ISSN 0105-8517

Computer Support for Cooperative Design

Susanne Bgdker

Pelle Ehn

Jorgen Lindskov Knudsen
Morten Kyng

Kim Halskov Madsen

DAIMI PB - 262
August 1988

COMPUTER SCIENCE DEPARTMENT -
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK +

AARHUS UNIVERSITY Hinal %' l i

Telephone: +456 127188 Telex: 64767 aausci dk

H ]
S
I




COMPUTER SUPPORT FOR
COOPERATIVE DESIGN*

Susanne Bgdker Pelle Ehn
Jorgen Lindskov Knudsen Kim Halskov Madsen
Morten Kyng
Computer Science Department, Department of Information and Media Science,
Aarhus University, Ny Munkegade 116, Aarhus University, Niels Juelsgade 84,
DK-8000 Aarhus C, Denmark. DK-8200 Aarhus N, Denmark.
Phone: +45 6 12 71 88. Phone: +45 6 13 67 11.
E-mail: bodker@daimi.dk, jlk@daimi.dk, E-mail: ehn@daimi.dk, halskov@daimi.dk.
mkyng@daimi.dk.
ABSTRACT

Computer support for design as cooperative work is the subject of our discus-
sion in the context of our research program on Computer Support in Coopera-
tive Design and Communication. We outline our theoretical perspective on de-
sign as cooperative work, and we exemplify our approach with reflections
from a project on computer support for envisionment in design — the APLEX
and its use. We see envisionment facilities as support for both experiments
with and communication about the future use situation. As a background we
sketch the historical roots of our program — the Scandinavian collective re-
source approach to design and use of computer artifacts, and make some criti-
cal reflections on the rationality of computer support for cooperative work.

INTRODUCTION

Design of computer applications and cooperative work will be discussed in two
different ways. First we look at design as a process which may create the con-
ditions for cooperation in use. Secondly, we look at the design process itself as
one kind of cooperative work. To do so we identify and discuss the ideal that
has become dominant in understanding cooperative work in and around the
CSCW conferences: The small research group of the 1980s. Rooted in the Scan-
dinavian tradition of designing in projects together with trade unions, we dis-
cuss some alternatives to the ruling ideal. We emphasize that it is important
that designers of computer support for cooperative work do not just impose
their own understanding or ideal of cooperative work onto other groups in

* Presented at the Second Conference on Computer-Supported Cooperative Work
(CSCW'88), Portland, Oregon, September 1988.




other domains. Instead of heading for some ideal which may be more suited
for the cooperation of researchers than for that of the users, we suggest that
design is understood as a process which can help identifying and emphasizing
future cooperation among the users.

Moreover, designers and users need tools and techniques to facilitate design
as a cooperative process. We present our research program [4], in particular a
part of it concerning computer support for cooperation among users and pro-
fessional designers. Since design of computer support is design of the condi-
tions for the future work situations of the users, these conditions need to be de-
signed with concern for the practice and cooperation of the involved groups.
We argue that an active participation of users in design is necessary to deal
with this.

To be able to utilize the practical knowledge of the users and to be able to
consider not only describable aspects of the computer support and future work
situations, we advocate design by doing: A process of envisionment where the
users can experience the future: Working with the (simulated) application. We
present a computer-based object-oriented environment, APLEX, which is in-
tended to support such cooperative design among users and professional de-
signers. Finally we discuss some of the technical challenges deriving from the
design of APLEX.

Hence, the paper start out with a broad introduction to our social and an-
thropological perspective on cooperative work, then focus on the design pro-
cess as cooperative work, and finally zooms in on our more technical efforts to
design computer support for this situation. In a concluding example we discuss
the relations between these different levels of understanding computer support
for cooperative work.

To set the stage, we will start out by making some critical reflections of the
rationality of computer support for cooperative work.

RATIONALITY OF COOPERATIVE WORK

Briefly outlining the ruling ideal, we see a tendency to define the ideal for
cooperative work as a small group of equally qualified people working to-
gether with very little managerial guidance or intervention. In other words,
the ideal for a small research group in the 1980s.

One of the problems with the small research group ideal is that it is an ahis-
torical ideal. Conditions for scientific work have changed dramatically in this
century. Researchers have been forced into large project teams where the out-
come is partly determined on beforehand, and is to be achieved under great
time pressure. The cooperative ideal seems to have developed in the same pe-
riod of time as a way of preserving some of the freedom of the "real” scientist,
who was before a creative loner in his study. The ideal of cooperative research
work is something new, and it may change again, depending on the develop-
ment of the conditions for research.



Few researchers have explicitly defined cooperative work, and those who do
often base their definition on sharing of tools, materials and the like [14, 25,
26]. Is shared instruments a precondition for cooperative work, and does it
make a difference if we talk about real-time sharing or sharing of a tool-box?
Can office workers only work cooperatively if they also share typewriter, pa-
per and pens? It is claimed that cooperation means no specialization or division
of labor. As an example of the opposite, consider a woman giving birth to her
child aided by a midwife, a nurse, and possibly a doctor. Specialization and
division of labour is obvious, and at the same time it is definitely an example of
cooperative work.

The definitions typically focus on cooperative work in general as an ideal,
decontextualized from history, society and situation. The emphasis is on use of
artifacts and materials, on communication and coordination of activities in
general. We share this ideal with great sympathy. We think, however, that it
is important to go beyond this abstract level, trying to understand computer
support for cooperative work in a historical and social context — to understand
cooperative work in practice.

By practice we refer to human everyday practical activity. In practice we
produce the world. Both the world of objects and our knowledge about this
world. Practice is both action and reflection. But practice is also a social and
historical activity. As such it is being produced cooperatively with others, be-
ing-in-the-world. To share practice is also to share understanding of the world
with others. However, this production of the world and our understanding of
it takes place in an already existing world. It is the product of former practice.
Hence, practice has to be understood socially: as our producing and reproduc-
ing social processes and structures as well as our being the product of them.

Rationality

The practical "reality” for cooperative work is often far from as rational and
democratic as seems to be presumed in the "research group ideal”. To get to a
somewhat different conception, we will give two examples of totally different
ways of looking at cooperation: care rationality — the "motherly" way of coop-
eration; and the rationality of solidarity — cooperation in the workers' collec-
tive. We do not introduce these examples to say that THEY are better ways of
looking at cooperation than the research group ideal, but they definitely deal
with communities where cooperation means something different.

Care rationality
In her book, Caring. A Feminine Approach To Ethics & Moral Education
[20], Nel Noddings discusses caring as a philosophical alternative to the ruling
ideal — "the father's voice" — the rational model, which is based on hierarchical
thinking and abstract categories such as fairness and justice.

A person cares about somebody by taking on this person's situation, based on
her former experiences with caring. Basically, we can only care about some-
body because we, ourselves, have been exposed to the full-fledged experience




of being cared for at some point of time in our lives. The caring relation is, in
other words, not a relation between equals, and we cannot just decide to care
about each other as an explicit or implicit commitment.

The caring relation is a rather complicated one. The "one-caring" starts to
care and determines how to act, not from an abstract categorization of different
types of needs, but from making specific to herself the situation of the cared-
for-to-be, and trying out that situation. In other words the rationality of caring
relates to situations, whereas traditional, scientific, "male" rationality relates to
abstract categories.

The main points which challenge our understanding of cooperative work are,
first of all, that we deal with relations between people, which are mutual but
not on equal terms. The degree of freedom to act, etc., is very different on the
two sides. Secondly, commitment to participate in a caring relation from the
one-caring's side is not sufficient. To be able to take on the role as the one-
caring, the person must herself have been cared-for. Thirdly, the arationality
and situation dependence of the caring relation, and the resolution of unre-
solved situations by prototypical investigations: the one-caring investigates
prototypical situations based on the situation of the cared-for and tries out these
prototypical situations — "how would I like it to be if my girl was in this situa-
tion...7?"

Rationality of the workers” collective

The sociologist Sverre Lysgaard has analyzed how factory workers together
form a workers’ collective; a support and protection mechanism against the
ever ongoing exploitation by the managerial technical/economical system [18].
To Lysgaard, the workers' collective is a result of the tension between the
individual on the one hand and the technical and economical exploitation on the
other hand.

In a factory we would normally not call work cooperative. What Lysgaard
describes is, however, a strong informal system which enable the workers to
act together, instead of as out-standing and vulnerable individuals. The norms
and values of the workers' collective become a buffer between the individual
worker on the one hand, and the technical/economical system on the other.
The conditions for this collective are not what the small research group ideal
says: a multi-person tasks aided by technology, work done in an informal, nor-
mally flat organization, relatively autonomous. Rather it is determined by a
complicated, dialectic relation with an inexorable, formal, hierarchical organi-
zation.

Different rationalities and cooperative work

Where the discussions about cooperation based on the small research group
ideal have adapted "the father's voice" means-end rationality, the workers' col-
lective represents a case of a different kind of rationality — the rationality of
solidarity. This is still bound to contracts or commitments whereas the care
rationality is an example of a kind of rationality which is not as directly bound



to commitment — the commitments can only be seen over time, as one person
carries on the caring-for to another person.

Our point is that we do not need to see research work as an ideal for
cooperative work to conduct a discussion of computer support for cooperative
work. Rather we need to realize that there are many other ways of conducting
cooperative work, and that these ways exists under a wide range of conditions;
political, economical, gender-based, etc.

Cooperative work is many-folded and domain dependent. But still we be-
lieve in cooperative work, and we want to support situations of cooperative
work. To build or introduce computer support for cooperative work is a pro-
cess of change; not only of technology but also of the work place as such.
Much in line with the Scandinavian collective resource approach we suggest
that in trying to understand computer support for cooperative work we should
supplement the focus on the "product” with a concern for the design process,
including also the specific work practice and setting.

THE COLLECTIVE RESOURCE APPROACH

The collective resource approach in Scandinavia constitutes a major part of our
background. It is based on two design ideals: The first is industrial democracy,
the attempt to extend political democracy by also democratizing the work place
— the social life of production inside the factory gates and office walls. The
second is quality of work and product, the attempt to design skill-enhancing
tools and environments for the production of highly useful quality products and
services.

Both design ideals are of importance in the context of cooperative design.
To have workers and designers cooperatively design skill-enhancing environ-
ments for users is a very direct way of having the workers influence their own
work situation. Hereby, cooperative design contribute to industrial democracy.

Cooperation with the Trade Unions: The Scandinavian Projects

Practice along the lines of the collective resource approach has developed in
Scandinavia during more than 15 years [9, 10]. In research as well as in de-
sign, the approach includes the workers who ultimately will be exposed to its
results. The process was initiated in 1970 by the Norwegian Iron and Metal
Workers Union (NJMF), which in cooperation with researchers from the Nor-
wegian Computing Center embarked on a research project on planning, control
and computerization from a trade union perspective. It was decided, as part of
the project, to try out the work practices that the people in the project believed
would become commonplace in the future: that the local unions themselves in-
vestigate their important problems at the work place and in the relation be-
tween the work place and the local community, and that in this work they use
external consultants as well as internal consultants and other resources provided
by the company.



The NIMF project inspired several new research projects throughout Scandi-
navia. In Sweden the DEMOS project on trade unions, industrial democracy and
computers started in 1975 [8]. A parallel project in Denmark was the DUE
project on democracy, education and computer-based systems [17].

Although growing, the extent and impact of these activities did not meet the
initial expectations. It seemed that one could only influence the introduction of
the technology, the training, and the organization of work to a certain degree.
From a union perspective, important aspects like the opportunity to further de-
velop skill and increase influence on work organization were limited. Social
constraints, especially concerning power and resources, had been un-
derestimated, and in addition the existing technology constituted significant
limits to the feasibility of finding alternative local solutions which were desir-
able from a trade union perspective.

As an attempt to broaden the scope of the available technology, we decided
to try to supplement the existing elements of the collective resource approach
with union based efforts to design new technology. The main idea of the first
projects, to support democratization of the design process, was complemented
by the idea of designing tools and environments for skilled work as well as for
quality products and services. To try out the ideas in practice, the UTOPIA
project was started in 1981 in cooperation between the Nordic Graphic Work-
ers' Union and researchers in Sweden and Denmark with experiences from the
first generation' of collective resource projects [2].

The position we took in NJMF, DEMOS, DUE, UTOPIA and other collective re-
source projects was that decentralization of decision-making and a participative
approach to the design process are not sufficient. Instead our position goes
back to the different interests of management and workers concerning indus-
trial democracy.

Conflicts and emancipation

Hence, we rejected the harmony view of organizations, according to which
conflicts in an organization are regarded as pseudo-conflicts to be dissolved by
good analysis and increased communication. Consequently we also rejected an
understanding of design as fundamentally a rational decision-making process
based on common goals. Instead our research was based on a conflict view of
industrial organizations in our society. Within a conflict view it does make a
difference whether you design cooperatively with management or with work-
ers. In the interest of emancipation, we deliberately made the choice of work-
ing together with workers and their organizations, supporting the development
of their resources for a change towards democracy at work. We found it nec-
essary to identify ourselves with the "we-feeling” of the workers' collective,
rather than with the overall "we-feeling" of modern management which focuses
on gaining more productivity out of the work force. In short: Trade unions
were seen as organizations with a structure that was problematic when
functioning as vehicles for designing for democracy at work, at the same time




they were seen as the only social force that in practice could be a carrier of this
ideal.

Human Centered Design

The political reason for involving end-users in the design process, and for em-
phasizing their qualifications and participation as resources for democratic
control and change is only one side of the coin. The other is the role of skill
and participation in design as a creative and communicative process.

This complementary concern has grown out of our dissatisfaction with tra-
ditional theories and methods for systems design — not only with how systems
design has been politically applied to deskill workers, but more fundamentally
with the theoretical reduction of skills to what can be formally described.
Hence, one can say that the critique of the political rationality of the design
process points to a critique of the scientific rationality of methods for systems
description.

Our approach to cooperative design include users in a double sense. We
claim the importance of rethinking the design process to include structures
through which ordinary people at their work place more democratically can
promote their own interests. We also claim the importance of rethinking the
use of descriptions in design, and of developing new design methods that enable
users of new or changed computer artifacts to anticipate their future use situa-
tion, and to express all their practical competence in designing their future.

This approach is a challenge to rethink traditional understanding of the pro-
cess of design and its relation to the use of computers in working life. How-
ever, it is not only a strategy to include users and their trade union activities in
the design process, but more fundamentally to include a cultural and anthro-
pological understanding of human design and use of artifacts, to rethink the
dominating objectivistic and rationalistic conception of design. At least in this
sense, the collective resource approach reaches beyond the borders of Scandi-
navia.

THE OBJECT-ORIENTED PERSPECTIVE

The collective resource approach is one part of our background. The other
major part - the object-oriented perspective on programming - can be traced
back to the Norwegian Computing Center as well. Simula67 was initially
developed as a simulation language, but its object-oriented approach was found
useful as a general programming perspective. Since then there have been ma-
jor research efforts in Scandinavia within various aspects of object-oriented
programming, including also the idea of languages rooted in the professions of
the (non-computer professional) users. It is outside the scope of this paper to
discuss our view on object-oriented programming further, but we will point
out that our way of thinking about programs and programming is strongly in-
fluenced by this tradition. Further discussion can be found in [15].




UNDERSTANDING DESIGN AND USE OF COMPUTER ARTIFACTS

Given this background we will now turn to our philosophical understanding of
design. We focus on understanding of the role of computer applications in use,
on the phenomenology of design, and on design as language-games, rather than
on design as consciously planned and executed processes.

An understanding of the role of a computer application in use is important
for design. Our inspiration for a new approach to design, based on an under-
standing of the use of artifacts in human work activity, comes from many fields
of research. They include the human activity theory of A. N. Leontjew [3],
the language-game approach by L. Wittgenstein [10], and recent contributions
to the theory of design and computer artifacts by H. and S. Dreyfus [7] and T.
Winograd and F. Flores [29].

With these approaches, we take as our point of departure what people do
with computers in their daily work, how they cooperate with each other by
means of computers, and how this cooperation can be enhanced. The basis for
design is involved, practical use and understanding, rather than detached re-
flection. "Hands-on" experiences come into focus. We comprehend design of
computer artifacts as concerned social and historical activity in which these ar-
tifacts and their use are anticipated. An activity and form of knowledge that is
both planned and creative, and that deals with the contradiction between tradi-
tion and change.

Design and practical experience

The future use situation is the origin of design, and we design with this situa-
tion in mind. To design with the future use activity in mind also means to start
out from the present practice of the future users. It is through their experi-
ences that the need for design has arisen, and it is their practice that is to be
applied and changed in the future use activity.

Some aspects of practice can be made explicit. In design, they can be for-
mally represented in systems descriptions and requirement specifications. But
there are other aspects of practice which we can learn only through practical
experience. We call these aspects practical. The practical aspects are impor-
tant in design exactly because they are what characterize professional and skill-
ful use of an artifact, as opposed to the use by a novice who basically follows
explicit rules.

Design and phenomenology

As mentioned above, our approach is inspired by the one taken by Winograd
[29] and Dreyfus [7]. With their phenomenological framework, the point of
departure in design is that the different participants understand the situation
they come from. They are used to act in situations of "normal resolution".
This goes for users as well as designers. The normal resolution or under-
standing includes the blindness created by the tradition they come from. The
design process is characterized by a breakdown of this understanding, by which
a situation of irresolution is created. Design is resolving these situations of ir-




resolution, based on commitments between the participants. This is neither
objective problem solving nor rationalistic decision making. It is concerned
human activity, where different traditions and backgrounds meet.

The concept of breakdown is fundamental to design. Breakdown is both de-
sirable and undesirable. On the one hand it is necessary to break down the ev-
eryday understanding and use within a specific tradition to create new know-
ledge and new designs. Breakdown of our understanding of a well known situ-
ation is the opening to new knowledge and eventually an understanding of
something new. On the other hand, design which is not based on the under-
standing and use within a tradition — the users' practical skills — are likely to
fail, because knowledge "embedded" in the tradition is lost. To be able to deal
with this contradiction between involved understanding of the artifact in use
and detached reflection on the artifact and the use situation is fundamental to
design.

Design as a language-game
Our way of understanding prototyping, mock-ups, and experimental methods
in design is also heavily influenced by the ordinary language philosophy of
Wittgenstein. Following Wittgenstein, we think of design and use activities as
language-games that people play: we learn to participate, interact and commu-
nicate in games. We use our ordinary language, and we acquire competence by
learning in practice. This means that we view language as action rather than
language as description as fundamental.

Designers are involved in changing computer artifacts and the way people
use them. Hence, the language-game of design is one that changes the rules for
another language-game — that of use of the artifacts.

Playing the game of design

If designers and users share the same form of life it will be possible to over-
come the gap between the different language-games. It will at least in principle
be possible to develop the practice of design so that there is enough family re-
semblance between a specific language-game of design and the language-games
in which the design of the computer artifact is intervening.

The language-games played in design can be viewed both from the point-of-
view of the users and of the designers. We can focus on design as a language-
game in which the users learn about possibilities and constraints of including
new computer artifacts in their ordinary language-games. The designers’
practical knowledge will primarily be expressed as the ability to construct spe-
cific language-games of design in such a way that the users can develop their
reflective and practical knowledge of future use by participating in design pro-
cesses. However, in order to set up these kinds of language-games the de-
signers have to learn from the users. To possess the competence involved in
using a professional language requires a lot of learning within that practice.

The users can, in an involved and influential way, participate in the lan-
guage-game of design, when the methods applied give their design activities a




family resemblance to the language-games they play in ordinary use situations.
In order to stress this important involvement of the users in the design process,
we often refer to the users participating in a design process as lay designers.
They have expertise within the work domain, but no particular expertise as de-
signers.

According to Wittgenstein [30], language-games are also characterized by
how we play and make up the rules as we go along. And there are even games
where we alter them as we go along. This is in our view a good characteri-
zation of the language-games of design.

Descriptions and models in design

In understanding design as language-games, systems descriptions are seen as
speech acts we have learned within a specific language-game. If they are good,
it is because they are good "moves" within that game. As such they can create
breakdowns of understanding as well as help avoid them, depending on what
kind of moves they are within the game.

To use descriptions in design is to participate in the playing of a language-
game. This is the language-game of anticipating new or changed computer ar-
tifacts and use situations. What is created are artifacts that we can reflect upon,
and some times get "hands-on" involved practical experience from (e.g. by us-
ing a prototype). Especially artifacts for involved experience as a basis for
later reflections are fundamental to our approach.

New design methods?
In summary, it is our position that

* a new design approach must take the specific use activity as its point of

departure;

 focus on language as action rather than as description; and that

« users must be allowed to examine the artifact being designed through

hands-on experiences.

What is needed most urgently at the moment is not better linguistic notations
for more or less formal descriptions of the functionality of a system, but de-
scriptions that are reminders of use of the intended computer artifact. This
points in the direction of description methods as support for concerned in-
volvement, rather than correct description. Such support may be achieved by
the use of scenarios, prototypes, mock-ups etc. This is design as a language-
game of doing, learning and playing.

However, few traditional computer-based design tools are flexible enough to
support this kind of design. Traditional prototyping methods exhibit a poten-
tial conflict between accessibility (not too much computing competence and
programming effort should be needed to use them), and flexibility, both in
terms of how the tools can be applied, and in terms of which products can be
designed.

10




With this background and theoretical perspective we now turn to our current
research program on computer support in cooperative design and communica-
tion.

THE RESEARCH PROGRAM:
COMPUTER SUPPORT IN COOPERATIVE DESIGN AND COMMUNICATION

The research program started in May 1987. It is a long term effort planned
jointly by the Computer Science Department and the Department of Informa-
tion and Media Science at Aarhus University [4]. One aspect of the program
focus on computer support for experimental design and for communication.
The other aspect of the program focuses on the language usage of design and
use of computer systems, and the way it relates to the work processes of which
it is a part. The purposes are:

« to develop exploratory and object-oriented programming methods into
something which, in combination with other design methods, can be ap-
plied in practical design;

+ to do research into the possibilities of making better user interface design,
by means of different theoretical frameworks, and better computer sup-
port (such as pluggable software);

* to investigate the possibilities of creating better computer support for co-
operative work in small groups.

» to provide empirical knowledge of the interplay between the computer
medium and the professional communication that takes place through it, or
is motivated by it, and

* to investigate the possibilities for exploiting this knowledge as a basis for
design.

As a summary we characterize the theoretical perspective of the program with
the following stipulations and reflections:
» [In designing a computer application, conditions for the whole use situation
are implicitly or explicitly designed as well.
In design of computer support for cooperative work we have to be able to
understand the cooperative work the application is to be used for. This
can only be done in cooperation with experienced users acting as lay
designers.
» Users and designers often have different backgrounds, different profes-
sional languages, and are used to different language-games.
The construction of language-games unique to the specific design situation,
but with family resemblance with the lay designers normal professional
language-games, is an important aspect of cooperative design. In this way,
cooperative design becomes a process of mutual learning.
* Normally, a computer application is used in a multi-lingual environment,
comprising the technical support staff and (possibly several) user profes-
sions.

11




All parties can make legitimate, but sometimes contradictory, demands to
the computer application. To design the computer application in such a
way that it takes the multi-linguistic environment into account is a chal-
lenge in cooperative design.

» The needs and demands of the prospective users are essential to good de-

sign, but are hard to express before the future situation has been experi-
enced.
In design of computer support for cooperative work this obstacle can be
surmounted by using prototypes, mock-ups, scenarios, etc. which make it
possible to get experiences, not only by reflection, but also by involvement
in possible future use situations and through use of possible future com-
puter applications.

» Professional users tend to be rather traditional in their views on how to
organize their work and on the potential computer applications for it.
Methods in design have to relate to both tradition and change, and espe-
cially to the interplay between the two positions. Computer applications
are often understood metaphorically, and metaphors can be used in design
to support the interplay between tradition and change.

We now turn to our own considerations in a project on a computer-based arti-
fact for early envisionment in cooperation between professional designers and
lay designers. First we discuss some dimensions of the design situation, we
then turn to APLEX, a computer-based environment for cooperative design.

DIMENSIONS OF THE DESIGN SITUATION

As outlined above, we consider the role of the lay designers as a key issue.
End-user involvement is needed but to be fruitful, the design situation must
have family-resemblance with their work situation and allow them to get
"hands on" experiences in situations resembling the (future) work. We call
what is demonstrated or examined in the design situation a prototype. In doing
this we are hopefully not to much in conflict with emerging terminology in the
area.

In understanding the design situation we must consider the people involved.
Are the designers professionals, lay designers, or a combination? Today, the
only active designers are professionals. End-users are at best only competent
evaluators. Many 4th generation tools advocate that lay designers can design
their future computer applications themselves, but this is rarely seen in real
projects. Most often we have seen the professional designers as the ones
suggesting changes. The users accept or reject, but do not take the initiative to
make changes. Furthermore, situations where only lay designers with one type
of use background participate differ from situations where more user groups
are active. The computer professionals in those situations often take on the re-
sponsibility of transferring opinions and choices from one group to the other.

12




We must also consider different aspects of the design process.

One aspect is that of demonstration versus use. In demonstration the lay de-
signer watches the professional operating the prototype. By use we mean that
the lay designer try out the prototype in the (simulated) work activity. In case
of modification the prototype is changed during a session, whereas in the case
of exploration the prototype is examined without change. Most practical situa-
tions deal only with exploring. This relates to demonstration: a demonstration,
which is driven by the professional designers, often resembles a film or video
with no possibility of stopping or going behind the screen.

There is also a difference between laboratory and field (or on location)
evaluation: the difference between evaluation of prototypes in an artificial set-
ting and their actual use in the work activity. When we talk about the early
stages of the process where envisionment is the main purpose, this is mostly
done as laboratory evaluation, or in fact often without considerations for an
explicit use setting. Prototyping by versioning can be seen as field evaluation,
but at a very late stage of the design process. Controlled experiment where the
aspects to be tried out are settled in advance differs from exploratory experi-
ment. Outside the human factors research, there seems to be little practical or
theoretical understanding of the needs or methods for setting up controlled ex-
periments. At the same time, many of the human factors methods are too lim-
ited when it comes to the rather complex situations of human work. Further-
more, many approaches remain analytical and do not support design based on
the evaluation.

Envisionment may have the character of brain storm, outline of alternatives
or test of a single solution followed by minor changes. Presently, computer
support for brain storming is seldom applied in practice. Often only one basic
architecture is prototyped, and then a few different screen layouts, report for-
mats etc. are tested.

Each of these dimensions related to the process are of relevance when creat-
ing a cooperative design situation which stimulate active lay designers involve-
ment. For instance, compare a situation where the professional designer in a
laboratory demonstrates a prototype with a situation where the lay designer on
location tries out various alternatives as part of a brain storming process.

We now turn to some more technical aspects of computer support for design in
general.

Depending on the degree of integration with the computer resources in the
organization, an evaluation in real work situations is made easier or harder.
Furthermore, if there is a large degree of integration, all the designers, in-
cluding lay designers, have a possibility of knowing the computers on before-
hand.

Access to other design tools and ways of combining various design tools de-
termines the extent to which envisionment have to be done with only one tool
or whether it is possible to apply several supplementary tools simultaneously.

13




Is it possible to reuse and modify modules from existing applications or
prototypes? Access to a component library helps the designers to rapidly and
easily get from one prototype to another. For instance, is it possible to reuse
an existing database and build or experiment with different interfaces? To what
extent is it possible to experiment with new types of hardware?

The degree of incrementability says something about how easily prototypes
can be changed: How is it possible to intervene into a prototype in the design
session and make the next version running?

Finally, but not of least importance, we draw to the attention the conditions
under which the design takes place. The resources available in terms of time
for the designers, equipment available and qualifications of the designers are
essential. Moreover, the authority of the designers to make decisions about the
design process and product is important too.

Based on our theoretical perspective we can conclude that:

 These users should be able to explore and to modify in the field.

+ The construction of prototypes should be so effective, and the prototypes
so flexible, that different prototypes in fact will be constructed and thus
different alternatives tried out.

 The prototypes developed should be based on a suitable spectrum of dif-
ferent computer support. They should be integrated with other systems in
the work situation in such a way that the future work situation may be ex-
perienced.

» The organizational setting and the resource situation of the designers
should allow them to spend the time needed to develop design skills di-
rected towards the specific area of use, and to make decisions based
thereon.

This is the design setting for which we need computer support. Unfortunately
existing computer support gives rise to systems that are rather closed, with
very little support for multi-user applications, for multiple activities, for reuse
of existing applications, or for integration with existing applications or newly
created applications. Hence, the challenge to design the APLEX.

COMPUTER SUPPORT FOR ENVISIONMENT — APLEX

The design environment APLEX is a means for cooperative design. It is in-
tended to support involved communication among professional and lay design-
ers about future use situations. This communication is based on practical
hands-on and organizational experience using APLEX. We see the future design
situation using APLEX as being a cooperative design situation between one or
more professional designers and one or more lay designers. The different de-
signers are directly involved in the design process and APLEX must be able to
respond to the needs of the whole group. This implies that it should be possible
for both the professional and for the lay designers to conduct their own ex-

14




periments using APLEX. Furthermore, it should be possible to engage the de-
signers in intensive design work where the different designers are conducting a
mutual experiment using APLEX.

This implies that APLEX must be able to support envisionment ranging from
mock-ups over prototyping to application construction/integration, using vari-
ous techniques such as "intelligent" slide shows, guided tours, and exploratory
programming.

On the design of APLEX
APLEX will not primarily aim at implementing the computer application which
is being constructed. Instead we will experiment with development systems
where the prototypes do not need to be running versions of the future com-
puter program, as well as with systems for actual application development. It
is one of the aims of this project to develop a designer's workbench, where
both possibilities exist as supplementary tools for the designers. The flexibility
of APLEX should allow for evaluation of various types of user interfaces, vari-
ous interaction styles, different functionalities as well as various target applica-
tions. APLEX should include generalizations of the facilities that 4th generation
tools provide. Furthermore, we will examine the use of various kinds of sim-
ulation and visualization techniques. APLEX should also include possibilities of
simulating different, specific computer workstations and other types of tech-
nology.

Technically, APLEX presents several research challenges. First, it must offer
a comprehensive and device independent interface framework. Secondly, it
tries to expand the capabilities of prototype systems outside the limits of tradi-
tional implementability (parts of the functionality and the interface might be
simulated by means of video-disks, "dummy" screen images, or human be-
ings). Thirdly, it explores the capabilities of strongly interdependent interfaces
on different workstations connected through high-capacity networks. Fourthly,
it explores the relationship between the application and the underlying interface
framework through investigation of the technical implications of this concept.
To achieve these goal we find that full support of the I3 concept (Incremental,
Integrated, Interactive) is necessary. Furthermore, the design of APLEX will be
based on many aspects of traditional workstation environments.

Cooperative

From the point-of-view of cooperation, the issue of robustness versus flexibil-
ity is important. Often it is the professional designers who need the flexibility
whereas it is the lay designers that need the robustness in order to have any re-
alism in their examinations.

In case of demonstration or use in restricted situations where the designers
actually sit together and examine the prototype, the "side-tracking" may be
avoided by the interference of the professional designer, but in situations where
the lay designers are "on their own" this is not the case. Such errors may cre-
ate breakdowns which cannot be interpreted in the use situation. Hence, they

15




cannot contribute to the development of the lay designer's understanding of, or
unreflected action in this use situation.

Furthermore, cooperation entails that creation of multi-user applications is
an important aspect of APLEX, and that even in the design situation multi-per-
son use of APLEX is needed. The multi-user situations create a need to let
APLEX include network facilities as well as facilities for sharing of objects.

Multi-person use results furthermore in requirements to documentation and
communication support in the design situations. A shared hypermedia is one
exiting idea which is, as yet, unexplored. Hypertext technology [6] seems to be
an obvious idea for a way of structuring this documentation, because it allows
reference pointers among different parts of the text, and even of the prototype.
This possibility is primarily intended for reflection in breakdown situations
where the "illusion" of being in the future world breaks down for the users.

Incremental

We have described the need for rapid modification of the substrate being cre-
ated. One important means for achieving the capability for rapid modification
is obtained by a high degree of incrementability. Several systems contain such
high degree of incrementability, most notable the various Lisp-systems [24] and
the Smalltalk-80 system [11]. However, these systems have shown that we face
an overall dilemma - the contradiction between flexibility and robustness. In-
crementability is obtained by having very flexible programming languages that
allow for dynamic binding. At the same time, such dynamic substrates pose
serious problems in terms of security. This implies that errors occurring dur-
ing use are usually indicated at a very low level in the system, which make it
very difficult for a lay designer to interpret the actual cause of the error. It
should be possible to construct substrates that are consistent, and where errors
messages etc. can be interpreted within the substrate.

We also need a powerful debugger (in the line of the Smalltalk-80 debugger)
making it possible to cancel erroneous computations, ignore errors, make mi-
nor local modifications in order to make progress possible, or follow a chain
of activities leading to the erroneous state. The debugger must be able to grant
specific capabilities temporarily to an object in order to allow for further ex-
amination. We find, however, that this ability must be very explicit in order to
ensure that the designer is aware of the change of capabilities of the object.
Thus, APLEX should support the manipulation of capabilities of the individual
objects.

The above discussion of robustness leads to our view of incrementability.
APLEX should be incremental in the sense that it should be possible to modify
objects in a substrate without restructuring the whole substrate.

Integrated

By integrated is meant that APLEX is well-integrated with the various other ap-
plications in the organization, and that substrates created with APLEX them-
selves can be integrated with other substrates. The guiding metaphors of

16




integration in APLEX will be: "access to anything anytime" and "living within
the full environment”. The metaphor of total access is of course relative to the
present capabilities in the system as discussed above. Furthermore, APLEX
must keep track of the relations between the objects, and their corresponding
source, documentation, help facilities, tutorials, as well as their relations with
other objects in the environment.

Having a design tool isolated from the other computer facilities in the
organization will give rise to numerous problems. It is therefore important
that facilities for connecting APLEX to the existing computer resources are de-
signed to overcome those problems.

The substrates in APLEX will be organized in easy-to-access libraries (or
databases) and structured with re-usability and pluggability as some of the most
important design strategies. We will extend this view to hardware, such that
hardware components in APLEX will be considered similar to software compo-
nents (pluggable hardware components). Thus allowing for experimentation
with alternative hardware devices in the design process and for experiments
with advanced hardware, e.g. video.

Besides being well-integrated with itself, APLEX must be well-integrated with
other design tools. It should e.g. be possible to use a sequence of screen images
made in HyperCard™ [13] or VideoWorks™ [28].

Interactive

Without the need for any arguments, APLEX must contain extensive graphical
capabilities for creating highly interactive interfaces both to existing computer
facilities, and to APLEX applications. Since we are envisioning APLEX being
used for experimenting with the development of applications to be realized on
specific computers, we intend, within APLEX, to create simulations of various
existing interactive systems, such as the Macintosh desktop [12], the Smalltalk-
80 and the Microsoft window systems. This will make it possible, in the design
situation, to experiment with the impact of imposing computer-specific con-
straints on the future application.

Further Design Issues
The above design space gives rise to further important issues, that will be ad-
dressed during the design of APLEX. These include:

Domain dependence: APLEX must support application domain specific sub-
strates. This makes it possible to make APLEX "grow" into application domains
slowly, and thereby make it possible to create more and more advanced sub-
strates within a specific application domain by creating more and more domain
specific substrates.

Enforcement versus conventions: Our main points of reference in the above
discussions were Smalltalk-80 on the one hand, and HyperCard on the other.
Very alike in some aspects, very different in others. A comparison of the two
easily leads to a discussion of what support for programming the prototype
designers need — do they need a specific number of different types of objects,

17



or is a flexible possibility for using and modifying examples of objects better?
In general this is a discussion of to what extent a certain style of use of APLEX
should be enforced by strict typing and syntax, and to what extent a more
flexible guiding of the user by examples, convention patterns, etc., works bet-
ter. At the moment we do not know, experiences from programming lan-
guages are ambiguous in this respect, and we hope to be able to try out differ-
ent ways of doing this.

Architectural Overview of APLEX

Throughout the development of APLEX we will experiment with object-oriented
design. One of the motivations for this is that object-oriented design principles
facilitate creation of what can be called pluggable software. That is, software
that is open—ended in the sense that a given substrate, created by means of ob-
ject-oriented design principles, is a substrate that in a future application can be
expanded and modified. We will hopefully benefit from this open-ended na-
ture in two ways: First, it will be a well-suited structure for the implementation
of the above mentioned components of APLEX, since they both internally and
externally are substrates that will be subject to expansion/modification during
the design process. Secondly, the strategy for combining substrates will benefit
from the use of object-oriented design principles [31]. As such, this part of the
project will also be an experiment in realistic application of object-oriented de-
sign principles. This leads to the need for a programming language supporting
object-oriented design principles. The language chosen is the Beta pro-
gramming language [16].

The architecture of the graphical interaction system of APLEX contains the
following three components:

Graphical library which is primarily concerned with supporting the con-
struction of graphical items. The graphical library is a toolbox with capabili-
ties like drawing (and manipulating) of such items. Presently, APLEX will be
designed using the page composition language PostScript as its graphical li-
brary [22].

Windowing environment which is primarily concerned with supporting the
sharing of the display by various applications running on a workstation, as well
as sharing of windows between workstations via a local area network. Within
each window, graphical capabilities may be supported, or each application is
responsible for utilizing the inside of each window. Presently, APLEX will be
designed utilizing the NeWS™ [19] window system.

User interface framework. The design of APLEX is a research effort in the
direction of creating a framework by which the interaction between the user
and the computer application can be envisioned. The capabilities of such a
framework are extensions of the capabilities of the windowing environment.
In addition to the capabilities of the windowing environment, the framework
contain capabilities for defining more fine-grained structures on the display by
defining graphical structures that are not windows, but more tightly connected
with the application. Examples of such structures are icons, buttons, menus,

18



and scroll bars. Furthermore, the framework is concerned with the definition,
distribution and handling of events, both hardware events (e.g. mouse move-
ment, keyboard events, etc.) and software events (e.g. window exposed, icon
selected, spreadsheet — cell selected). Our view on user interface framework is
inspired by the MVC concept in Smalltalk-80 [11]. The semantics of interac-
tive graphical communication are discussed further in [5].

It is important to stress that our view on user interface frameworks is not
part of a discussion in favor of separating the design of the interface from the
design of the functionality of the application. In fact, we find that such separa-
tion is neither possible nor feasible in general [27]. However, it is our aim to
create a set-up of pluggable components, some of which deal with the interac-
tion and some with the underlying components, e.g. databases.

Some applications may be constructed with more than one interface associ-
ated with it. There are several architectural reasons for this: Each interface
may, for instance, focus on specific aspects of the application, and the structure
of each interface is designed in order to ease the manipulation of these specific
aspects. These interfaces might all be active at the same time, and manipula-
tions of the application through one of the interfaces might influence the other
interfaces. Each interface defines a protocol that the application must support,
and the interfaces must be dynamically connected to the underlying compo-
nents. Furthermore, interfaces may utilize various predefined interface com-
ponents, such as buttons, scroll bars, or menus. Such a framework will allow
for rapid modifications of a prototype, as well as for design of different al-
ternative prototypes, some of which show different styles of interaction based
on the same underlying components.

The above structure is what we, with respect to user interfaces, mean by
pluggable components. The protocols define the slozs by which interfaces and
underlying components can be plugged together. In the design of APLEX, we
will examine the usage of object-oriented design principles in this area.

The underlying extensibility in object-oriented systems seems to be well
suited to pluggability. The design of APLEX will utilize this pluggability as the
fundamental architecture of the system. This implies that all components of
APLEX will be constructed as objects, including hardware components. In this
way, we will be able to simulate not yet constructed specialized hardware by
constructing a software simulation (software object) of that component and
conduct experiments. Furthermore, we will be able to experiment with differ-
ent hardware solutions to specific interaction problems by defining common
properties of types of hardware (e.g. pointing devices or picking devices) and
then select different actual devices (e.g. soft screen vs. mouse vs. tracker
ball). In the same way, it is possible to encapsulate the functional behavior of
external (to APLEX) software systems as objects in APLEX with a protocol,
modeling the functionality. Furthermore, we will be able to treat external re-
sources on equal terms with APLEX resources and experiment with using dif-
ferent external resources as alternatives in a design process.

19




Using APLEX

We would like to conclude our treatment of APLEX with a “Please try it!”. At
the moment, however, APLEX exists only as envisionment. We are now con-
ducting experiments, based on HyperCard, Smalltalk-80, NeWS and other sys-
tems in order to try out and look further into the ideas outlined above. We
have also initiated the construction of the first prototype of APLEX, while still
continuing to develop the conceptual framework underlying APLEX.

As a weak substitute for "hands-on" experience we make use of a fictious
example. The example is, however, firmly rooted in our empirical research
[3].

Imagine a project where a group of professional designers work together
with a group of office workers in a government institution to help these office
workers achieve new kinds of computer support for their work. The project is
managed by a steering committee with representation from management and
the employees. It is a basic idea of the project that the employees should, in
project groups, take part in designing the computer applications that they are to
use themselves. The specific case deals with the filing and retrieval system for
incoming and outgoing mail etc., the so-called Journal. The purpose of this
project is to find out how the Journal can be reorganized to be more efficient,
eventually by means of a computer application.

From the beginning, the group work with three different alternatives:

* a restructuring of the existing paper based Journal without the use of

computers.

* a restructuring of the paper files with computer support for retrieval of
documents and computer-based mail lists to inform the workers who draw
on the services of the journal in their daily work (case workers) about in-
coming mail.

+ a computer based Journal where all documents are scanned in upon arrival
in the Journal office, and with computer based retrieval and mail lists.

In the early meetings it is a major task to delimit the type of computer applica-
tion wanted from the three general solutions. Some of the important issues are
the organization of work — who should use the application and how?, what are
the hardware choices?, and how are they connected to the physical organization
of work? Depending on whether the documents are to be filed in a traditional
paper file or scanned into the computer, the women in the Journal office have
to conduct their work differently — the role of e.g. a photo copier would differ.
Much of the internal mail circulation would not be needed with the scanner
solution, i.e. the traditional communication patterns would be changed fun-
damentally.

In this situation, the professional designer initiate the discussions by building
two small demonstration prototypes by means of APLEX: scanner or no scan-
ner. Together with simple mock-up's supplementing the physical layout of the
future work-place, the prototypes are used to demonstrate to the group what
the possibilities and constraints of the alternatives would be. Maybe APLEX

20




doesn't really contain a pluggable scanner, in which case the designer uses im-
ages on a videodisk, made with a drawing program, just simulating the scan-
ning procedure. The main idea is to get a discussion about technical and orga-
nizational implications of the two different proposals.

In this situation, APLEX is a flexible environment for the professional
designers: it allows them to reuse parts from one prototype in constructing the
other; to make use of other design tools in building the prototypes, and to use
pluggable hardware devices.

Next we consider a situation where a professional designer and a group of
lay designers, women from the Journal office, sit down to find out exactly what
information should be filed, how it should be entered, what the screen images
should look like, and what interaction they want. Based on earlier talks with
the users and on the previous meetings, the professional designer has made a
first prototype. This prototype is merely a sequence of screen images, which
are based on the appearance of the mail lists presently used at the institution.
When necessary, information is added to the prototype. The discussion focuses
on the information needed — on the screen and in the files, and how much of
this should be entered by the office workers — and on the possible changes in
ways of cooperating. This is a situation where the designers are modifying the
prototype, simultaneously with the use of it. The component library is used to
look at different types of screen layouts and interaction styles: a direct manip-
ulation version, a form-filling one, etc.

At a later state, the prototype, which have been elaborated on by the in-
volved group, can be used in its real organizational setting. The prototype is
still running by means of APLEX, but now APLEX needs also to be hooked up to,
or running some of the other computer programs that are normally used in the
Journal office, e.g. a word processing program. For a period of time, the
Journal office tries out their design in their daily work. Some changes are
made in the way the system is used. Problems still come up about the informa-
tion needed to file and retrieve the documents, but also about the speed of the
application. The situation is one where the robustness of the prototype is im-
portant since the professional designers, although present, cannot help each
user all the time.

SUMMING UP

We have seen examples of the use of APLEX in different situations in a design
process. This process is one in which the participants could make use of their
different backgrounds as office workers or as designers in playing the lan-
guage-game of design. The APLEX prototypes have made it possible, under
different conditions, for the office workers to experience their future work
situation. The APLEX is an environment that facilitates such language-games.
We do not see APLEX as the only way of doing this. Rather, APLEX ought to be
one of many more or less integrated tools and techniques belonging to the
practice of the professional designer.

21




The design process is very important for the future work situation of the
users. The kind of computer support needed for cooperative work in different
settings may differ a lot, and as we have argued, it is important to investigate
and develop new possibilities of cooperation in a design process where
prospective users are actively involved. In other words, we do not primarily
see cooperative work, or computer support for it, as a static entity. We view
design as a cooperative process out of which new possibilities of cooperation is
created.

In the presentation of our example we have made a number of gross simpli-
fications, especially with respect to the degree of harmony in the project: first
of all, management doesn't interfere with the process. Secondly, there is only
one user group. From the real life case we have reduced complexity by not
considering the group of case workers. Thirdly, we assume that the profes-
sional designers have no interests of their own, which contradicts those of the
workers. Real design processes are surrounded by many conflicting interests:
the conflicts between management and labor, workers collectives which ques-
tion why they should do a job that they are not hired to do: help management
design computer applications, and conflicts among groups of workers who be-
long to different trades. Another simplification, closely related to our neglect
of conflicts, concerns the rationality of the cooperation in the design process
described: it does not differ significantly from the small research group ideal
discussed in the beginning of our paper.

To get beyond the small research group ideal and reach a fuller understand-
ing of what cooperation means in real life situations is a major challenge for
our research program. Not least because design is a process of change in
which the tools and materials of a group are often replaced by something new.
If we restrict ourselves to the shared material, shared tools, etc. definition, we
cannot understand how groups cope with situations of change, such as design,
when their traditional "sharedness” - the tools and materials - are taken away
from them. Such a group needs not only cooperative work as an ideal, but as a
(design) process leading in a democratic direction.

REFERENCES

1. Bjerknes, G. et al. (eds.): Computers and Democracy — a Scandinavian
Challenge, Avebury 1987.

2. Bgdker, S. et al.: A Utopian Experience, in [1].

3. Bgdker, S.: Through the Interface — a Human Activity Approach to User
Interface Design, DAIMI PB-224, Computer Science Department, Univer-
sity of Aarhus, 1987.

4. Bggh Andersen, P. et al.: Research Programme on Computer Support in
Cooperative Design and Communication, DAIMI IR-70, Computer Science
Department, University of Aarhus, 1987.

22



10.
11.
12.

13.
14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

Bggh Andersen, P., Knudsen, J.L.: Semantics for Interactive Graphical
Systems, Preliminary version, Computer Science Department, Aarhus
University, 1988.

Conklin, J.: Hypertext: An Introduction and Survey, IEEE Computer,
20(9), September 1987.

Dreyfus, H. L., Dreyfus, S. D.: Mind over Machine — the power of hu-
man intuition and expertise in the era of the computer, Basil Blackwell,
1986.

Ehn, P., Sandberg, A.: Local Union Influence on Technology and Work
Organization, some results from the Demos Project, in Briefs, U. et al.
(eds.): System Design, for, with, and by the user, North-Holland, 1983.
Ehn, P., Kyng, M.: The Collective Resource Approach to Systems Design
in [1].

Ehn, P.: Work-Oriented Design of Computer Artifacts, Almqvist & Wik-
sell International, Falkoping, 1988.

Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implemen-
tation, Addison-Wesley Publishing Company, 1985.

Human Interface Guidelines: The Apple Desktop Interface, Addison-Wes-
ley Publishing Company, 1987.

HyperCard User's Guide, Apple Computer, 1987.

Johnson, B., Weaver G.: Using a Computer-Based Tool to Support
Collaboration: A Field Experiment, in [23].

Knudsen, J.L., Madsen, O.L.: Teaching Object-Oriented Programming is
more that Teaching Object-Oriented Programming Languages, in Pro-
ceedings of Second European Conference on Object-Oriented Pro-
gramming (ECOOP'88), Oslo, Norway, August 1988.

Kristensen, B.B. et al.: The BETA Programming Language, in Shriver, B.,
Wegner, P. (eds.): Research Directions in Object-Oriented Programming,
MIT Press, 1987.

Kyng, M., Mathiassen, L.: Systems Development and Trade Union Activi-
ties, in Bjgrn-Andersen, N. (ed.): Information Society, for Richer, for
Poorer, North-Holland, 1982.

Lysgaard, S.: Arbeiderkollektivet, Universitetsforlaget, Oslo 1976 (In
Norwegian).

NeWS Technical Overview, Sun Technical Report, 800-1498-05, 1987.
Noddings, N.: Caring. A Feminine Approach To Ethics & Moral Educa-
tion, University of California Press, 1984.

Polanyi, M.: Personal Knowledge, Rutledge & Kegan Paul, 1967.
PostScript Language Reference Manual, Addison-Wesley Publishing Com-
pany, 1985.

Proceedings of the first Conference on Computer-Supported Cooperative
Work, Austin, Texas, December 1986.

Shiel, B.: Power Tools for Programmers, Datamation, 29(2), February
1983.

23



25.

26.

27.

28.
29.
30.

31.

Stasz, C., Bikson, T.: Computer-Supported Cooperative Work: Examples
and Issues in One Federal Agency, in [23].

Sgrgaard, P.: A cooperative work perspective on use and development of
computer artifacts, Jirvinen, P. (ed.): Proceedings of the 10th Information
Systems Research Seminar in Scandinavia, Tampere, 1987.

Tanner, P., Buxton, W.: Some Issues in Future User Interface Management
System (UIMS) Development in Pfaff, G.(ed.): User Interface Management
Systems, Springer Verlag 1985..

VideoWorks Il Manual, MacroMind, Inc., 1987.

Winograd, T., Flores, C. F.: Understanding Computers and Cognition: A
New Foundation for Design, Ablex Publishing Compagny, 1986.
Wittgenstein, L.: Philosophical Investigations, Oxford University Press,
1953.

Yankelovich, N. et al.: Intermedia: The Concept and the Construction of a
Seamless Information Environment, IEEE Computer, 21(1), January 1988.

24



	20051207104410_Page_01_Image_0001.tiff
	20051207104410_Page_02_Image_0001.tiff
	20051207104410_Page_03_Image_0001.tiff
	20051207104410_Page_04_Image_0001.tiff
	20051207104410_Page_05_Image_0001.tiff
	20051207104410_Page_06_Image_0001.tiff
	20051207104410_Page_07_Image_0001.tiff
	20051207104410_Page_08_Image_0001.tiff
	20051207104410_Page_09_Image_0001.tiff
	20051207104410_Page_10_Image_0001.tiff
	20051207104410_Page_11_Image_0001.tiff
	20051207104410_Page_12_Image_0001.tiff
	20051207104410_Page_13_Image_0001.tiff
	20051207104410_Page_14_Image_0001.tiff
	20051207104410_Page_15_Image_0001.tiff
	20051207104410_Page_16_Image_0001.tiff
	20051207104410_Page_17_Image_0001.tiff
	20051207104410_Page_18_Image_0001.tiff
	20051207104410_Page_19_Image_0001.tiff
	20051207104410_Page_20_Image_0001.tiff
	20051207104410_Page_21_Image_0001.tiff
	20051207104410_Page_22_Image_0001.tiff
	20051207104410_Page_23_Image_0001.tiff
	20051207104410_Page_24_Image_0001.tiff
	20051207104410_Page_25_Image_0001.tiff

