ISSN 0105-8517

ABSTRACT SEMANTIC ALGEBRAS!

by

Peter Mosses

DAIMI PB-145
July 1982

Computer Science Department

AARHUS UNIVERSITY |

Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

— | HI |
!
il

="
—

ABSTRACT

A new approach to the formal description of programming language
semantics is described and illustrated. “Abstract semantic algebras” are just
algebraically-specified abstract data types whose operations correspond to
fundamental concepts of programming languages. The values of abstract
semantic algebras are taken as meanings of programs in Denotational (or
Initial Algebra) Semantics, instead of using Scott domains. This leads to
semantic descriptions that clearly exhibit the underlying conceptual analysis,
and which are rather easy to modify and extend. Some basic abstract
semantic algebras corresponding to fundamental concepts of programming
languages are given; they could be used in the description of many different
programming languages.

Note. This paper is to appear in the Proceedings of the IFIP TC2 Working Conference
on Formal Description of Programming Concepts II, Garmisch-Partenkirchen, June 1982, to
be published by North-Holland Publishing Company, Amsterdam. It is made available as a
preprint for the personal use of the recipient. References should cite the Proceedings (only).

INTRODUCTION

The work reported here is based on a combination of ideas from Denotational Serantics[20,33],
Initial Algebra Semantics[1] and the algebraic specification of abstract data types| 2]. The

reader is assumed to be familiar with these topics.

An Abstract Semantic Algebra (484) is a special sort of algebraically-specified abstract data
type (ADT). lts operations represent fundamental concepts of programming languages, such
as particular forms of sequence control (e.g. sequencing, conditionals, iterations) and data
control (e.g. storage, bindings, scope rules). The values of ASAs are actions which, when
executed, may consume and produce data, establish and use bindings, and have side-effects.
The operations on actions are specified by algebraic axioms that give their essential properties
— it is not necessary to model them using auxiliary objects like states and environments.
There are, in general, many different possible models of the axioms of an ASA specification,
including the (discrete) initial one, which is taken as its meaning.

Some basic ASAs are given below. They correspond closely to fundamental concepts of
programming languages in the analysis made by the late Christopher Strachey[82}, which is
often followed in denotational descriptions 21,15]. A small library of basic ASAs has been
developed, incorporating many of the concepts to be found in present-day programming
languages (apart from type-checking and concurrency).

The proposed approach to formal semantics is to give denotational descriptions, taking denota-
tions of program phrases to be elements of ASAs (instead of Scott domains| 29]). Now, a
denotational description consists of three main parts, specifying Abstract Syntax, Semantic
Values and Semantic Functions. With the proposed approach, abstract syntax is specified
as usual, in a BNF-like notation. Semantic values are specified partly in terms of some
ordinary abstract data types, giving the basic values of the programming language (numbers,
truth-values, etc.); partly as a selection of basic ASAs, giving actions consuming, producing
and binding the specified values. Finally, semantic functions are specified using the familiar
semantic equations. However, denotations of program phrases are now expressed (as actions)
using the operations of the selected ASAs, rather than (as functions) in A-notation. This ensures

g

that semantic equations exhibit how the described programming language has been analysed
in terms of fundamental concepts. (Alternatively, they may be regarded as showing how the
programming language may be synthesised by taking combinations of fundamental concepts
and then coating them with “syntactic sugar”.)

In Denotational Semantics, the BNF-like specifications of abstract syntax are generally inter-
preted as abbreviations for domain equations. However, they can alternatively be regarded
as abbreviations for signatures of classes of algebras, and abstract syntax identified with
initial algebras in these classes. Then a set of semantic equations (provided that these are
‘homomorphic”) makes the semantic values into a target algebra for an initial algebra
semantics| 1], with the semantic function being uniquely determined as a homomorphism from
the syntactic initial algebra to this target algebra. When the semantic values are ASAs, a set

of semantic equations gives a “derivor” in the terminology of the ADJ group| 2].

This, then, is the essence of the proposed approach: an abstract syntax is an initial algebra.
with the signature being specified in BNF; semantic values are taken from standard ADTs and
ASAs; and a semantic function is the unique homomorphism determined by a target algebra,
which is specified by a set of semantic equations. The resulting specifications look quite like
ordinary Denotational Semantics (apart from the absence of Asl) but their interpretation is
firmly algebraic.

The main aim here is to obtain semantic descriptions that: (i) exhibit a semantic analysis based
on fundamental concepts of programming languages; (ii) are easily modifiable and extendable,
and (iii) make use of standard, language-independent modules. These pragmatic aspects are
of particular concern when semantic descriptions are to be used in connection with language
design, standards, implementations and teaching.

Related Work

Standard Denotational Semantics. founded by Scott and Strachey[20,30], has been used for
describing quite a few current programming languages| e.g.21,17]. However, it is not ideal
with respect to the pragmatic aspects mentioned above: (i) Fundamental concepts of program-
ming languages are not exhibited. instead they are encoded in N-notation and modelled by
manipulation of higher-order functions. (ii) Semantic equations are committed to particular
“styles” of model. e.g. the “direct” or “continuation” styles. They require extensive (albeit
systematic| 31]) rewriting when the described language is to be extended with features that
cannot be modelled in the chosen style, e.g. jumps in the direct style, concurrency in the
continuations style. (iii) There is no sharing of standard modules between descriptions of
different languages. even when they have many features in common.

One may obtain a standard denotational description from one based on ASAs by choosing a
model (using Scott domains) for the axioms of the ASA specifications. The resulting description

-

differs from the usual standard ones in that the semantic equations are not committed to the
chosen model, thanks to the abstraction of operations corresponding to fundamental concepts.

The ADJ group recognised the algebraic structure implicit in Denotational Semantics, and
identified abstract syntax with initial algebras, obtaining Initial Algebra Semantics| 1]. The
approach proposed here is basically Initial Algebra Semantics, with target algebras taken to be
abstract data types (derived from ASAs) instead of “concrete” data types (based on domains).
The specifications given below differ in style from those of [1] in that BNF is used to specify
signatures here, and semantic equations are used to specify the construction of target algebras

from semantic values.

Wand|[34] suggested using abstract data types in semantic descriptions. In contrast to the
approach here. his “semantic functions” were non-homomorphic, they were just operations of
abstract data types that combined syntax and semantics. He also used auxiliary objects, such
as states, rather than axiomatising sequence and data control directly. Nevertheless, Wand’s

work has provided much inspiration for the present approach.

Goguen and Parsaye-Ghomi[12] essentially followed Wand, but they introduced a modular,
hierarchical structure into semantic descriptions, using the specification language OBJ[10].
They also used auxiliary objects such as states and environments, but based them on reusable
standard modules (e.g. LIST, ARRAY). Their example semantic description corresponds quite
closely to a standard denotational description, with abstract data types taking the place of
domains — but procedures are treated syntactically. rather than denotationally.

However, modular structure alone seems not to be enough to ensure good modifiability of
semantic descriptions: their semantic equations are just as much committed to a particular
style of model as those of ordinary domain-based denotational descriptions, and would need
extensive rewriting to accommodate a continuation-style model, for instance. In the approach
proposed here, good modifiability is claimed to come from the use of operations that, in
corresponding directly to fundamental (independent) concepts, do not presume any particular
model. (The presentation of basic ASAs below would undoubtedly be improved by the use
of a specification language like OBJ, allowing the hierarchical structure of the modules to be
expressed formally.)

Broy and Wirsing[6] gave an abstract data type that corresponds rather closely to some of the
basic ASAs presented below, and made a careful investigation of models. There are differences
in the algebraic foundations — it is not clear to this author how significant these differences
are. Broy and Wirsing seem to regard their abstract data type as a programming language in

itself, rather than as a target algebra for initial algebra semantics.

The work of Gaudel[9] and Pair[25] is, like the approach proposed here, based on abstract
data types and Initial Algebra Semantics. The main difference is in the choice of abstract data
types, especially for dealing with procedural abstractions: their operations seem to correspond

more closely to particular implementation techniques than do the basic ASAs given below.
Again, there are also some differences in the algebraic foundations.

It should be mentioned that numerous authors of denotational descriptions have made use
of operations similar to those of the basic ASAs below. Usually, these operations have been
introduced as ad hoc combinators, abbreviating complex pieces of A-notation. However, some
general language-independent combinators have been proposed by Raoult and Sethif 26] and
by Wand[36]. They are specified as: functions on domains, and some of their algebraic

properties are proved.

Earlier papers by the author used ASAs in treating compiler correctness[23] and the semantics
of binding constructs| 24]. The reader is warned that there are substantial differences between
the operations of the ASAs specified below and those in the earlier papers. The changes have
been made in an attempt to get a better correspondence between operations and fundamental
concepts, and to enhance the readability of semantic descriptions using the ASAs. (Perhaps

the ASAs given here will also give way to better ones, in their turn.)

Christiansen and Jones[7] make use of the basic ASA for sequence control given here (with
minor variations) in their semantics-directed compiler-generator.

Currently, a couple of students at Aarhus are completing a semantic description of Pascal,
based on ASAs similar to the ones given below. The description has been partially tested by
choosing a standard model and running it on SIS{ 22]. Although the result of this first major
test of the use of ASAs is encouraging, much more experience of using the basic ASAs is
needed before one can be sure of their appropriateness.

Plan

The rest of this paper is organised as follows. First, the algebraic foundations of the proposed
approach are described, and notation introduced. Then some basic ASAs are specified and
motivated. The paper concludes with a small example of a semantic description based on
ASAs. The programming language described is M-Lisp, the language used by McCarthy[19]
for specifying the operational semantics of Lispl.5 through an abstract interpreter.

FOUNDATIONS

For the basic algebraic notions and terminology, we mostly follow the ADJ group[1,2] — but
note that signatures here are a bit more general, in order to cope with polymorphic operators
and implicit coercions. Motivation for the use of algebras in the study of abstract data types
may be found in [18,2].

Algebras
Defn. For any set S, an S-sorted signature ¥ is an §* X S-indexed family of sets of operators

E(sl..., Sphst
result. (It is not assumed that the sets of operators are disjoint.)

The index (s,s,) gives the arsity of operators. the index s gives the sort of their

Defn. Let L be an S-sorted signature. A Z-algebra A consists of an S-indexed family of sets
A,, together with, for each 0 € E(s,“w;").:' a function aA;(ASI X oo X Asn)—~A3 (total). 4, is
called the carrier of A of sort s, and 0, is called an operation of A named by o (or a constant
when ¢ € E(M - then we write just 04 for g4()).

Defn. Let A, B be S-sorted L-algebras. Then a X-homomorphism h:A - B consists of an S-
indexed family of functions h: A4, — B, respecting the operations of 4:

h(o4ay.....a,)) = aB(hsl(a,), ch (an))

for each 0 € & .each(a,.....a,) € AS] X oo X A (just Afo,) = op for constants).

(515,08

For example, we have a {T }-sorted signature Bool given by Bool, 1 = {ff. et }, Booliy, + =
{7}, and Booly 1)1 = {»} (all the other Booly 1, being empty): and a Bool-algebra B
with By = {0, 1}, given by

ff, = 0 g = =1

ttg, = 1 Aglé,i'y = i Xad,

A class of S-sorted L-algebras, together with all the X-homomorphisms between them, gives a
category. Composition of E-homomorphisms -4 —~B. g:B—C. written g - f. A C. is just S-
indexed function composition, and the identity X-homomorphism on 4. written 1,4, is given
by the S-indexed family of identity functions on the carriers 4.

Defn. A homomorphism kh:A4 — B in a category G of L-algebras is called an ésomorphism iff
there is a X-homomorphism ' :B—~AinCwithh'-h =1 and k- h' = 1g. Two algebras 4,
B are isomorphic iff there exisis an isomorphism between them.

Defn. An algebra A is called ¢nitzal in a category G of L-algebras iff for every algebra B in G
there exists a unique X-homomorphism : 4 — B.

Propn. 1f A and A"’ are both initial in a category C of L-algebras, then 4 = 4'. If 4 is
initial in C and 4 = 4", then 4" is also initial in C.

Defn. For any L, Algy is the category of all Z-algebras.
The following theorem (see [2]) is fundamental:
Theorem. For any X, Algy. has an initial algebra, Ty.

Ty, is essentially (up to isomorphism) the S-sorted term algebra over L, whose carriers (Ty);
are sets of well-formed expressions in the operators of L, and whose operations g construct
terms ‘o(¢, ..., t,)" from operands ¢, ...,t, (the separators (",)’ and "’ representing symbols
not occurring in Z). The property of L-terms ensuring the initiality of Ty, is that they can be
uniquely decomposed.

Actually, a little more care is needed here when the sets of operators ZJ(S are not
disjoint, e.g. if 0€ L N Z .z and is-zero € Xy M Xz, then the term 1s-zero(0) may
be constructed (or analysed) i m two different ways. This can be fixed by making the sorts of

sub-terms explicit, as in ‘o(s;:¢),...,5,:t,)", e.g. ‘is-zexo(N:0)".

Ty, is identified with abstract syntax|[1]. and the initiality of Ty in Algy gives for any
target L-algebra A, a unique homomorphism : Ty~ 4, which is a sort-indexed family of
semantic functions mapping abstract terms to their interpretations in 4. This is Initial Algebra
Semantics.

Initial algebras are appropriate not only for abstract syntax, but also as the meanings of
equationally-specified abstract data types[2] — also when conditional equations are used[4].

Defn. For any S-sorted signature Z and S-indexed family of sets of variables X (distinct from
), X(X) is as L except for E(X)(),s = E()_S U X,, for each s € S (Z.e. the variables are added
to L as “constants”).

Defn. Ty(X) is the X-term algebra on X, obtained from Ty x, by removing the operations
named by the variables in X.

Propn. For any Z-algebra A, for any sort-indexed family of mappings f;: X, — 4, there is a
unique homomorphism _f# : Tx(X)— A extending f, 7.e. with f# (x) = flx) for all variables x.

Defn. A Z-equation in X is a uiple. written t = t' - 5, where ¢t. t' € (T(X)); oritisa
conditional L-equaiion in X of the form
H=0 s & 0 & L= s, = =t - s
where each ¢, £/ € (T-(X)),, for7 = 0 to n.
Defn. A X-algebra A satisfies a L-equation ¢ = ¢ -- s in X iff for every f: X~ 4, j#(t) =

f#(_t’); it satisfies a conditional equation
Ly =t -- Sy & o & tﬂy =t, -- s, = t(] = t(’) =8

n X iff for every f- X~ 4. whenever f#(tz-) = _/#(t;) for 7 = 1 to n then f#(t(]) :f#(t(’)). An
algebra is said to satisfy a set of equations E iff it satisfies every equation in E.

Defn. For any L, for any set of X-equations £, Algy 1 is the category of all Z-algebras that
satisfy E.

The Initial Algebra Approach to abstract data types[2] takes “the” initial algebra of Algy as

the meaning of the specification (X, E).
Theorem. For any (X, E), Algy g has an initial algebra, Ty .

Ty, ; is essentially the quotient Ty / =p, where = is the least Z-congruence on Ty generated
by E.

For example, consider the following Bool-equations, where ¢ and ¢' are variables of sort T

~(tt) = ff Attty = ¢
~(ff) = Aty = ff
ALY = A).

We let the sort of an equation remain implicit when it is unambiguously determined by the
given terms. (Of course it can only be T above, as that is the only sort in the signature Bool.)

Specifications

The notation above may be used directly for specifying abstract syntax and abstract data types.
However, fully-parenthesised prefix notation for operations can be a bit heavy in practice,
and it seems appropriate to allow (formally) infix notation, and even “mixfix” notation,
following Rus| 28] and Goguen[10]. This is especially the case when specifying abstract syntax
of programming languages, as one is able to keep the representation of operators close to
the usual concrete syntax. It seems natural then to use context-free grammars for presenting
signatures along with the notation to be used for expressing their operators.

A context-free grammar G determines an S-sorted signature X in the following way. Let G
have non-terminals NV, terminal symbols T and productions PC N X U*, where U = N U T.
(G is allowed to be infinite.) Let each non-terminal x € N be associated with a sort s(x) € S.
Each production p € Pis of the form x:: = ugx,u,...x,u,, where each u, € T* for 7 = 0 to0

9.

n(20); it contributes an operator ‘u, u,_- - +_u,’ to the set E(where L’ is some

s(x1).--- S(xn))s(x)”
“place-holder” symbol assumed not to occur in U. The place-holders show how terms are to be

written.

Moreover, it is convenient (as well as mnemonically helpful) to take the non-terminals x € N of
G as variables of the associated sorts s(x) € S, allowing subscripts and(or) primes to distinguish
different variables of the same sort. (Subscripted non-terminals may be used in productions:
they allow easy reference to particular operands, as well as emphasising the context-freeness of
the grammar.)

For example (giving the sorts associated with non-terminals in parentheses):

(T) t o= ff | ot | 7t | At
specifies the {T }-sorted signature I with Lyt = {£f, e}, Lyt = {~_}, E(T,T),T = {_A_};
and also the variables X = {¢.¢y.¢,.....t", ¢4, ... ¢t", ... }.

Equational axioms are given in the usual way, but using the notation given by the grammar for
expressing terms. Parentheses and explicit sorts (written s: t) may be used freely to disambiguate
terms when G is ambiguous. (One might allow the omission of disambiguating parentheses and
sorts when the ambiguity is “safe”, e.g. when an operation is specified to be associative: if the
equation ¢ A (¢ AE") = (EAL')AL" is given, then one could allow the term tA¢' At".)

Now for coercions, which are much exploited in the specifications of ASAs. Coercions here are
just “invisible” operations, embedding one sort in another. They are useful in giving sorts that
are (conceptually) unions of other sorts (sum domains are used in Denotational Semantics for
this purpose), and also in relating operators that are defined on different sorts, as in:

(N) n =0 | n+l

(Z) z = n | z+1l | z2—1
— the coercion z:: = n (fe. .. € E(N).Z) indicates that 7:: = n + 1 is to be a restriction of
z:: =z +1toN, with 0 + 1’ denoting the same Z-value whichever _ + 1’ operation is used.

Goguen[11] and Reynolds[27] treated coercions by partially-ordering sort-sets and augment-
ing the notions of signature and algebra accordingly. We follow a somewhat more naive
approach here, keeping the standard notions of signature and algebra and using algebraic
equations for expressing the essential property of coercions, namely that coercions commute
with other operations. These equations can be derived systematically from signatures (actually,
the grammars for signatures are required to be non-cyclic, so that coercions induce non-
identifying partial orderings on sort sets). Unfortunately there is no space here to give the
details of this approach to coercions.

Another feature of our specifications of signatures here is the use of indexed families of sorts
and operators. Indices are written as superscripts on sorts and variables. For example, one of
the basic ASAs has a family of function-like sorts (of “actions”) °A” indexed by their “source”

type 0 and ‘“target” type 7. where ¢.7 € some set A. The composition operator _ ! __ for these
actions is restricted (syntactically) to composable operands by:

(OAT) UaT coo= (I(l'l ! TaT
7.e. there is a (0,7, 7')-indexed tamily of composition operators.

Such explicit superscripts on sorts and variables are rather unwieldy, so instead they may be
hidden, and subscripts and(or) primes used for referring to an index of a particular variable:
the o-index of a, is referred to as g, etc.. Then the specification above can be written as

(°A7) a = g las <~ 00,5 TF T T T Oy

where the assertions on the right give the indices of the (result) sort of the operator as well as

any restrictions on the indices of the operands.

In specifying axioms of ASAs, it is usually appropriate to leave indices entirely implicit: an
equation ¢ = ¢t omitting indices on variables is really an equation schema. giving one ordinary

equation for each assignment of indices to the variables such that both ¢ and ¢’ are well-

0401 00 = 040

formed terms. For example, an axiom like a | a = a would give only a’, since the

left-hand side of the axiom is only well-formed if ¢ = 7.

Apart from the notation for signatures and abstract data types described above, the proposed
approach uses semantic equations for specifying the construction of target algebras. Let Ty
(abstract syntax for) and a X '-algebra M' (semantic values) be given, where (in general)
X # X'. For each sort s of X, let s’ be a sort chosen from the sorts of £'. Then a set of
homomorphic semantic equations for L gives, for each operator uy u_... _u, €):(Sx an
equation of the form
FMuyxu,... x,u,1 :t'(ﬁillleﬂ....,//'; [x, 1)
n

where #(Ty),~ M. is a semantic function for sort s, the x; are distinct variables of sort

“o.

£l
s;for i =1ton, and ¢'(x|,....x,) is a term in (Ty.(X"));. where each x/ is of sort s/ and
U, e X = {x{,....x, }. In other words, ¢' is a composition of the operators of M', with

functionality M, X oeee X MS’,;~ M.

Such a set of homomorphic semantic equations constructs a X-algebra M out of M', with
M, = M/, for each sort s of X. the operations of o, being the given compositions of the
operators of M'. The unique homomorphism : Ty, — M is just the family of functions .7,.
(When M’ is an abstract data type Ty.. ., the transformation form M’ to M expressed by the

semantic equations is called a dervor in the terminology of the ADJ group[2].)

This algebraic interpretation of semantic equations was recognised by the ADJ group[1], who
stated that the semantic equations of Denotational Semantics “describe an algebra and say that
semantics is a homomorphism ... ”. However, the semantic equations of standard denotational
descriptions in the literature (e.g. [15]) don't in fact appear to be entirely homomorphic:

(i) they often seem to give several semantic functions for some sorts, e.g. §, %, # :Exp— ...;

11 -

(i1) they are sometimes non-compositional, e.g.

SLE, — E, 0] = §LE + (—Ey)I
ZliyepeatCl = ... ¢0CI... €lrepeatC]...

(yet still specifying a denotational semantic function);

(iii) the semantics of binding constructs, such as declarations and formal parameters, is given
in terms of environments (Ide — D), and the creation (or extension) of an environment
involves identifiers directly, rather than their denotations, e.g.

Ylconst! = E1 = ..pl[e/I]....

How can such semantic equations be regarded as homomorphic?

Concerning (i), one may consider the several functions as components of a single compound
(target-tupled) semantic function. The separate names and definitions can be combined, at
the expense of inserting a lot of explicit projecting and tupling. (Actually, with the standard
&, %, A evaluations on Exp, one can usually make do without tuples, as ¥ and # are just
abbreviations for ¢ combined with particular coercions.)

As for (ii) above, such non-homomorphic semantic equations can easily be replaced by equiv-
alent homomorphic ones: in the first example by “macro-expansion”, in the second one by the

explicit use of the fixpoint operator.

With (iii), there are two ways of getting around the non-homomorphic treatment of identifiers
in binding constructs: either (a) take Ide as a proper semantic domain, and leave the identity
semantic function :Ide — Ide implicit; or (b) stop considering identifiers as constituent phrases
of binding constructs, taking Ide-indexed families of constructs instead. The two solutions are
closely related: (a) leads to Ide arguments of semantic operations, whereas (b) leads to Ide-
indexed families of semantic operations. We follow the ADJ group in choosing (b), as it turns
out to be a useful device for dealing also with literal constants (numerals, strings, etc.) in
semantic descriptions.

Thus we can indeed “reduce” Denotational Semantics to Initial Algebra Sernantics. But we can
of course go the other way, just by forgetting the algebraic structure of abstract syntax (making
it into a flat domain, to be more precise). So the conclusion is that the two approaches are
essentially equivalent after all.

Consistency and Completeness

When giving algebraic specifications of abstract data types, it is important to be able to check
somehow that the axioms specified are the “right” ones. If a standard model for the desired
abstraction already exists (e.g. with mathematical ADTs such as the Integers) it can be checked
that the meaning of a specification is isomorphic to that model. But in other cases, there may
be no a priori model, and then resort has to be made to other criteria.

- 12 -

Often, an ADT isnt specified i vacuo, but it is intended to be an extension of other ADTs.
An obvious demand to make of the axioms is that they don’t imply the identification of any
values of the original ADTs. This is called consistency. Further, one can insist that the new
operations don't create new values in old sorts — the axioms should be sufficient to reduce any
new term of an old sort to an equivalent old term. This is the idea of sufficient completeness

[16].

However, it seems that these notions are not so useful for ASAs, which are rather atypical as
ADTs. The first problem is that ASAs have no operations giving results in standard value sorts
(such as the sort T for truth-values): all the results of operations are “actions” (as explained in
the next section). This means that the consistency condition is very weak. Secondly, it is usually
the intention with a new ASA to provide operations corresponding to some new concept, which
is independent of the previous concepts: this precludes making the new operations equivalent
to combinations of the original ones. Finally, some ASAs introduce new sorts (indeed, whole
families of them) and this situation is outside the scope of the criteria of consistency and
sufficient-completeness.

How, then, can the axioms of ASAs be checked? The most promising approach seems to be to
choose a set of canonical terms for the extended ASA, and show that the axioms do not identify
canonical terms, but are sufficient to reduce arbitrary terms to canonical terms. Provided that
it can be seen that these canonical terms are satisfactory representatives of “fully evaluated”

actions, the axioms can be deemed to be correct.

The ASAs given below are currently being investigated regarding the completeness of their
axioms with respect to a particular set of canonical terms. More axioms than the ones shown
will be needed to obtain this completeness. The consistency of the axioms given is in less doubt,
as a model can be given for them, based on standard domains of Denotational Semantics.
(The selection of basic ASAs used in the example semantic description at the end of this paper
have a simpler model than is needed for the full set, see Table 13.)

Finally, note that our use of discrete algebras, instead of continuous algebras| 1] or recursion-
closed algebraic theories[8], makes it difficult to achieve as good an equivalence on action
terms as might be desired. With an action corresponding to a loop, for example, the axioms
of the ASAs given below make the action equivalent to all its finite unfoldings. The problem
is that it is only when the infinite unfolding is added to the equivalence class that one gets
(for free) the equivalence with other actions representing operationally-equivalent loops that
merely bring out some of the commands in the body, e.g. consider repeat(C; C') and
C; repeat (C' ; C): all their finite unfoldings are different, whilst their infinite unfoldings
are identical. It is possible to add axioms to the specifications of the basic ASAs, reflecting
such simple “program transformations”, but it may turn out to be better to base ASAs on

continuous algebraic foundations instead.

BASIC ABSTRACT SEMANTIC ALGEBRAS

The main idea of the proposed approach to semantics is to give semantic equations based on
abstract semantic algebras that represent fundamental concepts of programming languages.
This section demonstrates the feasibility of the idea by specifying some basic ASAs and
illustrating their use.

These basic ASAs deal with concepts of sequence control. datatlow and scopes of bindings. They
are adequate for the semantic description of most features of many present-day (imperative
or functional) programming languages. Not given here are ASAs for (i) commonly-occurring
data structures (arrays, files, etc.); (ii) “static semantics” (type-checking. etc.); and (iii) com-
municating concurrent systems. There is no difficulty in providing (i). but (ii) and (iii) are
more difficult.

It is characteristic for ASAs that their elements represent so-called actions. These actions cor-
respond directly to the meanings of constructs of programming languages such as commands,
expressions and definitions (declaratioﬁs). Common to all actions is the notion that they can
be executed in some order (partial or total). The concept of order of execution is rather
fundamental to programming languages, as opposed to logic and specification languages.

The operations of ASAs are either primitive actions (constants) or else combinators that give
compound actions as results. Actions are not treated as operations on data, as is common in
other approaches. This use of combinators for actions gives a “higher-order” nature to ASAs,
yet within the standard (first-order) algebraic framework.

The conceptual analysis underlying the basic ASAs presented below is that actions may have
several different facets. which are “orthogonal” in that they don’t interfere with each other.
The ¢mperative facet of an action is concerned with (side)-effects. where the execution or
not of one action influences the execution of a later one, without any explicit transfer of a
value between the two actions using another facet. The functional facet of an action relates
to dataflow: an action may consume and produce (sequences of) values. It is assumed that
an action cannot be executed until all the values that it 1s to consume have been computed:
this corresponds to actions being strict functions of their arguments. Finally an action may

- 14 -

Seq:
(A) a = ay;a
L0
| stop
I error
axioms
1. a;(@';a") = (aja’);a"
2. Osa = a
3. a;() = a
4. stop;a = stop
5. €rror = €rror; stop

Table 1. Sequential Actions

have a binding facet. This facet concerns references to values denoted by identifiers, and the
binding of values to identifiers in certain scopes. (There are some useful analogies between the
functional and binding facets, but no mutual interference.)

Now, most of the operators of the basic ASAs below are really only interesting in connection
with just one of the facets of their operands (some constant actions are used to provide
interfaces between facets). The explanation of ASAs is simplified here by generally ignoring
the subsidiary facets in specifications. The extension of operators to operands with subsidiary
facets is discussed afterwards. (In general, the axioms of the simplified specifications are still

to hold when the actions have subsidiary facets. Those that don’t are marked with a dagger:
")

Imperative Actions

In the ASA Seq specified in Table 1, the sort A corresponds to actions that are exccuted
for their presumed effect on some notional state. For example, they might be stack-machine
instructions, or database transactions. In any case, Seq provides an operator g, ; ay, cor-
responding to the concept of the sequential execution of a, followed by a,, and also the empty
action that has no effect at all (usually written in parentheses thus: () to make it apparent).
There is also an action stop, for terminating execution normally, 7.e. causing the following
actions in a sequence to be skipped. The action error is like stop, but corresponds to abnormal
termination.

- 15 -
Non-Det:

(4) = qla

boay,a

I <a;>
axtoms
1. al(a la") (@ala’)la”
2. ala’ a'la
3. ala a
4. a;(a' la") (a;a')l(a;a")
5. (@la’);a" (@a;al@ ;a"
6. a,(a’ la") (a,a)Yl (a,a")
7. <ala’ > <a>l<a’ >
8.t (<ay>5a),(<aj>;3a)) = (<ay>;(ay,(<a;>;ay)]

(<a)>;(ay, (<ay>; ay)))

Table 2. Non-Deterministic Actions

The ASA NonDet in Table 2 extends Seq with some operators for actions whose order of
execution is only partially determined. The operator a; [a, gives a non-deterministic choice
between a; and a,: the execution of a; [a, entails the execution of either a; or of a,, but not
of both. Less general than @, [l a, for expressing partial orderings on actions is a, , ay, which
arbitrarily interleaves the executions of a) and a, (the usage here of |’ and %’ is close to that
in Algol68). Of course, interleaving is more than just an arbitrary choice between left-to-right
and right-to-left.

The interleaving stops at the level of indiviszble actions <a, >. (All atomic actions a introduced
below should really be specified as being indivisible, by axioms <a >= a, but these axioms are
omitted here.) When actions ¢ and a' are indivisible and moreover commute: a;a’ =a';a
then there is no difference between a; a’' and a, a’. But the use of the latter operator suggests
that the lack of ordering on the executions of ¢ and a’' is intended (or irrelevant), and not
merely incidental; whereas the use of the sequencing emphasises determinism.

When the grain of the primitive actions of A is fine enough so that the concurrent execution
of any two primitive actions @ and e’ is equivalent to executing (a;a’)l (a’; a), then the
operator _, _ may be regarded as giving concurrent execution in general.

- 16 -

Note that a;, ay is both commutative and associative, from axiom 8. (However, axicm 8
doesn’t hold in general when the actions involved have non-urivial funcidonal facets, as then

the values produced need re-ordering.)

Functional Actions

The functional facet of actions is concerned with the daic wvalues that they consume and
produce, and with the way that data is transferred between actions during execution. Although
the concept of dataflow could be represented by purely imperative actions (e.g. pushing and
popping values on an implicit stack}, it seems more appropriate to use a form of functional
composition, along with tupling and projections, to express dataflow (following AD][3] and
Backus[5]).

Actually, this author prefers to use a more elaborate ASA than the one given here for express-
ing dataflow (it is reminiscent of A-notation, allowing the naming of consumed values and
direct reference to them from within complex action terms). But to simplify the presentation
of the proposed approach, we make do here with the more elernentary ASA for tupling and

projections.

Table 3 specifies a family of sorts “A” of actions, indexed by their source ¢ € A and target
7 € A. The set A is (for the moment) a set $* of sequences of sorts s € S of some (language-
specific) ADT Val of data values (usually a combination of standard ADTs like Integer and
Truth). We write () for the empty sequence in §*, just s for the unit sequence consisting of
s and (0, 0y) for the (associative) concatenation of $*. The source of an action gives the sorts
of the components of the sequence of values that it consumes, the target gives those for the
values that it produces. The main reason for introducing such an indexed family of sorts is to
prohibit some nonsensical actions, such as passing a truth-value to an action that is expecting
an integer.

The other family of sorts °A” in Table 3 corresponds to “step-less” actions which merely deliver
sequences of values that have been previously computed. (Actions in these sorts are to remain
without side-effects, when the functional and imperative facets are combined below.)

Now for the concepts behind the operations specified in Table 3. a; ! a, gives the composition
of a| followed by ay: the sequence of values produced by a, is consumed by a, (hence the
execution of @; must precede that of ay). a,; @y is the same as in Seq when ¢, = 0, = 7| =
7, = (), and the execution of a, again precedes that of a,. This is generalised here to target
tupling, with the sequence of values consumed by the whole action being copied to both a,
and a, and the sequences cf values thus produced being concatenated. (Another generalisation
of this is the product a) X a, with source (0}, 0y) and target (7, 7,). This is not included here
in the basic ASAs since it can be derived as (m) ! a)); (79 ! ay).)

The operator &, , 4 is also target tupling, this time of step-less actions. () is the empty action
that ignores the values sent to it and just produces the empty sequence of values. (In general,

Fun:

(°AT)

(A7)

axioms

10.t
1.t

12.t
13.
14.
15.
16.

17 -

a = alay
boapsay
boa
a = a,a
b0
| 0|<027,-Z.
b
boebi 5n)o(7rl, T,
alfa'la")
“la
ald
a;(a';a"
0sa
a;°()
a,(@a',a")
°0,a
a,’()
al(a';a"
at@ ,a")

(@, ay) ! V7o,
(7']\7'27rl s 71.727'.2)

(@ ,ay) ! (my, m)

al’)

@0y, ...,,@0,) ! @o(my, ... 7,)

fl

- 0=O0T =Ty T =0y

i
Q

=0 =057 =(7),7y)

- 0=0;T=T

- 0=0) =057 =(1),Ty)
- 7-:()

- 0 =(0),0y); 7T =0,

- r=g
- O=(S, LS T =S
oEEVal(Si vvvvv s

(ata')!a”

a

a

(a;a/);a//

a

a

(@,a'),a"

a

a
(@ta');@!a")
(@tay;@ta”)
a;

(7179)

ay, @

°0
@o(o,,....0,)

Table 3. Functional Actions

18 -

superscripts and even parentheses may be omitted from operators when the context makes
this unambiguous.) 1'%, with ¢ = 1 or 2 selects the indicated subsequence of its consumed
values. 7 is the identity for a, ! a,, it just passes on a sequence of values unchanged. Finally,
@Y1+ So(mr, ..., m,) gives a convenient way of embedding the operations of the underlying

data type Val as (step-less) actions — mixfix notation is allowed for o.

As for the axioms, note that 10, 11 and 12 would be conceptually inappropriate with arbitrary
actions « instead of step-less ones @: duplicating: or removing actions is significant when they

have non-null targets (or side-effects).

Coercions play an important role in ASAs, in connection with modifiability. The idea is that
when there is a natural injection from one sort to another, then this is represented by an
(invisible) coercion operator. In the ADT Val for instance, there could be a coercion from
natural numbers N to integers Z. As discussed in the previous section, this allows polymorphic
operators like 0 and __ + 1 to be used without it being apparent that there is in fact a hierarchy

of sorts.

Apart from their use in coping with polymorphic operators, coercions between sorts are also
used in ASAs for exhibiting the grouping of data into denotable values, storable values, etc.,
in the same way that sum domains are used in standard Denotational Semantics[15]. (The
usual convention of omitting injections into sum domains is followed here, but projections are
always explicit, as described below.)

Coercions between the sorts of Val induce a partial ordering on the set S, and this is now
extended componentwise to S*. (They induce also some coercions between action sorts, cor-
responding to values being coerced during transfer from one action to another.) The operator
for source tupling (the dual of target tupling) is @, / a,, which selects a; or a, for execution
depending on whether the sequence of values consumed was coerced from ¢, or from o,

Just as we needed A closed under concatenation of sequences (0,,0,) for target tupling and
projections, the use of coercions and source tupling entails that A is to be closed under the
corresponding sum operation, which we write as (0} | g5). For good measure, we close A also
under finite sequences of arbitrary length, written 0,* — we assume ¢* = () | (o, 0*). Finally,
when all the operators of a sort s are coercions from other sorts s, ...,s, then (s | ... s} =
in A.

With this enriched A, Table 4 specifies source tupling and coercions between actions in terms
of the coercions between the sorts § of Val.

Note that source tupling can be used to give the common conditional action, where the
selection between two actions is determined by a truth value. Let T be the sort for truth values
in Val, and

- 19 -
Sum:

(°A7) a = g -= (o)~ 1) <(0— 7)--see below

I a/ay — o=(olokTr=T =17

axioms

1. al(e" /a")y = ala — 7=g'

2. al@ /a) = ala reg

3. a/@ /a") = (a/a')/a"

4. a/a’ = a'/a

Single-step Coercions
The binary relations) <0y, on & and (0, - 7)) <(0y~7y) on A X A
are the least ones satisfying:

s<s' aff _EEVal(S)_J.

(o ... lo)<(aj!...1a)) }
} Yf o;<0]for some ¢, all other ;= of
(01,0, <(0], e 0)))

o¥*<g'* 4ff o<o’

(oy=1)<(0y—7y) #f o0y<0,and7 <7y

Table 4. Coercions and Selections

let tt and ff be regarded as sorts rather than as constants. Taking tt and ff ambiguously as
variables of the corresponding sorts, we can specify

(T) 4 o=ttt | ff
(tt) it o= ()
(£) f .= 0

T T R
and then ttal /“a2 gives a conditional consuming a truth value in T and selecting the

appropriate a;. For selecting between actions &, a’ with a null source, (" {1 a / 114 can be
used, the consumed truth value being thrown away by the empty action in !!.

With source tupling available, iterative actions are specified as in Table 5. Note that
while a;do a, is derivable from the more fundamental repeataq,.

The next basic ASA deals with the concept of functional (and procedural) abstraction, see
Table 6. We now assume that the sorts of Val (and hence A) include F (for values representing
abstracted actions) and P (for values that may be passed to, and returned by, abstracted

90 -
Iter:
) a .= repeat’q, — o=o;7=(0; 17
! whilea, doa, - 0=0, =0, =T, =7, 7y = L
| 9 1 2 P i
axioms
i. repeat’a; = @, ! ((repeat’a;)/ ")

53

whileadoa' (@;7)1 ("1, 1 ay ! whileadoa’) / (F7r,)

Table 5. Iterative Actions

actions). Recall that @o is an action that just produces the constant value o of Val. So
Babstracta; produces the value abstracta; in F, and this value may then be passed around
before eventually being executed with a suitable source by the action apply. The operator
supply is related to Currying in A-notation. (Note that these are the only actions dealing with
P and F.)

Before the binding facet of actions is introduced, let us consider combining the imperative and
functional facets of actions — this is necessary if we are to allow operators corresponding to

the concept of storing consumed values in variables, for example.

Let Val include sorts L for variables (or “locations”) and R for storable values. Table 7 gives
a primitive action update that has the effect of assigning its consumed storable value to its
consumed variable; the action contents retrieves the last-assigned value of a variable. L is
not taken to be just Ide, as assigning to identifiers in some programming languages can be
conceptually more complex than just assigning to the variables they denote.

Abs:
(F f = abstracta,
(“A") a = apply — o=(FP¥);7=P
| supply -—— o=(F,P¥;7=F
axioms
i ((@abstracta);a’)lapply = a'la
2. (((@abstracta); a') t supply); a”) tapply = (a';a")!la
3. (((@abstracta); a’) ! supply); a”) ! supply =

((@abstracta); a';a") ! supply

Table 6. Abstracted Actions

291 -

Store:
(°AT) a = update o= (LR;T=()
| contents — og=L:;7=R
I allocate — o=(7=L
axioms
1. (wy, my) ! update; 7, ! contents = (m, my)! update; my
2. (! allocate ; m,) ! update; 7, ! contents =

7, ! contents ; (! allocate ; 7,) ! update

3. (my, my) ! update; (7, wy) ! update = (m, w;)! update
4. (! allocate ; wy) ! update; (7, 7;) ! update

(my, my) ! update; (! allocate ; 7,) ! update

|

Table 7. Storing Values in Variables

The action allocate produces a “fresh” variable; it must also have a side-effect, as its execution
influences the variable produced by the next allocate. (Garbage collection is usually ignored in
standard Denotational Semantics, but one might wish to introduce an action dispose, making
a variable passed to it re-usable.)

The operators specific to imperative actions, e.g. stop and a, [ay, should now be extended
with the functional facet. This is quite straightforward and the details are omitted here. All
the axjoms so far may be taken unchanged for actions with both imperative and functional
facets, except for the daggered axiom 8 of Seq, which needs a permuting action inserting to
keep any values produced in the right order.

Binding Actions
The binding facet of actions is concerned with associations between identifiers and denotable

values, and with scope rules that make bindings available in particular actions.

Table 8 specifies a family of sorts “AP indexed by the sets of identifiers in Ide that they access
() and bind (B). For the moment, the functional facet of actions is ignored. The operator
a; + ay is a composition for the binding facet: the bindings yielded by a; are made available
in ay. Moreover, these are the only bindings available in ay, as those available outside the
whole action are restricted in scope to a;. Finally, the whole action yields only the bindings
given by a,. This rather strict scope rule gives an associative operator, in contrast to the more
common scope rules to be found in most programming languages (which can be derived from
the fundamental operators given here).

Scopes:
(A%

A%

axioms

-~k

“w

10.
i1

12.
18t
14.

[N
il
Nl

99 _

— a=a;B=040 =a
”a:a1:a2§,3:ﬁluﬁz
-~ a=a; =6

- a=a,U{I}; 8 =6

__ or:a:al;BU{I}ZBI
. a:al:aziﬁzﬁluﬁii

Table 8. Scopes of Bindings

@ O'Aﬁ;f) a = qlay o= Tag B=6UL
I a +a O T OB T =Ty T T 0y
4 — o=o;T=T

((XIGAB;T) @ = % - a=0;8=0
b oo, — a=0;8=0
- — a=0;0=0
| @b So(ry, ...) - a=0;8=0
oo — 7=

Table 9. Combination of Functional and Binding Facets

The identity for composition of bindings is p®: it just passes on the bindings for all the
identifiers in ¢v. (The superscript here is usually omitted when all the available bindings are to
be passed on.) Note that p* can also be used to project from a larger set of bindings, thanks

to the coercions between binding actions -~ even to give the empty binding action.

The operator a, ; a, gives target tupling for bindings. In general the operators for the binding
facet are closely related to those of the functional facet (not too surprisingly).

Now, assuming that the underlying ADT Val contains a sort D of denotable values, the action
bind/ with source D is just to bind the value consumed to the identifier I (in fact this is
to be an Ide-indexed family of actions, éppropriate for giving a2 homomorphic semantics for
definitions in programming languages). The value currently bound to [is produced by the
action (family) findZ. These actions provide an interface between the functional and binding
facets of actions. How should the previously-given functional operators treat bindings, and vice

versa?

Table 9 gives some examples. The idea is to generalise each operator by allowing it to treat
subsidiary facets like particular basic operators for those facets. For example, a, ! a, bebaves
like e, ; a, for bindings, and a; + a, behaves like @, | a5 on sequences of values. Some operators
like a, ; a, are basic for ali the facets of actions. The axioms given separately for each facet
may be taken without modification for the combined actions, except for the daggered ones in
Table 3, which only hold when the duplicated (or removed) step-less actions involved yield no
bindings.

Table 10 specifies bind I and find I, and illustrates how a less strict scope rule than a; + ay,
namely a, : ay, may be derived. This operator in fact corresponds to Algol60-like block
structure, with non-local bindings being available in a, unless hidden by bindings of the same

94 _

Bind:
@AFTy ¢ L= a:a, — a=o U(ay—B,) 6 =By
T=01;T =7y 7T = 0y
@Ry 4 = bind/ — a=0;8={}0=D;7r=()
| find7 — a={I}:B=0;06=(;7=D
I @ !bindl -~ a=o«;B={};6 =0
g=opr=("n =
axtoms
1. ata’ = (%% B a)+a’
2. albind/ + find/ = a
3. (@,a')y+findI = a-=findIl -~ I€p
4. = g’ + find/ - 1€ g’

Table 10. Binding Actions

identifiers in @,. It may also be regarded as syntactic substitution; but note that it is not
associative.

How about the scopes for abstractions? The aim, of course, is to be able to express both the
so-called dynamic and static scope rules. Now abstracta, is a value, not an action, and the
action producing this value, @abstracta;, has no accessed identifiers . Any occurrences of
find 7 in a, are hidden for the bindings available when the abstraction is produced. They only
become exposed when the abstraction is applied. This gives the dynamic scope rule for non-
locally bound identifiers in abstractions.

Freeze:
(“:"AB‘T) a o= freeze® - B=0@;,0=F;7=F
I aapplyﬁ — o= FP¥;7=P
axioms
1. @ + (@abstracta) ! freeze® = @abstract((¢, (@ + p%)): a)
2. ((@abstracta), ;) ! O‘a'\pplyﬁ' = d +a - aCa';8 CB

Table 11. Freezing Actions

However, Table 11 introduces an action freeze®. This action consumes a value abstracta, in
F and produces an abstraction which is the same as the one consumed, except that all the
bindings for identifiers in ¢« have now been frozen in a; to be those available to the freeze®
action. When freeze® is executed immediately after an abstraction is first produced, this gives
the static scope rule (see | 24} for a more leisurely discussion). Note the similarity between
freeze® and supply; and also that apply has indices giving its binding facet — the default
values for these are o = Ide, 8 = @.

No more basic ASAs can be presented here, as this paper is already far too long. The major
omissions here are basic ASAs for recursive bindings (which are complicated by the presence
of side-effects) and exception-handling. Together, these allow a treatment of goto statements

and labels (without modelling them on continuations).

EXAMPLE

The example in Table 12 illustrates the proposed approach of using abstract semantic algebras
in semantic descriptions. The language described is M-Lisp, the syntactically-sugared applica-
tive subset of ordinary Lisp that was used by McCarthy[19] for specifying the operational
semantics of Lispl.5.

A standard denotational description of M-Lisp has been given by Gordon[13.14]. The
description given here follows Gordon’s semantic analysis of M-Lisp quite closely. Readers un-
acquainted with M-Lisp should note that the scope rule for non-local identifiers in abstractions
is the dynamic one, that there are no side-effects of evaluation, and that values passed to and

from applications may only be S-expressions, not functions.

Given the basic ASAs presented in this paper, the only thing missing from the semantic
description in Table 12 is the specification of an ASA called Coercions, providing the actions
bv. dv, fv and pv. This specification is rather trivial, and can in fact be derived systematically
from the coercions between the given “characteristic” sorts B, D, F, P and E. The correspond-
ing actions are just identity on values coercible to the indicated sorts, and otherwise give
error{termination).

Table 12 may perhaps not seem to be as concise as the standard domain-based denotational
description of M-Lisp given by Gordon. In comparing the two descriptions, the reader is asked
to take into account the unfamiliarity of the operator symbols of the ASAs here. Moreover,
the use here of projections 7, and target tupling a, , a, to express dataflow does not seem
(in general) to be as perspicuous as the use of bound variables in N\-notation. (As mentioned
before, an ASA for naming consumed values of actions can be given.)

A standard denotational description may be derived from the one based on ASAs, by choosing
an interpretation for action operators, satisfying all the axioms of their specifications, using
domains. Table 13 gives an example of this. Continuations are used in modelling sequential
execution purely for (A\-)notational convenience — Gordon used strict functions instead. Note
that the presence of certain actions of ASAs implies a corresponding richness in interpretations,

_97 .

Abstract Syntax

(Prog) M = FL
(Func) F o= I | cons | .. | N[PI;E] | labell/;Fl]
(Form) E = I | S| FI41 | IC]
(Pars) P .= IL;P |
(Args) A = E;A4 |
(Casesy C = E| -Ey;C |
indices
(Ide) I -- standard identifiers
(SExp) S -- [Lisp-Data]
Semantic Values
(E) e = d -— expressible values
(D) d = b | f -- denotable values
P) p = b -~ passable values
(B) b = 8 -~ basic data
(T) ¢ -~ truth values
(F) f -— function abstractions
(‘“’Aﬁ T a -~ actions

indices: oc€A, TEA, oaClde; B CIde
auxzliary: | Coercions, Lisp-Data |
standard: [Truth,Seq, Fun, Sum, Abs, Scopes, Bind]

Table 12. Semantic Description of M-Lisp

e.g. it is awkward to model bind/ without the interpretation of the sort A being a function of

some kind of environment.

How about the modifiability of the example semantic description given in Table 12? It is in fact
rather easy to add new features like assignment, “fun-args” and static scopes to the described
language: just reference the corresponding basic ASAs and add new semantic equations,
modifying only the description of those language features directly influenced by the desired
extensions. (The specification of the Coercion actions may need changing systematically to

reflect new characteristic sorts.)

28 - - 29 -

Auxiliary
. e Eouati Lisp-Data:
Semantic Equations
SE S = (5.8) | I Sy, S il |
4 Prog-A o= PH =B a B=0 (T xp) (] -IZ) atom ¢ cons(S;, Sy) | ni
t =
ATE D = ((Y FTFD ! fv);) ! apply EQ; q z;r:d(S)d tati
- ard quotations
~ _ axioms
F:Func— A - 0=(); 7=E; o B=0 . s, 5" (5.5
. cons(S, = .
FRIT = find[f
2 il = atom”"NIL"
Fleonsi = @abstract((m ! bv; m, ! bv) ! @cons(m,, 7,)) 5 is-nil(m) NIL
. is-nil(atomg) = g=" !
4 is-nil((S. S’ = ff
FUNIPI; E1T = @abstract(#IPI: SLET! pv) mlll &
AUlabel{7; F1§ = @abstract((! #LFD ! fv;)!

(m 1dv!bind;): apply)
Table 12, ctd.

¢ Form—A -~ o=(; 7=E o =0
SEIT = find/
ESEo= o es Of course, this is no proof that difficulties cannot arise when adding arbitrary new features; but
CLFLATD = (ZLFD v /TAT) L apply it does suggest that the modifiability of semantic descriptions based on the ASAs presented here
£LICIE = 4LCT may be somewhat better than that of standard denotational descriptions based on domains.
Apart from good modifiability, a stated aim of the proposed approach is that parts of semantic
7 Rars - A e o=PR or=() a=0; 8 descriptions be standard and re-usable. It is hopefully evident that the basic ASAs given above
PLI; PI = ((P«P* 7y 1dv | bindD); (P‘P*‘/rz ! #LPI)) /(L() ! exrror) are not at all biased towards M-Lisp, and could be used (in different constellations) in semantic
PLI = () descriptions of many other programming languages.
Acknowledgments
o Args— A - o= T=P% o =0 The development during the last five years of the approach presented here has been helped
STE; AT = (SLED) pv); #4147 along by patient criticism, questions and advice from many, including Dines Bjorner, Rod
Burstall, Haremut Ehrig and the group at TU-Berlin, Joe Goguen, Mike Gordon, Neil Jones,
ST = () Robin Milner, Mogens Nielsen, Gordon Plotkin, Erik Meineche Schmidt, Dana Scott, Ravi
Sethi, Joe Stoy, Bob Temnent, Jim Thatcher, Mitch Wand and Glynn Winskel. The students
#.Cases — A o a=():; 7=E, o B=0 at Aarhus provided useful feed-back during courses in which the first attempts at expressing
QUE,~E,;C1 = #0E,1!bv! @isnil(r,) ! these ideas were malde. Finally., the inspiration and education given by the late Christopher
(1 wecn s Sy et E,T) Strachey have been invaluable in this work.
#L1 = @nil

Table 12, ctd.

Sermartic Domains

Operations

>

P e

SRl

=

e & E

d&e D

JAS P

be& B

e T

fe

a< wIpBT

= o AT

K& K™

0= Env

Ve Vs
Ans

(g, L agkpv =
(a;; as)kpv =

(a,:askkpv =

(@ / awpy =
(apply)kp(f.p*) =
(error)kpr =

(@kpv =

(bindl)p.d) =
(findD)(p.()) =
Mp.v) =

(T). (v w)) =
((p.v) =

Eo(my.....w,)p.(v..... 1,

(abstracta,)

- 80 -

= D
= B+F
= B
= SExp
standard truth values
- aP*pAQP
= KBT . g
= EnvxXV’ - EnvxV
= Env - V° - Ans

= Ide - D
S = 5 X e X,
unspecified

a1(No1vy-ag(hoguy-k(py [pol)vov)pv

a (Mo vy.ay(Mogve-k() [pol)(vy. w))pu)py
a1\ vy.agx(p [pDvy)pv

v2o) — a\kp(v] 0}), akp(v|oy)

Srop*

(“Error”, v)

Mp ", v").kp v)@ (p, 1))

(1~ d]. ()
({1, (D)
a.m
(12
{

(I}, v)

N = (Je(w, . .v))

a,

Table 13. A Model for M-Lisp

10.

1l.

12.

13.
14.

8] -

REFERENCES

ADJ (Goguen].A., Thatcher,].W., Wagner,E.G. and Wright,J.B.), Initial algebra
semantics and continuous algebras, J.ACM 24 (1977) 68-95.

ADJ (Goguen,].A., Thatcher,].W., Wagner,E.G. and Wright,].B.), An initial algebra
approach to the specification, correctness and implementation of abstract data types,
in: Yeh,R.(ed.), Current Trends in Programming Methodology IV (Prentice-Hall,1979).
ADJ (Thatcher,].W., Wagner,E.G. and Wright,].B.), More on advice on structuring
compilers and proving them correct, in: Proc. ICALP 1979, Graz, LNCS 71 (Springer).
AD] (Ehrig,H., Kreowski, H.-J., Thatcher,].W., Wagner,E.G. and Wright,].B.),
Parameterized data types in algebraic specification languages, in: Proc. ICALP 1980,
Noordwijkerhout, LNCS 85 (Springer).

Backus,]., Can programming be liberated from the von Neumann style? A functional
style and its algebra of programs, Comm.ACM 21 (1978) 613-641.

Broy,M. and Wirsing,M., Programming languages as abstract data types, in: Proc.
5eme Colloque de Lille, 1980.

Christiansen,H. and Jones,N.D., Control flow treatment in a simple semantics-directed
compiler generator, to appear in: Proc. IFIP Working Conf. on Formal Description of
Programming Concepts II, Garmisch, 1982 (North-Holland).

Gallier,].H., Recursion-closed algebraic theories, JCSS 23 (1981) 69-105.
Gaudel,M.-C., Deschamp,Ph. and Mazaud, M., Semantics of procedures as an algebraic
abstract data type, Rapport de Recherche No. 334, INRIA, Rocquencourt (Dec.1978).
Goguen,].A., Some design principles and theory for OBJ-0, in: Proc. Int. Conf. on
Math. Studies of Inf. Proc., Kyoto, Japan, 1978.

Goguen,].A., Order sorted algebras, Semantics and Theory of Computation Rep. No.
14 (1978), to appear in JCSS.

Goguen,].A. and Parsaye-Ghomi, K., Algebraic denotational semantics using parameter-
ized abstract modules, in: Proc. Int. Coll. on Formalization of Programming Concepts,
Peniscola, 1981, LNCS 107 (Springer).

Gordon,M.].C., Models of Pure Lisp, Ph.D. Thesis, Univ. of Edinburgh (1973).
Gordon,M.J.C., Towards a semantic theory of dynamic binding, Computer Science
Dept. Rep. No. STAN-CS-75-507, Stanford Univ. (Aug.1975).

19.
20.

21.

22.

23,

24.

25.

26.

217.

28.

29.
30.

31.

32.

33.

34,

-39 -

Gordon,M.].C., The Denotational Description of Programming Languages (Springer,
1979).

Guttag,]. V. and Horning,].J., The algebraic specification of abstract data types, Acta
Inf. 10 (1978) 27-52.

INRIA, Formal Definition of the ADA Programming Language, Preliminary Version,
INRIA, Rocquencourt (Nov.1980).

Liskov,B.H. and Zilles,S.N., Specification techniques for data abstractions, IEEE SE-1
(1975) 7-18.

McCarthy,]J. et al., Lispl.5 Programmers Manual, MIT Press (1969).

Milne,R.E. and Strachey,C., A Theory of Programming Language Semantics (Chapman
and Hall, John Wiley, 1976).

Mosses, P.D., The mathematical semantics of Algol60, Tech. Mono. PRG-12, Program-
ming Research Group, Oxford Univ. (1974).

Mosses,P.D., SIS — Semantics Implementation System: Reference Manual and User
Guide, DAIMI MD-30, Computer Science Dept., Aarhus Univ. (Aug.1978).

Mosses,P.D., A constructive approach to compiler correctness, in: Proc. ICALP 1980,
Noordwijkerhout, LNCS 85 (Springer).

Mosses,P.D., A semantic algebra for binding constructs, in: Proc. Int. Coll. on
Formalization of Programming Concepts, Peniscola, 1981, LNCS 107 (Springer).

Pair,C., Types abstrait et semantique algebrique des langages de programmation,
Rapport 80-R-011, Centre de Recherche en Informatique de Nancy (1980).

Raoult,].-C. and Sethi,R., On metalanguages for a compiler-generator: properties of a
notation for combining functions, to appear in: Proc. ICALP 1982, Aarhus (Springer).

Reynolds,].C., Using category theory to design implicit coercions and generic operators,
in: Proc. Workshop on Semantics-Directed Compiler Generation, Aarhus, 1980, LNCS
94 (Springer).

Rus,T., Context-free algebra: a mathematical device for compiler specification, in:
Proc. MFCS 1976, Gdansk, LNCS 45 (Springer).

Scott,D.S., Data types as lattices, SIAM J.Comput. 5 (1976) 522-587.

Scott,D.S. and Strachey,C., Toward a mathematical semantics for computer languages,
Tech. Mono. PRG-6, Programming Research Group, Oxford Univ. (1971).

Sethi,R. and Tang,A., Constructing call-by-value continuation semantics, in: Proc.
ICALP 1979, Graz, LNCS 71 (Springer).

Strachey,C., Fundamental Concepts in Programming Languages, unpublished lecture
notes (1967).

Tennent,R.D., The denotational semantics of programming languages, Comm.ACM 19
(1976) 437-453.

Wand, M., First-order identities as a defining language, Acta Inf. 14 (1980) 337-357.
Wand, M., Semantics-directed machine architecture, in: Proc. ACM Symp. on Principles
of Programming Languages, 1982.

	2475_001 1.pdf
	2475_001 2.pdf
	2475_001 3.pdf
	2475_001 4.pdf
	2475_001 5.pdf
	2475_001 6.pdf
	2475_001 7.pdf
	2475_001 8.pdf
	2475_001 9.pdf
	2475_001 10.pdf
	2475_001 11.pdf
	2475_001 12.pdf
	2475_001 13.pdf
	2475_001 14.pdf
	2475_001 15.pdf
	2475_001 16.pdf
	2475_001 17.pdf
	2475_001 18.pdf

