ISSN 0105-8517

DIRECT METHODS FOR SPARSE MATRICES

by

Ole Psterby
and

Zahari Zlatev

DAIMI PB-123
July 1980

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

SN

Preface

The mathematical modeis of many practical problems lead to systems of
linear algebraic equations where the coefficient matrix is large and sparse.
Typical examples are the solutions of partial differential equations by
finite difference or finite element methods but many other applications

could be mentioned.

When there is a large proportion of zeros in the coefficient matrix then it
is fairly obvious that we do not want to store all those zeros in the com-
puter, but it might not be quite so obvious how to get around it. We shall
first describe storage techniques which are convenient to use with direct
solution methods, and we shall then show how a very efficient computational

scheme can be based on Gaussian elimination and iterative refinement.

A serious problem in the storage and handling of sparse matrices is the
appearance of fill-ins, i.e. new elements which are created in the pro-
cess of generating zeros below the diagonal. Many of these new elements
tend to be smaller than the original matrix elements, and if they are smaller
than a quantity which we shall call the drop tolerance we simply ignore them.
In this way we may preserve the sparsity quite well but we probably intro-
duce rather large errors in the LU decomposition to the effect that the
solution becomes unacceptable. In order to retrieve the accuracy we use
iterative refinement and we show theoretically and with practical experi-

ments that it is ideal for the purpose.

Altogether, the combination of Gaussian elimination, a large drop tolerance,
and iterative refinement gives a very efficient and competitive computational
scheme for sparse problems. For dense matrices iterative refinement will
always require more storage and computation time, and the extra accuracy
it yvields may not be enough to justify it. For sparse problems, however,
iterative refinement combined with a large drop tolerance will in most
cases give very accurate results and reliable error estimates with less

storage and computation time,

In chapter 5 we introduce a general computational scheme which includes
many well-known direct methods for linear equations and for overdeter-
mined linear systems as special cases. We also demonstrate how the

above techniques can be generalized to linear least squares problems.

Decimal notation is used for the numbering of sections and chapters. Thus
the third section of Chapter 5 is numbered 5. 3. The 15th numbered equa-
tion in Section 3 of Chapter 5 is numbered (3. 15) and is referenced in
another chapter by (5. 3. 15). Tables and figures are numbered in each
chapter. Thus the 7th table or figure in Chapter 1 is numbered 1.7, A
similar numbering system is used for theorems, corollaries, remarks,

etc.

Contents

1. Introduction

Gaussian elimination

1.2 Sparse matrices
1.3 Test matrices
1. 4 An example
1.5 Contents of chapters 2-5
2. Storage Techniques S B
2.1 Input
2.2 Reordering of the structure
2.3 The elimination process
2.4 Storage of fill-ins
2.5 Garbage collections
2.6 On the storage of matrix L.
2.7 Classification of problems
2.8 A comparison of ordered and linked lists
3. Pivotal Strategies e e e e e e e e e e .. . 4b
Why Interchange rows and columns ?
The Markowitz strategy
. The generalized Markowitz strategy (GMS)
. The improved generalized Markowitz
strategy (IGMS)
. Implementation of the pivotal strategy
.6 Other strategies

iii

4, lterative Refinement e e e e e e e e e e e

4.1
4,2
4.3
4,4
4,5
4.6
4,7

Convergence of iterative refinement

The drop tolerance

Storage comparisons

Computing time

Choice of drop tolerance and stability factor
When and how to use iterative refinement

Robustness and reliability

5. L.inear Least Squares Problems e e e e e e e

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

Appendix

References

Linear least squares problems

The general k-stage direct method
Special cases of the general method
Generalized iterative refinement
Orthogonal transformations

Pivotal strategy

A 2-stage method based on orthogonal
transformations

Numerical resulis

Codes for sparse matrix problems .

63

87

117

120

Chapter 1 : Introduction

1.1 Gaussian Elimination.

Many practical problems lead to large systems of linear algebraic equa-
tions
(1.1) Ax = b,

~]
where né&€N, A€ R™M 2 hank(A) = n , b g RN
x € IERnX1 is to be computed.

are given and

In these notes we shall discuss the solution of (1. 1) by means of so-
called direct methods and begin with the well known Gaussian elimination.

The elimination process will be carried out in n-1 stages

(1. 2) Al o (k) (k) (k = 1 (1) n=1)

starting with A(” = A. The lower right (n-k+1) X (n=k+1) submatrix of A(k)

is denoted Ak and its elements are denoted a§|j<) , (I,j=k(1)n). For the

elements of Ak+1 we have the formula
(1. 3) a§3.<+')=afzf)—a§::)- ag})/aﬂ;), i,] =k+1(1)n.

l_(k) is an elementary unit lower triangular matrix with elements
R, (i=1(1)n) ;

(1.4) IgE) —ai(E)/aS;), (i

otherwise 0.

il
i

k+1 (1) n) ;

The end result of the elimination is the upper triangular matrix U = A(n)

and the process is equivalent to a triangular factorization

(1.5) A=L"-U,
where
(1.6) L=, =2 () =1,

The elements of L and U are thus given by

' \
(1) (1) (1) (1)
41 P2 413 1n
(2) (2) (2)
452 453 qan
(1.7) U= 4 M . ?7
0 .
a(n)
. nn J
and
(1 h
(1)
- 1
21 o
NUNNCI.
31 32
(1.8) L=< . . L.
. -
(1) (2) (h-1)
S PR N e ST 1
L J

In order for this factorization to be successful it is necessary that all

(k)

the denominators in (1. 3), ay . » are different from 0. Moreover,to

ensure reasonably stable computations it is to be desired that the

(k) _(k), (k)
A / a

correction terms in (1. 3), a; . KK are not very large. This is

usually accomplished by interchanging rows and/or columns and thus
. (k) (k) , _(K) ;

requiring that l'ik | <1 or Iakj /akk | < 1. We shall return to this

topic in section 3.1 and for the moment just prepare ourselves for the

row and column interchanges which transform (1. 1) into
T -
(1.9) PAQ(@'x) = Pb,

where P and Q are permutation matrices.

The elimination or factorization (1.5) now becomes
(1.10) LU = PAQ+E,

where LL and U now denote the computed triangular matrices and E is
a perturbation matrix which takes care of the computational errors,

among other things.

An approximation X to the solution x is now computed by substitution
(1.11) x, = QU "L " Pb,

and we set

(1.12) X = X
Definition 1.1 % as given by (1.12) is called the direct solution (DS).
Remark 1.2 Even if the computations in (1. 11) are performed without

errors we may still have x # x if E# 0 in (1.10).

We would expect that the process of elimination and substitution would
lead to a 'good! solution if the elements of E are small. This is often
the case but we have no a priori guarantee of this, and we don't even
have any a priori guarantee that the elements of E will be small if we
use only row-interchanges. Therefore the following 'refining' process

can be useful.

Compute for i=1, 2, ..., g-1
(1.13) r.o= b-Ax,

(1. 14) ¢ =au'L T pr,
(1.15) Xiq = X+ d,

and set

(1.16) X = x_.

Definition 1.3 The process described by (1.13) - (1. 15) is called

iterative refinement. x as given by (1. 16) is called the iteratively

refined solution (IR).

Remark 1.4 Under certain conditions the process (1,13) - (1.15) is

- - OQ
convergent and X X (i). In this case x = X4 +2i=1 di
and di + 0. If the series converges swiftly Hdill can be used

as an estimate of the error ||x - xill.

If convergent the iterative refinement will provide a better solution

and a reasonable error estimate. The price we have to pay for this is
extra storage (because a copy of A must be retained) and extra computing
time (for the process (1.13) - (1. 15’)); The following table gives the

storage and computing time for D5 and IR

DS IR
2 2
Storage n“ 4+ O(n) 2n“ + O(n)
Time %n3+n2+o(n) %n3 +(2p—-1)n2+0(n)

Table 1.1

Comparison of storage and time with DS and IR for dense matrices.
The computation time is measured by the number of multiplications.

There are about as many additions as multiplications.

1. 2 Sparse Matrices.

Until now we have tacitly assumed that we require space and time to
treat all the nz elements of matrix A (A is dense), Table 1.1 shows
that in this case both storage and time increase rapidly with n and

that IR is always more expensive than DS in both respects.

In many applications, however, A is sparse, i.e, a large proportion of
the elements of A are 0, and we shall in these notes describe special

techniques which can be used to exploit this sparsity of A.

The border-line between dense and sparse matrices is rather fluent,
but we could 'define' a matrix to be sparse if we can save space and/or
time by employing the sparse matrix techniques to be described in

these notes.

Consider the basic formula in the factorization process (1, 2)

S AR T SR 2R

1l

k+1{()n, j=k(Mn, k=1 n=1.

The computation is clearly simplified if one or more of the quantities

()

involved (except a) is 0.

A sparse matrix technique is based on the following main principles:
A) Only the non-zero elements of matrix A are stored.

B) We attempt to perform only those computations which lead to

changes, i.e. we only use formula (2. 1) when aEE) # 0 and

aﬁ}) # 0.

C) The number of 'new elements! (fill-ins) is kept small. A new

element is generated when ag?) = 0 and aﬁ.&” # 0.

Before we continue we shall introduce some notation and terminology.

By an element of matrix A we mean a non-zero element of the matrix.

The rest of matrix A are called zeros and are treated as such,

n denotes the number of unknowns (columns).

m denotes the number of equations (rows).

(We shall only treat the case m # n in chapter 5.)
NZ denotes the number of elements of matrix A.

NN is the length of the one-dimensional array A which is
used to hold the elements (NN > N2Z).

COUNT is the maximum number of elements (including fill~ins)
kept in array A during the elimination process (NN = COUNT),
Note that COUNT is not known beforehand, but can be

returned by the sparse mairix code.

T is the drop tolerance (see the end of section 1. 4).

We shall see that the use of sparse matrix techniques will change the
contents of table 1.1 completely. More specifically, the computation
time and the storage will not grow as fast with n, the storage needed
for IR will not always be larger than for DS (because we introduce the
drop tolerance), and the computation time will often be smaller for IR
than for DS with the techniques which we are going to describe in the

following chapters.

1.3 Test Matrices

More often than not assertions and suggestions about sparse matrix
techniques cannot be proved mathematically.‘ We shall often have to

rely on practical experiments to show that one technique is better than
another - or to see under which circumstances it is better. For this
purpose several classes of test matrices have been constructed, either
as typical examples or generalizations of practically occurring matrices,
or as nasty examples designed to make life difficult for sparse matrix

programs.

We shall in this section introduce some of those test matrices which we

are going io use throughout the text,

Test matrices of class D(n,c) are n X n matrices with 1 in the diago-

nal, three bands at the distance ¢ above the diagonal(and reappearing
cyclicly under it), and a 10 X 10 triangle of elements in the upper
right-hand corner,

More specifically :

a. .=1 , i=1(1)n ;
i,

ai,i+c=l+1 , 1=1(1)n-c T I =i+1, i=n-c+1(1)n
3 ipepr =1 s 0= 1(1)n-c-1 , IR L PR n-c(1)n
A ibctn T 16 , i=1(1)n=-c-2 , A jendct2 T 16 , i=n-c-1(1)n
ai,n—11+i+j=1ooc"’ i=t1mio, i=1M11-j ;

forany n=14 and 1 <c<n-13,

By varying n and ¢ we can obtain mairices of different sizes and spar-
sity patterns. In Fig., 1.2 we show the sparsity pattern of matrix
D(20, 5).

KOOOOXAKXOCOXAKAKXAKAXKAKXXX
OXCOOCOXXXOOXXKXKXXXXXX
OOXOOOOXAKXOOXAKXAXXXX
OCQOOXOOOOXKXOOXXKXKXXXXX
OQOOOXOOOOHXKXXOOXXXXXX
OOOCOOXOCOOOXXKXXOOXAKXXX
OCOOO0OO0O0OXOOCOOXXKXXOOXXXX
OOOOCOO0OOXOCOOOXXXOO XXX
OOCOO0O0OOOXOOOOXXXOO0OXX
OCOO0O00O0O0O0COXOOOOXXX0O0OX
OO0O0O000000OXOCOCUOXXXCO
OCOOO0O0O00OO0O0O0OOXOOOOXXXO
OCOCOO0O0COO00OO0O0OOXOOOO XXX
XOOCOOOOOCOOCOOOXO0O0OO0OOXX
XXCOOOCOOOOOOOOXO0O00OO0OX
XAXXOOOCOOOO0OO0OOOOOX0O000
OXXXOO0O0OO0O0O0O00OO0O0O0OOX00O0
COXXXOO0O0O0O0O0O00O0O0OOCOX00
OOOXXXOO0O0O0O0O0OOO0O0OO0OOOXO
OO0OOCOXXXO0OO0O0OO0O0OOO0OO0OOX

Fig. 1.2

Sparsity pattern of matrix D(20, 5)

Test matrices of class E(n,c) are symmetric, positive definite,

n X n matrices with 4 in the diagonal and ~1 in the two sidediagonals
and in two bands at the distance ¢ from the diagonals. These matrices
are rather similar to matrices obtained from using the five-point

formula in the discretization of elliptic partial differential equations.

a,; = 4, i = 1(n H
(3.2) a1 T 3o T -1, i= 1(1)n-1 ;
3 ite = B iec = -1, i = 1(1)n-c ;

In Fig 1.3 we show the matrix E(10, 4)

4 -1 0 0 -1 0 0 0
-1 4 -1 0 0 -1 0 0
0 -1 4 -1 0] 0o -1 0 0
0 o -1 4 -1 0 o -1 0 0
-1 0 0o -1 4 -1 0 o -1 0
0o -1 0 o -1 4 -1 0 0 ~1
0 0 -1 0 0o -1 4 -1 0 0
0 0 o -1 0 0 ~1 4 - 0
0 0 0 0o -1 0 0 -1 4 -1
0 0 0 0 o -1 0] o -1 4

Fig. 1.3
The matrix E(10, 4)

Test matrices of class F2(m,n,c,r,q) are mxn matrices which can be

viewed as generalizations of the matrices of class D but with a lower
left 10x 10 triangle of elements added. r-1 is the width of a band
located at a distance c¢ from the main diagonal (and reappearing

cyclicly under it). The elements are given by

i iign = 1 = 1(1)m;

- s : _ .
3 jognicts T (=1)° « s 1, s=1()r-1 , T=1(1)m,
whereqg=0,1,..., rm/n'] is chosen such that 1 < i-gn < n resp.

1<i-gn+c+s <n, and]—m/rf] is the smallest integer greater

than or equal to m/n ;

o n-11+ivy TG .

I
—
—
—
N
—
Qo
-
]
-
—
—
S’
-—
-—
!
Cme
-

qn—11+i+j,§ /o, P=1(1)10, j=1(1N)11-i;

where m>=n=22, 11<c<n-11, 2<r <min(c-9, n-20), and

a = 1.

10

The smallest matrices of this class are thus F2(22,22, 11,2,%), In
Fig. 1.4 and 1. 5 we show the sparsity pattern of matrices .
F2(26, 26, 12, 3,a) and F2(80, 30, 12, 4,a).

XOOOOOOOOOOOXXOOXXXXXXXXXX
OXOOOOOOOOOOOXXOOXXXXXXXXX
OOXOOOOOOOOOO0OOXXOOXXXXXXXX
OCOOOXOOOOOOOOCOOOXXOOXXXXXXX
OO0OO0OOXOOOOOOOOOOOXXOOXXXXXX
OOO0O0OO0OXOO0OOOOOODOOOXXOOXXXXX
OO0O000OXOCOOOOOOOOOOXXOOX XXX
OO0OO0OO000OXOOOOOOOOOOOXX0OOX XX
O000000OXOOO0OO0OO0OOOVOOOOXX0O0OXX
OCO0O00000O0OXOO0OOOOOOOOOXX00OX
OO0OO000CO0000OXO0O0OOO0OOOO0OOOOXX0O0
OCOO0OO0O0O0O000O0OXCOOOOOOOOOOX X0
ojojololojolojololololod qoloolololololololoXo P 9 4
XO0O0O0OO0OO0OO0OO0OO0OO0OOOXOCOO0OOOOOOOOX
XXOOOCOOOOO0OO0OOOOXO00OO0OOOO0O0O
OXXOOO0OOOO0OO0OO0O0OO0OOOXOO0O0OO000O0O0O
KOXXOO0O0O0OO0O0OOOCO0OOOOX0O000O0000O0
AXXOXXO00O0O0O000000OOX00000O000
XXXOXXOO0OO0OO0OOO0O0O0O0OO0OO0OOX0O000000
XXXXOXXO0OO0O0O0OOO0O0O0O0O0OOX0O00000
XAXXXOXXOO0OO0O0O0O0OO0OO0O0O0OQOX00000
HAAKAKAXXOXXOOOOOOOOOOOOXC000
AAXAXKXXAXKXOXXOO0OO0O00OOOOO00O0OOX000
HAKXKAAKXXXKXOXXOOOOOOOOO0OO0O0OO0O X000
HXAAXXXKXKXXXOXXOO0OO0O0OO0OO0OO00O0O0O0OOXO
HKAAXAXXXAXXXAKXOXXOOO0OOO0OO0OOO0O0OO0OX

Fig. 1.4

Sparsity pattern of matrices F2(26, 26, 12, 3,a)

We emphasize here that by varying the parameters for test matrices of
class F2 we can change the size n, the ratio m/n, the density NZ/nz,
the sparsity pattern, and the stability properties of the matrices and
therefore carry out a rather systematic investigation of how the per-

formance of a sparse matrix code depends on these quantities.

Table 1.6 below summarizes the dimension, the number of elements,

and the smallest and largest elements of the test matrices.

In addition to matrices of these three classes we have also used some

Harwell test matrices (see [18]) in our numerical experiments.

11

e S S

S A AR

et

1)
Nt

5

1

Sparsity pattern of matrices F2(80, 30, 12, 4,a).

12

class dimension NZ min ’aijl max[aij[

D(n, c) n 4n + 55 1 max(1000,n+1)

E(n,c) n 5n-2c -2 1 4
F2(n,n,c,r,al n r‘-.n+110 1/a max(rn-n, 10g)

Table 1.6

VVarious characteristics of the test matrices.

1.4 An Example.

To demonstrate the assertions at the end of section 1.2 we have solved
a linear system with the coefficient matrix E(1000, 44) (see section 1. 3)
using DS with the subroutines FOIBRE and FO4AXE from [36] and
using IR with subroutine Y12M ([69], [72] and [73]).

For this matrix we have

n=1000, nZ= 1000000 NZ = 4910,

Details of the computations are summarized in the following table

storage time accuracy
Algorithm —
COUNT in secs [Ix = x|
DS 45850 152, 31 2,02 10—1
IR 14082 8. 50 1.83 10—6

Table 1.7

Storage, time and accuracy for the solution
of a linear system with coefficient matrix
E(1000, 44). IR is used with T = 0.01 and

16 iterations (see the end of this section).

In this example (and in the following ones) we have chosen the right-

hand-side such that the solution x is the vector consisting of 1's,

13

Note that this problem is very large if we are to solve it by conven—
tional dense matrix techniques and even if the band structure is
exploited we will need about 88000 storage locations for the solution
process, Using the sparse matrix techniques which we are going to
discuss in chapters 2 and 3 the space requirements can be cut by
half, but the real gain is obtained with the techniques from chapter 4 :

iterative refinement + a large drop tolerance.

When new elements (fill-ins) are generated in the elimination process
they are checked against a drop tolerance, T, and if they are smaller
than T they are simply ignored. In this way we save space and com-
puting time, but we also introduce large errors. In order to regain
the accuracy we perform iterative refinement and as seen from table

1.6 we actually get a better solution with IR than with DS,

1. 5 Contents of chapters 2 -5,

In chapter 2 we shall describe a storage technique based on ordered
lists and following the ideas of [28], [29], and we shall compare it

with another technique using linked lists.

Chapter 3 is devoted to pivotal strategies focusing on the well-known

Markowitz strategy ([33]) and some generalizations ([61]).

In chapter 4 we shall discuss drop tolerance and iterative refinement
and show how to combine these into an algorithm which can be much

more efficient than DS,

The techniques described in chapters 1 -4 can also be used in more
general problems where matrix A is rectangular,and with other solu-
tion methods. In chapter 5 we define a general computational scheme
which includes many well-known and commonly used methods as special
cases. Then we discuss briefly the use of sparse matrix techniques,
pivoting, drop-tolerance and iterative refinement for the general

scheme,

It should be mentioned here that the following are based on the resulis
obtained in [60, 61, 62, 69, 73].

14

15

Chapter 2 : Storage Techniques

2.1 Input Requirements.

Assume that the matrix A is large and spar‘se.‘ We shall not make assump-
tions on any particular structure of the elements of A, If such informa~
tion is available (if e. g. A is positive definite or has a band structure)
then it may be possible to take advantage of it and arrive at a more
efficient computational scheme, but we shall focus our attention on

more general techniques.

When no special structure is present every element of the coefficient
matrix must be accompanied by information on where it belongs, i.e, in
addition to the value of aij’ we must know the row number, i, and the
column number, j. This information can be arranged in three one~-
dimensional arrays A, CNR, RNR containing the values aij’ Jj, and i
respectively. (If integers take as much space in our computer as reals
do, then we must already at this point have NZ < n2/3 in order to save
space; we shall see later that even stricter bounds should be imposed

on NZ.)

In general we cannot expect that the order in which the user wishes to
supply the matrix~elements can be used effectively in the further com-
putations, so in order to stay user-friendly we place no re-
strictions on this order. Any order will do,and we shall take care of

restructuring the elements in a suitable way (see the next section).

Example 2.1

Consider the matrix (n =5, Nz = 12)

(5 0 0 3 0
2 4 0 0 1
(1. 1) A= 401 3 0 27
0 0 2 3
0 0 0 2 1

16

In Fig. 2.1 we illustrate the use of the arrays A, CNR and RNR. Note
that the length of array RNR (NN1) is less than the length of arrays

A and CNR (NN). We shall see in the next section why this is so.
Matrix A is rather small and not sparse according to our 'definition!,

but we use it here only as an illustiration.

1 2 3 4 5 6 7 8 9 1011 12 ——= 20 24

Real array A 5 4 3 21 31 2 3 2 1 2

Integer array CNR |1 2 34 5 4 5 5 5 .1 2 4

Integer array RNR |1 2 3 4 5 1 2 3 4 2 3 5

Contents of arrays A, CNR and RNR corresponding to matrix A

2. 2 Reordering the structure.

We shall now reorder the elements of A to get a structure which is prac-
tical to use with Gaussian elimination. This structure amounts to an orde~

ring of A by rows and we shall describe two ways of accomplishing this.

We shall need four one-dimensional arrays (length n) of pointers. For
practical reasons these are collected as columns in a two-dimensional
array HA, and as we shall need seven more later on the array HA is

declared tobe nXxX 11.

The pointers to be used here are
HA(i, 1) : Number of elements with row numbers less than I.

HA(i, 3) : Number of elements in row i (stage 1) /

pointer to next element in row i (stage 2).
HA(j, 4) : Number of elements with column numbers less than j.

HA(j,6) : Number of elements in column j (stage 1) /

pointer to next element in column | (stage 3).

We shall return to the use of these pointers in section 2. 3.

17

The first reordering process is done in three stages :

Stage 1. Make a copy of the elements of A and CNR in positions
NZ + 1 to NZ + NZ of A and CNR. (Therefore we must have
NN > 2+ NZ with this process.) Count the number of elements
in each row and place it in HA(., 3) and count the number of
elements in each column and place in HA(-, 6). Compute the
total number of elements with row numbers less than i and
place it in HA(i, 1) and HA(Ii, 3). Also compute the total number
of elements with column numbers less than] and place it in
HA(]j, 4) and HA(], 6).

Stage 2. Copy the elements of A (and CNR) in positions NZ + 1 to
NZ + NZ back into the first NZ positions but ordered by rows
using HA(i, 3) as a pointer to where the next element in row i

shall go.

Stage 3. In array RNR we store the row numbers of the matrix ele-
ments ordered by columns, More specifically, in positions
HA(j, 4) + 1 to HA(j+ 1, 4) we store the row numbers of the ele-

ments of column j in matrix A.

In Fig. 2.2 we give a FORTRAN implementation of this reordering and
in Fig. 2.3 we give the contents of A, CNR, RNR and HA after stage 1
and stage 3.

18

DO 201 =1, N
PIVOT(I) = 0 ,
20 HA(I,3) = HA(1,6) = HA(I, 1) = HA(l, 4) = 0
C count number of elements in each row and column
DO 301 =1, NZ
J = CNR(I)
CNR(NZ+1) = J
A(NZH) = A(l)
HA(J, 6) = HA(J, 6) + 1
J = RNR(I)
30 HA(J, 3) = HA(J, 3) + 1
K=NzZ+NzZ
HA(1, 2) = HA(1,5) = 0
C find the beginning of each row and column
DO 401=1, N1
HA(I+1, 1) = HA(1+1, 2) = HA(I, 1) + HA(I, 3)
HA(I+1, 4) = HA(1+1, 5) = HA(I, 4) + HA(I, 6)
HAC(I, 3) = HA(I, 1)
40 HA(L, 6) = HA(I, 4)
HA(N, 3) = HA(N, 1)
HA(N, 6) = HA(N, 4)
C " copy the elements back into A
DO 50 13 =1, Nz
I = RNR(13)
12 = HA(1, 3) + 1
11 =NZ + 13
CNR(12) = CNR(11)
A(12) = A(11)
50 HA(L, 3) = 12
DO 701 =1, N

J1 =HA(1, 1) + 1
J2 = HA(l, 3)
DO 70 J3 = J1, J2
J = CNR(J3)
K = HA(J, 6) + 1
RNR(K) = 1
70 HA(J, 6) = K

Fig. 2. 2. FORTRAN code for the reordering.

CNR
RNR
HA(. ,
HA(. ,
HA(. ,
HA(. ,

CNR
RNR

HA(. ,
HAC(. ,
HAC(. ,
HA(. ,

5

5

4 3 2 1 3 1
2 3 45 45
23 451 2
0 2 58 10
0 2 58 10
0 2 45 8
0 2 45 8
341 2 3 2
4 2 5135
2 23 31 4
0 2 58 10
2 581 12
0 2 45 8
2 45 8 12

W

Fig. 2.3

25 432131232

4 1
5

2 3 45 45551

Contents of the arrays after stage 1 and stage 3.

19

1 2
2 4

20

We note that the contents of A, CNR, and HA(*, 1) is enough to hold
complete information on matrix A, i.e. 2« NZ+n locations are suffi~
cient. In order to perform the elimination process more efficiently some

extra storage (e.g. array RNR) is needed also after the input stage.

The code in Fig. 2.2 is just one way of restructuring the information,
and it introduces the somewhat artificial condition that NN = 2°* NZ.
Although the elimination process will often put harder conditions on
NN, it might be instructive to look at another reordering process

which needs no extra space in A and CNR.

This process can also be divided into three stages : stage 3 is identical
to stage 3 in process 1,and so is stage 1 except for the copy of A and
CNR.

In stage 2 we begin with picking out an element from A and reading its
row number in RNR. Using HA(i, 3) as a pointer to where the next
element in row i should go we place our element there accompanied by
its column number in CNR. But first we save the element which is already
located there and the process can continue., The process will stop if we
are to place an element where we picked out the first one. In order to
postpone this event we start out with the element in position NZ (this is
the location reserved for the last element encountered in row n). If

the process stops before all elements have been placed we seek a new
starting element among the positions reserved for the fast element in
row n-1, n=2, «++, using HA(+, 1) as pointers., In order to discover
that an element has been taken out from array A we need to set a flag.
A negative number is placed in RNR for that purpose. As mentioned
earlier we do not need the information in RNR after the sorting so we

are not destroying useful information by placing —-1!s in RNR,

In Fig. 2.4 we give a FORTRAN implementation of this reordering which
does not need extra space (except for the pointers in HA) and in Fig. 2.5
we give the contents of A, CNR and RNR after each of the three stages
of the process. The code is slightly longer than for the first process

but a closer examination reveals that it uses about the same number of

operations. Anyway the bulk of the computation will most certainly lie

somewhere else in the complete sparse matrix code.

20

30

40

21

DO 201 =1, N
PIVOT(l) = 0
HA(I, 3) = HA(I, 6) = HA(I, 1) = HA(l, 4) = 0
count number of elements in each row and column
DO 301=1, NZ

J = CNR(I)
HA(J, 6) = HA(J, 6) + 1
J = RNR(1)

HA(J, 3) = HA(J, 3) + 1
HA(1,2) = HA(1,5) = 0
find the beginning of each row and column
DO 40 1= 1, N1
HA(I+1, 1) = HA(I+1, 2) = HA(I, 1) + HA(1, 3)
HA(I+1, 4) = HA(I+1, 5) = HA(L, 4) + HA(1, 6)
HA(I, 3) = HA(L, 1)
HA(L, 6) = HA(l, 4)
HA(N, 3) = HA(N, 1)
HA(N, 6) = HA(N, 4)
I = RNR(NZ)
J = CNR(NZ)
XP = A(NZ)
RNR(NZ) = -1
K =N
sort the elements of A and CNR
DO 50 13 = 2, NZ
11 = HA(1, 3) + 1
HA(L, 3) = 11
I = RNR(11)
RNR(I1) = =1
Z = A(l1)
A(lT) = XP
XP =z
J1 = CNR(I1)
CNR(I1) = j
J=J1
IF (1.GT. 0) GO TO 50

22

45

50

70

K=K ~1
12 = HA(K, 1)
1 = RNR(12)
IF (1..LT. 0) GO TO 45
RNR(12) = -1
XP = A(12)
J = CNR(12)
CONTINUE
11 = HA(I, 3) + 1
HA(L, 3) = I
A(l1) = XP
CNR(I1) = J
reinitialize RNR
DO701=1, N
J1 = HA(I, 1) + 1
J2 = HA(I, 3)
DO 70 J3 = J1, J2
J = CNR(J3)
K =HA(J, 6) + 1
RNR(K) = 1
HA(J, 6) = K

Fig. 2.4

FORTRAN code for space-economic reordering.

23

A 5 2 1 3 1 2 3 2 1 2
CNR 1 2 3 4 5 4 5 5 5
RNR 1 2 3 4 5 1 2 3 4 2 3 5
HA(., 1) 0 2 5 8 10
HA(., 3) o 2 5 8 10
HA(. , 4) o 2 4 5 8
HA(., 6) 0O 2 4 5 8

A 3 5 2 1 2 2 3 2 1
CNR 4 1 2 5 1 2 3 5 4 5 4 5
RNR -1 =1 =1 =1 =1 =1 =1 =1 -1 =1 -1 -
HA(., 1) 0 2 5 8 10
HA(., 3) 2 5 8 10 12
HA(. , 4) 0 2 4 5 8
HA(., 6) 0 2 4 5 8

A 3 5 4 1 2 1 3 2 2 3 2
CNR 4 1 2 5 1 2 3 5 4 5 4
RNR 1 2 2 3 3 1 4 5 2 3 4 5
HA(., 1) 0 2 5 8 10
HA(., 3) 2 5 8 10 12
HA(., 4) 0 2 4 5 8
HA(., 6) 2 4 5 8 12

Fig. 2.5

Contents of the arrays after each of the three stages of the reordering.

Remark 2.2 If the matrix elements are already ordered by rows the

first strategy will preserve the order whereas the second stra-
tegy will perform a cyclic permutation within each row., We can
take advantage of the ordering by carrying out only stages 1 and

3 of the second process.

24

2.3 The elimination process.

We are now ready to start the factorization or elimination process
which, as mentioned in section 1..1, is performed in n— 1 stages.
Assume that we are about to begin the computations in stage k

(1 <k <n-1). The elements in row i of the coefficient matrix are
located in positions HA(i, 1)+ 1 to HA(i, 3) in array A with the column
numbers given in CNR, It is also practical to know the locations of
the elements of Ak (and of Ai for i < k).v We therefore introduce the
K (or of A, if i < k) are to be
found in positions HA(i, 2) + 1 to HA(I, 3) of array A. We shall use

pointer HA(I, 2) such that elements of A

the notation

.= HA(, 1) —K'J" = HA(j, 4)
(3. 1) L, = HA(,2) T.’] = HA(j, 5)
= HA(i, 3) M. = HAL(], 6)

We have Ki < l_i < Mi and Ki = l_i at the beginning (see Fig.‘ 2.'6).
Note that the elements in row i of the coefficient matrix are not ordered
after column number to begin with, but we shall keep a partial ordering
in the sense the elements in positions Ki + 1 to 1_i have column numbers
less than min(i, k) and those in positions L, + 1 to M; have column num-
bers larger than or equal to min(i, k). The column numbers of these

elements are found in the same positions in array CNR. (See Fig.‘ 2.6).

elements of row i

inL in Ar‘ r = min(i, k)
A A

"y al

x>

T
L

i i i

<>

Fig., 2.6
The pointers Ki’ L‘i and Mi’

25

Similarly in the column-ordered list, the row numbers less than k of
elements in column j (k < j < n) are found in positions —K_J' + 1 to T:J of
RNR, and those greater than or equal to k are found in positions I‘j+ 1
to Mj of RNR,

Remark 2.3. We keep array RNR in order to find the elements of a cer-

tain column easily. This is important when scanning Ak but the infor-
mation is not needed for the first k - 1 columns of matrix A, and
space in RNR can thus be freed for other use. Therefore the

length of array RNR (NN1) can be smaller than NN,

At the beginning of stage k in the elimination process the elements in row

k with column numbers greater than or equal to k {i.e. locations I_k + 1

to Mk in array A) are copied into their proper places in the last n—-k+ 1
locations of a real array PIVOT (of length n) which has been initialized
with 0O's before stage 1. We assume that possible interchanges have been per-
formed already (see chapter 3) such that al(<k), now located in PIVOT(k),

is non-zero.

We shall now perform the calculations specified by formula (1. 2. 1) for

(k)

those rows i for which a # 0. These row numbers are found in RNR,

in locations Lk+1 to Mk'

(k)
ik PY

searching through positions L_i + 1 through Mi of array CNR to find the

For each such row, i, we first find the location of element a

value k. Interchange this element with the element sitting in location

L, +1 (this affects A and CNR) and add 1 to L.. Compute

(k) , (k)
(3.2) t=a; /ak'<

and store in A(Li) (cf. section 2.86),

We now perform two sweeps :

a. Go through row i, locations I_i + 1 through Mi in CNR, and for
each column number, j, check if PIVOT(]) # 0. If so change the
corresponding element of A according to formula (1.2.1) which

here reads

26

(k+1) _ (k) (k)
(3.3) aj; ay m ot A
and set PIVOT(j) = 0.
b. Go through row k to see if we have used all the elements, i.e.

go through locations Lk + 1 to Mk in CNR and for each column
number j check whether PIVOT(]j) = 0.

If so, we just restore PIVOT(j) from A.

If not, a new element (fill-in) is created in row i according to

formula (1. 2. 1) which now reads

agl.<+1) = =t- a(k)

(3. 4) T Kj

and we shall see in the next sections where to put it,

At the end of stage k we zero out the elements which we have used in
PIVOT, locations k + 1 to n, such that PIVOT is ready for stage k + 1,
but we keep a|(<l|<<) in PIVOT (k) as this can make the back-substitution

faster.

Remark 2. 4. The above description follows closely ideas given by

[41].

2.4 Storage of fill-ins.

New elements (fill-ins) are generated during the elimination whenever
we use formula (3. 4) and they should be stored in accordance with our
general principles such that they can be treated during subsequent

stages just like the Told! elements of the coefficient matrix.

But first some good news. We have free space available in array A and
CNR since we store the diagonal elements a(ki) elsewhere (in PIVOT(k))
and we have free space in array RNR since we do not need the informa-
tion provided here for column numbers less than k. Free space is indi-

cated by placing zeros in RNR and CNR..

27

(k)

We do not want free space in the middle of a row so unless a

kk
already occupies position Mk we interchange it with the element in
position Mk’ make this location free by setting CNR(Mk) = 0, and
subtract 1 fromM, : M_= HA(k, 3) = M - 1.

A similar thing can be done in the column-ordered list (array RNR)
but as mentioned already the whole of column k can be removed after

stage k of the elimination is completed.

We may thus have some free space available between rows (and columns)
and whenever a fill-in is generated it might be a good idea to check

the end or the beginning of the row (column) first.

If there is no such space we shall have to copy the whole row (column)

into the free space in A and CNR (RNR) after the last used location.

This strategy is exemplified in the piece of FORTRAN code given in

Fig. 2.7. for a fill-in of value AIJ in row | and column J.

28

is there room to the right

165 IF (CNR(MI+1) .GT. 0) GO TO 170

yes

MI = MI + 1

A(MI) = AlJ

CNR(MI) = J

HA(I, 3) = MI

IF (Ml .GT. NREND) NREND = M|

we are done

GO TO 300
170 KI = HA(I, 1)

is there room to the left

IF (CNR(KI).GT. 0) GO TO 180

yes

Li=1L1-1
A(KI) = A(LT)
AlLT) = Al
CNR(KI1) = CNR(L1)

CNR(L1)
HA(L, 1)
HAC(I, 2)

Il

J
KI -1
Ll -1

we are done

GO TO 300
180 12 = NREND - KI

make a copy of row | at the end

280 13=KI+1
DO 290 13 = I3, MI

290

A(13+12) = A(13)
CNR(13+12) = CNR(13)
CNR(13) = 0

HA(1, 1) = NREND

HA(L, 2) = LI + 12

NREND = MI + 12 + 1

A(NREND) = AlJ

CNR(NREND) = J

HA(l, 3) = NREND
300 CONTINUE

Fig. 2.7.

FORTRAN code for adding fill-ins to A and NRC.

29

The process for adding fill-ins to the column-ordered list is exactly

similar, but for completeness we provide the FORTRAN code in Fig. 2.8.

C
C

365

370

380

480

490

record fill-in in the column-ordered list
is there room at the bottom
LJ = HA(J, 5)
MJ = HA(J, 6)
IF (RNR(MJ+1) .GT. 0) GO TO 370
yves
MJ =MJ + 1
RNR(MJ) = |
HA(J, 6) = MJ
IF (MJ .GT. NIEND) N1END = MJ
we are done
GO TO 500
KJ = HA(J, 4)
is there room at the top
IF (RNR(KJ) .GT. 0) GO TO 380
ves
RNR(KJ) = RNR(LJ)
RNR(LJ) = I
HA(J, 4) = KJ - 1
HA(J, 5) = LJ -~ 1
we are done
GO TO 500
12 = NTEND - KJ
make a copy of column J at the bottom
13 =KJ +1
DO 490 13 = 13, MJ
RNR(I13+12) = RNR(13)
RNR(I3) = 0
HA(J, 4) = N1TEND
HA(J,5) = LJ + 12
N1END = MJ + 12 + 1
RNR(N1END) = |
HA(J, 6) = NTEND

500 CONTINUE

Fig. 2.8, FORTRAN code for adding fill-ins t6 RNR.

30

Remark 2. 5. Two strategies are now possible :

a. Whenever a fill-in is generated it is added to the row-ordered
list and the column-ordered list before we continue ([69],
[72] and [73]).

b. We perform two sweeps : First simulate the elimination column by
column and add possible fill-ins to the column-ordered list. Next
eliminate for real, row by row, computing new elements of Ak+1
and storing fill-ins in the row-ordered list ([28]).

The advantage of strategy Q.. is that all fill-ins in one column (row)

are added to the column- (row=-) ordered list in succession, so that
we need to make at most one copy of the column (row) at any stage),
and we are not liable to run out of space too soon. The disadvantage

is that two sweeps are necessary,

Example 2.6, Consider the matrix from example 2.1 and assume that

the structure is ordered as described in section 2, 2 (F—'ig.‘ 2. 5).

Assume that no interchanges are made in the first stage of the elimi-

(2)

nation. A fill-in is produced as ag, = - 1.2 #0.

There is no free space at the end of the second row, but there is one

empty location at the beginning because we have stored the diagonal

1(211) back one step, place a(zz_)

K,=(HA(2,1) =) K,-1.

element in PIVOT(1). So we move in

its place and set the pointers L2=(HA(2, 2) =) Ko
In the column ordered list there is no free space around column four

so a copy must be made at the end of the list.

The contents of the arrays after stage 1 is shown in Fig. 2. 9.

31

A 3.4 -1.21 4 1 3 2 2 3 2 1
CNR 4 1 4 5 2 2 3 5 4 5 4 5
RNR 2 0 2 3 3 0 0 0 2 3 4 5 1 4 5 2
HA(., 1) o 1 5 810
HA(., 2) 0 2 5 810
HA(., 3) 1 5 810 12
HA(., 4) 0 2 412 8
HA(., 5) 0 2 413 8
HA(., 6) 1 4 516 12

Fig. 2.9

Contents of the arrays after stage 1 of the elimination

Example 2.7. Consider the matrix and the structure after example 2. 6.

Assume that no interchanges are made at the second stage of the
elimination. A fill-in is produced as a(3:2)= 0.3 # 0. Now there
is free space at the beginning of the third row in the row-ordered

list and at the end of the fourth column in the column-ordered

list. The contents of the arrays after the fill-in is shown in Fig. 2. 10.
A 3 .4 -1.21 .25.3 31752 3 2 1
CNR 4 1 4 5 2 4 3 5 4 5 4 5
RNR 0 0 3 03 0 0 0 2 3 4 5 1 2 5 4 3
HA(., 1) 0O 1 4 810
HA(., 2) 0 2 5 810
HA(., 3) 1 4 810 12
HA(., 4) 0 2 412 8
HA(., 5) 0 2 414 9
HA(., 6) 1 3 517 12
Fig. 2.10

Contents of the arrays after stage 2 of the elimination

32

2.5 Garbage collections

There is a limit to how many copies we can make at the end of each

of the lists, but if we are hitting against the upper limit of the arrays
we have probably made several copies along the way and left free loca—
tions behind. (If not, then the matrix is not as sparse as we thought and
the program should return a message asking for more space.) What

is needed now is to compress the structure collecting all free loca-
tions into one connected set which can be used for future copies. In
computer science this kind of process is often called 'garbage collec~

tion!.

Array RNR can be and should be treated separately from A and CNR,

because the need for garbage collections probably will occur at diffe—
rent times. We shall describe the compression or garbage collection

for RNR, |

We cannot expect the columns to be ordered since we have copied ,
intermediate columns to the end of the list several times. Instead of
sorting the elements of say HA(-, 4) we put a marker at the beginning
of each column giving the number of the column. This is done by going
through HA(j,4),] = 1(1)n, placing here the row number of the first
element of the column, and placing -j in RNR instead (see Fig. 2.11
which corresponds to example 2.7 with NN1 = 16 such that a garbage

collection is necessary).

RNR 0 0-2 0-3 0 0 0~5 3 4 5-4 2 5 4
HA(-, 4) 0 3 3 1 2
Fig. 2.11

Contents of array RNR and HA(-, 4) before garbage collection

33

We now go through RNR(i), i = 1(1) NTEND (the last used position).

If RNR(i) = 0 the place is free and we go on. If RNR(i) < 0, say -],
we are at the beginning of a column of elements (column number j)

and we update the pointers HA(j,k), k=4, 5, 6. If RNR(i) # 0 the
element in position | should be copied to the first free location in the
new list we are making. Fig. 2. 12. gives the FORTRAN code for
this compression algorithm and Fig. 2. 13 gives the {similar) code for

compression in the row-~ordered list.

34

C garbage collection in column-ordered list
C set up markers at the beginning of each column
DO 410 12 =K, N
KJ = HA(I2, 4) + 1
HA(12, 4) = RNR(KJ)
410 RNR(KJ) = - 12
CALL UDPUT(N, NREND, N1END, A, CNR, RNR, HA, 6)
DO 450 12 = K, N
C step through RNR until a new column starts
DO 420 J2 = J2, N1TEND
420 IF (RNR(J2) .LT. 0) GO TO 430
430 IC = - RNR(J2)
MIC = HA(IC, 6)
13=J2 - KJ
RNR(J2) = HA(IC, 4)
J2 = MIC + 1
MIC = MIC - 13
C copy a row
DO 440 J3 = KJ, MIC
Jd=J3 + 13
RNR(J3) = RNR(J4)
440 RNR(J4) = 0
HA(IC, 4) = KJ - 1
HA(IC, 5) = HA(IC, 5) - 13
HA(IC, 6) = MIC
KJ = MIC + 1
450 CONTINUE
NTEND = MIC
1M = HA(K, 6) + 11 - MKS
MKS = HA(K, 6)

Fig. 2.12

FORTRAN code for garbage collection in the column-ordered list

35

garbage collection in row-ordered list
set up markers at the beginning of each row
Do 21012=1, N
Kl =HAW2, 1)+ 1
HA(12, 1) = CNR(K1)
210 CNR(KI) = - 12
J2 =KI =1
DO 250 12=1, N
step through A, CNR until a new row starts
DO 220 J2 = J2, NREND

220 IF(CNR(J2) .LLT. 0) GO TO 230
230 IC = - CNR(J2)

MIC = HA(IC, 3)

13 = J2 - KI

CNR(J2) = HA(IC, 1)

J2 = MIC + 1

MIC = MIC - I3
copy a row
DO 240 J3 = KI, MIC
J4a=J3 + 13
A(J3) = A(u4)
CNR(J3) = CNR(J4)
240 CNR(J4) =0
HA(IC, 1) = KI - 1
HA(IC, 2) = HA(IC, 2) - 13
HA(IC, 3) = MIC
Kl = MIC + 1
250 CONTINUE
NREND = MIC

LI=HA(2)+1
MI = HA(I, 3)
J1 = HA(K, 3) + J1 - MK

MK = HA(K, 3)

Fig. 2.13

FORTRAN code for garbage collection in the row-ordered list

36

It is of course expensive to perform garbage coliections too often, One
way to avoid this is to work with large arrays, i. e.‘ to choose farge
values of NN and NNT.. But we must keep a certain balance between
storage and computation time so the result will usually be a compromise
and we must learn to live with some garbage collectibns.‘ Furthermore we
do not know the amount of fili-in beforehand except in very special
situations so the values of NN and NN1 must be chosen largely by

intuition or previous experience,

It should be mentioned in this connection that the program must check
whether the garbage collection resulted in enough free space for the
operations to continue and if not return a message to the user stating

the problem and asking for more space.

2.6 On the storage of matrix L,

When solving linear equations with a dense coefficient matrix it is

an automatic procedure to store the elements of matrix L. because space
is available in the lower triangular part of A, When several sets of
equations with the same coefficient matrix are to be solved, maybe

one after another, computation time can be saved using the LU factori~
zation, but in any case no extra time or space is needed for the storage

of L..

With sparse matrices the situation is different. The matrices are often
large and we shall generally reserve so little space for them that some
garbage collections are performed during the factorization process.

In this case we can save space, i.e., even less storage need to be reser-
ved, or we cah save time on garbage collections, if we do not retain L.
Whenever an element below the diagonal is eliminated the space occupied
by it is freed and can be used e. g. to store a fill-in. Even if a copy of
the row still needs to be made we only copy the elements above the dia-
gonal, and when a garbage collection is performed the structure can be
compressed more tightly than before because only elements above the
diagonal are consider‘ed.. Also the computation time is reduced (slightly)

because fewer elements have to be handled.

On the other hand, if several systems are to be solved, one after an-

37

other, it is probably a good idea to retain L. if at all possible, the extra

space being compensated by a sizable reduction in the computation time,

We shall return to this in the next seciion and in chapter 4.

In table 2. 14. we show the reduction of storage, measured by the value
of COUNT, for some matrices of classes D(n,c) and E(n, ¢c) with
n= 1000. It is seen that a reduction in storage of 25 to 40% is obtained

for these test matrices by not storing L.,

Comparison of the storage needed in the elimination of

test-matrices depending on whether L is stored or not.

2.7 Classification of problems

A problem which requires the solution of one or more systems of linear

algebraic equations belongs to one of the folowing 5 categories :

(1) Ax
(2) Axp
(3) Ar\x

One system is to be solved.

Matrices of class D(n, c) Matrices of class E(n, c)

c
with L |without L % with L fwithout L %
4 8719 5564 64 8126 6128 75
44 16131 9823 61 27658 14289 52
84 16263 9724 60 21411 11123 52
124 16734 9902 59 17456 9934 57
164 16277 9803 60 14621 8602 59
204 15319 9625 63 12111 7575 63

Table 2, 14,

Several systems with the same coefficient

matrix are to be solved.

Several systems of the same structure are

to be solved., (see definition 2.8 below)}.

38

(4) A1><r‘1 = bM Many systems of the same structure are to

Azxrz = br‘2 be solved.‘ Furthermore the same coefficient-

matrix appears successively several times.

it

(5 Ax = b Several systems with different coefficient-
By = ¢ matrices of different structure are to be
E solved.
Definition 2. 8. Two matrices A1 and Az are sald to have the same
structure if their elements occupy the same positions, i, e,
(1) (2)
aj; #Z0 & aj] # 0.
Remark 2.9, We shall also call the matrices A1, Az, voey Ar’ .o

of the same structure even if some of the elements become zero

for certain values of r.

The question of which sparse matrix technique is efficient depends

to a large extent on the category of the problem which we shall see now.

Category (1) and (5) : The lower triangular matrix, L, need not be stored
and we can profit from the saving of space by declaring our arrays
A and CNR smaller. Another alternative would be to keep the sizes
of arrays A and CNR and expect not to waste very much time on

garbage collections.

Category (2) : The lower triangular matrix, L, is computed and stored
when the first system is solved and all {(the subsequent) systems
are solved by substitution using the computed LLU~factorization.

" pbis

only a small percentage of the computation time for the factoriza-

Quite often the computation time for solving Xy = Qu”

tion (just like for dense matrices) and we can save considerably

by keeping L.

39

Category (3) : L need not be stored, but we can still use some of the
information obtained during the first factorization such that during

the subsequent eliminations we can

A. avoid searching for pivots (see chapter 3).
B. minimize the number of garbage collections.

C. cut down on the number of copies of rows/columns.

Category (4) : Same as for category (3) except that L. should be stored

just as with category (2).

We shall see later that categories (2) and (4) are the most important

ones from our point of view.

Returning to category (3) (and (4)), in order to avoid searching for
pivots we keep information about the row and column interchanges per-
formed during the first factorization in two n-dimensional arrays

(columns 7 and 8 in HA can be used).

This requires no exira work since the information is needed anyway
T T e,

the row interchanges in order to perform the same interchanges in

for the solution of the first system of equations : Xy = Qu”
the right-hand-side (this could be done together with the elimination,
however) and the column interchanges in order to sort out the unknowns

in the right order before returning the solution.

Remark 2.10. A word of caution is needed here. Because of humerical

instability we do not want to allow very small elements as pivots
(and certainly not zeros) but as the elements of the matrices Ar
are allowed to vary in size this might happen for one value of r
even if it didn't for r = 1. Therefore we must keep an eye on the
pivots and possibly readjust the pivotal sequence once in a while.

The introduction of a drop tolerance confuses the picture even more,

Let r; be the maximum number of elements in row i at any stage of the
elimination process and let Cj be the maximum number of elements in

column j likewise. Define

40

These values can be computed after the first system of equations has

been solved.

If we reserve space for our arrays A , CNR and RNR such that NN > R
and NN1 = C then the storage in both the row-ordered list and the column-
ordered list can be arranged such that at the subsequent eliminations no
copies of rows or columns need be made and no garbage collections are

necessary.

If either NN < R or NN1 < C or both then some copies of rows or columns
or both must be made and we can probably not avoid garbage collections
either. The optimum size of the arrays involves a compromise between
storage space and computation time and must be determined in practice

for each particular problem and depending on the computer installation.

2.8 A comparison of ordered and linked lists.

So far we have discussed one storage technique based on ordered lists,
Another technique which was very popular in the sixties is based on the
so-called linked lists, We shall use the matrix from example 2.1 to show
the basic ideas behind this technique. Again three large arrays are neces-—
sary (one real and two integer arrays; we shall use the names A, CNR
and RNR as before) and there is no reason to give them different lengths
(i.e. NN = NN1). Two extra integer arrays of length n are needed poin-
ting to the first element in each row and column (we shall use HA(-, 1)

and HA(- , 4)).

As illustrated in Fig. 2.15. the contents of array RNR is the location
of the next element in the same row. Corresponding to the last element
in a row one places a number larger than NN in RNR and it is customary
to use NN + the row number. In order to find the row number of a given
element in array A (if we don't know it beforehand) we have to search
through the list until we reach the last element in the row and then sub-
tract NN from the contents of RNR. This is clearly a cumbersome way

unless the matrix :is very sparse and stays that way.

41

1 2 3 4 5 6 7 8 9 101112131415 16 17 18 19 20
real 5 4 3 2 1 3 1 2 3 2 12
array A
Integer 1011236 7 128 9 25212224141516 17 18 19 20 -1
array CNR
Integer 6 7 8 9 1221 101124222325 141516 17 18 19 20 -1
array RNR
1 2 3 4 5 1 2 3 4 5
HAGL, D) |1 2 3 4 5 HA(., 4 |1 2 3 4 5
Fig. 2.15

The array CNR is used in a completely similar way with respect to the

columns, see Fig. 2. 15 for details.

Remark 2.11. Although we have used the words 'first!, 'next! and 'last!

we do not assume the elements or the linkage between them to be
ordered within the rows/columns. The 'first! element in a row is
just the element which happens to be the first one in our linked

list.

A code based on these ideas is MA18 [10], but we shall now outline an
extension which can be useful if we do not store the matrix L or we use

a large drop tolerance or we store the diagonal elements elsewhere

(in array PIVOT). In these cases we shall generate free locations in
arrays A, CNR. and RNR and we might as well put them to use. We there~-
fore link all the unused locations of arrays A, CNR and RNR together

to form the so~called ""free list! which can be used for storage of fill-ins.
If locations are freed during the elimination process they can be added

to the free list. The only extra thing needed is a pointer to the beginning

of the free list (in fig. 2. 15 the free list begins in location 13).

42

And now for a comparison of the two storage techniques.

A.

Reordering of the structure.

This is easier to do with linked lists, since no reordering of the
elements in A is necessary. The computation time will be less than
half of that for the ordered lists, but this part of the program takes

a very small part of the time anyway.

Arithmetic operations and search for pivots.

Many operations involve finding the column {(row) number of an
element in a given row (column). As already noted this is a tedious
process with linked lists unless there are very few non-zero elements
in the matrix at all stages of the elimination. This is the main draw-

back with linked lists and maybe the only one, but it is a serious one.

Storage of fill—-ins.'

This is easy to do with linked lists. To add a new element in row
i and column j amounts to taking the first element from the free list
and tie up the links accordingly. No copies and no garbage collec-

tions are ever needed,

Storage space.

When working with linked lists it is not necessary to reserve more
space in the arrays than what is actually needed for the elimination

process and in this respect the situation resembles the one which we

described in the last paragraph of section 2.7 for problems of
category (3) and (4). But in general the ordered lists need some
extra 'elbow room! for making copies such that we don't spend

all our time making garbage collections. An example showing how
the garbage collections and the total computing time can depend
oh the 'elbow room! is given in table 2. 16, It must be mentioned,
however, that array RNR must have length NN when using linked
lists but can be considerably shorter with ordered lists and thus
part of the savings is used again. It should also be mentioned that
we usually do not know beforehand how much space is needed, and
it is therefore difficult to take full advantage of this nice property
with the linked lists.

43

Dependency of garbage coliections and computing time on elbow

room for two runs with a test matrix of class F2 with n = 100,
NZ = 1110 and NN = COUNT + s+« n. The significance of the drop
tolerance T is mentioned in chapter 4.

NN =
COUNT T =0.0, COUNT = 3474 T =0.1, COUNT = 1994
+s-+.n
number of computing | per- number of computiing| per-
S garbage coll. time cent | garbage co||.b time cent
> 15 0 1.12 100 4] . 48 100
6 11 1.37 122 3 . 54 113
5 12 1.33 119 5 . 56 117
4 16 1.42 127 7 .54 113
3 19 1. 45 129 9. .62 129
2 25 1.55 138 16 .65 135
1 43 1.77 158 29 .76 158
Table 2. 16,

Nowadays it is believed that the draw-~back of B overshadows the advan-

tages of A, C and D, a belief which is strengthened by practical work

during recent years, But the world is neither completely white nor com-

pletely black and the choice between the two storage techniques depends

on the programming language and the compiler as well as the problem.

E. g. if we know that the matrix is very sparse and stays that way then

we should prefer linked lists to ordered lists.

A program based on linked lists is MA 18 [10]. Programs based on
ordered lists are MA28 [13] and Y12M [69], [72] and [73].

4

45

Chapter 3 : Pivotal Strategies

3.1 Why interchange rows and columns ?

When doing Gaussian elimination It is necessary to make sure that
(k)
kk
with dense matrices it is customary to interchange rows and/or columns
(k)
kk
value in column k of Ak’ or in row k of Ak’ or in the whole of Ak‘

a # 0, since we should like to divide by that number‘; When dealing

such that not only is a # 0 but it is the largest element in absolute

When dealing with sparse matrices we should like to relax this
requirement because we also have another objective when performing
row and column interchanges : minimization of fill-in. We shall there-

fore select a real u > 1 and only require that

(1.1) a-ali s Gl i=k+1(1)n, or
(1.2) u e al(:;)zag;), j=k+1(1) n, or
(1.3) u e al(j() > ag?) , Lhi=k(1)n

corresponding to partial pivoting with row interchanges, partial pivo-

ting with column interchanges, or complete pivoting, respectively.

1t is desirable to keep u small for reasons of numerical stability. If

(k)

bk denotes the maximum element in absolute value of A then we have

for partial pivoting

n—-1
(1. 4) bns(u+ﬂ b, .
The quantity bn enters into the a priori estimates [40 | of the magnitude of
the elements of the perturbation matrix E in (1. 1. 10) which we would like

to keep rather small.,

46

We should not be too afraid of using a somewhat large value of u, however,
and for several reasons. Although the bound (1. 4) can be attained for
matrices of a special structure ([55] it is not a realistic estimate for
practically occurring matrices. (If it were, then even u = 1 would mean
disaster for large n). For sparse matrices the number of non-zero
elements in a column should replace n in the exponent of (1.4) ([22]) -

and even this is not realistic. And at last we can note that the actual
values of bk can be computed and checked against a 'safety~factor' as the
elimination takes place such that we can be warned if the growth of the

elements is too large.

For complete pivoting a much lower bound than (1. 4), but still rather
pessimistic and unrealistic, can be obtained ([55], [52]). But the work
involved in checking all of A|< at each stage is great and is generally not

compensated by better stability or accuracy of the results.

A reasonably robust and reliable code can be based on partial pivoting

(k)

provided we check the growth of elements in A'"’, and check for small

pivot elements in order to detect near-singularity of A.

Remark 3. 1. There are examples of matrices that are nearly singular

without ever producing small pivot elements ([56]) and such patho-

logical cases will remain undetected.

In what follows we shall assume that u > 1 such that we still have a choice
in selecting the pivot element and we shall utilize this choice to minimize
the fill-in. We shall not attempt to find a strategy that will lead to the
smallest possible amount of fill-in for the whole elimination. This would
necessitate a very extensive and expensive search procedure and is com-
pletely unrealistic. We shall not even take much pains to find the element
which produces the least fill-in in the computational stage which we are
about to begin. Firstly, this pivotal strategy would not necessarily lead
to the smallest over-all fill-in and, secondly, the search would still

be rather expensive.‘ What we shall do is generalize and improve on a
pivotal strategy which was first suggested in [33], a strategy which is
easy to implement, and which usually produces an amount of fill-in which,
although probably not minimal, is small enough for the over-all procedure

to be efficient.

47

3.'2 The Markowitz strategy.

Assume that the first k-1 stages of the Gaussian elimination have al-
ready been performed and that we are about to find the k'th pivotal
element. Let r(i, k) denote the number of non-zero elements in row i
of A, and let c(j, k) denote the number of non-zero elements in column
j of Ak' Ak

submatrix of A

is defined in chapter 1 as the lower right (n-k+1)x (n—-k+1)

(k) and is called the 'active part! of matrix A(k). lis
rows (columns) are the active parts of the rows (columns) of A'".

(k)

(k)

Definition 3.2 The Markowitz cost of element aij is

(2.1) M. =(r(i,k) = 1) (c(j,k) - 1), (i,j=k(1)n).

Ijk
Mijk is equal to the number of matrix—elements which will change value
from A(k) to A(kH) if ag.() is chosen as pivotal element, and is thus
an upper bound for the amount of fill-in which can be produced if we
choose ag?) . Let
(2.2) M, = min {Mijk | 1,i=k(1)n}.

The original Markowitz strategy amounts to, at any stage k, choosing

a pivotal element with Markowitz cost Mk' This will not necessarily
mean that we minimize the amount of fill-in at stage k, but it is consi-
derably easier to compute the Markowitz cost than to compute the amount
of fill-in for each element in Ak’ and in practice it is almost as good

(cf. numerical experiments in [42].

There are (at least) two drawbacks with the Markowitz strategy :
1. There are still many elements in Ak to search through ; and 2. We

may encounter instability.

In order to limit the search Curtis and Reid have in MA18 ordered the
rows and the columns after increasing number of non-zero elements

and the search may often be stopped rather quickly (see section 3. 5).

48

Objection no. 2 points to the fact that very small elements can be selec~
ted as pivots with destructive effects on the numerical significance of
the results. The answer to this is that our pivoting sirategy must be a

compromise somewhere between maximum stability and minimum Ffill—=in.

3.3 The generalized Markowitz strategy (GMS).

In order to preserve numerical stability we shall not accept very small
elements as pivots but instead introduce a stability factor u > 1 as
mentioned in section 3.1 and insist that formula (1. 1) (or possibly
(1.2) or (1. 3)) be fulfilled.

In order to reduce the amount of search we shall not look at the whole
submatrix Ak’ but only consider a certain number, p, of rows from it,
selected such that we have a good chance of keeping the amount of fill-in

down close to the minimum.,

Remark 3.3. Whenp > 2 and k > n-p+1 then Al< contains less than p
rows so in order to be more precise we can state that we shall

| ook at min (p, n-k+1) rows at stage k.

We define a set of row numbers

(3.1) L= {ig | s = 1(1) min (p, n-k+1), ksisgn},
with increasing values of r(i,k), i.e.
(3. 2) igeh i€l as<t = r(is,k)sr(it,k),

and containing the smallest values of r(i,k) :
(3.3) i€l ATdl Ak=sisn = rli_ k) <rk).

Furthermore we define the sets:

_ () (k)
(3. 4) By = {3y € A 'aij ksmsn

49

(k)

(3. 5) C,. = {a k| Mije =ML

min {Mijk I a%?)

(3.6) M!

The elements of C|< are the candidates for pivotal elements.' They satisfy
a stability condition and at the same time have minimum Markowitz cost
among a certain subset of eiements from Ak" We should point out here
that we may have rejected elements as candidates, not on account of
violation of our stability requirements, but because they happen to be
located in rows which we don't look at.v Although this can happen, par-
ticularly when p is small, it is not likely to happen too often because we
have selected the rows with the smallest number of non~-zero elements

and we would expect to find elements with low Markowitz cost here.

Definition 3. 4. The generalized Markowitz strategy (GMS) amounts to

choosing any element of C, as pivotal element at stage k of the

Kk
Gaussian elimination.

Remark 3.,5; The original Markowitz strategy corresponds to GMS

with u== and p=n.

VVarious values of u and p have been used or recommended in published
programs as shown in Table 3.1 where rec. means that the particular

value is recommended and not obligatory.

author(s) year code u o)
Curtis & Reid [10] 1971 MA18 4 rec. | n
Duff [.13] 1977 MA28 10 rec. | n
Zlatev,Barker, Thomsen [64] 1978 | SSLEST |[4,16] rec. | 3 rec
Zlatev & Thomsen [70] 1976 ST |[4,16] rec. | 2
Table 3. 1

Used or recommended values of y and p in various codes.

50

In order to investigate the effect of using very small values of p versus

a large one we have performed an experiment using 20 Harwell test-
matrices ([18]) and the values p = 1, 3 and n. The code SSLEST ([64])
has been used with p = 1 and the code MA28 ([13]) has been used with p = n.

The use of two different codes will of course introduce obscuring
side—-effects and thus make the experiment less than optimal but we
would not have done complete justice to the case p = n by just selecting
this value of p in SSLLEST because sorting of the rows is not necessary
in this case. We have chosen MA28 because this is a program designed
for the case p = n and considered a very efficient program, and would

thus provide a fair basis for deciding on the best value of p.

In Table 3.2 we give the total memory requirement {measured by the
sum of the values of COUNT) for all 20 systems and we note that the
total COUNT is only increased by 7.3% when going fromp =ntop =1,
but the total computing time is reduced by about 50%. The intermediate
value of p = 3 looks like a fine compromise with about the same compu-

ting time but only half the increase in COUNT,

p | total COUNT % {total time
71322 107.3 1 31.33

3 68836 103.5| 33.35

n 66491 100.0| 61.92

Table 3. 2

Dependency of COUNT and time on p for 20 Harwell test matrices.

Remark 3.6. It must be emphasized here that some of the individual

matrices showed much larger variation in COUNT - up to about

26% either way (see [61] for more details), so we should be
careful not to pretendthat we can draw general conclusions from
Table 3; 2.. We must pbint out that some classes of sparse matrices
may be rather sensitive to a reduction in p and take this informa-
tion into account when deciding on a strategy (code) for our particu-
lar pr‘oblem.‘ (It is no great help for me that a code is 3% better on

the average if it is 25% worse on my pr‘oblem..)

51

3.4 The improved generalized Markowitz strategy (IGMS);‘
Early experiments with GMS showed certain problems with numerical
instability and we shall reproduce two of them here in order to see

the problem and how it can be r‘emedied..

Example 3.7. Consider the matrix, [61],

r1+a -V o o)

o 1+a -~v o

o o I+a -v o o
(4.1 A= £ Lot

o o o 1+a -~v

\Y o o .o o l+a

\

where v > 1+a and a > 0 is chosen close to the machine accuracy ¢.
Since all rows and columns contain only two non-zero elements
the pivotal strategy is independent of the value of p for this matrix.
If v < u then the elements on the main diagonal may be chosen as

pivots and in this case

(n) _ n n—1
a . T+a+v /(1+a) .
This means that the GMS may cause unstable results (and even
overflows) when n is large. Note, however, that no instability
takes place if we always choose the largest element among the

candidates for pivots.

Example 3.8. Consider the matrix A = E(125, 4). Using the code
MA28 on an IBM 370/165 at NEUCC (Nothern Europe University

Computing Center in Lyngby, Denmark) we have calculated

bn =O(1045).‘ The corresponding solution vector was of course
quite wrong. Note that if we always choose the largest element
as pivot we shall only pick elements on the main diagonal

(see remark 3. 14).and we shall find bn = 4 indicating perfectly

stable computations.

52

Remark 3.9. Whereas the matrix in example 3.7 is artificial, the

matrices of class E(n, c) are very similar to matrices that appear
in the numerical solution of certain elliptic differential equations
and example 3. 8 therefore raises a serious objection against the

GMS and calls for an improvement; see [61].

Definition 3. 10 The improved generalized Markowitz strategy (IGMS)

amounts to choosing as pivot the largest in absolute value among

the candidates in Ck at stage k of the Gaussian elimination.

Since all candidates for pivots have the same Markowitz cost we might
as well use stability considerations when selecting one of them as pivo~
tal element and this is the proposed !'improvement!. Note that any pivotal
sequence which can result from applying IGMS can also be obtained

by using the GMS. We cannot guarantee that IGMS in general is better
than GMS, i.e. produces more stable computations, although there is
good computational evidence for it. For special classes of matrices we

can, however, prove the superiority of IGMS.

Theorem 3. 11 If matrix A is diagonally dominant and symmetric in

structure, then Gaussian elimination is stable when any IGMS is

used.

Remark 3. 12 It is well-known (see e.g. [53]) that pivoting

for stability is not necessary for these matrices, but we might still

want to do interchanges in order to preserve sparsity.

Proof Let 1 <k < n~1 and assume that only diagonal elements have been
chosen as pivots in the first k-1 stages of the Gaussian elimination.

By this choice the symmetry in structure (75 0 e aj; £ 0) is

preserved, and the active part of matrix A at stage Kk, A is dia-
(k)
i

). Therefore

gonally dominant, too([a(k | > ?]

e,k = r(G,K), §=k()n,
and

Mige = (r(,K) = 1)+ (rl, k) = 1)

53

Let

r‘(i1,k) = r(iz,k) =L, = r(is,k) , (1 <s<p).

Then the diagonal elements in rows i is are elements

i
1’ 27 LR
of Ck and the largest element of C|< is one of these elements and
will thus be chosen as pivot at stage k by any 1GMS independently

of the stability factor u.

Since this holds for any k (1 < k < n-1) an induction argument
shows that only diagonal elements will be chosen as pivots in the
elimination, and Wilkinson's analysis gives bn < 2 b1 indica-
ting stability,

Example 3. 13 That pivoting to preserve sparsity can be necessary

is shown by the matrix with sparsity pattern given in fig. 3. 3.

X X X X cee X
X X o0 o P o
X 0 X O see O
X 0o o X ces O
L] * .
X 0 o o eee X
Fig. 3.3

If no pivoting is performed then we shall have complete fill-in,
i.e. the sparsity is completely destroyed. If on the other hand the
matrix is diagonally dominant and any IGMS is employed no

fill-ins appear.

Remark 3. 14 The diagonal dominance requirement can be slightly

relaxed [59, p. 37 }. A closer review of the proof of theorem 3. 11

and of Wilkinson's analysis ([53]) reveals that we need only

la;l = Z &, i=1‘(1)n

< |ay|
#oH
together with strict inequality for at least one value of i, and

la”] > rr_ra?< Iaij

54

The test matrices of class E(n,c) are diagonally dominant in

this weaker sense.

Theorem 3. 15 If matrix A is symmetric and positive definite, then

Gaussian elimination is stable when any IGMS is used provided

u=oo if p is large enough.

Proof The proof follows the same lines as the proof of theorem 3. 11.
Since u =« all elements in the s X s submatrix formed by taking
iS out of A(k)

rows and columns are also elements

i1’ i2’ LA
of Ck’ and as this submatrix is positive definite its largest ele~
ment lies on the diagonal and will be chosen as pivot at stage k

by the IGMS.

Example 3. 16 The matrix

1 6] 900
A = 0] 10 50
900 50 900 000

is positive definite. If u < 5 then a,, = 900 will be chosen as pivot

at stage 1 in the Gaussian eliminatic:r? and the interchanges will
destroy the symmetric structure. Ifu > 5 and p = 2 then we shall
choose a5y = 10 (or ifu > 900 and p = 1 we shall choose apgg = 1)
as pivot, thus preserving stability. We may choose relatively
small elements as pivots but as shown by Wilkinson (1961) this
will not violate the stability of the computations with a positive

definite matrix.

All the pivotal sequences which can result from using IGMS are also
possible pivotal sequences for GMS (with the same p and u). But if
the GMS just once selects a pivotal element outside the diagonal, then
the symmetric structure is lost and we cannot guarantee stability. As
examplie 3.8 implies, this does happen in practice. Note also that the
problems we encountered in example 3.7 with the GMS are eliminated
with the IGMS,

55

It is possible to identify qualities with a matrix which indicate that
IGMS is a better sirategy than GMS. If there are candidates for pivots
at several stages of the elimination which are about as small as allowed
by the stability factor, u, then the probability of selecting one of those

is great and we shall often find b ~ (1+u)+ b_with the GMS; see

[61].

kt1 k

Example 3.8 shows that this can have detrimental effecis and in order

to make a more thorough investigation we have made calculations with

96 matrices of class E(n,c) with n = 250(50) 1000 and ¢ = 4(40) 204,

The routine we have selected to represent the GMS is the NAG sub-
routine FO1BRE (see also [13] and [19]) with the recommended value

of u = 10 for the elimination, and the NAG subroutine FO4AXE for the
substitution. The representative of the IGMS was Y 12M ([69], [72] and [73])
also with u = 10, but the value of u is immaterial for these matrices when
IGMS is used. The computations were performed on the UNIVAC 1100/82
computer at RECKU (the Regional Computing Centre at Copenhagen Uni-
versity) using single precision (¢ == 1.5 10-8). In nho cases were the
routines using GMS better, but for about 25% of the matrices the decom-
position by FOIBRE was very inaccurate and so were the results calcu-
lated by FO4AXE. The right-hand sides were chosen such that the vector

consisting of 1!'s was always the solution.

In table 3.4 we give the computation time, the value of COUNT and the
accuracy for a typical value of n (n = 800). It is seen that Y12M is
better in all cases and in every respect, and in particular the gain is
great for 'intermediate! values of ¢ (here 44 and 84). Note that a typi-
cal value in practice would be ¢ = Nh= 28. In table 3.5 we have chosen
c = 44 and compared the accuracy for various n. In the last column

iterative refinement (see chapter 4) has been used.

56

FO1BRE + F04AXE Y 12M

c
Time COUNT Accuracy Time COUNT Accuracy
4 2.71 9420 5.49 E-4 2. 45 6504 1. 00 E-8
44 | 53,67 30424 4,13 E~1 6. 88 9882 5.96 E-8
84 | 24,73 22868 1.31 E-2 4, 43 8793 1.12 E-6
124 1 12.45 16778 2,36 E-3 3.67 7849 7.45 E-8
164 7.69 13951 1.29 E-3 3.15 7218 1. 49 E~-8
204 6, 06 12166 7.05 E-5 2,48 6443 2.98 E~-8

Table 3. 4

Comparison of NAG routines with Y12M for matrices of class E(800, c)
Y12M with T = 0.01 and the IR option in this test

n FOIBRE + FO4AXE Y12M - DS Y12M - IR
T = 0.01

650 1.42E-2() 1.06 E~5 2.98 E-8
700 2.87E-2() 1.24 E-5 1. 49 E-8
750 1.03E-2() 1.38 E-4 2,98 E-8
800 4,13 E-1() 1.60 E~-5 5.96 E-~8
850 4,74 E-3 () 1.79 E-5 2. 25 E~7
9200 7.34E-1() 2. 50 E-5 9.24 E~7
950 2.61E-2() 2.65 E-5 1.83 E-6
1000 2.02E-1() 2.98 E-5 8.24 E-7

Table 3.5

Comparison of NAG routines with Y12M (DS and IR option)

for matrices of class E(n, 44)

57

3.5 Implementation of the pivotal strategy

In this section we shall discuss some of the practical problems connec-
ted with the implementation of the pivotal strategy. We shall describe
in detail the strategy used in the subroutine Y12M ([69], [72] and
{73]) which is based on IGMS with a small value of p and compare it
with MA28 ([13]) which uses GMS with p = n.

We shall search the p (or rather min(p, n-k+1)) rows with smallest

numbers of non-zero elements in stage k of the Gaussian elimination.

Rather than going through all n-k+ 1 rows of Ak to find the p 'best!

we shall order the rows after increasing number of elements and use the
p 'first!. Three arrays of length n are needed for the efficient storage
and handling of this information, one array to hoid the information and
two arrays to update it. In Y12M three columns of the integer array HA
(see section 2. 2) have been used : columns no. 7, 8, and 11. Column
HA(+, 7) holds the row numbers ordered after increasing number of
elements. This information must be updated after each stage of the
elimination because we must remove the pivotal row, remove the ele-
ments in the pivotal column, and add fill-ins. In HA(i, 8) we store the
position of row i in the ordered list HA(-,7), and in HA(j, 11) we keep
the position (in HA(*, 7)) of the first row with | elements. If there is

no such row we set HA(j, 11) = 0.

By using these three arrays (3*n locations) we can in a very efficient
manner keep track of the number of non-zero elements in the rows of AI<
and keep the rows ordered accordingly since only a few rows are
altered during one stage of the elimination, Therefore the number of
operations is O(n- c) where c is the average number of rows per stage

rather than O(nz) if a search was to be performed every time.

Furthermore the first k positions of HA(+,7) and HA(-, 8) (and the last k
positions of HA(+, 11)) are not needed after stage k of the elimination
and they can therefore be used to store information about the row and

column interchanges.

58

All elements in the p 'best! rows are investigated in order to find the
elements of the set Ck.v Therefore a small value of p (p < 3) is re-~
commended. The largest element of Ckis selected, i.e. IGMS is imple~
mented in Y12M, but our pivotal strategy is easy to modify e. g. such

that diagonal elements could be chosen as pivots.

The use of columns 7, 8, and 11 of HA is illustrated in fig. 3.6 where
we show the contents at the beginning of the Gaussian elimination on
the matrix from example 2.1, and in fig. 3.7 which gives the situation

after stage 1, supposing that element (1, 1) was chosen as pivot,

HA(-,7) 4 5 1 3

HAC(-, 8) 3 5 4

HA(+, 11) 0 1 4 0 0
Fig. 3.6

Contents of columns 7, 8, and 11 of HA before

stage 1 for the matrix from example 2. 1.

HA(: , 7) 1 5 4 3

HA(- , 8) 1 5 4

HA(*, 11) 0o 2 4 0 0
Fig. 3.7

Contents of columns 7, 8, and 11 of HA after

stage 1 for the matrix from examples 2.1 and 2.6,

59

For reasons of comparison we shall briefly look at the routine MA28

to see how the implementation can be done with a large value of p.

Again it is not efficient to search the whole of AI< in order to find out
what the minimum Markowitz cost is (if we can avoid it). It is better
to search the rows in order of increasing number of non-zero elements,
but this time also the columns must be sear‘ched.. Therefore extra in-
teger arrays are needed to keep the columns ordered, too‘.' The rows
and columns are now searched in order of increasing number of ele-
ments, and if there are rows and columns with the same number of
elements,the rows are investigated fir‘st;v Each element is checked
against the stability criterion (1;2) - therefore it is much easier to
check elements rowwise than columnwise -~ and the Markowitz cost
Mijk is computed.

If the row (or column) currently being searched has s non-zero ele-
ments in its active part and the best Mijk so far is smaller than or

2 (or s(s = 1)) then the search can be terminated because

equal to (s -1)
no element in the remaining part of Ak can have a smaller Markowitz

cost.

In this way the amount of search can be somewhat reduced. Duff [13]
p. 25 reports that an average of 14 rows and columns were searched

in a matrix with n = 199,

The implementation in MA28 corresponds to a GMS and it is probably
very inefficient to adapt it to an IGMS. The element which is selected
as pivot in MA28 is just one element from Ck - in order to find the
largest one we must keep searching the rows (or columns) with s ele~
ments until (s -~ 1)2 (or s{(s -1)) becomes greater than M!, and not just =.
This could increase the amount of search considerably, particularly if
the matrix contains many r‘ows/columns with the same (small) number

of elements.

Our comparison of the two sirategies thus leads to the result that our
strategy (from Y12M) uses less time for the pivotal search (because

fewer rows are searched, and only rows are searched), uses less

60

space (because no arrays are needed to keep track of the columns),
and possibly leads to more stable computations (because an IGMS is
implemented). On the other hand we can. expect more fill-ins since
we search very few (2 - 3) rows and therefore may not select a pivotal

element with minimum Markowitz cost.
Practical experiments indicate, however, that the increase in COUNT

is usually very slight and does not disturb the overall efficiency of

our scheme.

3.6 Other sirategies

Much of the work (i, e. computation time) and extra space connected

with the various implementations of variants of the Markowitz strategy
is spent searching through, reordering,and keeping track of rows and
columns. Therefore it is tempting to suggest yet another pivotal stra-

tegy which minimizes this work. This strategy proceeds as follows :

Order the columns of matrix A after increasing number of non-zero
elements. At stage k of the Gaussian elimination choose as pivot an
element in column k which satisfies a stability condition and in which

row there is a minimal number of non-zero elements. Since we expect

to find rather few elements in column k we might choose to check them

all and not bother to keep the rows sorted. This pivotal search is much
simpler than those we have considered so far and furthermore we perform

only row interchanges during the elimination,

Numerical results in [15] (see also [14] p. 120) show some drawbacks
with methods based on this strategy: They often produce many fill-ins,
possibly because columns with few elements to begin with quickly are
contaminated with fill-ins but are still used as pivotal columns., Therefore
this strategy must be used with care and/or with special classes of

matrices.

61

An interesting conjecture is that the sparsity might be preserved better
if this pivotal strategy is combined with the use of a large drop~tolerance

(and iterative refinement, see next chapter).

For certain classes of matrices it is possible to preserve both stability
and sparsity by choosing pivotal elements only on the main diagonal -
and in some cases they can even be used in the natural order, thus
avoiding interchanges at all. Much work and extra bookkeeping can be
avoided this way and it is therefore a good idea to furnish a sparse
matrix code with options such that these special - but frequently occur-

ring - cases can be dealt with efficiently.

Diagonal dominant matrices and positive definite matrices are two classes
for which no pivoting is needed in order to preserve stability. Still,
pivoting might be advantageous in some cases to preserve sparsity. In
this connection it should be mentioned that the use of a large drop-
tolerance (and iterative refinement) often can reduce the amount of
fill-in, such that these simpler pivotal strategies can be used to ad-
vantage; see [69], [72] and [73].

62

63

Chapter 4 : lterative Refinement

4,1 Convergence of iterative refinement.

Recall from chapter 1 that the coefficient matrix of the linear system
(1.1) Ax =b

is decomposed into

(1.2) LU= PAQ+E,

and that an approximation - the direct solution (DS) - Xy to x is already

calculated by

(1. 3) x;=QU ' L™ Ph.

The iterative refinement (IR) is the process

(1. 4) P =b -~ Ax,
(1. 5) g =au L7 pr,
(1.6) Xipq =% T g

which is terminated for some q for which

(1.7) >y = xq g lh=e -l xqlls

or

(1.8) hd > ld b A a>z2,
or"

(1.9) a=MAXIT.

¢ denotes the machine accuracy, ||*|| is anv vector norm, and MAXIT is

a prescribed maximum number of iterations.

64

We have the following theorems about the convergence of the iterative

refinement process.

Theorem 4.1 Let x be the true solution of (1. 1) and assume that all

computations with (1.4) - (1.6) are performed without errors. If

(1.10) F=U L E
then

(1.11) Xio1 -><=QF-‘iQT(><1—-x) -—arFtla’«, i=o0, 1, ...
and

(1.12) di+1=QFiQTd1, i=0,1, ...

Proof The proof is by induction and is left to the reader as an exercise.

(Note that F = | — u~l ! PAQ).

Theorem 4.2 L.et M (k = 1(1)n) denote the eigenvalues of F numbered
such that

(1.13) YR ERE (k= 2(1)n).

Under the same assumptions as in theorem 4.1 we have
o0
(1. 14) ><=><J.+_E_ di G=1,2, ...)
=]
if

(1.15) | g | <1

In the affirmative case

(1.18) Him X; =X
js00
and
(1.17) lim d, = 0.
[0

Proof The proof follows easily from theorem 4,1,

65

Corollary 4.3 The relations (1.14), (1.16), and (1. 17) hold if (1.15)

is replaced by

(1.18) NFl <1,

is any matrix norm induced by the vector norm chosen.

].

where

Remark 4.4 By (1.13) |\, | is the spectral radius of matrix F.

We shall use the notation

(1.19) o(F) = [;\1

Remark 4.5 The number
(1. 20) RELEST = [id,_¢ Il / IIx,]

is called the estimated relative error.

We can now take a closer look at the three stopping criteria (1.7) - (1.9) in

in the light of the theorems.

If p(F) << 1 then the iterative process (1. 4) - (1.6) will converge quickly
and will typically be stopped by relation (1.7) or possibly (1. 8) if
rounding errors get to dominate. RELEST will give a good estimate of

the relative error in the computed solution, xq (if b # 0).

If o(F) < 1 but close to one the rate of convergence may be very slow
and the iteration will typically be stopped by (1.9). RELEST will pro-

vide a fair error estimate,

If o(F) = 1 then the IR will probably not converge and the relation (1. 17)
will not hold. This is detected by (1. 8), normally with q = 3, and the
value of RELEST will tell what happened.

We must emphasize that the theorems hold under the assumption that the
IR is performed without errors. This is of course not true in practice.
The computation of the residual vectors, r., by (1. 4) is normally carried

out in extended precision and there is good experimental evidence that this

66

is sufficient for the iterative process to converge to within machine
accuracy (given (1. 15)). In this connection it can be mentioned that the
computational errors made in the substitution (1.‘5) are usually much
smaller than those made in the decomposition (see [54], [55], [48]
and [52]).

4,2 The drop tolerance.

When comparing iterative refinement (IR) with direct solution (DS) it

is immediately seen that IR requires more space (because a copy of A
must be held) and more computation time (for the process (1. 4) - (1.6)).
What we buy for this price is higher accuracy of the solution (if IR
converges) and an error estimate. This might not be enough in many cases
since the DS often gives sufficient accuracy and since error estimates can
be obtained by other means (see e.g. [9], [21] and [11]).

When dealing with sparse matrices the problem gets a new dimension, however,
It is important for the efficiency to !imit the amount of fill-in during the
elimination. Now many of the fill-ins generated are rather small in mag-
nitude compared with the original matrix elements. It is a natural thing to
throw away fill-ins which are smaller than ¢ (the machine accuracy) times

the original elements, but since errors are !'permitted! during the elimina-

tion (the matrix E) it is tempting also to disregard other small elements

which appear at this stage.

To be more precise : we introduce a quantity, T, called the drop tolerance,
and whenever a new element is generated by (2. 3. 4) and is less than T in
absolute value we set it to 0. T = 0 corresponds to the ordinary situation,
T= e. b1 is a natural choice, and a larger value, say T = 0.01 is what

we propose.

To use a large value of T will cause the generation of rather large elements
in the error matrix E in (1. 2) and will reduce the accuracy of the direct

solution (1. 3), probably to the degree of unhacceptability.

67

It is therefore necessary to regain the accuracy and for this the
iterative refinement process is ideal. The computations involved in
(1.4) - (1.6) are usually not very time-consuming compared to the
triangular decomposition (1.2) such that 10 or 15 iterations can
easily be per~for‘med.i By corollary 4. '3 convergence is assured if
matrix F is not too large. If we assume that the coefficient matrix A

is scaled to have a norm close to 1 then by (1. 10)

(2. 1) 1=l < a™ Y- l = (A - e

where u(A) = [|A]l * HA_1H is the condition number of A.

The size of the elements of E depends on the magnitude of T, and
relation (1. 21) indicates that a large value of T can be used for well-
conditioned matrices, but that T must be reduced to ensure conver—

gence for ill-conditioned coefficient matrices.

We have already - in example 1.4, chapter 1 - seen the effects of
using IR with a large drop tolerance. A large reduction in storage,
Is in turn accompanied by a sizeable reduction in computing time, be-
cause fewer elements need to be treated in the elimination phase, The
iterative refinement itself takes only 10% of the time (in this example).
On top of this the accuracy is much better with IR, even though the

D5 was computed with T = 0.

Also in table 2. 16, chapter 2 we have seen good effects from using a
large drop-tolerance : not only is the value of COUNT smaller, but
with the same amount of elbow-room a large T seems to imply fewer

garbage collections.

4,3 Storage comparisons,

In this section we shall take a closer look at the storage requirements
of a code using dense matrix technique (DMT) and two options of a code
using sparse matrix technique (SMT-DS , SMT—IR)I.‘ As a typical DMT
code we are thinking of DECOMP/SOLVE ([21]) but there is only little

variation between efficient DMT codes. Also.in the SMT case our

68

results are fairly general - we use the code Y 12M: which

is the running example for these notes.‘ We shall take NNt = NN as

the size of the arrays.

Now the space needed for the three cases is

(3.1) S, = n+3n, for DMT ;
(3.2) S, = 3° NN+13n, for SMT-DS ;
(3. 3) S, = 2*NZ+3+NN+17n, for SMT-IR.
Assume that

(3. 4) NN =y « NZ.

As suggesied in the previous section we shall expect NN - and v - to be
smaller for SMT=IR than for SMT-DS, so when comparing these options

we shall introduce indices on NN and v.

From (3. 1), (3.2), and (3. 4) we have

Nz -1l -1
(3.5) $,<S,; ® 2 < glv,n) = 35 (1 =).
We have
(3. 6) alv,n) < g(2,n) < lim glz,n) = & (v > 2

N0

From (3. 6) we read the following criterion

Criterion 4.6 If more than 1/6 of the elements of matrix A are non-

zero then DMT will use less space than SMT-DS.

It is difficult to formulate a converse of criterion 4,6 : a criterion for
when SMT~-DS is more space-efficient than DMT, because we usually do
not know how much space will be needed for fill-ins during the elimina-
tion. If this information (COUNT) is available, then NN = COUNT + 2n

is probably a good choice (see table 2..16, chapter 2).>The function

glv, n) also depends on n, but for the large values of n which we ex-

pect, this variation is only small. Some selected values of alv, n)

are shown in table 4, 1.'

The function g(v, n)

A\
. 2 3 4 5 6 7
50 . 133 . 089 . 067 . 053 . 044 .038
100 .150 . 100 . 075 . 060 . 050 . 043
1000 . 165 .110 .082 . 066 . 055 . 047
oo . 167 11T . 083 . 067 . 056 . 048
Figur 4.1

To compare DMT and SMT~IR we use (3. 1), (3.3) and (3. 4) to get

Nz * = 1
(3.7) S,<S8; & 2 < g*(v,n) 5739
The function g* satisfies
(3.8) g*(v,n) < g¥(2,n) < tim g*(2,n)

Nn-oo

which immediately gives

Criterion 4.7 If more than 1/8 of the elements of matrix A are non-

zero then DMT will use less space than SMT-IR.

Again it is difficult to express the converse :
sparse matrix technique, but at least we can supply a table of typical

values of the function g* (v, n) which behaves very similarly to g(v, n).

. (1_.&")

n

The function g* (v, n)

Y 2 3 4 5
g]
50 . 090 . 065 . 051 . 042
100 .108 . 078 . 061 . 051
1000 . 123 . 090 . 070 . 058
oo . 125 . 091 . 071 . 059
Table 4.2

69

when does it pay to use a

70

Finally we should like to compare SMT-DS and SMT~IR w. r.t. space
requirements. Instead of (3. 4) we therefore assume
(3.9) NN, = v, * NZ , NN; = v« NZ

and expect that Vi < Voe

From (3. 2), (3.3) and (3.9) we have

4n
(3.10) S,¢8, & 2+3755 < 3(\)2—\)3).
Assume that NZ = 4n -~ probably a safe assumption. Then we have from

(3.10)

Criterion 4.8 SMT-IR uses less space than SMT-DS provided

Vs < Vo~ 1, i e. provided the IR option uses NZ fewer locations

in each of the three major arrays than the DS option.

A few words are needed concerning the assumptions ((3. 4) and) (3. 9)

2 and \)3.' Nothing general can be said but

we have collected experimental results with our test matrices, the

and the expected values of v

Harwell matrices ([18]), wvarious practical problems of chemical
origin ([457, [46]) and thermodynamical problems
([71], [74]). Typical values for Vo

matrix L is retained (see section 2.6) - if L is not needed then v, € [2,3]

are in the range [3,5] if the

in many cases - but occasionally values up to 10 can be seen (table 4. 3).
When IR is used we shall always assume a large value of the drop tole-
rance (T = 0. 01) and Vg > 3 occurs hardly ever. In table 4. 3 we compare
an SMT-DS code (FO1BRE + FO4AXE from the NAG-library) with Y12M
in IR-mode (T = 0.01) on the test matrices E(n, 44) which typically gene~
rate many fill-ins. On this sort of matrices SMT-IR is especially effec~

tive.

71

SMT-DS (FOIBRE) | SMT-IR (Y12M)

n NZ COUNT [COUNT/NZ| COUNT |[COUNT/NZ
650 3160 22246 7. 04 7697 2. 44
700 3410 24286 7.12 8453 2. 48
750 3660 26932 7. 36 9174 2. 51
800 3910 30424 7.78 9882 2. 53
850 4160 35290 8. 48 11643 2. 80
900 4410 37230 8. 44 12360 2. 80
950 4660 40488 8. 69 12551 2. 69

1000 4910 45850 9,34 14082 2. 87

/

Table 4,3

Space comparison of SMT-DS and SMT-IR
(T = 0.01) on matrices of class E(n, 44)

If we can use Vo <5 or Va < 3 - amore realistic assumption for Vg

than for \)2 - then we can from tables 4.1 and 4, 2 deduce

Criterion 4.9 SMT will use less space than DMT provided less than

6% of the elements of matrix A are non-zero.

Remark 4. 10 Criterion 4,9 is rather conservative. In many cases we

can allow 10% non-zeros and the sparse-matrix codes will still

come out better,

Remark 4. 11 In formulae (4. 2) and (4. 3) we have assumed that

NN1 = NN. As mentioned in section 2. 1 we can often choose
NN1 = 0.6 * NN and this will make sparse matrix codes even

more efficient.

Also if integers take up less space than reals then this will be

to the advantage of sparse matrix codes,

72

4, 4 Computing time.

When comparing the computing time of various linear equation solvers
several factors play an important role. For dense matrix codes the
situation is fairly straightforward : the computing time is directly
proportional to the number of arithmeilic operations, % n3 - if an arithme-
tic operation is defined appropriately as one multiplication, one addi-

tion and three references to array elements, and if n is reasonably big.

For sparse matrix codes the following items are important :

The dimension of the matrix, n ;

The number of non-zero elemenis, NZ ;
The sparsity paitern ;

The amount of fill-in ; and

The pivoting strategy.

Even when the amount of fill-in is roughly the same the pivoting stra-
tegy itself can cause great differences in the computing time. There-
fore we shall compare the NAG-routines (FO1BRE and FO4AXE) with
the DS~ and the IR-option of Y12M. FOIBRE uses GMS and Y12M uses
IGMS and the combined effects of IR (T = 0.01) and a better pivoting
strategy is seen in table 4. 4 which contains the computing times corre-

sponding to table 4. 3.

n FO1BRE - DS Y12M - IR
650 23. 47 4, 55
700 28, 46 5. 27
750 38. 29 6.12
800 53. 67 6. 88
850 58. 54 6. 97
900 57.35 7. 47
950 115. 58 8. 07

1000 152. 31 8. 50
Table 4. 4

Computing time in seconds on a UNIVAC 1100/82 for
matrices of class E(n, 44). IR is used with T = 0.01.

73

The matrices E(n, c) are symmetric and positive definite band matrices.
We have tested Y12M against a routine specifically designed for such
matrices but which does not take advantage of the sparsity: the NAG
routine FO4ACE ([57]).

n : c FO4ACE Yi2M - IR
900 30 5.17 8.15
961 31 590 | 8.84
1024 32 6. 50 0. 41
1089 33 7. 40 10. 02
1156 34 8. 29 10. 57
1225 35 9. 25 11.23
1296 36 10. 28 11.86
1369 37 11.41 | 12.65
1444 38 12.62 13. 33
1521 39 13.93 14,23
1600 40 15. 35 14,76
2304 48 30. 66 21. 45
Table 4. 5

Computing time in seconds on a UNIVAC 1100/82 for

matrices of class E(n,c). IR is used with T = 0. 01.

It should be mentioned that FO4ACE is most efficient on band matrices
with narrow bands. Nevertheless it performs rather well on the matri-
ces of class E(n,4n), but for larger values of n the sparse matrix code
Y12M - which is written for general matrices and exploits neither

symmetry nor positive definiteness — is superior.

We have performed a series of experiments in order to show the depen-
dence of the computing time on n and the sparsity pattern and in order
to compare the NAG routines with both the DS~ and the IR-option of
Y12M. In table 4.6 we show the results for test matrices of class
D(n,c) , c= 4(40) 204, n = 650(50) 1000. The numbers are the sums

of the computing times in seconds for the six values of ¢ measured on

the UNIVAC 1100/82 at RECKU,

74

Y12M - DS | Y12M - IR

n FOIBRE T2 102
650 47.11 29, 59 13.16
700 59. 63 33. 81 13. 00
750 57. 57 34,99 13.77
800 65. 69 36. 22 14, 55
850 69. 04 36.63 15,16
900 77. 36 41, 41 16. 00
950 90. 91 40.71 16. 28
1000 82. 92 42.13 17.85

Table 4,6

Computing times for matrices of class D(n, c),
c = 4(49) 204 in seconds on a UNIVAC 1100/82.

In table 4.7 we give the similar numbers for matrices of class E(n, c).

Y12M - DS | Yi2M - IR

n FO1BRE T -10-12 | T =102
650 52. 45 25. 53 16. 43
700 69. 31 29. 09 19. 10
750 86. 68 31. 82 21. 55
800 109. 38 36. 52 23. 06
850 131. 07 42,68 25, 33
900 143. 69 46. 31 27. 45
950 227,23 52. 04 29. 51
1000 253. 87 58. 62 31.79

Table 4.7

Computing times for matrices of class E(n, c¢),
c = 4(40) 204 in seconds on a UNIVAC 1100/82.

75

In table 4.‘8 we show the dependence of the computing time on ¢ for

n = 800. Small and large values of ¢ seem to be the 'easiest! to solve
for all three codes but the difference is not great for Y12M-IR. Inter-
mediate values of ¢ are especially tough for FOIBRE although they
also put a certain strain on Y12M-DS and this is the reason for the
great differences in the performance of the three codes as seen in tables
4.5 and 4.6, But in all cases Y12M~-DS is better than FOIBRE and in
turn Y12M~IR is better still, but for the exception that proves the rule
(E(800, 4)).

D (800, c) E (800, ¢)
c Y12M-DS | Y12M-IR Y12M-DS | Y12M-IR
FO1BRE - FOIBRE —
T=10"121 T = 10-2 T=10"12| T=10"2
4 3. 45 2. 42 2.37 3.24 2. 11 2. 45
44 11. 85 6. 50 2. 09 52. 52 14.76 6. 88
84 14,15 6. 97 2. 43 24, 99 8.19 4, 43
124 14.19 7.34 2. 44 12. 69 4. 52 3. 67
164 12.92 6. 49 2.75 7.79 4,11 3.15
204 9.13 6. 50 2. 47 6.15 2.83 2. 48

Table 4,8

Computing times for matrices D(800, c) and E(800, c) in
seconds on a UNIVAC 1100/82.

In table 4.9 we compare FOIBRE with Y12M~IR on matrices of class
~2(500, 500, 20, r, 100). By varying r (r = 5(5)40) we change the sparsity
of the matrices, thereby making the problem harder. In all cases Y12M-IR

is 3-5 times faster than the NAG-routine.

76

r NZ NZ FOIBRE j—12M - IR
n T=10"2
5 2610 0. 01 9,91 2.22
10 5110 0.02 32.96 6.16
15 | 7610 0.03 56.84 11.60
20 10110 0. 04 59. 32 14, 84
25 12610 0.05 131.39 25. 59
30 15110 0. 06 97. 69 34,32
35 17610 0. 07 144,16 50. 76
40 20110 0. 08 288. 03 62. 81
Table 4..9

Computing times for matrices of class F2 (500, 500, 20, r, 100)
in seconds on a UNIVAC 1100/82.

4,5 Choice of drop tolerance and stability factor.

We have seen that the use of iterative refinement together with a large
value of the drop tolerance, T, gives very efficient computations. We
have performed several experiments in order to find out just how large
a T to choose.‘ In tables 4; 10 and 4. 11 we compare the DS~option

(T = 10_12) of Y12M with the IR-option and three different values of T.

It is seen from tables 4. 10 and 4.'11 that a large value of the drop tolerance
leads to a shorter computation time, and we have seen earlier that the
space requirements are smaller and that the iterative refinement also

gives better accuracy than the direct solution. The exact size of T is

not very critical, but should of course be small enough for IR to con-

verge.

A rule-of-thumb to use with matrices which are not too ill-conditioned
and whose non-zero elements are of the same order of magnitude, a, is

to choose T € [10—5

smaller value of T may be needed in order to ensure convergence, cf. (2. 1).

ca, 1072. a]. With ill-conditioned matrices a

DS IR
n ~12 "y -

T=10 T=10 =10 =10
250 8. 83 5. 87 5. 38 5,35
300 16, 52 8. 31 7.33 6. 52
350 19. 00 9,07 7. 48 7.37
400 21. 11 9. 96 8. 85 7.76
450 30.13 11. 56 9. 88 9, 09
500 24,11 11.93 10. 44 9, 48
550 38. 47 13.61 11.66 10. 24
600 36. 52 14, 52 13. 00 11.16
Total 195, 69 84, 83 74, 02 66. 97

Table 4,10

Computing times for matrices of class D(n,c) , ¢ = 4(40) 204,

in seconds with the code Y12M on a UNIVAC 1100/82.

DS IR

n -12 —4 - -

T=10 T=10 =10 =10
250 3. 45 3. 66 3. 54 3.32
300 4, 49 4,72 4, 47 4, 42
350 6. 38 6. 31 5. 84 5. 68
400 8. 51 8.11 7. 32 6. 96
450 10. 51 10. 25 9. 11 8. 49
500 13. 49 12.70 11. 00 10. 03
550 15. 67 15. 23 12. 83 11. 50
600 20. 01 20. 00 14,73 12.94
Total 82. 98 80. 98 68. 84 63. 34
Table 4. 11

Computing times for matrices of class E(n, c), ¢ = 4(40) 204,

in seconds with the code Y12M on a UNIVAC 1100/82.

77

78

A special strategy can be used with problems of class 4 (see section
2.>7) where many systems of the same structure are to be solved.‘ In
this case it might be profitable to set a large initial value of T (say

T = a) and try to solve the systems. If a system cannot be solved to
within a prescribed error tolerance (RELEST < ¢) then decrease T
by a factor, T:=c+ T, (c < 1), and solve again.. With this strategy
we accept some extra work in the beginning trying to find an optimal

T and reduce the total work; see [47], [62].

This strategy has been used on linear systems arising from the use of
two-stage, diagonally implicit Runge-Kutta methods on large systems
of ordinary differential equations arising from chemical problems
([47] and [74]). We show the results of comparing this stra-

tegy with Y12M-DS and Y12M-IR in table 4. 12.

Algorithm Strategy initial T final T COUINT iter time
. 14 —14
Y 12M-DS fixed T 10 10 ou3u7 | 1 41. 25
Y12M-IR fixed T 1072 1072 17318 | 3.77 | 16.77
Y12M-IR | variable T | 10° 10”1 13517 | 5.54 | 13.00
Table 4. 12

Comparison of drop tolerance strategies on a chemical problem.
iter Is the average number of iterations and time is the average
n= 255, NZ = 7715 and COUNT

is the largest value encountered in any of the systems.

time for solving two systems.

We have introduced a large T in order to limit the number of fill-ins.
In chapter 3 we tried to achieve this by using a large stability factor,
u, at the risk of instability. It is therefore interesting to investigate
the combined effects of u and T. An experiment was carried out with a

matrix of class F2 and the results are summarized in table 4.'13.‘

79

u=4 u= 512

T
COUNT iter: time COUNT iter time
0 3376 7 5. 68 3044 7 4,99
. 01 1790 10 2. 44 2218 11 3. 47
.1 1475 12 2.25 1947 11 3. 01
1 1120 13 1.79 1333 15 2.34
10 860 11 1.27 946 21 2.32

Table 4,13

The effect of u and T on the computational efficiency of
Y12M-IR for the matrix A =F2(125, 125, 15, 6, 4) on
a CDC Cyber 173.

It is seen from table 4. 13 that a large T gives smaller storage and
computing time, independent of u, even though the number of iterations
may increase. The effect of changing u is much smaller, but there is
an indication that u should not be chosen too large when T is large.
This somewhat surprising result may be due to the fact that rather
small pivotal elements can be chosen when u is large, and small
pivotal elements tend to produce fill-ins of large magnitude. So although
we produce fewer fill-ins we retain most of them despite a large T.
Table 4. 13 only refers to a single mairix and no general results should
be inferred from this alone, but several experiments with test matrices

of class D(n, c) point in the same direction; see [60].

4,6 When and how to use iterative refinement.

We have seen several examples where the use of iterative refinement -
and a large drop tolerance - was superior to direct solution. Of course
this Is not true every time and three typical exceptions deserve men—

tioning.

80

(i) If matrix A is very ill-conditioned, more precisely : n (A)* ¢ > T,

then the iterative refinement may not conver*ge.‘ This condition is machine-
dependent so one might switch to another machine (a CDC Cyber 173 has

g = 10--15 and this is sufficient in most cases),i or compute a direct

solution in double precision.

(i1) If matrix A is very large and storage requirements are very impor-
t ant, then we may not have room for L (see section 2. 6) and an extra
copy of A. On the other hand IR plus a large T usually implies much

less fill-in and quite often IR pays anyway.

(ii1) When the number of fill-ins is small in the first place there is not
much to gain by using IR. We shall call such a problem a fcheap! problem.
A typical example of a very cheap problem is a dense-band matrix such

as E(n, 2) which produces no fill-ins.

Using the model of section 4. 3 we can estimate the extra amount of

storage when using IR relative to DS as

*) 3*v*NZ + 13n

SinceNZ =n and v =1 we have

(6. 2)

A
win

which means that IR will never use more than 67% more storage than
DS, and this upper bound is attained for v =1 and a large NZ. This
shows that if no fili~ins are generated with the DS then this is more
efficient. This is illustrated in table 4.’14 where we show results

with five Harwell test matrices ([18]). These matrices = pro-
duce no fill-ins and are close to the worst case for IR which is seen

to use up to 53% more storage (using formuia (6. 1)) and 29% more time.
In a more realistic 'cheap! problem we shall expect v = 2 and the extra
storage with IR is even smaller and the extra computing time smaller

yet.

81

Keep in mind that with an 'expensive! problem the reduction in storage
and computing time is substantial when using IR with a large T and
this is really the kind of problems where space and time matters

(cf. tables 4.8 and 4. 9).

computing time extra time
Matrix n NZ NZ/n2 Y12M-DS | Y12M-1IR %
SHL 0/ 663 1687 | .004 0. 89 1.11 25
SHL 200 | 663 | 1726 | .004 0.97 1.16 20
SHL 400 | 663 | 1712 | . 004 0.93 1.12 20
STR 0] 363 2454 .019 0. 68 0. 86 26
BT 0] 822/ 3276 .005 1. 24 1.60 29
Table 4. 14

Three strategies have been proposed for the practical implementation of

iterative refinement

A. The classical or English way : The residual vectors r. in (1.4)
are accumulated in extended precision and then rounded to single
precision, All other computations are performed in single precision.
This strategy is analyzed in [54, 55], see also [48], and is
implemented in Y 12M,

B. The revolutionary Polish way: In a recent paper ([32]) it is
shown that under certain conditions the extended precision is
not even needed for the residuals. The result is important
for computers/compilers which do not have extended precision.
We shall not achieve full machine accuracy of the solution, but

the solution process is computationally stable; see also [43, 44].

C. The cautious or Scandinavian way : The vectors ro di’ X; are
stored in extended precision and all inner products in (1.4) - (1.6)
are accumulated in extended precision. Everything else is performed

in single pr‘ecision.' If the length of single and extended precision

82

numbers are ny and N, digits, respectively and nzz 2+ n

then n, digits can be gained compared to strategy A provided

‘l’

the iterative process is convergent. This result was shown in
[1], [2] and [4] for an algorithm developed in [7] and our ex-
periments indicate that is holds for Gaussian elimination as
well. A version of Y12M implementing this sirategy is under
development at the Department of Computer Science at Aarhus

University. The code LLL.SS01, see section 5.8, exploits these ideas.

The price we have to pay is extra storage for the arrays ro di’ X

extra time for each iteration, and a few (usually 3-4) extra itera-
tions for the extra accuracy. In addition we get more reliable
error estimates and possibly a more robust algorithm which may

converge in some cases where strategy A does not.

4.7 Robustness and reliability.

So far we have mainly been discussing algorithms for sparse matrices,
In order to turn an algorithm into a piece of software we must require
robustness and reliability and, if we want the software to be used, a

certain amount of efficiency.

By robustness we mean that

(a) the code should only give up if a problem is really hard, and

(b) 1f the code quits, it should give good information on whether failure

was due to

(b1) ill-condition of the problem

(b2) instability of the elimination,

(b3) insufficient storage,

(b4) divergence of the iterative process,

(b5) or something else.

83

By reliability we mean that

(c) the code should never give a bad answer pretending it is good,

and

(d) the code should provide error estimates.

To aid the user maintaining efficiency in the computations the code
should also in case of success give feed-back on important details such

as

(e1) how much storage was actually used,

(e2) how many iterations, and

The user must in turn be provided with a number of handles to turn in

response to the information from (b) and (e) such as

(f1) the stability factor (u),

(f2) the drop tolerance (T),

(3) the number of rows to search (p),

(t4) the sizes of the major arrays (NN, NNI1),

(f5) etc.

But the user should not be burdened unnecessarily by all these parame-

ters so we should have

(g) default values for the parameters.

In order to take advantage of special situations the code shouid also have

(h) options for special matrices or problems.

84

It is our experience that Gaussian elimination with IGMS combined
with iterative refinement and a large drop tolerance provides a good
basis for a robust, reliable and efficient sparse matrix code. The
points (a), (c), (d) and (f) are taken care of by our discussion in the
previous sections. The points (b), (e) and (h) should be kept in mind
when implementing the algorithm and as for the default values we can

recommend

u € [4,10],
T € [0.01, 0.001],
p € {2,3},

NN = 3. NZ,

NN1T = 0.6 * NN.

These recommendations must of course be taken with a grain of salt as
they are very dependent on the problem and the option. This is also
why we recommend point (b) and (c) such that proper action can be

taken when a related problem is to be solved.

Keep in mind the classification of problems from section 2.7 to which
we can add, that with IR category (1) turns into (2) and category (3)
turns into (4). However, we might keep the option of turning IR off
and compute the direct solution without retaining the matrix L (see

section 2, 6).

Ill~conditioning of a problem (b1) will often, but not always, be detected
by very small pivots. On the other hand, small pivots may be caused

by bad scaling. Instability of the elimination (b2} can be detected

by monitoﬁing b, (vsee (3. 1. 4)) and can be counteracted by reducing the
stability factor u. Insufficient storage (b3) should be reported explicitly
with indication of which array(s) need expansion and at what stage of

the elimination.

The iterative refinement process (b4) may converge slowly or diverge
and both cases are identified by the value of RELLEST and the number

of iterations. Non-convergence may be caused by a too large T or an

85

ill-conditioned coefficient matrix. For problems of category (3) and
(4) the 'variable-T-strategy' mentioned in section 4.5 might be very

useful for finding an optimal T.

We have already (in section 3. 4) mentioned special classes of matrices
for which special pivoting strategies can be applied with success. We
recommend that a sparse matrix code have options to treat such special

cases efficiently, as well as an option to turn IR-off,

86

Chapter 5: Other Direct Methods

5.1 Linear least squares problems.

1

. N
Let m and n be integers, b € ™ 4 vector and A € ¢MX" 4 matrix.

By AH we denote the conjugate transpose of A,

Definition 5. 1 The unique matrix A+ satisfying the conditions

(1.1) AT A AT = AT
(1.2) AAtA = A,
(1. 3) VNN NN
(1. 4) (aah - A af

is called the Moore-Penrose generalized inverse or pseudo-

inverse of matrix A,

Remark 5.2 Moore [34] was probably the first who intro-

duced the generalized inverse of a matrix. The conditions

(1.1) - (1. 4) were formulated considerably later by Penrose

(1377, [38]).

87

Remark 5.3 If m=n and rank(A) = n then Am1 satisfies (1. 1) ~ (1. 4).

This fact justifies the term generalized inverse for A+.

Definition 5.4 The linear least squares problem is the problem of

finding a vector x € (\Zmd which minimizes the Euclidean norm
of
(1.5) r = b-Ax, (re &™T),

X is called a least squares solution.

88

Theorem 5.‘5 All solutions of (1. 5) are given by

(1.6) x = ATb +(1-ATA) 2,

y Xl

where z € C is an arbitrary vector.

Proof See [50].

Corollary 5..6 The least squares solution of (1. 5) which has minimal

Euclidean norm is unique and equal to A+ b.

Corollary 5.7 If rank(A) = n then the least squares solution of (1. 5)

is unique and equal to A+b.

In this chapter we shall consider direct methods for sparse, real least

squares problems, where A has full column rank, i.e. we shall assume
(1.7) A e R™N e pmxT

(1.8) rank (A) = n,

(1.9) A is large and sparse.

Remark 5.8 It follows from (1.7) and (1. 8) that

(1;10) m=n and xEI\?nXT.

Remark 5.9 The condition (1.8) is essential for the methods we are

about to discuss. If rank(A) < n then other methods such as the

Singular Value Decomposition (see [48]) should be used.

Lemma 5.10 If (1.7) and (1.8) are satisfied then

(1.11) At = (aTa)taT,

89

Remark 5.11 1f (1.7) and (1. 8) are satisfied then the linear least

sqguares problem (1.5) can be reformulated as :

Solve the system Ax=Db - r

under the condition ATI" = 0.

It is thus equivalent to the (m+n) x (m+n) linear system

(1.12) o

e o o e e e
1
!
1
|
I
1
1
1
1
[

5.2 The general k—-stage direct method.

Taking the unavoidable computational errors into account we shall re—

place the linear least squares problem with a weaker one.

1

Problem 5. 12 Find an approximation x € F\?nx to the least squares

solution x = A+b.

In this section we shall introduce a general computational scheme which
includes many of the so-called direct methods for the linear least

squares problem.

90

Assume that it is possible to replace problem 5. 12 with the following.

Problem 5.13 Find a vector y € I\?de such that

(2. 1) y = Bl+c ,
where
(2. 2) =g, pPEN, geN,
(2. 3) B, € RP™9,
(2. 4) rank(B,) = g,
(2. 5) B1 and ¢ can be computed from A and b ,
(2.6) there is a simple relationship between x andy.

An approximation Y4 to y can be obtained through the following two

computational steps :

Step 1 - Generalized decomposition.
Compute
(2.7) B, = P B Q +E,, = 1(1)k, k €N,

where Pi and Qi are permutation matrices and Ei are perturbation-

(error-) matrices. §i is assumed to be decomposed

1l

(2. 8) B. = c.C.D |, i = 1(1)k,
and if k> 1 we have

1(1) k=1,

(2.9) B.,qy = C CC , [
We demand that D, are such that D?—z , 1= 1(1)k, can be easily
computed for any vector z, and furthermore that the decompo~

sition of gk is such that §k+z can be easily computed.

Apart from this we put no restrictions on the matrices
Ei’ Ci’ Ei’ Di except that the dimensions match such that all

multiplications can be carried out.

o1

Step 2 - Generalized substitution.
Compute
- 7 o otra s e el
(2.10) yq= (_ i D,)QkBk Pk(P, C.) c = Hc

i=1 i=1

Remark 5. 14 In (2.‘10) and following expressions we use

i
(2.11) i/—;in= A.i Aj+1"‘Ak when k > j
and
k
(.'—"
(2.12) ”A.=l when k < j.

If y1 is an approximation to y in (2;,1) then we can use y1 and the
relationship (2. 6) to obtain an approximation x to the least squares
solution x. Therefore we must prove that y1 will be a good appro-
ximation to y when the perturbation matrices Ei , =11k, are

small.
with H e RPP from (2. 10) define

(2.13) F = 1-HB, (F,1 € R¥9),

Then we have the following theorem ([62]].

Theorem 5. 15 Assume that §k and D, , i= 1(1)k=-1, have full
column rank. Then
k
(2. 14) F = 2 H,
oy
J
where
-1
(2.15) H.o =M PlE.Q (]| @ DDHT
j U3 OTITY oy i

and

92

(2.16) M, ” .
J i=1 i=j

Proof Using (2.13), (2.10), (2.16), (2.11), (2.7), (2.8), (2.9), (2.15)
and (2. 12) we get

I-M.B. = I-M.C."pP. B

3 171 271 171

I—MZC1T(§1 -E,)Q
(2.17)

T~ = T T T

T
l—MZC1 C1 (31D1Cl1 +M2C1 P1 P1 E1Q1

|-M252(/

This is the beginning of an induction argument where the induc-

tion step is (2 < j < k=-1) :

M.B.(Tr QiD.T)T = M. cJ P, B, TQ D
i=1
-1

(2.18) = M, c.T('é.—E.)Q.T (WQ. .7
j*+1 7] J =1 i

= Mj+ 1 IJ Q D Hj'

In the final step we use (2. 12), (2.7), (2.16) and (2. 15) together

with the assumption that gk and Di have full column rank :

k=1

k=1
- M, B, (TQD) + 20 H.
i=1 =1

2
1l

it
—
!
——
—

]
(2.19) k-1 k-1

93

Corollary 5. 16 If the decomposition is performed with no errors,

le. E;=0, i=1(1)k, then H =0, i=1(1)k, andH =8,

If moreover the substitution is performed without rounding errors

then y1 =y,

Definition 5.‘17 The computational scheme given by Step 1 and Step 2

is called a general k-stage direct method or k-stage computational

scheme for solving Problem 5;13.

5.3 Special cases of the general method.

We now give six examples of well-known and commonly used direct
methods which can be viewed as special cases of the general k-stage
computational scheme. Most of the methods are 1-stage methods and

for k=1 the general method reduces to

(3.1) B, = P,B,Q +E,,
(3.2) B, = C,C, D,
(3. 3) y = H¢ = Q1 §1+ P1c.

We must therefore specify C1 , 61 and D1 and verify that §1+z is

easily computed for arbitrary z.

Example 5.18 If m=n the classical Gaussian elimination is obtained

from the general scheme by setting k=1 and

(3. 4a) B, = A, c=b, y=x;
(3. 4b) C1=Lg, C,=1, D1=ug;
(3. 4c) §=y1.

(3. 4a) is the transformation from Problem 5, 12 to Problem 5. 13,
(3. 4b) specifies the method, and (3. 4c) the relationship between
Yy and X. l_g and Ug are triangular factors of A as computed by

Gaussian elimination.

94

Example 5.19 Let m > n and assume that the normal equations are

solved by some symmetric version of Gaussian elimination. This

scheme is obtained by setting k=1 and

(3. 5a) By = A A, c=A'b, y=x;

’ = T = =L T.
(3. 5b) C,=L_, C;=D_, D, L. s
(3. 5¢) x = Yqe

Here l. and D _ are the factors inthe L. D]_T ~ factorization
c c T c ¢ ¢
of the positive definite matrix A~ A.
Denote by

(3.6) 512@22...2c‘n>0

the singular values of matrix A (the square roots of the eigenvalues of

ATA). The spectral condition number of matrix A is

(3.7) WA = lAll, t IATI, = oy /o,.

It is seen that
(3.8) nB,) = (WAN?,

and this is one reason why the normal equations cannot be generally
recommended for the solution of linear least squares problems.
Furthermore, if A is large and sparse and not too well-conditioned
then (3. 8) may restrict the choice of drop tolerance severely - and
ATA may not be very sparse ({5], [6]).

Example 5‘.‘20 Let m> n and assume that the augmented linear system

is solved by Gaussian elimination. This method is obtained with

k=1 and (cf. (1.12))

i

(3. 9a) B

95

(3. 9¢) X = the last n coordinates of Yq .

B1 is the so-called augmented mairix and La and ua are its

triangular factors.

Bjorck { [1, 2]) has shown that

(3. 10) nB,) ~ A2 nlA) for a =0 /4%
and
(3.11) wB,) = (A)? for o =0, /NZ

Duff & Reid ({ 17]) have reported good results with o = 1 but
)

as (3.11) indicates, o must be chosen carefully. Note that %(B1

increases again for ¢ < Gn/ﬁ. (See also [5]).

Example 5,21 The Peters-Wilkinson method ([39]) can be obtained

from the general scheme by choosing k= 2 and

(3.12a) By=A, c=b, y=x;

(3. 12b) Cp=L,, Cy=1, Dy=U_;
(3. 12¢) Cp=L,, C,=D,, Dy=L_;
(3. 12d) >—<=y1.

Here l_p is an m X n unit lower trapezoidal matrix, U _is an
- = 7T

n X n upper triangular matrix and A = Lp Up . Lp Dp Lp is
the decomposition of the symmetric matrix
B, = L'L e R™"

2 P P

One can expect that the computations in the second stage will be
about as accurate as those in the first stage if %,(L_p) %'\fm
We cannot prove any such relation, but heuristic considerations
indicate that ill-conditioning of A will normally be reflected in
up, and that Lp is often well-conditioned ([39], [9]).

96

Numerical evidence shows that the method is often numerically

stable (see e.g. [17]).

Example 5.22 An orthogonal decomposition of A can be obtained from

the general scheme with k=1 and
(3. 13a) BI=A , c=b, y=x;

(3. 13b) C1=R,EI=D, D, =S;

(3. 13¢) X = Yo

Here R € l\Qan is orthogonal, i.e. RTR = lan , D is a diagonal
n X n matrix, S is an upper triangular n X n matrix and RDS is
the orthogonal decomposition of A. If this is computed by

Householder'!s or Givens'!s method then D =1,

Example 5.23 Another version of the orthogonal decomposition is

derived by setting k = 2, P1 = Pz = Q1 = Qz =1 and using the

decomposition PAQ + E = RDS from example 5,22, We define

(3.14a) B, =ATA, c=ATb, v=x;
(3.140) c, =1, T, =A'P'R, D, -DsQ’;
(3.14c) c,=aQ, C,=s', D,=D;

(3. 14d) X =y

In this case

o + . =+ T _ T,~1 Ty ~1
y,=He=Q, D/Q, B P,C, Pc=(DsQ’)” (@ D) ¢

1ol ATy,

(3.15) 152

=QS D S

Note that all matrices needed in the computation of y, are to be
computed in the first stage and that matrix R does not partici-
pate in the actual computations and therefore need not be stor‘ed;v
If we are using a dense matrix technique we have room for the
information needed to retrieve R below the diagonal of A (see

[49] and we might as well store it but if A is large and sparse

o7

and a sparse matrix technique is used, we can save a considerable
amount of spece since R is often much less sparse than A. This
fact is emphasized in [3], [5] and exploited in a code developed
by Zlatev and Nielsen [68] (see section 5.7). Note however that
both A and S should be stored. For the perturbation matrices

E1 and E, we have the following expressions

2
: E, = §1 -P, B, Q = (AT =2 RI(DsQ') - ATA
3. 16)

= ATpPT(RDs -PA@) @’ = AT PTEQT,

and
E. =B-P.B.Q = QS ' D-ATP'R

(3.17) 2 2 222

=a-(s'd'rRT-aTATPp)R = aeTr.

5.4 Generalized iterative refinement,

We shall now focus our attention on linear least squares problems where
the coefficient matrix, A, is large and sparse. In order to solve such
problems efficiently we must minimize the storage and computation time
for the solution process. To achieve this we shall employ a sparse matrix
technique, select a proper pivoting strategy, choose a reasonable stabi-
lity factor, and use a large drop tolerance (see e.g. [51], [8], [58]
and [41]).

These attempts to exploit and preserve the sparsity - and in particular

the last point - will often be accompanied by a loss of accuracy which we
should somehow try to regain. This can usually be done by adding iterative
refinement to the general k-stage scheme as we did in chapter 4 for
Gaussian elimination. We shall therefore add the following step to the

two computational steps of section 5. 2.

o8

Step 3 - Generalized iterative r‘efinement;

(4.1) P, = c-B,y; , i=11)g-1 ;
(4.2) d. = Hr, , i=1{1)g-1 ;
(4. 3) Yiep = Y+ , i=1(1)qg=-1 .

Some stop-criteria (see [54, 55], [48], [4]) must be used
to terminate the iterative process, and yq will be accepted as
an approximation to y. Finally X must be found from yq using

the relationship between x and v.

For the moment we shall assume that (2. 10) and (4. 1) - (4. 3) can

be performed without rounding errors, Define

(4. 4) S=C-Bly R SEf\qu1 .

From (2. 1) and (1. 11) it follows that

(4‘ 5) B S = O.

We shall need the following theorems in the discussion of the conver-

gence of the iterative process (4.1) - (4.3).

Theorem 5.24 If {yi} is the sequence of vectors calculated by (2. 10)
and (4. 3), then

. j=j=1
(4. 6) v, = vy +F Y (y. - y) +(EJ) FY)Hs
/ v=0

for any j < i.

Proof It follows from (4. 1) —= (4. 4) and (2. 13) that

V.

i TY T Y tdiy -y

(4.7)

i
<
..'...
T
W
<
<

Fly,_; -v)+Hs,

and (4. 6) follows easily.

99

Theorem 5,25 If {di} is the sequence of vectors calculated by (4. 2),

then
(4. 8) d = F'aq,

for any j < i,

Proof The assertion follows immediately from

(4. 9) di = g ldi-diy)
= i FHB vy -y = o
Theorem 5.26 If p(F) < 1, then
- 1
(4. 10) y = v+ Z d -(HB,) Hs
=k 1

for any fixed positive integer k.

Proof p(F) denotes the spectral radius of F and p(F) < 1 implies

. oo .
(4.11) lim E9=0 and &S F = 1-p,)".
Joo =0

Therefore we have from (4, 6) and (2. 13)

(o0 .
(4. 12) limy, = y+ (2 F)Hs = y +(H 81)"1 Hs.

I—x00 =0

From (4. 3) we find

(4.13) limy., =
. i ;
l=x0 i=k

and (4. 10) follows .

100

Corollary 5.27 If p(F) < 1 then the iterative process (4. 1) - (4. 3)

is convergent to the true solution of (2. 1) if one of the following

three conditions is satisfied :

(4.‘14) s = 0 or
(4. 15) H =BT or
(4. 16) H=HB"

where H € F\Qpo is arbitrary.

Corollary 5.28 The iterative process (4. 1) - (4.3) is convergent

if [[F]l < 1, where |- || denotes any matrix norm induced from

the vector norm chosen.

Remark 5.29 The condition (4. 16) must be characterized as purely

theoretical.

The condition (4. 14) is satisfied in examples 5. 18 -~ 5. 20 and 5. 23

of the preceding section, and in all examples H is an approximation
to B1+ . This means that the iterative process (4. 1) - (4. 3) is con-
vergent to the true solution of (2. 1) provided the computations in

(2. 10) and (4. 1) = (4. 3) are performed without errors.

Experimental evidence shows, however, that even with the pre-—
sence of rounding errors good results can be obtained, the

reason being that the amount of computation in (2. 10) and (4. 1) - (4. 3)
is fairly restricted and the accumulated rounding errors therefore

rather small.

Assume that all matrices Bi , 1= 1(1)k are well scaled, that bi

is the magnitude of the non-zero elements of Bi and that we choose
a drop tolerance Ti at stage i of the k-stage computational
scheme., Assume also that some version of Gaussian elimination

or some orthogonal decomposition is used for the factorization (2. 8).

101

Then

(4.17) HEiH < f.(m,n) - 5: - g (A) g, = max(e, Ti/bi) ,

where fi(m, n) is a function of m, n and the factorization method,

¢ is the machine accuracy, and g.(A) is some function of HAII;I
[

L et

(4.18) flm,n) = max {f(m,n)} ,
1<i<k

(4.19) g(A) = max {g,(A)]},
1<i<k -1

(4200 §A) = max {IM, P I+ fla,]" (/] @ D TNT,
1<i<k =1 4

(cf. (2.15) and (2. 16)).

Then

(4.21) IF]l < k* fm,n) » g+ glA) - glA), ¢-= 1max {ei} .

<i<k

When T =0 and k=1 g(A) « g(A) can often be expressed by the con-

dition number of A, If the spectral condition number

(4. 22) n(A) = (AL, - HA+H2

o

is used in connection with the methods from example 5. 19 and example

5.23 then MZ(A) can be replaced by

(4. 23) wMA) = inf {n,(AD)} ,
D>0

where D is a diagonal matrix with positive elements ([4], p. 163).

102

The practical value of the bound (4. 21) is rather smali since the theore-

tical values for f(m,n) are usually very crude and give severe over-

estimates for ||F|l. But (4.21) and (4. 17) indicate an important relation-

ship between the condition number ((4.22) or (4. 23)) and the drop tole-

rance showing once again that if »

is large T must be chosen smaller.

For matrices of class F2(m, n,c, r,q) we can change the condition by

changing q. The interplay between T and a on such a matrix is shown in

table 5. 1 where max a indicates the largest power of 2 which allows a

successful solution. Gaussian elimination is performed with an improved

version of the code SIRSM ([65, 66]), the orthogonal transformations

are performed with the code LI_SS01 ([67]), and COND is an estimate
of the condition number found by a FORTRAN subroutine given by [21].

Drop Gaussian elimination Orthogonal transformations
tol erance
T max o COND H><—>_£HQo max q, COND H><—->_<Hoo
24 15

0 2 4, 43E+14 | 8. 46E-14 2 1.69E+12 | 7. 09E-7
10”4 216 6. 752+12 | 2. 792-11 22 4. 02E+8 | 7. 54E-10
1073 2'3 | 1.01E+11 | 6. 51E-12 27 2.35E47 | 4. 66E~10
1072 210 | 1.69E+9 | 3.38E-12 o4 2. 43E+5 | 5. 17E~12

Table 5, 1

Solutions with matrices F2(22, 22, 11, 2, a) showing the

maximum value of & allowing a successful solution with

a given value of T.

103

5.5 Orthogonal transformations.

We shall in section 5.7 take a closer look at the impiementation details
of a 2-stage scheme based on orthogonal transformations but first we

shall discuss the orthogonal RDS decomposition of an m X n matrix A.

Two approaches have been very popular, in text—-books and in practical
use : the Givens method ([26, 27]) based on plane rotations and the

Householder method ([31]) based on elementary reflectors.

The computational cost of Givens's and Householder'!s methods, measured
by the number of multipiications and square roots for dense matrices
is given in table 5, 2 and these figures indicate why Householder's

method has been the more popular one since 1959,

Method Multiplications Sqguare roots
Givens -g- mn2 me+ n
Householder -:2§ mr\2 n
Table 5.2

Computational costs for dense matrices,

Recently the situation has changed due to results of [23], [24], and
[30], which have brought the computational cost of Given's method
down to about the same as for Householder, and as Given's method
is favourable with sparse mairices we shall discuss it in more

detail.

The orthogonal reduction is performed in n major steps, each one
transforming all elements below the diagonal in a certain column to 0.
Each major step consists of several minor steps - the plane rotations -
each one transforming one element to O.‘ If there are Sy such elements

then the k—~th major step will consist of s, minor steps.

k

104

In the ordinary Givens method a minor step consists of the following

multiplications

d. O " - *» 00 -
(5. 1) Y 0 . i ' g,k i, k1 i, n

- 0 d. a. a. e .
v j Ik Sl ke Jyn
where one of the elements a; s aj K shall be transformed to 0 and
b ?
di = dj = 1. Actually the first two matrices are m X m matrices, but
with 1!'s in the diagonal in all the other rows, so we show only the

elements that take part in the computations.

It is clear that two multiplications are needed for each a, , that take
part in the transformation (5. 1). To avoid too much work Gentleman
has therefore suggested the following refactorization of the first two

matrices

(5- Z) . = .
-0 Y 0 d. 0 d.y B 1

and we only perform the multiplications by the last matrix in (5. 2). It
is readily seen that only one multiplication (and one addition) is needed

for each a, , with this scheme.

We still have to decide which one of a1 and aj|< to transform to 0 and

give formulas for «, g and y :

If

(5. 3) dlz aii > djz aJi
then ajk : =0 with

(5. 4) g = _ajk/aik . o o= -8 djz/d.z ’
else an i T 0 with

105

In both cases

2 _ 1

(5. 6) Y Tos

The above formulae show that we can avoid square roots - which were
necessary in the determination of y and o with ordinary Givens - and
some multiplications by storing di2 rather than di' This is why the name
square-root-free Givens has been attached to this method. Furthermore
we shall see in a short while that we shall use the matrix D2 rather

than D in our computations (cf. (3.15)).

The di are initialized by
(5.7) df = 1 i = 1(1)m,

unless the problem is weighted in which case the squares of the weights

are used. In each minor step two di-s are updated :
(5. 8) d” = d.” - vy , d.” = d; ¢ vy

(cf. (5.2)) with YZ given in (5. 6).

From (5. 3) - (5.6) it follows that -15 < yz < 1 such that the elements of D?
decrease, but not too fast., If the problem is very large underflows may
occur, however, and it might be advisable to check the magnitudes of

the di2 and rescale the probliem if necessary.

Consider again the values in table 5.2, With the above modifications the
Gentleman-Givens method requires roughly the same amount of compu-
tational work as Householder'!s method, but there is still no particular
reason to prefer Gentleman-Givens to Householder for dense matrices
(note e. g. the underflow problem with the di)' It should be mentioned
that a trapezoidal~triangular L.U~decomposition only requires % mn2
arithmetic operations but that orthogonal methods usually are preferred

since they are believed to be more stable.

When dealing with sparse matrices the preservation of sparsity is an

important issue and this swings preference away from Householder.

106

If S\ + 1 rows participate in the computations during major step k
of the Householder decomposition then each of the transformed rows
is a linear combination of all S| + 1 rows and will therefore have the
sparsity pattern of the union of the Sy + 1 rows (neglecting cancel-
lations).

For the Givens decomposition the sparsity pattern of the two rows in-
volved in a minor step will be the sparsity pattern of the union of the
two rows, and if one row does not take part in any other minor steps

{within the major step in question) it will receive no more fill-ins.

For completeness we note that in the trapezoidal-triangular decompo-
sition no fill-ins appear in the pivotal row, and it is thus the best

method w. r.t. preserving sparsity.

We illustrate the appearance of fill-ins by a simple example in
fig. 5.3 - 5.6 where we show the original (square) matrix and the
matrix after the first major step of Householder, Givens, and Gaussian

elimination respectively.

X
X
X X
X
X X
X x
Fig, 5.3

The original matrix.

X X B ® R
B X
o & & X X
X X
X X X
X X X
Fig. 5.5
Givens's method.
First major step gives 7 fill-ins.

107

X X B @B X
B X X
B R
X X
X pYe x
X X X
Fig. 5.4
Householder's method.
First major step gives 9 fill-ins,
x
B X
-] X X
X X
X X X
X X X
Fig. 5.6

Gaussian elimination.

First major step gives 3 fill-ins.

108

5.6 Pivotal strategy.

As seen in section 5. 5 the Gaussian elimination will normally give less
fill-in than the orthogonal methods and among these Givens should be pre-
ferred to Householder (see also theoretical results by Duff & Reid ([167)
and Elfving ([20])).

We shall now discuss a pivotal strategy to be used with Givens'!s method in
order to keep the amount of fill-in as small as possible. The strategy is
based on an idea by Gentleman ([25]) and has been implemented in the code
LLSSo01 ([67, 68]).

Assume that we are about to carry out the k-th major step {1 <k<n)

(a) Find the column {(number s) with the smallest number
(sk + 1) of active elements (i.e. elements with row

number larger than or equal to k).
(b) Interchange columns k and s.

(c) For i= 1(1)5k find the two rows (with non-zero
elements in the pivotal column and) which contain the
smallest number of active elements. Create a zero

element in one of them using (5.3) - (5; 6).

(d) Let row r be the only row which contains a non-
zero element in the pivotal column. Interchange

rows k and r.

We note that we use a fixed pivotal column and perform the column
interchanges before the computations in each major step just like

with Gaussian elimination; The row interchanges are performed after the
computations in a major step because we vary the pivotal row from

one minor step to the other‘.. This is done in order to preserve the
sparsity better and to minimize the amount of computation. Note that

in contrast to Gaussian elimination we have fill-in in the pivotal row

and this would spread if the same row were used again and again.

109

Remark 5.30 Duff ([12]) has suggested a strategy based on a fixed

pivotal row where (c} and (d) are replaced by

(c*) Among the rows with non-zero elements in the pivotal
column let row pr have a minimal number of non-zero
elements. Interchange rows k and r.

(d*) Create zero elements below the diagonal in the pivotal

column by using a fixed pivotal row (k) and the other
rows in order of increasing number of non-zero

elements.

Remark 5.31 Note that the stability criterion (5. 3) cannot be used

because we have determined beforehand where the zero should

be created.

An illustration of the performance of the two strategies with respect to
preserving sparsity is given in fig. 5.7 = 5. 11 (using a small matrix
and two major steps). The rows that take part in the computations with
variable pivotal rows are (1,8), (12,13), (1,12) in the first major
step and (2,9), (2,8), (2,‘12) in the second major step; Note that in

the second step we have not used the option of varying the pivotal r*ow.‘
Still we have fewer fill-ins and easier computations than with the fixed

pivotal row.

If the number of non-zero elements in the pivotal column is 3 or less
then the number of fill-ins will be the same with the two strategies.
Otherwise the variable pivotal row strategy will probably give better
results in the sense that the computations leading to the matrix S

will be easier, in particular when the matrix is not too sparse,
although: the number of elementis in matrix S may not be much smaller

(cf. [12]).

110

X X X X X ® B B X X X B ® B X
X X X X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X X X X
X X X X o X X X B 0 X X X ®
X X X X X X X X X
X X X X X X X X e
X e X X X X X X X
X X X X o B B X X X o B B X X X
X X X X o B B X X X o) X X X
X X X X X X
Fig. 5.7 Fig. 5.8 Fig. 5.9
The original matrix. Fixed pivotal row. \Variable pivotal row,
First major siep. First major step.
3 minor steps. 3 minor step.
8 fill-ins. 6 fill-ins.
X X X X X X X X X X X X
X X B ® B X X X B ® B X
X X X X
X X X X
X X X X
X X X X
X X X X X X
0 X H X X o X ® X X
o B X X ® o B X X ®m
X X X X X X
X X X X X x
o X B X X X o X B X X X
o X B X X X X X
X X X X
Fig. 5.10 Fig. 5. 11
Fixed pivotal row. VVariable pivotal row,
Second major step. Second major step.
4 minor steps. 3 minor steps.

8 new fill-ins. 7 new fill-ins.

One drawback with the variable pivotal row sirategy Is that it cannot
be used efficiently when a sequence of coefficient matrices of the
same structure are to be factorized. Too much space would be needed
in order to keep information about which rows that participate in each

minor step.

5.7 A 2-stage method based on orthogonal transformations.

We shall briefly describe an implementation (the code LLLSS01) of the
2-stage method of example 5. 23. In the expression for Yq = He (3.15)
the matrix S appears twice and this might be unfavourable since a pos-
sible ill-condition of A will be reflected in S. Therefore we combine

our method with the method of example 5.22 from which
(7.1) y, =Hb; H=0Q S DR P.

As mentioned earlier we do not want to store the matrix R since it is
rather large and probably not very sparse but we can still use (7. 1)
to compute the direct soiution if we perform parallel computations on

the right hand side to produce the vector b* = RT P. b together with

1
the decomposition step.

If we are solving several problems with the same coefficient matrix,
one after the other, in particular if we use generalized iterative refi-
nement (4. 1) = (4. 3) then we use the matrix

(7. 2) H=as 'p2EhHtal

for the succeeding computations. Note that despite (3. 14a) the matrix
B1 = ATA is never calculated. To compute the residuals (4. 1) we use

(7.3) r* = b-Ay, , roo= A ¥

112

The Gentleman-Givens method is used for the orthogonal decomposi-
tion and in order to preserve sparsity better, a drop tolerance, T,
is used. The pivotal strategy is based on variable pivotal rows as

described in section 5. 6,

The storage is arranged in a similar way as described for Gaussian
elimination. The arrays A, CNR, RNR, Al, CN are used - the last

two to hold the original matrix A, Exira complications arise because we
use variable pivotal rows and because fill-ins appear in the pivotal rows.
The array HA is split in two parts HA1(m, 4) and HA2(n, 4) with a

total number of columns smaller than the number of columns in HA(13).

This is so because we do not store the permutation matrix P, nor

1
information about the rows and columns after increasing number of
elements, and the pivotal interchanges are organized in a different

way.

The inner products in (2. 10) and (4. 1) - (4. 3) are accumulated and
stored in double precision as suggested by Bjorck ([4]). For more
details we refer to Zlatev & Nielsen ([67, 68]).

5.8 Numerical results.,

The efficiency of the combination : sparse matrix technique + pivotal
strategy + large drop tolerance + iterative refinement is demonstrated
in several experiments with test matrices of class F2(m, n, ¢, r, a).
In each of the following examples we have kept 4 of the 5 parameters
fixed in order to see the effect of varying the last one, and we have
used different values of T in order to see the effect it has on storage,

time and accuracy.

The experiments were carried out at NEUCC on an IBM 3033 which

has n, = 7 and n, = 16 > 2n, (cf. section 4.6, strategy C). All right-
hand sides have been chosen such that the problems were consistent

(r = 0) with the solution x; =1, 1= 1(1)n. Other right hand sides
producing r-vectors with r; € [100, 10000 | have been used with similar

resulis but slightly larger numbers of iterations.

113

Example 5,32 The matrices are F2(m, 100, 11, 6, 10), m = 100(10)200,

so we are changing the ratio m/n. Two values of the drop tole-

rance have been used (T = 0 and T = 0.01) and from the results
in table 5. 12 we see that the larger drop tolerance implies less

storage and computing time with roughly the same accuracy.

T=20 T = 0.01

m { COUNT | Time jiter{ Accuracy | COUNT| Time jiter| Accuracy

100§ 3210 1.38
110} 3142 1. 42
120 | 3801 1.82
130} 3630 1.71
140 | 4386 2.32 |1
150 | 4326 2.52
160 | 4561 2. 91
170] 5678 4,75
180 | 5675 4,84
190 | 5867 5. 01
200 | 5499 4,97

5.77E-15 | 2635 | 1.06 | 8 |1.93E-14
1.78E-14 | 2619 | 1.06 | 8 |1.02E~14
7.33E-15 | 2749 | 1.16| 9 |1.93E-14
2.53E-14 | 2519 | 1.01 |10 |2.15E~14
1.82E-14 | 2460 | 0.97 |10 |2.33E-14
2.32E-14 | 2267 | 0.98 | 8 |7.79E~15
1.89E-14 | 3624 |1.93| 9 |1.31E-14
6.89E~14 | 3623 | 2.22| 9 |1.60E-14
1.62E~14 | 4189 | 2.88 | 8 |1.11E-14
3.24E-14 | 3845 | 2.57 |11 |1.75E-14
2.35E-14 | 4323 | 2.96| 9 |1.35E-14

@ 6O O O YW o O N O o

Table 5,12

The effect of varying T and m.
A=F2(m, 100, 11, 6, 10) ; NZ=6m + 110,

114

Example 5.33 The matrices are F2(150, 100, ¢, 6, 10), c = 20(5)65,

so we are changing the distribution of the non-zero elements.

The results are given in table 5. 13 for T =0 and T = 0. 01.

The effect of varying T and c.

A =F2(150, 100, c, 6, 10) ; NZ = 1010.

T=0 T = 0.01
c | COUNT Time | iter | Accuracy |COUNT { Time | iter|Accuracy
20| 5388 3.89 6 1. 15E~14 4118 2. 40 9 |1.38E-14
251 4955 3.62 6 {7.78E~-15 3975 2, 50 8 |3.94E-15
30| 4933 3.27 7 1. 73E-14 3683 2.241 11 12.80E-14
35| 5102 3.64 8 | 2.82E-14 4033 2.57 8 12.93E-14
40§ 5064 3.74 6 | 4.20E-14 3441 2. 04 9 |3.31E~14
451 4002 2. 13 9 | 3.46E-14 2612 1.26 9 13.09E-14
50| 3373 1. 58 6 | 1.87E-14 3025 1.57] 10 |2.93E-14
551 4749 3. 11 7 | 2.95E-14 3478 1.92} 10 |2.64E-14
60| 4672 3.191 11 2.09E-14 3615 2.15} 11 |2, 58E-14
65] 4448 2. 51 7 1. 98E-14 3535 1.95] 10 |2.38E-14
Table 5. 13

115

Example 5.34 The matrices are F2(150, 100, 11, r, 10), r = 5(1)10

so we are changing the width of the band and thus NZ. The results
are given in table 5. 14 for T = 0and T = 0.01.

The effect of varying T and r.

T=0 T = 0. 01
r JCOUNT Time jiter | Accuracy |COUNT| Time |iter | Accuracy
51 4220 2,391 10 | 2. B4E-14 2152 0.75; 10 [2.84E-14
6 4326 2. 53 9 | 2.33E-14 2267 0.98 8 |7.79E-15
7 4717 3. 02 2.35E~14 3630 2.16 O {2.02E-14
81 4935 3.80] 10 | 2.20E~-14 3138 1.60 8 |2.13E~-14
91 5476 3. 96 3. 37E~-14 3331 1.68 9 |3.07E~-14
10} 5889 5. 03 7 | 2.38E~14 3298 1.79 7 12.60E~14
Table 5. 14

A =F2(150, 100, 11, r, 10) ; NZ = 150r + 110.

Example 5,35 The matrices are F2(125, 100, 11, 5, o),

a =10, 100, 1000, 1000. Since max(]aij[) / min(1aij]) = 100L2

the matrices with large 0 are badly scaled. The accuracy of the

solution is given in table 5. 15 for four values of T (0, 0.01, 0.1, 1)

and it is seen that large values of T cannot be used with badly

scaled problems.,

a T=0 T =102 T=10"1 10°

100 | 2.02e-14 2.05E~14 | 3.06E-14 6. 82E—7

102 | 4.632-13 4, 45E-13 | 5.00E- 2 4.72E 0

103 | 2.34E-13 1. 02E~ 1 3.96E 0 2.32E 2

104 | 3.36E-11 5.51E 0 | 6.63E 2 3. 40E 5
Table 5,15

The effect of varying T and .

A =F2(125, 100, 11, 5,q) ; Nz = 735,

116

Example 5.36 Same matrices as in example 5.35. We compare the

direct solution (DS) and iterative refinement (IR) with T = 0
and T = 0.01. The results are given in table 5, 16,
Ds, T=0 IR, T=0 IR, T =0.01

a JCOUNT|TIime|Accuracy [COUNT{Time |{Accuracy | COUNT|Time Accuracy
101 3308 [1.36]8.66E-4] 3308 |1.53|2.02E~14] 1930 {0.72!|2.05E~14
102 3306 |1.35|1.20E-3}| 3306 [1.52|4.63E-13] 2048 [0.91 {4, 45-13
103 3308 [1.36]8.50E~2| 3308 |1.51{2.34E-13] 2101 10.78]1.02E~ 1
104 3308 |1.36] 4.42E 0| 3308 |1.59{2.36E-11] 2275 |0.89{5.51E 0

Table 5,16

Comparison of DS and IR with different a.
A =F2(125, 100, 11, 5,%) ; NZ = 735,

We can draw the following general conclusion from the experiments.

(a) When the iterative refinement process is convergent

we can expect 2n, digits accuracy (cf. [1], [2] and

[4]).

(b) IR plus a large T leads to a reduction in both storage

and computation time for the method of section 5. 7.

(c) DS is slightly faster than IR with the same T but the

accuracy is considerably better with IR.

(d) IR may converge even if the matrix is very badly

scaled but a smaller value of T should be used.

The above conclusions from experiments with the method of section
5.7 are in very good agreement with our results from chapter 4
relating to Gaussian elimination with square matrices. We can in
this connection note that row scaling normally is not allowed with
least squares problems, so we shall have to live with badly scaled

matrices (and smaller values of T).

Appendix : The codes used in the test.

In this appendix we list the codes which we have used throughout the

text, the program libraries where they can be found, and the compu-

ting centres where test runs have been performed.

Computing centres :

NEUCC

ReECAU

RECKU

Northern Europe University Computing Centre,

Technical University, LLyngby, Denmark.

Regional Computing Centre, Aarhus University,

Denmark,

Regional Computing Centre, Copenhagen University,

Denmark.

Program Libraries :

Harwell Library

~ Developed at AERE, Harwell, England.
Implemented at NEUCC.

NAG L.ibrary - Developed by Numerical Algorithms Group, Oxford,

Codes :

MA18

MA28

England.
Implemented at RECAU and RECKU,.

This package solves linear systems with general
sparse matrices, The package is described in
[10] and is a standard subroutine in the Harwell.

Library.

This package solves linear systems with general
sparse matrices. The package is described in [13]

and is a standard subroutine in the Harwell Library.

117

118

FO4ACE/F

FOIBRE/F
+
FO4AXE/F

INDANL
-+
INDOPR

SSLEST

SIRsSM

This subroutine solves linear systems with symmetric,
positive definite band-matrices and is a standard sub-
routine in the NAG Library {(Mark 7). It can be con-
sidered as a NAG version of the subroutine described
in [57] pp. 50-56.

A set of subroutines to solve linear systems with gene-
ral sparse matrices. These subroutines are standard
subroutines in the NAG Library (Mark 7) and can be con~-
sidered as NAG versions of MA28,

A set of subroutines to solve symmetric, indefinite
| inear systems. The subroutines are described

in [35] and can be obtained from the Insti-

tute for Numerical Analysis, Technical University,

Lyngby, Denmark.

This subroutine solves linear systems with general
sparse matrices. The subroutine is described in [70]
and can be obtained from the Institute for Numerical

Analysis, Technical University, L.yngby, Denmark.

This package solves linear systems with general sparse
matrices and exists in two versions. One is written in
AL.GOL W, is described in [63] and is a standard sub-
routine in the ALGOL. W LLibrary at NEUCC. The
second version is written in FORTRAN and described
in [64]. Both versions can be obtained from the
Institute for Numerical Analysis, Technical University,

Lyngby, Denmark.

This package solves linear systems with general sparse
matrices by iterative refinement. The package is des-
described in [65, 66| and can be obtained from the
Institute for Numerical Analysis, Technical University,

Lyngby, Denmar*k..

119

LLSS01 -~ This package solves linear least squares problems
by iterative r‘efinement.‘ The package is described
in[67, 68] and can be obtained from the Institute
for Numerical Analysis, Technical University,

Lyngby, Denmark.

Y12M - This package solves linear systems with general sparse
matrices directly or by iterative refinement. The
package is described in [69, 72, 73]. The sub-
routines are implemented as standard subroutines at
RECKU and can be obtained from RECKU.

Remark 1 - All codes except LILSS01 are based on some version
of Gaussian elimination. LLLLSS01 uses the Gentleman-

Givens version of plane rotations,

Remark 2 - All codes are written in FCRTRAN. An AL.GOL. W

version of SSLEST is also available.

Remark 3 - MAZ28 is more efficient than MA18 (see section 2.8 and
[19]). Note too that MA28 can perform transformation

to block triangular form if this is possible,

Remark 4 - Y12M is superior to ST, SSLEST and SIRSM. This is
the only package where a large drop tolerance and ite-
rative refinement can be used as an option. An experi-
mental version of SSLLEST with these options is under

development.

Remark 5

Other codes for sparse problems have been described
by Duff [14 1.

120

References

1. A. ij'r‘ck : Iterative refinement of linear least squares problems, I,
BIT 7 (1967) 1-30.

2, A. Bjorck : Iterative refinement of linear least squares problems, Il,
BIT 8 (1968) 1-30.

3. A. Bjorck : Methods for sparse linear least squares problems,
"Sparse Matrix Computations! (J. Bunch & D. Rose, eds),
Academic Press, New York, (1976) 179-199,

4, A. Bjorck : Comment on the iterative refinement of least squares
solutions, J. Amer. Stat. Assoc., 73 (1978) 161-166,

5. A. Bjorck : Numerical algorithms for linear least squares problems,
Report 2, Matematisk Institut, Universitetet i Trondheim,
Trondheim, Norway (1978).

6. A. Bjorck & T. Elfving : Accelerated projection methods for com-
puting pseudoinverse solutions of systems of linear equations,
BIT 19 (1979) 145-163.

7. A. Bjorck & G.H. Golub : ALGOL programming, contribution No. 22 :
"lterative refinement of linear least squares solutions by
Householder transformations!, BIT 7 (1967) 322~337.

8. R. J. Clasen : Techniques for automatic tolerance in linear programming,

Comm. ACM 9 (1966) 802-803.

R A.K. Cline, C.B. Moler, G, W. Stewart & J.H. Wilkinson :
An estimate for the condition number of a matrix,
SIAM J. Numer. Anal. 16 (1979) 368-375.

10. A.R. Curtis & J.K. Reid : The solution of large sparse unsymmetric
systems of linear equations,
J. Inst. Math, Appl.. 8 (1971) 344-355,

121

11. J.dJ. Dongarra, C,B, Moler, J.R. Bunch & G.W. Siewart:
LINPACK - User!s Guide, SIAM, Philadelphia (1979).

12. 1.S. Duff: Pivot selection and row ordering in Givens reduction

on sparse matrices, Computing 13 (1974) 239-248,

13. 1.S. Duff: MA28 - a set of FORTRAN subroutines for sparse
unsymmetric matrices,
Report R8730 A.E.R.E., Harwell, England (1977).

14, 1.S. Duff: Practical comparisons of codes for the solution of
sparse linear systems,
NSparse Matrix Proceedings 1978" (1.5, Duff & G. W. Stewart,
eds) SIAM,Philadelphia (1979) 107-134,

15. 1.S. Duff & J.K. Reid : A comparison of sparsity orderings for
obtaining a pivotal sequence in Gaussian elimination,
J. Inst. Math. Appl. 14 (1974) 281-291.

16. 1.5, Duff & J. K. Reid : On the reduction of sparse mairices to
condensed forms by similarity transformations,
J. Inst. Math. Appl. 15 (1975) 217-224,

17. .S, Duff & J. K., Reid : A comparison for some methods for the
solution of sparse overdetermined systems of linear equations,
J. Inst. Math. Appl. 17 (1976) 267-280.

18. 1.5, Duff & J. K., Reid:
Performance evaluation of codes for sparse matrix problems,

Report No. CSS 66, A.E.R.E., Harwell, England (1978).

19. I.S. Duff & J.K. Reid:
Some design features of a sparse matrix code,
ACM Trans. Math., Software 5 (1979) 18-35.

122

20.

21.

22.

23.

24,

25.

26'

27‘

28.

T. Elfving : A note on sparsity in Gauss and Givens methods,
Report No. LITH-MAT-R-1976-5, Department of Mathematics,
Linkoping University, Linkobing, Sweden (1976).

G.E. Forsythe, M, A, Malcolm & C.B. Moler :
Computer methods for mathematical computations,
Prentice-Hall, Englewood Cliffs, N.J. (1977).

C.W. Gear : Numerical error in sparse linear equations,
Report No. UIUCDCS~-F-75-885, Depariment of Computer Science,
University of lllinois at Urbana Champaign, Urbana, lllinois,
u.s. A, (1975).

W.M. Gentleman : L east squares computations by Givens trans-
formations without square roots,
J. Inst. Math. Appl. 12 (1973) 329-336.

W.M. Gentleman : Error analysis of QR decompositions by Givens!'
transformations, Lin. Alg. Appl. 10 (1975) 189~197,

W.M. Gentleman : Row elimination for solving sparse linear systems
and least squares problems,
"Numerical Analysis Dundee 1975" (G. A. Watson, ed.) L.ecture
Notes in Mathematics No. 506, Springer, Berlin (1975) 123~133.

J. W, Givens : Numerical computation of the .characteristic
values of a real symmetric matrix, Report No. ORNL-1574
Oak Ridge National Laboratory (1954).

J. W, Givens : Computation of plane unitary rotations transforming
a general matrix to triangular form,
J. Soc. Ind. Appl. Math., 6 (1958) 26-50.

F.G. Gustavson : Some basic techniques for solving sparse systems
of linear equations, "Sparse matrices and their applications!
(D.J. Rose & R.A. Willoughby, eds) Plenum Press, New York,
(1972) 41-52.

29.

30.

31.

32,

33.

34,

35.

36.

37.

38.

123

F.G. Gustavson : Two fast algorithms for sparse matrices :
multiplication and permuted transposition,
ACM Trans. Math, Software 4 (1978) 250-269.

S. Hammarling : A note on multiplications to the Givens plane rotations,
J. Inst. Math. Appl. 13 (1974) 215-218,

A.S. Householder : Unitary triangularization of a nonsymmetric matrix,
J. Assoc. Comp. Mach., 5 (1958) 335-338.

M. Jankowski & H. WoZniakowski :
Iterative refinement implies numerical stability,
BIT 17 (1977) 303-311,

H. M. Markowitz : The elimination form of the inverse and its
applications to linear programming,
Management Sci. 3 (1957) 255-269,

E.H. Moore : On the reciprocal of the general algebraic matrix,
Bull. Amer. Math. Soc., 26 (1919-1920) 394-395.

N. Munksgaard : Fortran subroutines for direct solution of sets
of sparse and symmetric linear equations, Report 77-05,
Institute for Numerical Analysis, Technical University of

Denmark, Lyngby, Denmark (1977).

NAG L.ibrary Fortran Manual, Mark 7, vol. 3-4,
Numerical Algorithms Group, Banbury Road 7, Oxford,
England (1979).

R. Pénrose : A generalized inverse for matrices,
Proc. Cambridge Phil. Soc., 51 (1955) 506-513.

R. Penprose : On best approximate solutions of linear matrix equations,

Proc. Cambridge Phil. Soc., 52 (1956) 17-19,

124

39.

40.

41.

42.

43.

44,

45,

46,

G. Peters & J.H. Wilkinson :
The least squares problem and pseudoinverses,
Computer J., 13 (1970) 309-316.

J. K. Reid : A note on the stability of Gaussian elimination,
J. Inst. Math. Appl. 8 (1971) 374-375,

J.K. Reid:

Fortran subroutines for handling sparse linear programming bases,

Report No. R8269 A.E.R.E., Harwell, England (1976).

J. K. Reid:
Solution of linear system of equations : direct method (general),
"Sparse Matrix Technique' (V. A. Barker, ed.), Lecture
Notes in Mathematics 572, Springer, Berlin (1977) 102~129,

R.D. Skeel : Gaussian elimination and numerical instability,
Report, Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, lllinois, USA, (1977).

R.D. Skeel : lterative refinement implies numerical stability for
Gaussian elimination,
Report, Department of Computer Science, University of lllinois
at Urbana-Champaign, Urbana, Illinois, USA (1978),

K. Schaumburg & J.Wasniewski :
Use of a semiexplicit Runge-Kutta integration - algorithm in
a spectroscopic problem,
Computers and Chemistry 2 (1978) 19-25,

K. Schaumburg, J. Wasniewski & Z. Zlatev :

Solution of ordinary differential equations with time dependent

coefficients. Development of a semiexplicit Runge-Kutta algorithm

and application to a spectroscopic problem,
Computers and Chemistry, 3 (1979) 57-63.

47,

48,

49,

50.

51.

52.

53.

54.

55.

56.

57.

125

K. Schaumburg, J. Wasniewski & Z. Zlatev :
The use of sparse matrix technique in the humerical integra-
tion of stiff systems of linear ordinary differential equations,

Computers and Chemistry 4 (1980) (to appear).

G.W. Stewart : Introduction to matrix computations,
Academic Press, New York (1973).

G. W. Stewart : The economical storage of plane rotations,
Numer. Math., 25 (1976) 137-139,

G.W. Stewart : On the perturbation of pseudo~inverses, projections,
and linear least squares problems.
SIAM Review 19 (1977) 634-662.

R. P. Tewarson : Sparse matrices, Academic Press, New York (1973).

V.V. Voevodin : Computational bases of the linear algebra,
Nauka, Moscow (in Russian) (1977).

J.H. Wilkinson : Error Analysis of direct methods of matrix inversion,
J. Assoc. Comput. Mach. 8 (1961) 281-330.

J.H. Wilkinson : Rounding errors in algebraic processes,
Prentice-Hall, Englewood Cliffs, N. J. (1963),

J.H. Wilkinson : The algebraic eigenvalue problem,
Oxford University Press, London (1965),

J.H. Wilkinson : Some recent advances in numerical linear algebra,
"The State of the Art in Numerical Analysis" (D. A.H. Jacobs, ed.)
Academic Press, New York (1977) 3~53.

J.H. Wilkinson & C. Reinsch :
Handbook for automatic computations, vol. 2, Linear Algebra,

Springer, Beriin (1971).

126

58.

59.

60.

61.

62.

63.

64,

65.

P.

Wolfe : Error in the solution of linear programming problems,
"Error in Digital Computation" (L..B. Rall, ed.), Vol. 2,
Wiley, New York (1965) 271-284,

D.M. Young : Iterative solution of large linear systems,

Academic Press, New York (1971).

Zlatev : Use of iterative refinement in the solution of sparse
linear systems, Report 1/79, Institute of Mathematics and
Statistics, The Royal Veterinary and Agricultural University,

Copenhagen, Denmark (1979).

Zlatev : On some pivotal strategies in Gaussian elimination
by sparse technique, SIAM J. Numer. Anal. 17 (1980) 18-30.

Zlatev : On solving some large linear problems by direct methods,
DAIMI PB-111, Department of Computer Science, University
of Aarhus, Aarhus, Denmark (1980).

Zlatev & V.A. Barker : Logical procedure SSLEST - an
Algol W procedure for solving sparse systems of linear equations,
Report No. 76-13, Institute for Numerical Analysis, Technical

University of Denmark, Lyndby, Denmark (1976).

Zlatev, V.A. Barker & P.G. Thomsen :

SSLEST : A FORTRAN [V subroutine for solving sparse systems
of linear equations (USER's Guide).

Report 78-01, Institute for Numerical Analysis, Technical

University of Denmark, Lyngby, Denmark (1978).

. Zlatev & H.B. Nielsen :

Preservation of sparsity in connection with iterative refinement,
Report No. 77-12, Institute for Numerical Analysis, Technical

University of Denmark, Lyngby, Denmark (1977).

127

66. Z. Zlatev & H.B. Nielsen : SIRSM - a package for the solution of
sparse systems by iterative refinement,
Report No. 77-13, Institute for Numerical Analysis, Technical

University of Denmark, L.yngby, Denmark (1977).

67. Z. Zlatev & H.B. Nielsen : LILSS01 - a FORTRAN subroutine
for solving least squares problems (USER's GUIDE),
Report No, 79-07, Institute for Numerical Analysis, Technical

University of Denmark, Lyngby, Denmark (1979).

68. Z. Zlatev & H.B. Nielsen :
L east squares solution of large linear problems,
NSymposium i Anvendt Statistik 1980" (A. Hoskuldsson,
K. Condradsen, B. Sloth Jensen & K. Esbensen, eds),
Northern European University Computing Centre (NEUCC)
Lyngby, Denmark (1980) 17-52.

69, Z. Zlatev, K. Schaumburg & J. Wasniewski :
Implementation of an iterative refinement option in a code for
large and sparse systems,

Computers and Chemistry 4 (1980) (to appear).

70. Z. Zlatev & P.G. Thomsen :
ST - a Fortran IV subroutine for the solution of large systems
of linear algebraic equations with real coefficients by use of
sparse technique,
Report No. 76-05, Institute for Numerical Analysis, Technical

University of Denmark, Lyngby, Denmark (1976).

71. Z. Zlatev & P.G. Thomsen :
Application of backward differentiation methods to the finite
element solution of time dependent problems,
[nt. J. Num. Math. Engng. 14 (1979) 1051-1061.

72. Z. Zlatev & J. Wasniewski : Package Y12M - solution of large and
sparse systems of linear algebraic equations,
Preprint Series No. 24, Mathematics Institute, University

of Copenhagen, Copenhagen, Denmark (1978).

128

73. Z. Zlatev, J. Wasniewski & K. Schaumburg :
Comparison of two algorithms for solving large linear systems,
Report 80/8, The Regional Computing Centre at the University
of Copenhagen (RECKU), Copenhagen, Denmark (1980).

74, Z. Zlatev, J. Wasniewski & K. Schaumburg :
Classification of the systems of ordinary differential equations
and practical aspects in the numerical integration of large

systems, Computers and Chemistry 4 (1980) 13-18.

	PB-123_Page_001_Image_0001.tiff
	PB-123_Page_002_Image_0001.tiff
	PB-123_Page_003_Image_0001.tiff
	PB-123_Page_004_Image_0001.tiff
	PB-123_Page_005_Image_0001.tiff
	PB-123_Page_006_Image_0001.tiff
	PB-123_Page_007_Image_0001.tiff
	PB-123_Page_008_Image_0001.tiff
	PB-123_Page_009_Image_0001.tiff
	PB-123_Page_010_Image_0001.tiff
	PB-123_Page_011_Image_0001.tiff
	PB-123_Page_012_Image_0001.tiff
	PB-123_Page_013_Image_0001.tiff
	PB-123_Page_014_Image_0001.tiff
	PB-123_Page_015_Image_0001.tiff
	PB-123_Page_016_Image_0001.tiff
	PB-123_Page_017_Image_0001.tiff
	PB-123_Page_018_Image_0001.tiff
	PB-123_Page_019_Image_0001.tiff
	PB-123_Page_020_Image_0001.tiff
	PB-123_Page_021_Image_0001.tiff
	PB-123_Page_022_Image_0001.tiff
	PB-123_Page_023_Image_0001.tiff
	PB-123_Page_024_Image_0001.tiff
	PB-123_Page_025_Image_0001.tiff
	PB-123_Page_026_Image_0001.tiff
	PB-123_Page_027_Image_0001.tiff
	PB-123_Page_028_Image_0001.tiff
	PB-123_Page_029_Image_0001.tiff
	PB-123_Page_030_Image_0001.tiff
	PB-123_Page_031_Image_0001.tiff
	PB-123_Page_032_Image_0001.tiff
	PB-123_Page_033_Image_0001.tiff
	PB-123_Page_034_Image_0001.tiff
	PB-123_Page_035_Image_0001.tiff
	PB-123_Page_036_Image_0001.tiff
	PB-123_Page_037_Image_0001.tiff
	PB-123_Page_038_Image_0001.tiff
	PB-123_Page_039_Image_0001.tiff
	PB-123_Page_040_Image_0001.tiff
	PB-123_Page_041_Image_0001.tiff
	PB-123_Page_042_Image_0001.tiff
	PB-123_Page_043_Image_0001.tiff
	PB-123_Page_044_Image_0001.tiff
	PB-123_Page_045_Image_0001.tiff
	PB-123_Page_046_Image_0001.tiff
	PB-123_Page_047_Image_0001.tiff
	PB-123_Page_048_Image_0001.tiff
	PB-123_Page_049_Image_0001.tiff
	PB-123_Page_050_Image_0001.tiff
	PB-123_Page_051_Image_0001.tiff
	PB-123_Page_052_Image_0001.tiff
	PB-123_Page_053_Image_0001.tiff
	PB-123_Page_054_Image_0001.tiff
	PB-123_Page_055_Image_0001.tiff
	PB-123_Page_056_Image_0001.tiff
	PB-123_Page_057_Image_0001.tiff
	PB-123_Page_058_Image_0001.tiff
	PB-123_Page_059_Image_0001.tiff
	PB-123_Page_060_Image_0001.tiff
	PB-123_Page_061_Image_0001.tiff
	PB-123_Page_062_Image_0001.tiff
	PB-123_Page_063_Image_0001.tiff
	PB-123_Page_064_Image_0001.tiff
	PB-123_Page_065_Image_0001.tiff
	PB-123_Page_066_Image_0001.tiff
	PB-123_Page_067_Image_0001.tiff
	PB-123_Page_068_Image_0001.tiff
	PB-123_Page_069_Image_0001.tiff
	PB-123_Page_070_Image_0001.tiff
	PB-123_Page_071_Image_0001.tiff
	PB-123_Page_072_Image_0001.tiff
	PB-123_Page_073_Image_0001.tiff
	PB-123_Page_074_Image_0001.tiff
	PB-123_Page_075_Image_0001.tiff
	PB-123_Page_076_Image_0001.tiff
	PB-123_Page_077_Image_0001.tiff
	PB-123_Page_078_Image_0001.tiff
	PB-123_Page_079_Image_0001.tiff
	PB-123_Page_080_Image_0001.tiff
	PB-123_Page_081_Image_0001.tiff
	PB-123_Page_082_Image_0001.tiff
	PB-123_Page_083_Image_0001.tiff
	PB-123_Page_084_Image_0001.tiff
	PB-123_Page_085_Image_0001.tiff
	PB-123_Page_086_Image_0001.tiff
	PB-123_Page_087_Image_0001.tiff
	PB-123_Page_088_Image_0001.tiff
	PB-123_Page_089_Image_0001.tiff
	PB-123_Page_090_Image_0001.tiff
	PB-123_Page_091_Image_0001.tiff
	PB-123_Page_092_Image_0001.tiff
	PB-123_Page_093_Image_0001.tiff
	PB-123_Page_094_Image_0001.tiff
	PB-123_Page_095_Image_0001.tiff
	PB-123_Page_096_Image_0001.tiff
	PB-123_Page_097_Image_0001.tiff
	PB-123_Page_098_Image_0001.tiff
	PB-123_Page_099_Image_0001.tiff
	PB-123_Page_100_Image_0001.tiff
	PB-123_Page_101_Image_0001.tiff
	PB-123_Page_102_Image_0001.tiff
	PB-123_Page_103_Image_0001.tiff
	PB-123_Page_104_Image_0001.tiff
	PB-123_Page_105_Image_0001.tiff
	PB-123_Page_106_Image_0001.tiff
	PB-123_Page_107_Image_0001.tiff
	PB-123_Page_108_Image_0001.tiff
	PB-123_Page_109_Image_0001.tiff
	PB-123_Page_110_Image_0001.tiff
	PB-123_Page_111_Image_0001.tiff
	PB-123_Page_112_Image_0001.tiff
	PB-123_Page_113_Image_0001.tiff
	PB-123_Page_114_Image_0001.tiff
	PB-123_Page_115_Image_0001.tiff
	PB-123_Page_116_Image_0001.tiff
	PB-123_Page_117_Image_0001.tiff
	PB-123_Page_118_Image_0001.tiff
	PB-123_Page_119_Image_0001.tiff
	PB-123_Page_120_Image_0001.tiff
	PB-123_Page_121_Image_0001.tiff
	PB-123_Page_122_Image_0001.tiff
	PB-123_Page_123_Image_0001.tiff
	PB-123_Page_124_Image_0001.tiff
	PB-123_Page_125_Image_0001.tiff
	PB-123_Page_126_Image_0001.tiff
	PB-123_Page_127_Image_0001.tiff
	PB-123_Page_128_Image_0001.tiff
	PB-123_Page_129_Image_0001.tiff

