose E ′ = F ′ = F ′′ ∈ RCLΩ. Then of
course E ′ >−→0 F ′ � F ′ = F ′′ and because E ′ � F = G[rec x. G/x] � rec x. G = E
we also have E ′ � E.

2

Lemma 9.4.15 If E ∈ RCLrecΩ and A ∈ G then

E
A−→ F � F ′′ ∈ RCLΩ implies ∃E ′, F ′ ∈ RCLΩ. E � E ′ A−→ F ′ � F ′′

Proof At first the lemma is proven for the case F ′′ 6= Ω. This will be done by induction

on the size, m, of E
A−→m F . As usual only the inductive step needs attention. We

consider each rule in turn under the assumption F ′′ 6= Ω and that the lemma holds for
m.

E = a
A−→m+1 † = F � F ′′: Clearly A = a and F ′′ = †. Choose E ′ = a ∈ RCLΩ and

F ′ = † ∈ RCLΩ.

E = E0 ; E1
A−→m+1 F0 ; E1 = F where E0

A−→m F0: Ω 6= F ′′ � F0 ; E1 implies by lemma
9.4.13 F ′′ = F ′′

0 ; E ′′
1 where F0 � F ′′

0 ∈ RCLΩ and E1 � E ′′
1 ∈ RBLΩ. By induction

then ∃E ′
0 ∈ RCLΩ.E0 � E ′

0
A−→ F ′

0 � F ′′
0 . Letting E ′ = E ′

0 ;E ′′
1 we have E ′ ∈ RCLΩ

and E ′ � E ′
0 ; E1 � E and using the same inference rule finally E ′ = E ′

0 ; E ′′
1

A−→
F ′

0 ; E ′′
1 =: F ′ and also F ′′ = F ′′

0 ; E ′′
1 � F ′.

E = E0 ‖ E1
A−→m+1 F0 ‖ F1 = F � F ′′: The two rules where only one of the components

of E is involved are handled similar/ symmetric as above. If E
A−→m+1 F steams

from the remaining inference rule we must have A = A0 × A1 and F ′′ � F ′′
0 ‖ F ′′

1
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where for i = 0, 1, Ei
Ai−→m Fi � F ′′

i and Ai ∈ G. Like above we can apply the
hypothesis of induction on each component and since A0 × A1 = A ∈ G we can use
the same rule again to obtain the result in a similar fashion.

Now from the rules of
A−→ obviously E

A−→ F only if † occurs in F . By structural
induction on F an F ′′′ ∈ RCLΩ can then be found such that F � F ′′′ 6= Ω. As above
appropriate E ′, F ′ ∈ RCLΩ are found for F ′′′. When F ′′ = Ω we have F ′′′ � F ′′ so this
case is dealt with too. 2

The two key lemmas 9.4.12 and 9.4.5 enables us to establish the important properties
which shall bring the different preorders in connection with our denotational models.

Proposition 9.4.16 <∼G and <∼G extends � on RBLrecΩ .

Proof We shall show that when � is resticted to RBLrecΩ then � ⊆ <∼G and � ⊆ <∼G. So
let E, F ∈ RBLrecΩ be given such that E � F .

<∼G: Assume E
s⇒ †. By lemma 9.4.5 there is an F ′ such that F

s⇒ F ′ � †. From lemma
9.4.13 † � F ′ only if F ′ = †.
<∼G: Immediate from lemma 9.4.5. 2

Proposition 9.4.17 Given E ∈ RBLrecΩ then

a) E
s⇒ † iff ∃E ′ ∈ Fin(E). E′ s⇒ †

b) E
s⇒ iff ∃E ′ ∈ Fin(E). E ′ s⇒

Proof By definition E ′ ∈ Fin(E) means E ′ � E and E ′ ∈ RBLΩ, so the if part of a)
and b) are just special cases of the previous proposition. only if :

a) Suppose E
s⇒ †. Because † � † we can use lemma 9.4.12 to find E ′, F ′ ∈ RCLΩ

such that E � E ′ s⇒ F ′ � †. † � F ′ only if F ′ = † so this means E � E ′ s⇒ †. Now
E′ � E ∈ RBLrecΩ clearly implies E ′ ∈ RBLrecΩ wherefore we from E ′ ∈ RCLΩ deduce
E ′ ∈ RBLΩ and thus E ′ ∈ Fin(E).

b) Suppose E
s⇒. This means E

s⇒ F for some F ∈ RCLrecΩ . Using F � Ω the rest goes
as under a). 2

With the last to propositions it is easy to prove the main result of this section:

Theorem 9.4.18 The preorders <∼G and <∼G over RBLrecΩ are algebraic.

Proof The preorder <∼G is proved algebraic in exactly the same way as we now will prove
<∼G algebraic. For <∼G we shall prove

E <∼G F iff ∀E ′ ∈ Fin(E)∃F ′ ∈ Fin(F ). E′ <∼G F ′
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if : Assume the right hand side holds and let an s ∈ G∗ be given such that E
s⇒. We prove

F
s⇒. By proposition 9.4.17 above there is an E ′ ∈ Fin(E) with E ′ s⇒. By assumption

there is also an F ′ ∈ Fin(F ) such that E ′ <∼G F ′. Hence F ′ s⇒ and using the same
proposition again then F

s⇒.

only if : Assume E <∼G F and let a E ′ ∈ Fin(E) be given.
At first we show that for each s ∈ G∗ such that E ′ s⇒ we can pick an Fs ∈ Fin(F ) with
Fs

s⇒. Suppose E ′ s⇒. Applying the previous proposition we see that E
s⇒ and from the

assumption then also F
s⇒. Using the proposition once more brings us an F ′ ∈ Fin(F )

such that F ′ s⇒. Let Fs be one of these F ′’s.
Now for any H ∈ BLΩ it is an easy matter to prove by induction on the structure of H
that {s ∈ G∗ | H s⇒} is finite. By proposition 9.3.2 we have {s ∈ G∗ | E ′ s⇒} = {s ∈ G∗ |
E ′σ s⇒}, so because E ′σ ∈ BLΩ we conclude {Fs ∈ Fin(F ) | E ′ s⇒} is finite too.
Fin(F ) is directed so there is an ub F ′ ∈ Fin(F ) for {Fs | E ′ s⇒}. By proposition 9.4.16
� ⊆ <∼G this therefore means that for every Fs, F

′ can perform s. But there is exactly
one Fs for each E ′ s⇒ wherefore we conclude E ′ <∼G F ′ as desired. 2

9.4.2 The Syntactic Finite Sublanguages

In this subsection look at how the full abstractness results for BL and RBL can be carried
over to BLΩ and RBLΩ.

Theorem 9.4.19 The following denotatons are fully abstract:

a) AG[[ ]] on BLΩ w.r.t. <∼G

b) Aor[[ ]] on RBLΩ w.r.t. <∼
c
w

c) ApG[[ ]] on BLΩ w.r.t. <∼
c
G

d) Apor[[ ]] on RBLΩ w.r.t. <∼
c
w

Proof

a) Since AG[[ ]] is defined compositionally and the operators are monotone, ≤G is a
precongruence w.r.t. BLΩ. a) then follows from proposition 9.4.23 below.

b) By definition <∼
c
w ⊆ RBLΩ × RBLΩ is a precongruence w.r.t. the combinators of

RBLΩ. We then just have to show ≤ or = <∼
c
w. By proposition 9.1.11 this follows if

we can prove for all E0, E1 ∈ RBLΩ

E0 ≤ or E1 iff ∀RBLΩ-contexts C. C[E0] <∼w C[E1]

only if : Assume E0 ≤ or E1 and let a RBLΩ context, C, be given. By the compo-
sitional nature of Aor[[ ]] and the monotonicity of the Aor operators it follows that
≤ or is a precongruence w.r.t. the combinators of RBLΩ. Hence also C[E0] ≤ or

C[E1] or equally Aor[[C[E0]]] ⊆ Aor[[C[E1]]]. From the ⊆-monotonicity of δw then
δw(Aor[[C[E0]]]) ⊆ δw(Aor[[C[E1]]]) which by proposition 9.4.23 implies C[E0] <∼w
C[E1].
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if : Assume E0 6≤ or E1 or equally Aor[[E0]] 6⊆ Aor[[E1]]. From lemma 9.4.27 we see
there is a RBLΩ-context, C, such that δw(Aor[[C[E0]]]) 6⊆ δw(Aor[[C[E1]]]). Then also
C[E0] 6<∼w C[E1] by proposition 9.4.25.

c) Similar as b) with ≤ p
G instead of ≤ or and only BLΩ contexts are concerned. Prop-

sition 9.4.23 is used in stead of proposition 9.4.25 (δw does not appear). With
A = L(E1) the BLΩ-context for the if part is found from lemma 9.4.26.

d) Similar to b) using lemma 9.4.28 to find the RBLΩ-context in the if part.

2

From proposition 9.4.23, propositionΩ 8.1.2 and proposition 9.3.2 so as proposition 9.2.17
and the theorem above we deduce the RBLΩ equivalent of corollary 8.4.1 of section 8.4:

Corollary 9.4.20 For all E0, E1 ∈ RBLΩ:

E0
<∼w E1 iff Aw[[E0σ]] = Aw[[E1σ]]

E0
<∼G E1 iff AG[[E0σ]] = AG[[E1σ]]

E0
<∼>∼
c
w E1 iff Aor[[E0σ]] = Aor[[E1σ]]

E0
<∼w E1 iff Apw[[E0σ]] = Apw[[E1σ]]

E0
<∼G E1 iff ApG[[E0σ]] = ApG[[E1σ]]

E0
<∼=∼
c
G E1 iff Apor[[E0σ]] = Apor[[E1σ]]

With the same argumentation as in section 8.4 then also:

Corollary 9.4.21 For E0, E1 ∈ RBLΩ we have

(E0
<∼
c
w E1)⇒ (E0

<∼G E1)⇒ (E0
<∼w E1)

and
(E0

<∼
c
w E1)⇒ (E0

<∼G E1)⇒ (E0
<∼w E1)

Theorem 9.4.22

a) BLΩ is {E ∈ BLΩ | L(E) ⊆ A}-expressive w.r.t. <∼G for every finite subset A of ∆.

b) RBLΩ is expressive w.r.t. both <∼w and <∼w.

Proof

a) Suppose A ⊆ ∆ is finite and E0 ∈ BLΩ. Let C be the BLΩ-context, # ; e, from
lemma 9.4.26. Given an E1 with L(E1) ⊆ A we show

E0
<∼
c
G E1 iff C[E0] <∼G C[E1]

only if : Since <∼
c
G by definition is a precongruence it follows that C[E0] <∼

c
G C[E1].

Again by definition of <∼
c
G also <∼

c
G ⊆ <∼G.

if : C[E0] <∼G C[E1]
⇒ ApG[[C[E0]]]1 ⊆ ApG[[C[E1]]]1 proposition 9.4.23
⇒ ApG[[E0]] ⊆ ApG[[E1]] by choice of C
⇒ E0 ≤ p

G E1 definition of ≤ p

G⇒ E0
<∼
c
G E1 by the theorem above
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b) Similar as a) but using the RBLΩ-context C = #[%] found by lemma 9.4.27 when
dealing with <∼w and C = #[%] ; e from lemma 9.4.28 when concerned with <∼w. In
both cases proposition 9.4.25 is used in place of proposition 9.4.23.

2

Proposition 9.4.23 For every E0, E1 ∈ BLΩ:

a) AG[[E0]] ⊆ AG[[E1]] iff E0
<∼G E1

b) ApG[[E0]]1 ⊆ ApG[[E1]]1 iff E0
<∼G E1

Proof

a) This is nothing more than the extension of proposition 7.4.3 to BLΩ. So of course
a) holds if we can manage to extend lemma 7.4.4 to BLΩ obtaining lemmaΩ 7.4.4.
We will just comment on the main spots were the proof change:

only if : One additional case: E = Ω: The implication holds trivially because

Ω
A1⇒ . . .

An⇒ F implies F = Ω 6= †.
if : If E = Ω then ℘(E) = ∅ and we cannot have have p ∈ ℘(E). As above we can
also here take over the corresponding proof for the other cases if we use lemmaΩ

7.4.5 and lemmaΩ 7.4.6.

b) Along the lines of the proof of proposition 7.4.3 in chapter 7 one from lemma 9.4.24
below for any E ∈ BLΩ see:

δG(℘p1(E)) = {s ∈ G∗ | E s⇒}(9.10)

From proposition 9.2.14 ApG[[E]]1 = δG(℘p1(E)) so the proposition then follows by the
definition of <∼G.

2

As the extended canonical map ℘ (by definition) agrees with ℘p2 we can use lemmaΩ 7.4.4
directly in the the proof of the next lemma. The same notation will also be used.

Lemma 9.4.24 Given E ∈ BLΩ and A1, . . . , An ∈ Gε (n ≥ 1). Then

E
A1=⇒ . . .

An=⇒ iff ∃p ∈ ℘p1(E). A1 · . . . ·An � p

Proof Here we also start out by observing that any subexpression of a BLΩ expression
itself is from BLΩ.

if : By induction on the structure of E.

E = Ω: ℘p1(Ω) = {ε} and we must have p = ε and all A1, . . . , An equal to ∅. Since for for

every E, E >−→0 E clearly E
∅⇒ . . .

∅⇒.
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E = a: ℘p1(a) = {a, ε}. There are two possibilities for p—either p = ε or p = a. The
former case goes as above and the latter as in the corresponding case of lemmaΩ

7.4.4.

E = E0 ; E1: ℘
p
1(E) = ℘p1(E0) ∪ ℘p2(E0) · ℘p1(E1). If p ∈ ℘p1(E0) the result follows from

hypothesis of induction and propositionΩ 7.2.3. Otherwise p must equal p0 · p1

where p0 ∈ ℘p2(E0) and p1 ∈ ℘p1(E1). If p1 = ε then p = p0 · ε = p0 ∈ ℘p2(E0)
and the rest follows from lemmaΩ 7.4.4. We can then assume to be in the situation
where A1 · . . . · An � p0 · p1 and p1 6= ε. p0 6= ε because p0 ∈ ℘p2(E0). By
lemmaΩ 7.4.7 then n ≥ 2 and there exists a 1 ≤ j < n such that A1 · . . . · Aj � p0

and Aj+1 · . . . · An � p1. Since p0 ∈ ℘p2(E0) we can use lemmaΩ 7.4.4 to get

E0
A1=⇒ . . .

Aj
=⇒ †. From Aj+1 · . . . ·An � p1 ∈ ℘p1(E1) we by hypothesis of induction

also have E1
Aj+1
=⇒ . . .

An=⇒. Applying propositionΩ 7.2.3 we finally get E0 ; E1
A1=⇒

. . .
Aj

=⇒ † ; E1 >−→ E1
Aj+1
=⇒ . . .

An=⇒.

E = E0 ⊕E1 and E = E0 ‖ E1: On expressions of this form ℘p1 is defined like ℘p2 so the
arguments are identical to those of lemmaΩ 7.4.4.

only if : Also by induction on the structure of E.

E = Ω: Ω can only perform internal steps wherefore all A1 through An must equal ∅ or
by the alternative notation equal ε. But ε · . . . · ε � ε ∈ {ε} = ℘p1(Ω).

E = a: a cannot do any internal steps and if a
A−→ F then A = a and F = †. † can do no

steps at all so we conclude all A1, . . . , An must equal ε(= ∅) except for at most one
which then only can be a. If all equals ε then A1 · . . . ·An = ε � ε ∈ {ε, a} = ℘p1(a).
Ohterwise A1 · . . . · An = a ∈ ℘p1(a).

E = E0 ; E1: Assume E0 ;E1
A1=⇒ . . .

An=⇒ F . We want to use lemmaΩ 7.4.5 which mentions
four ways such a sequence could be obtained. The first presuppose E0 >−→∗ † so
it can be excluded because E0 ∈ BLΩ. The remaining three can for our purpose be
summarized in two:

E0
A1=⇒ . . .

Aj
=⇒ †, E1

Aj+1
=⇒ . . .

An=⇒ F for a 1 ≤ j < n

E0
A1=⇒ . . .

An=⇒ F ′

In the latter case we can apply the hypothesis of induction to find a p ∈ ℘p1(E0)
such that A1 · . . . · An � p. As ℘p1(E0) ⊆ ℘p1(E0 ; E1) this case is settled. In the
former case we can use lemmaΩ 7.4.4 to find a p0 ∈ ℘p2(E0) with A1 · . . . · Aj � p0

and by induction there is a p1 ∈ ℘p1(E1) such that Aj+1 · . . . ·An � p1. From the �-
monotonicity of · we then deduce A1 ·. . .·An � p0 ·p1 ∈ ℘p2(E0)·℘p1(E0) ⊆ ℘p1(E0 ;E1)
as we want.

E = E0 ⊕E1 and E = E0 ‖ E1: Similar arguments as in lemmaΩ 7.4.4.

2

Proposition 9.4.25 For all E0, E1 ∈ RBLΩ:

a) δw(Aor[[E0]]) ⊆ δw(Aor[[E1]]) iff E0
<∼w E1
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b) δw(Apor[[E0]]1) ⊆ δw(Apor[[E1]]1) iff E0
<∼w E1

Proof a) follows with exactly the same arguments as we now show b). b) follows from
the definition of <∼w and the general deduction (E ∈ RBLΩ)
δw(Apor[[E]]1) = Apw[[Eσ]]1 proposition 9.2.21

= δw(℘p1(Eσ)) proposition 9.2.14 and Eσ ∈ BLΩ

= {w ∈W | Eσ w⇒} by (9.10)

= {w ∈W | E w⇒} proposition 9.3.2 2

Lemma 9.4.26 Given an expression E0 ∈ BLΩ and a finite subset A of ∆. Then there
is an e ∈ ∆ such that for all E1 ∈ BLΩ with L(E1) ⊆ A we have

ApG[[E0]] 6⊆ ApG[[E1]]⇒ ApG[[E0 ; e]]1 6⊆ ApG[[E1 ; e]]1

Proof Let a E0 ∈ BLΩ be given. L(E0) is finite and containins L(ApG[[E0]]) =
⋃{L(p) |

p ∈ ApG[[E0]]1 ∪ApG[[E0]]2} where

a ∈ L(p) iff mp(a) 6= 0

So since A is finite too, but ∆ infinite, we can choose an e ∈ ∆ that does occur in
L(ApG[[E0]]) or A. Before we start out proving that this e meats the requirement observe
that for any E ∈ BLΩ we have:

ApG[[E ; e]]1 = ApG[[E]]1 ∪ ApG[[E]]2 · {ε, e} definition of ;pG and epG
= ApG[[E]]1 ∪ ApG[[E]]2 ∪ ApG[[E]]2 · {e} ε neutral to ·
= ApG[[E]]1 ∪ ApG[[E]]2 · {e} ApG[[E]]2 ⊆ ApG[[E]]1 (in general)

Now let an E1 ∈ BLΩ be given such that L(E1) ⊆ A and ApG[[E0]] 6⊆ ApG[[E1]]. There are
two ways how this can be:

ApG[[E0]]2 6⊆ ApG[[E1]]2: I.e., there is a p ∈ ApG[[E0]]2 not in ApG[[E1]]2. By the observations
above then p · e ∈ ApG[[E0 ; e]]1. p · e 6∈ ApG[[E1]]1 because L(ApG[[E1]]1) ⊆ L(E1) ⊆ A and
e 6∈ A. p 6∈ ApG[[E1]]2 implies p · e 6∈ ApG[[E1]]2 · {e} so from the observations above we
conclude p · e 6∈ ApG[[E1 ; e]]1.

ApG[[E0]]1 6⊆ ApG[[E1]]1: Then let a p ∈ ApG[[E0]]1 be given such that p 6∈ ApG[[E1]]1. By the
observations p ∈ ApG[[E0 ; e]]1. We have p 6∈ ApG[[E1]]2 · {e} because p ∈ ApG[[E1]]2 · {e}
would imply e ∈ L(p) ⊆ L(ApG[[E0]]) contradicting the way e is chosen. Hence p 6∈
ApG[[E1]]1 ∪ApG[[E1]]2 · {e} = ApG[[E0 ; e]]1. 2

Lemma 9.4.27 Given an expression E0 ∈ RBLΩ. Then there is a refinement combinator,
[%], such that

∀E1 ∈ RBLΩ. Aor[[E0]] 6⊆ Aor[[E1]]⇒ δw(Aor[[E0[%]]]) 6⊆ δw(Aor[[E1[%]]])

Proof From chapter 8 we already get the corresponding result for the Mor-model, but
for the language RBL. All what can happen when Ω is added to the language is that
Aor[[E0]] might be empty in which case the implication holds vacuously. 2
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Lemma 9.4.28 Given an expression E0 ∈ RBLΩ. Then there is a refinement combinator,
%, and an action e ∈ ∆ such that

∀E1 ∈ RBLΩ. A
p
or[[E0]] 6⊆ Apor[[E1]]⇒ δw(Apor[[E0[%] ; e]]1) 6⊆ δw(Apor[[E1[%] ; e]]1)

Proof Let E0 ∈ RBLΩ be given. As for Aor[[ ]] we are after a fission refinement, %, such
that any pomset, p, associated with the denotation of E0 can be reflected in a linearization
of q ∈ p<%>, but this time with the additional requirement that e does not occcur in any
pomset which steems from a <%>-refinement of a pomset associated with the denotation
of an arbitrary E1 ∈ RBLΩ. Since E1 can be any syntactic finite expression there are
practical no limitations on what singleton pomsets there may be in a pomset from its
denotation. We can therefore just as well pick an arbitrary e ∈ ∆ and seek a fission
refinement % for E0 such that

∀a ∈ ∆. e 6∈ L(%(a))(9.11)

Let m be the lub of the multiplicity functions associated with the pomsets of Apor[[E0]], i.e.,
m =

∨{mp | p ∈ Apor[[E0]]1∪Apor[[E0]]2} (finite because E0 ∈ RBLΩ). ∆\{e} is (countable)
infinite because ∆ is, so from the arguments about the existence of fission refinements it
should be clear we also can find a m-fission refinement % with desired property (9.11).
Remember when dealing with fission refinements we use the same symbol for the BL-
fission refinement and the P(P)-fission refinement.

Before we continue notice as in lemma 9.4.26 (for any E ∈ RBLΩ)

Apor[[E[%] ; e]]1 = Apor[[E[%]]]1 ∪ Apor[[E[%]]]2 · {e}
Now let any E1 ∈ RBLΩ be given and suppose Apor[[E0]] 6⊆ Apor[[E1]]. Assume on the
contrary δw(Apor[[E0[%] ; e]]1) ⊆ δw(Apor[[E1[%] ; e]]1). There are two ways how Apor[[E0]] 6⊆
Apor[[E1]] can be:

Apor[[E0]]2 6⊆ Apor[[E1]]2: Then there is a p ∈ Apor[[E0]]2 with p 6∈ Apor[[E1]]2. Since Apor[[E0]]2 is
δor-closed p must have the Por-property. Because % is m-fission refinement and mp ≤ m
we can use lemma 8.3.6 to find a w ∈ δw(p<%>) which is p-reflecting. We then have:

w · e ∈ δw(Apor[[E0]]2<%>) · {e}
= δw(δor(A

p
or[[E0]]2<%>)) · {e} δw ◦ δor = δw

= δw(Apor[[E0[%]]]2) · {e} definition of [%]p∗
= δw(Apor[[E0[%]]]2 · {e}) δw distributes over ·, δw({e}) = {e}
⊆ δw(Apor[[E0[%] ; e]]1) from notice and ⊆ monotonicity of δw
⊆ δw(Apor[[E1[%] ; e]]1) assumption
= δw(Apor[[E1[%]]]1 ∪Apor[[E1[%]]]2 · {e}) from notice
= δw(Apor[[E1[%]]]1) ∪ δw(Apor[[E1[%]]]2) · {e}

Because Apor[[E1[%]]]1 = δor(A
p
or[[E1]]1<%>) we see from (9.11) that e 6∈ L(δw(Apor[[E1[%]]]1)).

Hence also w · e 6∈ δw(Apor[[E1[%]]]1) and we are left with w · e ∈ δw(Apor[[E1[%]]]2) · {e}. But
then w ∈ δw(Apor[[E1[%]]]2) = δw(δor(A

p
or[[E1]]2<%>)). This means there is a p1 ∈ Apor[[E1]]2

and q ∈ p1<%> such that w � q. Since w is p-reflecting we by lemma 8.3.5 get p � p1.
Because Por(p) and Apor[[E1]] is δor-closed this implies p ∈ Apor[[E1]]2—a contradiction.

Apor[[E0]]1 6⊆ Apor[[E1]]1: We see there exists a p ∈ Apor[[E0]]1 such that p 6∈ Apor[[E1]]1 and
Por(p) because Apor[[E0]]1 is δor-closed (as well as π-closed). We can also here find a p-
reflecting linearization w ∈ δw(p<%>). Notice that because of (9.11) we have e 6∈ L(w).
We infer:
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w ∈ δw(Apor[[E0]]1<%>)
⊆ δw(π(Apor[[E0]]1<%>)) δw is ⊆ -montone and P ⊆ π(P )
= δw(δorπ(Apor[[E0]]1<%>)) δw ◦ δor = δw
⊆ δw(Apor[[E0[%] ; e]]1) from notice and definition of ;p∗
⊆ δw(Apor[[E1[%] ; e]]1) assumption
= δw(Apor[[E1[%]]]1) ∪ δw(Apor[[E1[%]]]2) · {e} as above

e 6∈ L(w) excludes w ∈ δw(Apor[[E1[%]]]2) · {e} and we are left with w ∈ δw(Apor[[E1[%]]]1) =
δw(δorπ((Apor[[E1]]1)<%>)) = δwπ((Apor[[E1]]1)<%>). Then there must be pomsets such that

w � q v q′ ∈ p1<%> where p1 ∈ Apor[[E1]]1

w is the linearization of some pomset refined by <%> and therefore must be balanced
w.r.t. to the fission pairs of %. Because w � q they have the same labels and so q must
be balanced w.r.t. to the fission pairs. With q v q′ ∈ p1<%> we can then use the
lemma below to conclude there is a pomset p′

1 v p1 such that q ∈ p′
1<%>. Because

w � q ∈ p′
1<%> and w is p-reflecting we can as in the case above conclude p � p′

1.
Apor[[E1]]1 is both δor- and π-closed, so from p′

1 v p1 ∈ Apor[[E1]]1 and Por(p) we then get
p ∈ Apor[[E1]]1—again a contradiction. 2

Lemma 9.4.29 Let a finite multiplicity function m over ∆ be given together with a ε-
free m-fission refinement %. Suppose p,q and r are pomsets such that p v q ∈ r<%>. If
p is balanced w.r.t. to the fission pairs of % in the sense:

∀a ∈ ∆∀k ∈ n(m). mp(aSk) = mp(aFk)

then there is a pomset s v r such that p ∈ s<%>.

Proof By definition of the refinement operator, q ∈ r<%> means there is a %-consistent
p.ref., πr, for r such that q = [r<πr>]. Then also p v [r<πr>].

We illustrate the situation by an example. Suppose r is the representative of the pomset

a -
��>
a

b - a

Then [r<πr>] typically may look like:

aS2
- aF2

-
��>
aS1

- aF1

bS4
- bF4

- aS2
- aF2

Evidently no matter how p is a (≤r<πr>-downwards closed) prefix of [r<πr>] then for the
fission pair aS2 , aF2 the number of times aS2 occur in p must be greater than or equal the
number of times aF2 occur in p. Similar for the other fission pairs. Clearly also if these
numbers balance for every fission pair then there can be no element of p labelled say aS1

without an immediate following element labelled aF1. By the nature of fission refinement
these two elements must originate from the same element in r and then p must be the
refinement of a prefix of r.
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Now formally p v [r<πr>] by the alternative characterization of v implies that we can
find a representative p′ of p such that

p′ = r<πr>|Xp′ and Xp′ is ≤r<πr> -downwards closed

Notice this implies Xp′ ⊆ Xr<πr>. It then gives sense to define Y = {x ∈ Xr | 〈x, x′〉 ∈
Xp′} and s = r|Y .

At first we show Y to be ≤r-downwards closed thus gaining s v r. Given an x ∈ Xr

and y ∈ Y such that x ≤r y. We shall show x ∈ Y . Now y ∈ Y means there is some y′

with 〈y, y′〉 ∈ Xp′. Because % is ε-free there must be an x′ ∈ Xπr(x). By construction of
r<πr> then 〈x, x′〉 ∈ Xr<πr> and from x ≤r y also 〈x, x′〉 ≤r<πr> 〈y, y′〉. Because Xp′ is
≤r<πr>-downwards closed this implies 〈x, x′〉 ∈ Xp′ and by definition of Y then x ∈ Y as
we want.

Now Y ⊆ Xr so we let πs be πr|Y which clearly is a %-consistent particular fission refine-
ment for s. We then wish to show

r<πr>|Xp′ = s<πs>

To do this we show at first that Xp′ = Xs<πs>.

⊆: 〈x, x′〉 ∈ Xp′ ⊆ Xr<πr> implies x ∈ Y and x′ ∈ Xπr(x). Since πs = πr|Y and x ∈ Y
we have x′ ∈ Xπs(x) and by construction of s<πs> also 〈x, x′〉 ∈ Xs<πs>.

⊇: Calling in mind the observation we did on page 185 about %-consistent particular
fission refinements, we can especially for πr make the following deductions: If x ∈ Xr

then there are exactly two elements in Xr<πr> with first component x, namely xπrS
and xπrF . Recall that xπrS is the 〈x, x′〉 ∈ Xr<πr> where x′ is that element of Xπr(x)

with label `πr(x)(x
′) = aSk whereto a equals `r(x) and k ∈ n(m). Similar for xπrF and

we have seen xπrS <r<πr> x
πr
F . So xπrF ∈ Xp′ implies xπrS ∈ Xp′ because Xp′ is ≤r<πr>-

downwards closed. It follows that if there is one xπrS in Xp′ for some x ∈ Xr without
the corresponding xπrF in Xp′ then the number of aSk ’s in r<πr>|Xp′ must be at
least one less than the number of aFk ’s where `r<πr>(xπrS ) = aSk . Hence r<πr>|Xp′
cannot be ballanced w.r.t. the fission pairs of % if there is one xπrS in Xp′ without
the corresponding xπrF . By the proviso of the lemma p′ = r<πr>|Xp′ is balanced so
we conclude there can be no such xπrS ’s.
We can now return to the question of Xs<πs> ⊆ Xp′. Suppose 〈x, x′〉 ∈ Xs<πs>. This
means x ∈ Y and x′ ∈ Xπs(x) = Xπr|Y (x) = Xπr(x). x ∈ Y implies by definition of Y
the existence of an x′′ such that 〈x, x′′〉 ∈ Xp′. If x′ = x′′ we are done immediately.
Now 〈x, x′′〉 ∈ Xp′ ⊆ Xr<πr> only if x ∈ Xr and x′′ ∈ Xπr(x), so when x′ 6= x′′

we get from x ∈ Xr and x′ ∈ Xπr(x), that either (〈x, x′〉 = xπrS , 〈x, x′′〉 = xπrF )
or (〈x, x′〉 = xπrF , 〈x, x′′〉 = xπrS ). As argued above we must have 〈x, x′〉 ∈ Xp′

in the former case because Xp′ is ≤r<πr>-downwards closed and in the latter also
〈x, x′〉 ∈ Xp′, but this time because Xp′ is balanced w.r.t. to the fission pairs of %.

Having proved Xp′ = Xs<πs> it is an easy matter to show r<πr>|Xp′ = s<πs> from
the definition of s, πs and Y . For instance w.r.t. labels we have: 〈x, x′〉 ∈ Xp′ implies
x ∈ Y so `r<πr>|X

p′
(〈x, x′〉) = `πr(x)(x

′) = `πr(x)|Y (x′) = `πs(x)(x
′) = `s<πs>(〈x, x′〉)—the

last equality from 〈x, x′〉 ∈ Xp′ = Xs<πs>.
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Collecting the facts we have p′ = s<πs> so of course p = p′ = [s<πs>]. Since πs is
%-consistent then also p = [s<πs>] ∈ s<%>. We have already shown s v r wherefore the
proof is completed. 2
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Index

Constants

#, 209
⊥, see least element
†, see extinct action
4, 168
5, 168
ff, 168
tt, 168
Ω, 204

Functions

A[[ ]], 206
AG[[ ]], ApG[[ ]], 222
Aor[[ ]], Apor[[ ]], 222
[[ ]]G, 158
[[ ]]or, 181
{%}, 174

Operations

[%], 172
‖, 149
⊕, 149
⊕-free, 153
;, 149
A2, 168

A3, 168

A
⋂

, 191
A
⋃

, 191
<πp>, see refinement, particular
<%>, see pomset, refinement of
·, see pomset, sequential composition
×, see pomset, parallel composition

Relations

A⇒G, 151, 152
>−→, 151, 152, 173, 228
> u−→, 234

A−→G, 152
−→G, 151
a−→G, 152
↪→, 131
∼=, see isomorphism of lpos
<∼>∼G, 153
<∼G, 152
<∼
c
G, 173

<∼G, 229
<∼=∼, 203
<∼, 203
≤G, 158
≤ or, 181
v, see pomset, prefix of
�, see smoother than
�, see syntactic preorder
�u, 233
|=G, 168, 191
|=sw

G , 194

Alphabetical

A∗, AG, Aor, 216, 217
Ap∗, A

p
G, A

p
or, 216, 217

A-expressive, 212
algebraic (a relation being ∼), 205
approximation, 205
assignment, 204, 205, 207, 220
an, see pomset, multisingleton
auto-parallelism, 190

Beh, 153
behaviours, 153
BL, 149
BL-refinement, 172
BLrecΩ (X), BLrecΩ , BLΩ, 218

C[ ], see contexts
characteristic context, 212
CL, 151
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co, 131
compact elements, 205
configurations, 151
contexts, 209
cop-set, 131
cpo, 205

DBL, 153
DCL, 153
∆, 130, 149
δ, 137
δ∗, 137
dual of a formula, 168

ENV, see environment
environment, 205
ε, see pomset, empty
experimenting, 149
expressions

closed, 204
syntactically finite, 204

expressive (a relation being ∼), 212
external computation step, 151
extinct action, 151

Fin, see syntactic finite approximations
Fin, see compact elements
finitary Σ-domain, 209
firing steps, 150
fission pairs, 186, 246
FV , see free variables

G, see tests, direct
ground set, 130

image finite, 141
internal computation step, 151
isomorphism of lpos, 131

k, see standard set

L, 190
`, 130
L, 168, 191
Lg, 168
LG, 167
Lr, 191
Lr

G, 192
labelled poset, 130

labelling function, 130
least element, 205
least fixpoint, 207
logic, 167

linear time, 167
LPO, 130
lpo, 130

M , see multiplicity function
M, see pomset, multiset
m, see multiplicity function
M∗,MG,Mor, 216
Mp

∗ ,M
p

G,M
p
or, 216

Mp, see minimal elements
mp, see pomset, multiplicity function of
maximal sequence of direct tests, 149, 152
minimal elements, 188
morphism of lpos, 130
multiplicity function, 132

n, see standard set
IN , 130
N, see pomset, multisigelton
N -free pomsets, 216

observer, 149
Ω, 204
overlapping, 186

P, see pomset
P( ), 141
P(P)-refinement, 141
Pand, see pomset, Pand-property of
PG, 157
PM⊆D, see pomset, property, multiset in-

duced
PN -free, see pomset, PN -free-property of
Por, see pomset, Por-property of
P∗, see pomset, property
Psw, 166, 190
Pw, 166
℘, 158
℘(%), 182
℘p, 223
p-reflecting, 186
partial order, 130
π, 138
pomset, 131
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PN -free-property of, 216
Pand-property of, 157
Por-Property of, 181
balanced w.r.t. to fission pairs, 246
canonic representative of, 167, 190
canonical association of, 158
empty, 132
finite, 132
multiplicity function of, 132
multiset, 132
multisingleton, 132
parallel composition, 134
prefix of, 138
property, 133

dot synthesizable, 146
hereditary, 144
multiset induced, 133

refinement of, 141
representative of, 131
sequential composition, 134
set, 132
sets of ∼s, 141
singleton, 132
sub∼, 131

precedence (of combinators), 149
propositionΩ, 229

RBL, 172
RBL, 176
RBLrecΩ (X), RBLrecΩ , RBLΩ, 218
RCL, 173
RCL, 176
RCLrecΩ (X), 228
rec x. , 203
refinement, 135, 141

combinator, 172
fission, 185
m-fission, 185
operator, 141
particular, 136

consistent, 141
syntactic substitution of, 174

restriction of lpo, 131
%, see BL-refinement
%, see P(P)-refinement
ρ, see syntactic substitution

S, see pomset, set

semiword, 166, 190
complement of, 193

Σ, see signature
σ, 174
Σ-domain, 205
Σ-precongruence, 211
signature, 204
smoother than, 137
standard set, 185
substitution lemma, 207
substitutive (a relation being ∼), 209
subsumed by, 137
syntactic finite approximations, 205
syntactic preorder, 205
syntactic substitution, 204

tests, 149
direct, 150

trace models, 155

unwinding, 232

variables, 204
free, 204

W , 133
word, 133, 147, 155

X, see variables
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